Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 63,662 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
(* ========================================================================= *)
(* Implementation of Cooper's algorithm via proforma theorems.               *)
(* ========================================================================= *)

prioritize_int();;

(* ------------------------------------------------------------------------- *)
(* Basic syntax on integer terms.                                            *)
(* ------------------------------------------------------------------------- *)

let dest_mul = dest_binop `(*)`;;
let dest_add = dest_binop `(+)`;;

(* ------------------------------------------------------------------------- *)
(* Divisibility.                                                             *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("divides",(12,"right"));;

let divides = new_definition
  `a divides b <=> ?x. b = a * x`;;

(* ------------------------------------------------------------------------- *)
(* Trivial lemmas about integers.                                            *)
(* ------------------------------------------------------------------------- *)

let INT_DOWN2 = prove
 (`!a b. ?c. !x. x < c ==> x < a /\ x < b`,
  MESON_TAC[INT_LE_TOTAL; INT_LET_TRANS]);;

(* ------------------------------------------------------------------------- *)
(* Trivial lemmas about divisibility.                                        *)
(* ------------------------------------------------------------------------- *)

let DIVIDES_ADD = prove
 (`!d a b. d divides a /\ d divides b ==> d divides (a + b)`,
  MESON_TAC[divides; INT_ADD_LDISTRIB]);;

let DIVIDES_SUB = prove
 (`!d a b. d divides a /\ d divides b ==> d divides (a - b)`,
  MESON_TAC[divides; INT_SUB_LDISTRIB]);;

let DIVIDES_ADD_REVR = prove
 (`!d a b. d divides a /\ d divides (a + b) ==> d divides b`,
  MESON_TAC[DIVIDES_SUB; INT_ARITH `(a + b) - a = b`]);;

let DIVIDES_ADD_REVL = prove
 (`!d a b. d divides b /\ d divides (a + b) ==> d divides a`,
  MESON_TAC[DIVIDES_SUB; INT_ARITH `(a + b) - b = a`]);;

let DIVIDES_LMUL = prove
 (`!d a x. d divides a ==> d divides (x * a)`,
  ASM_MESON_TAC[divides; INT_ARITH `a * b * c = b * a * c`]);;

let DIVIDES_RNEG = prove
 (`!d a. d divides (--a) <=> d divides a`,
  REWRITE_TAC[divides] THEN MESON_TAC[INT_MUL_RNEG; INT_NEG_NEG]);;

let DIVIDES_LNEG = prove
 (`!d a. (--d) divides a <=> d divides a`,
  REWRITE_TAC[divides] THEN
  MESON_TAC[INT_MUL_RNEG; INT_MUL_LNEG; INT_NEG_NEG]);;

(* ------------------------------------------------------------------------- *)
(* More specialized lemmas (see footnotes on p4 and p5).                     *)
(* ------------------------------------------------------------------------- *)

let INT_DOWN_MUL_LT = prove
 (`!x y d. &0 < d ==> ?c. x + c * d < y`,
  MESON_TAC[INT_ARCH; INT_LT_REFL;
            INT_ARITH `x - y < c * d <=> x + --c * d < y`]);;

let INT_MOD_LEMMA = prove
 (`!d x. &0 < d ==> ?c. &1 <= x + c * d /\ x + c * d <= d`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o SPECL [`x:int`; `&0`] o MATCH_MP INT_DOWN_MUL_LT) THEN
  DISCH_THEN(X_CHOOSE_TAC `c0:int`) THEN
  SUBGOAL_THEN `?c1. &0 <= c1 /\ --(x + c0 * d) < c1 * d` MP_TAC THENL
   [SUBGOAL_THEN `?c1. --(x + c0 * d) < c1 * d` MP_TAC THENL
     [ASM_MESON_TAC[INT_ARCH; INT_ARITH `&0 < d ==> ~(d = &0)`]; ALL_TAC] THEN
    MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN SIMP_TAC[] THEN
    MATCH_MP_TAC(INT_ARITH
      `(&0 < --c1 ==> &0 < --cd) /\ xcod < &0
       ==> --xcod < cd ==> &0 <= c1`) THEN
    ASM_SIMP_TAC[GSYM INT_MUL_LNEG; INT_LT_MUL]; ALL_TAC] THEN
  REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`; GSYM NOT_FORALL_THM] THEN
  REWRITE_TAC[GSYM INT_FORALL_POS] THEN
  REWRITE_TAC[NOT_FORALL_THM] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
  REWRITE_TAC[INT_ARITH `--(x + a * d) < b * d <=> &1 <= x + (a + b) * d`] THEN
  DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `c0 + &n` THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN
  UNDISCH_TAC `&1 <= x + (c0 + &n) * d` THEN SPEC_TAC(`n:num`,`n:num`) THEN
  INDUCT_TAC THEN REWRITE_TAC[ARITH_RULE `SUC n - 1 = n`] THENL
   [REWRITE_TAC[SUB_0; LT_REFL; INT_ADD_RID] THEN
    POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN INT_ARITH_TAC;
    REWRITE_TAC[GSYM INT_OF_NUM_SUC; LT] THEN INT_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Shadow for restricted class of formulas.                                  *)
(* ------------------------------------------------------------------------- *)

let cform_INDUCT,cform_RECURSION = define_type
  "cform = Lt int
         | Gt int
         | Eq int
         | Ne int
         | Divides int int
         | Ndivides int int
         | And cform cform
         | Or cform cform
         | Nox bool";;

(* ------------------------------------------------------------------------- *)
(* Interpretation of a cform.                                                *)
(* ------------------------------------------------------------------------- *)

let interp = new_recursive_definition cform_RECURSION
  `(interp x (Lt e) <=> x + e < &0) /\
   (interp x (Gt e) <=> x + e > &0) /\
   (interp x (Eq e) <=> (x + e = &0)) /\
   (interp x (Ne e) <=> ~(x + e = &0)) /\
   (interp x (Divides c e) <=> c divides (x + e)) /\
   (interp x (Ndivides c e) <=> ~(c divides (x + e))) /\
   (interp x (And p q) <=> interp x p /\ interp x q) /\
   (interp x (Or p q) <=> interp x p \/ interp x q) /\
   (interp x (Nox P) <=> P)`;;

(* ------------------------------------------------------------------------- *)
(* The "minus infinity" and "plus infinity" variants.                        *)
(* ------------------------------------------------------------------------- *)

let minusinf = new_recursive_definition cform_RECURSION
 `(minusinf (Lt e) = Nox T) /\
  (minusinf (Gt e) = Nox F) /\
  (minusinf (Eq e) = Nox F) /\
  (minusinf (Ne e) = Nox T) /\
  (minusinf (Divides c e) = Divides c e) /\
  (minusinf (Ndivides c e) = Ndivides c e) /\
  (minusinf (And p q) = And (minusinf p) (minusinf q)) /\
  (minusinf (Or p q) = Or (minusinf p) (minusinf q)) /\
  (minusinf (Nox P) = Nox P)`;;

let plusinf = new_recursive_definition cform_RECURSION
 `(plusinf (Lt e) = Nox F) /\
  (plusinf (Gt e) = Nox T) /\
  (plusinf (Eq e) = Nox F) /\
  (plusinf (Ne e) = Nox T) /\
  (plusinf (Divides c e) = Divides c e) /\
  (plusinf (Ndivides c e) = Ndivides c e) /\
  (plusinf (And p q) = And (plusinf p) (plusinf q)) /\
  (plusinf (Or p q) = Or (plusinf p) (plusinf q)) /\
  (plusinf (Nox P) = Nox P)`;;

(* ------------------------------------------------------------------------- *)
(* All the "dividing" things divide the given constant (e.g. their LCM).     *)
(* ------------------------------------------------------------------------- *)

let alldivide = new_recursive_definition cform_RECURSION
 `(alldivide d (Lt e) <=> T) /\
  (alldivide d (Gt e) <=> T) /\
  (alldivide d (Eq e) <=> T) /\
  (alldivide d (Ne e) <=> T) /\
  (alldivide d (Divides c e) <=> c divides d) /\
  (alldivide d (Ndivides c e) <=> c divides d) /\
  (alldivide d (And p q) <=> alldivide d p /\ alldivide d q) /\
  (alldivide d (Or p q) <=> alldivide d p /\ alldivide d q) /\
  (alldivide d (Nox P) <=> T)`;;

(* ------------------------------------------------------------------------- *)
(* A-sets and B-sets.                                                        *)
(* ------------------------------------------------------------------------- *)

let aset = new_recursive_definition cform_RECURSION
 `(aset (Lt e) = {(--e)}) /\
  (aset (Gt e) = {}) /\
  (aset (Eq e) = {(--e + &1)}) /\
  (aset (Ne e) = {(--e)}) /\
  (aset (Divides c e) = {}) /\
  (aset (Ndivides c e) = {}) /\
  (aset (And p q) = (aset p) UNION (aset q)) /\
  (aset (Or p q) = (aset p) UNION (aset q)) /\
  (aset (Nox P) = {})`;;

let bset = new_recursive_definition cform_RECURSION
 `(bset (Lt e) = {}) /\
  (bset (Gt e) = {(--e)}) /\
  (bset (Eq e) = {(--(e + &1))}) /\
  (bset (Ne e) = {(--e)}) /\
  (bset (Divides c e) = {}) /\
  (bset (Ndivides c e) = {}) /\
  (bset (And p q) = (bset p) UNION (bset q)) /\
  (bset (Or p q) = (bset p) UNION (bset q)) /\
  (bset (Nox P) = {})`;;

(* ------------------------------------------------------------------------- *)
(* The key minimality case analysis for the integers.                        *)
(* ------------------------------------------------------------------------- *)

let INT_EXISTS_CASES = prove
 (`(?x. P x) <=> (!y. ?x. x < y /\ P x) \/ (?x. P x /\ !y. y < x ==> ~P y)`,
  EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
  DISCH_THEN(X_CHOOSE_TAC `x:int`) THEN
  MATCH_MP_TAC(TAUT `(~b ==> a) ==> a \/ b`) THEN
  REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(p /\ q) <=> p ==> ~q`; NOT_FORALL_THM;
              NOT_IMP] THEN
  STRIP_TAC THEN X_GEN_TAC `y:int` THEN
  DISJ_CASES_TAC(INT_ARITH `x < y \/ &0 <= x - y`) THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `!n. ?y. y < x - &n /\ P y` MP_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[INT_FORALL_POS] THEN
    DISCH_THEN(MP_TAC o SPEC `x - y`) THEN
    ASM_REWRITE_TAC[INT_ARITH `x - (x - y) = y`]] THEN
  INDUCT_TAC THEN
  REWRITE_TAC[INT_SUB_RZERO; GSYM INT_OF_NUM_SUC] THEN
  ASM_MESON_TAC[INT_ARITH `z < y /\ y < x - &n ==> z < x - (&n + &1)`]);;

(* ------------------------------------------------------------------------- *)
(* Lemmas towards the main theorems (following my book).                     *)
(* ------------------------------------------------------------------------- *)

let MINUSINF_LEMMA = prove
 (`!p. ?y. !x. x < y ==> (interp x p <=> interp x (minusinf p))`,
  MATCH_MP_TAC cform_INDUCT THEN
  REWRITE_TAC[interp; minusinf] THEN
  MATCH_MP_TAC(TAUT
   `(a /\ b /\ c /\ d) /\ (e /\ f) ==> a /\ b /\ c /\ d /\ e /\ f`) THEN
  CONJ_TAC THENL
   [MESON_TAC[INT_ARITH `x < --a ==> x + a < &0`; INT_GT;
              INT_LT_ANTISYM; INT_LT_REFL];
    ALL_TAC] THEN
  CONJ_TAC THEN REPEAT GEN_TAC THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM;
     RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`a:int`; `b:int`] THEN STRIP_TAC THEN
  MP_TAC(SPECL [`a:int`; `b:int`] INT_DOWN2) THEN
  MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[]);;

let MINUSINF_REPEATS = prove
 (`!p c d x. alldivide d p
             ==> (interp x (minusinf p) <=> interp (x + c * d) (minusinf p))`,
  CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN MATCH_MP_TAC cform_INDUCT THEN
  SIMP_TAC[interp; minusinf; alldivide] THEN
  ONCE_REWRITE_TAC[INT_ARITH `(x + d) + y = (x + y) + d`] THEN
  MESON_TAC[DIVIDES_LMUL; DIVIDES_ADD_REVL; DIVIDES_ADD]);;

let NOMINIMAL_EQUIV = prove
 (`alldivide d p /\ &0 < d
   ==> ((!y. ?x. x < y /\ interp x p) <=>
        ?j. &1 <= j /\ j <= d /\ interp j (minusinf p))`,
  ASM_MESON_TAC[MINUSINF_LEMMA; MINUSINF_REPEATS; INT_DOWN_MUL_LT;
                INT_DOWN2; INT_MOD_LEMMA]);;

let BDISJ_REPEATS_LEMMA = prove
 (`!d p. alldivide d p /\ &0 < d
         ==> !x. interp x p /\ ~(interp (x - d) p)
                 ==> ?j b. &1 <= j /\ j <= d /\ b IN bset p /\ (x = b + j)`,
  GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `a /\ b ==> c <=> b ==> a ==> c`] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
  MATCH_MP_TAC cform_INDUCT THEN
  REWRITE_TAC[interp; alldivide; bset; NOT_IN_EMPTY] THEN
  MATCH_MP_TAC(TAUT `(a /\ b /\ c /\ d /\ e /\ f) /\ g /\ h
                     ==> a /\ b /\ c /\ d /\ e /\ f /\ g /\ h`) THEN
  CONJ_TAC THENL
   [ALL_TAC;
    SIMP_TAC[TAUT `~a \/ a`;
             TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`;
             TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`;
             TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`;
             DE_MORGAN_THM; IN_UNION; EXISTS_OR_THM; FORALL_AND_THM]] THEN
  REPEAT STRIP_TAC THENL
   [ALL_TAC;
    MAP_EVERY EXISTS_TAC [`x + a`; `--a`];
    MAP_EVERY EXISTS_TAC [`&1`; `--a - &1`];
    MAP_EVERY EXISTS_TAC [`d:int`; `--a`];
    ASM_MESON_TAC[INT_ARITH `(x - y) + z = (x + z) - y`; DIVIDES_SUB];
    ASM_MESON_TAC[INT_ARITH `(x - y) + z = (x + z) - y`;
                  INT_ARITH `(x - y) + y = x`; DIVIDES_ADD]] THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
  REWRITE_TAC[IN_SING] THEN INT_ARITH_TAC);;

let MAINTHM_B = prove
 (`!p d. alldivide d p /\ &0 < d
         ==> ((?x. interp x p) <=>
              ?j. &1 <= j /\ j <= d /\
                  (interp j (minusinf p) \/
                   ?b. b IN bset p /\ interp (b + j) p))`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`; EXISTS_OR_THM] THEN
  MATCH_MP_TAC(TAUT
   `!a1 a2. (a <=> a1 \/ a2) /\ (a1 <=> b) /\ (a2 ==> c) /\ (c ==> a)
            ==> (a <=> b \/ c)`) THEN
  EXISTS_TAC `!y. ?x. x < y /\ interp x p` THEN
  EXISTS_TAC `?x. interp x p /\ !y. y < x ==> ~(interp y p)` THEN
  REPEAT CONJ_TAC THENL
   [REWRITE_TAC[GSYM INT_EXISTS_CASES];
    ASM_MESON_TAC[NOMINIMAL_EQUIV];
    ALL_TAC;
    MESON_TAC[]] THEN
  DISCH_THEN(X_CHOOSE_THEN `x:int`
   (CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x - d`))) THEN
  ASM_SIMP_TAC[INT_ARITH `&0 < d ==> x - d < x`] THEN
  DISCH_TAC THEN
  MP_TAC(SPECL [`d:int`; `p:cform`] BDISJ_REPEATS_LEMMA) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(MP_TAC o SPEC `x:int`) THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Deduce the other one by a symmetry argument rather than a similar proof.  *)
(* ------------------------------------------------------------------------- *)

let mirror = new_recursive_definition cform_RECURSION
 `(mirror (Lt e) = Gt(--e)) /\
  (mirror (Gt e) = Lt(--e)) /\
  (mirror (Eq e) = Eq(--e)) /\
  (mirror (Ne e) = Ne(--e)) /\
  (mirror (Divides c e) = Divides c (--e)) /\
  (mirror (Ndivides c e) = Ndivides c (--e)) /\
  (mirror (And p q) = And (mirror p) (mirror q)) /\
  (mirror (Or p q) = Or (mirror p) (mirror q)) /\
  (mirror (Nox P) = Nox P)`;;

let INTERP_MIRROR_LEMMA = prove
 (`!p x. interp (--x) (mirror p) <=> interp x p`,
  MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[mirror; interp] THEN
  REWRITE_TAC[GSYM INT_NEG_ADD; DIVIDES_RNEG] THEN INT_ARITH_TAC);;

let INTERP_MIRROR = prove
 (`!p x. interp x (mirror p) <=> interp (--x) p`,
  MESON_TAC[INTERP_MIRROR_LEMMA; INT_NEG_NEG]);;

let BSET_MIRROR = prove
 (`!p. bset(mirror p) = IMAGE (--) (aset p)`,
  MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[mirror; aset; bset] THEN
  REWRITE_TAC[IMAGE_CLAUSES; IMAGE_UNION] THEN
  REWRITE_TAC[EXTENSION; IN_SING] THEN INT_ARITH_TAC);;

let MINUSINF_MIRROR = prove
 (`!p. minusinf (mirror p) = mirror (plusinf p)`,
  MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[plusinf; minusinf; mirror]);;

let PLUSINF_MIRROR = prove
 (`!p. plusinf p = mirror(minusinf (mirror p))`,
  MATCH_MP_TAC cform_INDUCT THEN
  SIMP_TAC[plusinf; minusinf; mirror; INT_NEG_NEG]);;

let ALLDIVIDE_MIRROR = prove
 (`!p d. alldivide d (mirror p) = alldivide d p`,
  MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[mirror; alldivide]);;

let EXISTS_NEG = prove
 (`(?x. P(--x)) <=> (?x. P(x))`,
  MESON_TAC[INT_NEG_NEG]);;

let FORALL_NEG = prove
 (`(!x. P(--x)) <=> (!x. P x)`,
  MESON_TAC[INT_NEG_NEG]);;

let EXISTS_MOD_IMP = prove
 (`!P d. (!c x. P(x + c * d) <=> P(x)) /\ (?j. &1 <= j /\ j <= d /\ P(--j))
         ==> ?j. &1 <= j /\ j <= d /\ P(j)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `d:int = j` THENL
   [FIRST_X_ASSUM(MP_TAC o SPECL [`--(&2)`; `d:int`]) THEN
    ASM_REWRITE_TAC[INT_ARITH `d + --(&2) * d = --d`] THEN
    ASM_MESON_TAC[INT_LE_REFL];
    FIRST_X_ASSUM(MP_TAC o SPECL [`&1`; `--j`]) THEN
    ASM_REWRITE_TAC[INT_ARITH `--j + &1 * d = d - j`] THEN
    DISCH_TAC THEN EXISTS_TAC `d - j` THEN ASM_REWRITE_TAC[] THEN
    MAP_EVERY UNDISCH_TAC [`&1 <= j`; `j <= d`; `~(d:int = j)`] THEN
    INT_ARITH_TAC]);;

let EXISTS_MOD_EQ = prove
 (`!P d. (!c x. P(x + c * d) <=> P(x))
         ==> ((?j. &1 <= j /\ j <= d /\ P(--j)) <=>
              (?j. &1 <= j /\ j <= d /\ P(j)))`,
  REPEAT STRIP_TAC THEN EQ_TAC THENL
   [MP_TAC(SPEC `P:int->bool` EXISTS_MOD_IMP);
    MP_TAC(SPEC `\x. P(--x):bool` EXISTS_MOD_IMP)] THEN
  DISCH_THEN(MP_TAC o SPEC `d:int`) THEN ASM_REWRITE_TAC[INT_NEG_NEG] THEN
  ASM_REWRITE_TAC[INT_ARITH `--(x + c * d) = --x + --c * d`; FORALL_NEG] THEN
  MESON_TAC[]);;

let MAINTHM_A = prove
 (`!p d. alldivide d p /\ &0 < d
         ==> ((?x. interp x p) <=>
              ?j. &1 <= j /\ j <= d /\
                  (interp j (plusinf p) \/
                   ?a. a IN aset p /\ interp (a - j) p))`,
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM EXISTS_NEG] THEN
  REWRITE_TAC[GSYM INTERP_MIRROR] THEN
  MP_TAC(SPECL [`mirror p`; `d:int`] MAINTHM_B) THEN
  ASM_REWRITE_TAC[ALLDIVIDE_MIRROR] THEN DISCH_THEN SUBST1_TAC THEN
  REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`;
              TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN
  BINOP_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[INTERP_MIRROR; MINUSINF_MIRROR; BSET_MIRROR] THEN
    REWRITE_TAC[INT_ARITH `--(b + j) = --b - j`; IN_IMAGE] THEN
    MESON_TAC[INT_NEG_NEG]] THEN
  REWRITE_TAC[PLUSINF_MIRROR] THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALLDIVIDE_MIRROR]) THEN
  SPEC_TAC(`mirror p`,`q:cform`) THEN REWRITE_TAC[INTERP_MIRROR] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC(GSYM EXISTS_MOD_EQ) THEN
  ASM_SIMP_TAC[GSYM MINUSINF_REPEATS]);;

(* ------------------------------------------------------------------------- *)
(* Proforma for elimination of coefficient of main variable.                 *)
(* ------------------------------------------------------------------------- *)

let EXISTS_MULTIPLE_THM_1 = prove
 (`(?x. P(&1 * x)) <=> ?x. P(x)`,
  REWRITE_TAC[INT_MUL_LID]);;

let EXISTS_MULTIPLE_THM = prove
 (`(?x. P(c * x)) <=> ?x. c divides x /\ P(x)`,
  MESON_TAC[divides]);;

(* ------------------------------------------------------------------------- *)
(* Ordering of variables determined by a list, *with* trivial default.       *)
(* ------------------------------------------------------------------------- *)

let rec earlier vars x y =
  match vars with
    z::ovs -> if z = y then false
              else if z = x then true
              else earlier ovs x y
  | [] -> x < y;;

(* ------------------------------------------------------------------------- *)
(* Conversion of integer constant to ML rational number.                     *)
(* This is a tweaked copy of the real-type versions in "real.ml".            *)
(* ------------------------------------------------------------------------- *)

let is_num_const =
  let ptm = `&` in
  fun tm -> try let l,r = dest_comb tm in
                l = ptm && is_numeral r
            with Failure _ -> false;;

let mk_num_const,dest_num_const =
  let ptm = `&` in
  (fun n -> mk_comb(ptm,mk_numeral n)),
  (fun tm -> let l,r = dest_comb tm in
             if l = ptm then dest_numeral r
             else failwith "dest_num_const");;

let is_int_const =
  let ptm = `(--)` in
  fun tm ->
    is_num_const tm ||
    try let l,r = dest_comb tm in
        l = ptm && is_num_const r
    with Failure _ -> false;;

let mk_int_const,dest_int_const =
  let ptm = `(--)` in
  (fun n -> if n </ Int 0 then mk_comb(ptm,mk_num_const(minus_num n))
            else mk_num_const n),
  (fun tm -> if try rator tm = ptm with Failure _ -> false then
               minus_num (dest_num_const(rand tm))
             else dest_num_const tm);;

(* ------------------------------------------------------------------------- *)
(* Similar tweaks of all the REAL_INT_..._CONV arith convs in real.ml        *)
(* ------------------------------------------------------------------------- *)

let INT_LE_CONV,INT_LT_CONV,
    INT_GE_CONV,INT_GT_CONV,INT_EQ_CONV =
  let tth =
    TAUT `(F /\ F <=> F) /\ (F /\ T <=> F) /\
          (T /\ F <=> F) /\ (T /\ T <=> T)` in
  let nth = TAUT `(~T <=> F) /\ (~F <=> T)` in
  let NUM2_EQ_CONV =
    COMB2_CONV (RAND_CONV NUM_EQ_CONV) NUM_EQ_CONV THENC
    GEN_REWRITE_CONV I [tth] in
  let NUM2_NE_CONV =
    RAND_CONV NUM2_EQ_CONV THENC
    GEN_REWRITE_CONV I [nth] in
  let [pth_le1; pth_le2a; pth_le2b; pth_le3] = (CONJUNCTS o prove)
   (`(--(&m) <= &n <=> T) /\
     (&m <= &n <=> m <= n) /\
     (--(&m) <= --(&n) <=> n <= m) /\
     (&m <= --(&n) <=> (m = 0) /\ (n = 0))`,
    REWRITE_TAC[INT_LE_NEG2] THEN
    REWRITE_TAC[INT_LE_LNEG; INT_LE_RNEG] THEN
    REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_LE; LE_0] THEN
    REWRITE_TAC[LE; ADD_EQ_0]) in
  let INT_LE_CONV = FIRST_CONV
   [GEN_REWRITE_CONV I [pth_le1];
    GEN_REWRITE_CONV I [pth_le2a; pth_le2b] THENC NUM_LE_CONV;
    GEN_REWRITE_CONV I [pth_le3] THENC NUM2_EQ_CONV] in
  let [pth_lt1; pth_lt2a; pth_lt2b; pth_lt3] = (CONJUNCTS o prove)
   (`(&m < --(&n) <=> F) /\
     (&m < &n <=> m < n) /\
     (--(&m) < --(&n) <=> n < m) /\
     (--(&m) < &n <=> ~((m = 0) /\ (n = 0)))`,
    REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3;
                GSYM NOT_LE; GSYM INT_NOT_LE] THEN
    CONV_TAC TAUT) in
  let INT_LT_CONV = FIRST_CONV
   [GEN_REWRITE_CONV I [pth_lt1];
    GEN_REWRITE_CONV I [pth_lt2a; pth_lt2b] THENC NUM_LT_CONV;
    GEN_REWRITE_CONV I [pth_lt3] THENC NUM2_NE_CONV] in
  let [pth_ge1; pth_ge2a; pth_ge2b; pth_ge3] = (CONJUNCTS o prove)
   (`(&m >= --(&n) <=> T) /\
     (&m >= &n <=> n <= m) /\
     (--(&m) >= --(&n) <=> m <= n) /\
     (--(&m) >= &n <=> (m = 0) /\ (n = 0))`,
    REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; INT_GE] THEN
    CONV_TAC TAUT) in
  let INT_GE_CONV = FIRST_CONV
   [GEN_REWRITE_CONV I [pth_ge1];
    GEN_REWRITE_CONV I [pth_ge2a; pth_ge2b] THENC NUM_LE_CONV;
    GEN_REWRITE_CONV I [pth_ge3] THENC NUM2_EQ_CONV] in
  let [pth_gt1; pth_gt2a; pth_gt2b; pth_gt3] = (CONJUNCTS o prove)
   (`(--(&m) > &n <=> F) /\
     (&m > &n <=> n < m) /\
     (--(&m) > --(&n) <=> m < n) /\
     (&m > --(&n) <=> ~((m = 0) /\ (n = 0)))`,
    REWRITE_TAC[pth_lt1; pth_lt2a; pth_lt2b; pth_lt3; INT_GT] THEN
    CONV_TAC TAUT) in
  let INT_GT_CONV = FIRST_CONV
   [GEN_REWRITE_CONV I [pth_gt1];
    GEN_REWRITE_CONV I [pth_gt2a; pth_gt2b] THENC NUM_LT_CONV;
    GEN_REWRITE_CONV I [pth_gt3] THENC NUM2_NE_CONV] in
  let [pth_eq1a; pth_eq1b; pth_eq2a; pth_eq2b] = (CONJUNCTS o prove)
   (`((&m = &n) <=> (m = n)) /\
     ((--(&m) = --(&n)) <=> (m = n)) /\
     ((--(&m) = &n) <=> (m = 0) /\ (n = 0)) /\
     ((&m = --(&n)) <=> (m = 0) /\ (n = 0))`,
    REWRITE_TAC[GSYM INT_LE_ANTISYM; GSYM LE_ANTISYM] THEN
    REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; LE; LE_0] THEN
    CONV_TAC TAUT) in
  let INT_EQ_CONV = FIRST_CONV
   [GEN_REWRITE_CONV I [pth_eq1a; pth_eq1b] THENC NUM_EQ_CONV;
    GEN_REWRITE_CONV I [pth_eq2a; pth_eq2b] THENC NUM2_EQ_CONV] in
  INT_LE_CONV,INT_LT_CONV,
  INT_GE_CONV,INT_GT_CONV,INT_EQ_CONV;;

let INT_NEG_CONV =
  let pth = prove
   (`(--(&0) = &0) /\
     (--(--(&x)) = &x)`,
    REWRITE_TAC[INT_NEG_NEG; INT_NEG_0]) in
  GEN_REWRITE_CONV I [pth];;

let INT_MUL_CONV =
  let pth0 = prove
   (`(&0 * &x = &0) /\
     (&0 * --(&x) = &0) /\
     (&x * &0 = &0) /\
     (--(&x) * &0 = &0)`,
    REWRITE_TAC[INT_MUL_LZERO; INT_MUL_RZERO])
  and pth1,pth2 = (CONJ_PAIR o prove)
   (`((&m * &n = &(m * n)) /\
      (--(&m) * --(&n) = &(m * n))) /\
     ((--(&m) * &n = --(&(m * n))) /\
      (&m * --(&n) = --(&(m * n))))`,
    REWRITE_TAC[INT_MUL_LNEG; INT_MUL_RNEG; INT_NEG_NEG] THEN
    REWRITE_TAC[INT_OF_NUM_MUL]) in
  FIRST_CONV
   [GEN_REWRITE_CONV I [pth0];
    GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_MULT_CONV;
    GEN_REWRITE_CONV I [pth2] THENC RAND_CONV(RAND_CONV NUM_MULT_CONV)];;

let INT_ADD_CONV =
  let neg_tm = `(--)` in
  let amp_tm = `&` in
  let add_tm = `(+)` in
  let dest = dest_binop `(+)` in
  let m_tm = `m:num` and n_tm = `n:num` in
  let pth0 = prove
   (`(--(&m) + &m = &0) /\
     (&m + --(&m) = &0)`,
    REWRITE_TAC[INT_ADD_LINV; INT_ADD_RINV]) in
  let [pth1; pth2; pth3; pth4; pth5; pth6] = (CONJUNCTS o prove)
   (`(--(&m) + --(&n) = --(&(m + n))) /\
     (--(&m) + &(m + n) = &n) /\
     (--(&(m + n)) + &m = --(&n)) /\
     (&(m + n) + --(&m) = &n) /\
     (&m + --(&(m + n)) = --(&n)) /\
     (&m + &n = &(m + n))`,
    REWRITE_TAC[GSYM INT_OF_NUM_ADD; INT_NEG_ADD] THEN
    REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN
    REWRITE_TAC[INT_ADD_RINV; INT_ADD_LID] THEN
    ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
    REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN
    REWRITE_TAC[INT_ADD_RINV; INT_ADD_LID]) in
  GEN_REWRITE_CONV I [pth0] ORELSEC
  (fun tm ->
    try let l,r = dest tm in
        if rator l = neg_tm then
          if rator r = neg_tm then
            let th1 = INST [rand(rand l),m_tm; rand(rand r),n_tm] pth1 in
            let tm1 = rand(rand(rand(concl th1))) in
            let th2 = AP_TERM neg_tm (AP_TERM amp_tm (NUM_ADD_CONV tm1)) in
            TRANS th1 th2
          else
            let m = rand(rand l) and n = rand r in
            let m' = dest_numeral m and n' = dest_numeral n in
            if m' <=/ n' then
              let p = mk_numeral (n' -/ m') in
              let th1 = INST [m,m_tm; p,n_tm] pth2 in
              let th2 = NUM_ADD_CONV (rand(rand(lhand(concl th1)))) in
              let th3 = AP_TERM (rator tm) (AP_TERM amp_tm (SYM th2)) in
              TRANS th3 th1
            else
              let p = mk_numeral (m' -/ n') in
              let th1 = INST [n,m_tm; p,n_tm] pth3 in
              let th2 = NUM_ADD_CONV (rand(rand(lhand(lhand(concl th1))))) in
              let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in
              let th4 = AP_THM (AP_TERM add_tm th3) (rand tm) in
              TRANS th4 th1
        else
          if rator r = neg_tm then
            let m = rand l and n = rand(rand r) in
            let m' = dest_numeral m and n' = dest_numeral n in
            if n' <=/ m' then
              let p = mk_numeral (m' -/ n') in
              let th1 = INST [n,m_tm; p,n_tm] pth4 in
              let th2 = NUM_ADD_CONV (rand(lhand(lhand(concl th1)))) in
              let th3 = AP_TERM add_tm (AP_TERM amp_tm (SYM th2)) in
              let th4 = AP_THM th3 (rand tm) in
              TRANS th4 th1
            else
             let p = mk_numeral (n' -/ m') in
             let th1 = INST [m,m_tm; p,n_tm] pth5 in
             let th2 = NUM_ADD_CONV (rand(rand(rand(lhand(concl th1))))) in
             let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in
             let th4 = AP_TERM (rator tm) th3 in
             TRANS th4 th1
          else
            let th1 = INST [rand l,m_tm; rand r,n_tm] pth6 in
            let tm1 = rand(rand(concl th1)) in
            let th2 = AP_TERM amp_tm (NUM_ADD_CONV tm1) in
            TRANS th1 th2
    with Failure _ -> failwith "INT_ADD_CONV");;

let INT_SUB_CONV =
  GEN_REWRITE_CONV I [INT_SUB] THENC
  TRY_CONV(RAND_CONV INT_NEG_CONV) THENC
  INT_ADD_CONV;;

let INT_POW_CONV =
  let n = `n:num` and x = `x:num` in
  let pth1,pth2 = (CONJ_PAIR o prove)
   (`(&x pow n = &(x EXP n)) /\
     ((--(&x)) pow n = if EVEN n then &(x EXP n) else --(&(x EXP n)))`,
    REWRITE_TAC[INT_OF_NUM_POW; INT_POW_NEG]) in
  let tth = prove
   (`((if T then x:int else y) = x) /\ ((if F then x:int else y) = y)`,
    REWRITE_TAC[]) in
  let neg_tm = `(--)` in
  (GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_EXP_CONV) ORELSEC
  (GEN_REWRITE_CONV I [pth2] THENC
   RATOR_CONV(RATOR_CONV(RAND_CONV NUM_EVEN_CONV)) THENC
   GEN_REWRITE_CONV I [tth] THENC
   (fun tm -> if rator tm = neg_tm then RAND_CONV(RAND_CONV NUM_EXP_CONV) tm
              else RAND_CONV NUM_EXP_CONV  tm));;

(* ------------------------------------------------------------------------- *)
(* Handy utility functions for int arithmetic terms.                         *)
(* ------------------------------------------------------------------------- *)

let dest_add = dest_binop `(+)`;;
let dest_mul = dest_binop `(*)`;;
let dest_pow = dest_binop `(pow)`;;
let dest_sub = dest_binop `(-)`;;

let is_add = is_binop `(+)`;;
let is_mul = is_binop `(*)`;;
let is_pow = is_binop `(pow)`;;
let is_sub = is_binop `(-)`;;

(* ------------------------------------------------------------------------- *)
(* Instantiate the normalizer.                                               *)
(* ------------------------------------------------------------------------- *)

let POLYNOMIAL_NORMALIZERS =
  let sth = prove
   (`(!x y z. x + (y + z) = (x + y) + z) /\
     (!x y. x + y = y + x) /\
     (!x. &0 + x = x) /\
     (!x y z. x * (y * z) = (x * y) * z) /\
     (!x y. x * y = y * x) /\
     (!x. &1 * x = x) /\
     (!x. &0 * x = &0) /\
     (!x y z. x * (y + z) = x * y + x * z) /\
     (!x. x pow 0 = &1) /\
     (!x n. x pow (SUC n) = x * x pow n)`,
    REWRITE_TAC[INT_POW] THEN INT_ARITH_TAC)
  and rth = prove
   (`(!x. --x = --(&1) * x) /\
     (!x y. x - y = x + --(&1) * y)`,
    INT_ARITH_TAC)
  and is_semiring_constant = is_int_const
  and SEMIRING_ADD_CONV = INT_ADD_CONV
  and SEMIRING_MUL_CONV = INT_MUL_CONV
  and SEMIRING_POW_CONV = INT_POW_CONV in
  let NORMALIZERS =
   SEMIRING_NORMALIZERS_CONV sth rth
    (is_semiring_constant,
     SEMIRING_ADD_CONV,SEMIRING_MUL_CONV,SEMIRING_POW_CONV) in
  fun vars -> NORMALIZERS(earlier vars);;

let POLYNOMIAL_NEG_CONV vars =
  let cnv,_,_,_,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;;

let POLYNOMIAL_ADD_CONV vars =
  let _,cnv,_,_,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;;

let POLYNOMIAL_SUB_CONV vars =
  let _,_,cnv,_,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;;

let POLYNOMIAL_MUL_CONV vars =
  let _,_,_,cnv,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;;

let POLYNOMIAL_POW_CONV vars =
  let _,_,_,_,cnv,_ = POLYNOMIAL_NORMALIZERS vars in cnv;;

let POLYNOMIAL_CONV vars =
  let _,_,_,_,_,cnv = POLYNOMIAL_NORMALIZERS vars in cnv;;

(* ------------------------------------------------------------------------- *)
(* Slight variants of these functions for procedure below.                   *)
(* ------------------------------------------------------------------------- *)

let LINEAR_CMUL =
  let mul_tm = `(*)` in
  fun vars n tm ->
    POLYNOMIAL_MUL_CONV vars (mk_comb(mk_comb(mul_tm,mk_int_const n),tm));;

(* ------------------------------------------------------------------------- *)
(* Linearize a formula, dealing with non-strict inequalities.                *)
(* ------------------------------------------------------------------------- *)

let LINEARIZE_CONV =
  let rew_conv = GEN_REWRITE_CONV I
    [CONJ (REFL `c divides e`)
          (INT_ARITH
              `(s < t <=> &0 < t - s) /\
               (~(s < t) <=> &0 < (s + &1) - t) /\
               (s > t <=> &0 < s - t) /\
               (~(s > t) <=> &0 < (t + &1) - s) /\
               (s <= t <=> &0 < (t + &1) - s) /\
               (~(s <= t) <=> &0 < s - t) /\
               (s >= t <=> &0 < (s + &1) - t) /\
               (~(s >= t) <=> &0 < t - s) /\
               ((s = t) <=> (&0 = s - t))`)]
  and true_tm = `T` and false_tm = `F` in
  let rec conv vars tm =
    try (rew_conv THENC RAND_CONV(POLYNOMIAL_CONV vars)) tm with Failure _ ->
    if is_exists tm || is_forall tm then
      let x = bndvar(rand tm) in BINDER_CONV (conv (x::vars)) tm
    else if is_neg tm then
      RAND_CONV (conv vars) tm
    else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then
      BINOP_CONV (conv vars) tm
    else if tm = true_tm || tm = false_tm then REFL tm
    else failwith "LINEARIZE_CONV: Unexpected term type" in
  conv;;

(* ------------------------------------------------------------------------- *)
(* Get the coefficient of x, assumed to be first term, if there at all.      *)
(* ------------------------------------------------------------------------- *)

let coefficient x tm =
  try let l,r = dest_add tm in
      if l = x then Int 1 else
      let c,y = dest_mul l in
      if y = x then dest_int_const c else Int 0
  with Failure _ -> try
      let c,y = dest_mul tm in
      if y = x then dest_int_const c else Int 0
  with Failure _ -> Int 1;;

(* ------------------------------------------------------------------------- *)
(* Find (always positive) LCM of all the multiples of x in formula tm.       *)
(* ------------------------------------------------------------------------- *)

let lcm_num x y = abs_num((x */ y) // gcd_num x y);;

let rec formlcm x tm =
  if is_neg tm then formlcm x (rand tm)
  else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then
     lcm_num (formlcm x (lhand tm)) (formlcm x (rand tm))
  else if is_forall tm || is_exists tm then
     formlcm x (body(rand tm))
  else if not(mem x (frees tm)) then Int 1
  else let c = coefficient x (rand tm) in
       if c =/ Int 0 then Int 1 else c;;

(* ------------------------------------------------------------------------- *)
(* Switch from "x [+ ...]" to "&1 * x [+ ...]" to suit later proforma.       *)
(* ------------------------------------------------------------------------- *)

let MULTIPLY_1_CONV =
  let conv_0 = REWR_CONV(INT_ARITH `x = &1 * x`)
  and conv_1 = REWR_CONV(INT_ARITH `x + a = &1 * x + a`) in
  fun vars tm ->
    let x = hd vars in
    if tm = x then conv_0 tm
    else if is_add tm && lhand tm = x then conv_1 tm
    else REFL tm;;

(* ------------------------------------------------------------------------- *)
(* Adjust all coefficients of x (head variable) to match l in formula tm.    *)
(* ------------------------------------------------------------------------- *)

let ADJUSTCOEFF_CONV =
  let op_eq = `(=):int->int->bool`
  and op_lt = `(<):int->int->bool`
  and op_gt = `(>):int->int->bool`
  and op_divides = `(divides):int->int->bool`
  and c_tm = `c:int`
  and d_tm = `d:int`
  and e_tm = `e:int` in
  let pth_divides = prove
   (`~(d = &0) ==> (c divides e <=> (d * c) divides (d * e))`,
    SIMP_TAC[divides; GSYM INT_MUL_ASSOC; INT_EQ_MUL_LCANCEL])
  and pth_eq = prove
   (`~(d = &0) ==> ((&0 = e) <=> (&0 = d * e))`,
    DISCH_TAC THEN CONV_TAC(BINOP_CONV SYM_CONV) THEN
    ASM_REWRITE_TAC[INT_ENTIRE])
  and pth_lt_pos = prove
   (`&0 < d ==> (&0 < e <=> &0 < d * e)`,
    DISCH_TAC THEN SUBGOAL_THEN `&0 < e <=> d * &0 < d * e` SUBST1_TAC THENL
     [ASM_SIMP_TAC[INT_LT_LMUL_EQ]; REWRITE_TAC[INT_MUL_RZERO]])
  and pth_gt_pos = prove
   (`&0 < d ==> (&0 > e <=> &0 > d * e)`,
    DISCH_TAC THEN REWRITE_TAC[INT_GT] THEN
    SUBGOAL_THEN `e < &0 <=> d * e < d * &0` SUBST1_TAC THENL
     [ASM_SIMP_TAC[INT_LT_LMUL_EQ]; REWRITE_TAC[INT_MUL_RZERO]])
  and true_tm = `T` and false_tm = `F` in
  let pth_lt_neg = prove
   (`d < &0 ==> (&0 < e <=> &0 > d * e)`,
    REWRITE_TAC[INT_ARITH `&0 > d * e <=> &0 < --d * e`;
                INT_ARITH `d < &0 <=> &0 < --d`; pth_lt_pos])
  and pth_gt_neg = prove
   (`d < &0 ==> (&0 > e <=> &0 < d * e)`,
    REWRITE_TAC[INT_ARITH `&0 < d * e <=> &0 > --d * e`;
                INT_ARITH `d < &0 <=> &0 < --d`; pth_gt_pos]) in
  let rec ADJUSTCOEFF_CONV vars l tm =
    if tm = true_tm || tm = false_tm then REFL tm
    else if is_exists tm || is_forall tm then
      BINDER_CONV (ADJUSTCOEFF_CONV vars l) tm
    else if is_neg tm then
      RAND_CONV (ADJUSTCOEFF_CONV vars l) tm
    else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then
      BINOP_CONV (ADJUSTCOEFF_CONV vars l) tm
    else
      let lop,t = dest_comb tm in
      let op,z = dest_comb lop in
      let c = coefficient (hd vars) t in
      if c =/ Int 0 then REFL tm else
      let th1 =
        if c =/ l then REFL tm else
        let m = l // c in
        let th0 = if op = op_eq then pth_eq
                  else if op = op_divides then pth_divides
                  else if op = op_lt then
                    if m >/ Int 0 then pth_lt_pos else pth_lt_neg
                  else if op = op_gt then
                    if m >/ Int 0 then pth_gt_pos else pth_gt_neg
                  else failwith "ADJUSTCOEFF_CONV: unknown predicate" in
        let th1 = INST [mk_int_const m,d_tm; z,c_tm; t,e_tm] th0 in
        let tm1 = lhand(concl th1) in
        let th2 = if is_neg tm1 then EQF_ELIM(INT_EQ_CONV(rand tm1))
                  else EQT_ELIM(INT_LT_CONV tm1) in
        let th3 = MP th1 th2 in
        if op = op_divides then
          let th3 = MP th1 th2 in
          let tm2 = rand(concl th3) in
          let l,r = dest_comb tm2 in
          let th4 = AP_TERM (rator l) (INT_MUL_CONV (rand l)) in
          let th5 = AP_THM th4 r in
          let tm3 = rator(rand(concl th5)) in
          let th6 = TRANS th5 (AP_TERM tm3 (LINEAR_CMUL vars m t)) in
          TRANS th3 th6
        else
          let tm2 = rator(rand(concl th3)) in
          TRANS th3 (AP_TERM tm2 (LINEAR_CMUL vars m t)) in
      if l =/ Int 1 then
        CONV_RULE(funpow 2 RAND_CONV (MULTIPLY_1_CONV vars)) th1
      else th1 in
  ADJUSTCOEFF_CONV;;

(* ------------------------------------------------------------------------- *)
(* Now normalize all the x terms to have same coefficient and eliminate it.  *)
(* ------------------------------------------------------------------------- *)

let NORMALIZE_COEFF_CONV =
  let c_tm = `c:int`
  and pth = prove
   (`(?x. P(c * x)) <=> (?x. c divides x /\ P x)`,
    REWRITE_TAC[GSYM EXISTS_MULTIPLE_THM]) in
  let NORMALIZE_COEFF_CONV vars tm =
    let x,bod = dest_exists tm in
    let l = formlcm x tm in
    let th1 = ADJUSTCOEFF_CONV (x::vars) l tm in
    let th2 = if l =/ Int 1 then EXISTS_MULTIPLE_THM_1
              else INST [mk_int_const l,c_tm] pth in
    TRANS th1 (REWR_CONV th2 (rand(concl th1))) in
  NORMALIZE_COEFF_CONV;;

(* ------------------------------------------------------------------------- *)
(* Convert to shadow syntax.                                                 *)
(* ------------------------------------------------------------------------- *)

let SHADOW_CONV =
  let pth_trivial = prove
   (`P = interp x (Nox P)`,
    REWRITE_TAC[interp])
  and pth_composite = prove
   (`(interp x p /\ interp x q <=> interp x (And p q)) /\
     (interp x p \/ interp x q <=> interp x (Or p q))`,
    REWRITE_TAC[interp])
  and pth_literal_nontrivial = prove
   (`(&0 > x + e <=> interp x (Lt e)) /\
     (&0 < x + e <=> interp x (Gt e)) /\
     ((&0 = x + e) <=> interp x (Eq e)) /\
     (~(&0 = x + e) <=> interp x (Ne e)) /\
     (c divides (x + e) <=> interp x (Divides c e)) /\
     (~(c divides (x + e)) <=> interp x (Ndivides c e))`,
    REWRITE_TAC[interp; INT_ADD_RID] THEN INT_ARITH_TAC)
  and  pth_literal_trivial = prove
   (`(&0 > x <=> interp x (Lt(&0))) /\
     (&0 < x <=> interp x (Gt(&0))) /\
     ((&0 = x) <=> interp x (Eq(&0))) /\
     (~(&0 = x) <=> interp x (Ne(&0))) /\
     (c divides x <=> interp x (Divides c (&0))) /\
     (~(c divides x) <=> interp x (Ndivides c (&0)))`,
    REWRITE_TAC[interp; INT_ADD_RID] THEN INT_ARITH_TAC) in
  let rewr_composite = GEN_REWRITE_CONV I [pth_composite]
  and rewr_literal = GEN_REWRITE_CONV I [pth_literal_nontrivial] ORELSEC
                     GEN_REWRITE_CONV I [pth_literal_trivial]
  and x_tm = `x:int` and p_tm = `P:bool` in
  let rec SHADOW_CONV x tm =
    if not (mem x (frees tm)) then
       INST [tm,p_tm; x,x_tm] pth_trivial
    else if is_conj tm || is_disj tm then
      let l,r = try dest_conj tm with Failure _ -> dest_disj tm in
      let thl = SHADOW_CONV x l and thr = SHADOW_CONV x r in
      let th1 = MK_COMB(AP_TERM (rator(rator tm)) thl,thr) in
      TRANS th1 (rewr_composite(rand(concl th1)))
    else rewr_literal tm in
  fun tm ->
    let x,bod = dest_exists tm in
    MK_EXISTS x (SHADOW_CONV x bod);;

(* ------------------------------------------------------------------------- *)
(* Get the LCM of the dividing things.                                       *)
(* ------------------------------------------------------------------------- *)

let dplcm =
  let divides_tm = `Divides`
  and ndivides_tm = `Ndivides`
  and and_tm = `And`
  and or_tm = `Or` in
  let rec dplcm tm =
    let hop,args = strip_comb tm in
    if hop = divides_tm || hop = ndivides_tm then dest_int_const (hd args)
    else if hop = and_tm || hop = or_tm
    then end_itlist lcm_num (map dplcm args)
    else Int 1 in
  dplcm;;

(* ------------------------------------------------------------------------- *)
(* Conversion for true formulas "(--) &m divides (--) &n".                   *)
(* ------------------------------------------------------------------------- *)

let PROVE_DIVIDES_CONV_POS =
  let pth = prove
   (`(p * m = n) ==> &p divides &n`,
    DISCH_THEN(SUBST1_TAC o SYM) THEN
    REWRITE_TAC[divides] THEN EXISTS_TAC `&m` THEN
    REWRITE_TAC[INT_OF_NUM_MUL])
  and m_tm = `m:num` and n_tm = `n:num` and p_tm = `p:num` in
  fun tm ->
    let n = rand(rand tm)
    and p = rand(lhand tm) in
    let m = mk_numeral(dest_numeral n // dest_numeral p) in
    let th1 = INST [m,m_tm; n,n_tm; p,p_tm] pth in
    EQT_INTRO(MP th1 (NUM_MULT_CONV (lhand(lhand(concl th1)))));;

let PROVE_DIVIDES_CONV =
  GEN_REWRITE_CONV REPEATC [DIVIDES_LNEG; DIVIDES_RNEG] THENC
  PROVE_DIVIDES_CONV_POS;;

(* ------------------------------------------------------------------------- *)
(* General version that works for positive and negative.                     *)
(* ------------------------------------------------------------------------- *)

let INT_DIVIDES_NUM = prove
 (`&p divides &n <=> ?m. (n = p * m)`,
  REWRITE_TAC[divides] THEN EQ_TAC THENL
   [DISCH_THEN(X_CHOOSE_THEN `x:int` MP_TAC) THEN
    DISJ_CASES_THEN(X_CHOOSE_THEN `q:num` SUBST1_TAC)
     (SPEC `x:int` INT_IMAGE) THEN
    DISCH_THEN(MP_TAC o AP_TERM `abs:int->int`) THEN
    REWRITE_TAC[INT_ABS_MUL; INT_ABS_NUM; INT_ABS_NEG] THEN
    REWRITE_TAC[INT_OF_NUM_MUL; INT_OF_NUM_EQ] THEN MESON_TAC[];
    MESON_TAC[INT_OF_NUM_MUL]]);;

let INT_DIVIDES_POS_CONV =
  let pth = prove
   (`(&p divides &n) <=> (p = 0) /\ (n = 0) \/ ~(p = 0) /\ (n MOD p = 0)`,
    REWRITE_TAC[INT_DIVIDES_NUM] THEN
    ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN EQ_TAC THENL
     [ASM_MESON_TAC[MOD_MULT];
      DISCH_TAC THEN
      FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIVISION) THEN
      ASM_REWRITE_TAC[ADD_CLAUSES] THEN MESON_TAC[MULT_SYM]]) in
  GEN_REWRITE_CONV I [pth] THENC NUM_REDUCE_CONV;;

let INT_DIVIDES_CONV =
  GEN_REWRITE_CONV REPEATC [DIVIDES_LNEG; DIVIDES_RNEG] THENC
  INT_DIVIDES_POS_CONV;;

(* ------------------------------------------------------------------------- *)
(* Conversion for "alldivide d p" (which should be true!)                    *)
(* ------------------------------------------------------------------------- *)

let ALLDIVIDE_CONV =
  let pth_atom = prove
   (`(alldivide d (Lt e) <=> T) /\
     (alldivide d (Gt e) <=> T) /\
     (alldivide d (Eq e) <=> T) /\
     (alldivide d (Ne e) <=> T) /\
     (alldivide d (Nox P) <=> T)`,
    REWRITE_TAC[alldivide])
  and pth_div = prove
    (`(alldivide d (Divides c e) <=> c divides d) /\
      (alldivide d (Ndivides c e) <=> c divides d)`,
     REWRITE_TAC[alldivide])
  and pth_comp = prove
   (`(alldivide d (And p q) <=> alldivide d p /\ alldivide d q) /\
     (alldivide d (Or p q) <=> alldivide d p /\ alldivide d q)`,
    REWRITE_TAC[alldivide])
  and pth_taut = TAUT `(T /\ T <=> T)` in
  let basnet =
    itlist (fun th -> enter [] (lhand(concl th),REWR_CONV th))
           (CONJUNCTS pth_atom)
           (itlist (fun th -> enter [] (lhand(concl th),
                                        REWR_CONV th THENC PROVE_DIVIDES_CONV))
                   (CONJUNCTS pth_div) empty_net)
  and comp_rewr = GEN_REWRITE_CONV I [pth_comp] in
  let rec alldivide_conv tm =
    try tryfind (fun f -> f tm) (lookup tm basnet) with Failure _ ->
    let th = (comp_rewr THENC BINOP_CONV alldivide_conv) tm in
    TRANS th pth_taut in
  alldivide_conv;;

(* ------------------------------------------------------------------------- *)
(* Conversion for "?b. b IN bset p /\ P b";;                                 *)
(* ------------------------------------------------------------------------- *)

let EXISTS_IN_BSET_CONV =
  let pth_false = prove
   (`((?b. b IN bset (Lt e) /\ P b) <=> F) /\
     ((?b. b IN bset (Divides c e) /\ P b) <=> F) /\
     ((?b. b IN bset (Ndivides c e) /\ P b) <=> F) /\
     ((?b. b IN bset(Nox Q) /\ P b) <=> F)`,
    REWRITE_TAC[bset; NOT_IN_EMPTY])
  and pth_neg = prove
   (`((?b. b IN bset (Gt e) /\ P b) <=> P(--e)) /\
     ((?b. b IN bset (Ne e) /\ P b) <=> P(--e))`,
    REWRITE_TAC[bset; IN_SING; INT_MUL_LID; UNWIND_THM2])
  and pth_add = prove
   (`(?b. b IN bset (Eq e) /\ P b) <=> P(--(e + &1))`,
    REWRITE_TAC[bset; IN_SING; INT_MUL_LID; UNWIND_THM2])
  and pth_comp = prove
   (`((?b. b IN bset (And p q) /\ P b) <=>
              (?b. b IN bset p /\ P b) \/
              (?b. b IN bset q /\ P b)) /\
     ((?b. b IN bset (Or p q) /\ P b) <=>
              (?b. b IN bset p /\ P b) \/
                   (?b. b IN bset q /\ P b))`,
    REWRITE_TAC[bset; IN_UNION] THEN MESON_TAC[])
  and taut = TAUT `(F \/ P <=> P) /\ (P \/ F <=> P)` in
  let conv_neg vars =
    LAND_CONV(LAND_CONV(POLYNOMIAL_NEG_CONV vars))
  and conv_add vars =
    LAND_CONV(LAND_CONV(RAND_CONV(POLYNOMIAL_ADD_CONV vars) THENC
                        POLYNOMIAL_NEG_CONV vars))
  and conv_comp = GEN_REWRITE_CONV I [pth_comp] in
  let net1 =
    itlist (fun th -> enter [] (lhand(concl th),K (REWR_CONV th)))
           (CONJUNCTS pth_false) empty_net in
  let net2 =
    itlist (fun th -> enter [] (lhand(concl th),
        let cnv = K (REWR_CONV th) in fun v -> cnv v THENC conv_neg v))
           (CONJUNCTS pth_neg) net1 in
  let basnet =
    enter [] (lhand(concl pth_add),
        let cnv = K (REWR_CONV pth_add) in fun v -> cnv v THENC conv_add v)
            net2 in
  let rec baseconv vars tm =
    try tryfind (fun f -> f vars tm) (lookup tm basnet) with Failure _ ->
    (conv_comp THENC BINOP_CONV (baseconv vars)) tm in
  let finconv =
    GEN_REWRITE_CONV DEPTH_CONV [taut] THENC
    PURE_REWRITE_CONV [DISJ_ACI] in
  fun vars tm -> (baseconv vars THENC finconv) tm;;

(* ------------------------------------------------------------------------- *)
(* Naive conversion for "minusinf p".                                        *)
(* ------------------------------------------------------------------------- *)

let MINUSINF_CONV = GEN_REWRITE_CONV TOP_SWEEP_CONV [minusinf];;

(* ------------------------------------------------------------------------- *)
(* Conversion for "interp s p" where s is a canonical linear form.           *)
(* ------------------------------------------------------------------------- *)

let INTERP_CONV =
  let pth_trivial = prove
   (`interp x (Nox P) <=> P`,
    REWRITE_TAC[interp])
  and pth_comp = prove
   (`(interp x (And p q) <=> interp x p /\ interp x q) /\
     (interp x (Or p q) <=> interp x p \/ interp x q)`,
    REWRITE_TAC[interp])
  and pth_pos,pth_neg = (CONJ_PAIR o prove)
   (`((interp x (Lt e)         <=> &0 > x + e) /\
      (interp x (Gt e)         <=> &0 < x + e) /\
      (interp x (Eq e)         <=> (&0 = x + e)) /\
      (interp x (Divides c e)  <=> c divides (x + e))) /\
     ((interp x (Ne e)         <=> ~(&0 = x + e)) /\
      (interp x (Ndivides c e) <=> ~(c divides (x + e))))`,
    REWRITE_TAC[interp] THEN INT_ARITH_TAC) in
  let conv_pos vars = RAND_CONV(POLYNOMIAL_ADD_CONV vars)
  and conv_neg vars = RAND_CONV(RAND_CONV(POLYNOMIAL_ADD_CONV vars))
  and conv_comp = GEN_REWRITE_CONV I [pth_comp] in
  let net1 =
    itlist (fun th -> enter [] (lhand(concl th),K (REWR_CONV th)))
           (CONJUNCTS pth_trivial) empty_net in
  let net2 =
    itlist (fun th -> enter [] (lhand(concl th),
        let cnv = K (REWR_CONV th) in fun v -> cnv v THENC conv_pos v))
           (CONJUNCTS pth_pos) net1 in
  let basnet =
    itlist (fun th -> enter [] (lhand(concl th),
        let cnv = K (REWR_CONV th) in fun v -> cnv v THENC conv_neg v))
           (CONJUNCTS pth_neg) net2 in
  let rec baseconv vars tm =
    try tryfind (fun f -> f vars tm) (lookup tm basnet) with Failure _ ->
    (conv_comp THENC BINOP_CONV (baseconv vars)) tm in
  baseconv;;

(* ------------------------------------------------------------------------- *)
(* Expand `?j. &1 <= j /\ j <= &[n] /\ P[j]` cases.                          *)
(* ------------------------------------------------------------------------- *)

let EXPAND_INT_CASES_CONV =
  let pth_base = prove
   (`(?j. n <= j /\ j <= n /\ P(j)) <=> P(n)`,
    MESON_TAC[INT_LE_ANTISYM])
  and pth_step = prove
   (`(?j. &1 <= j /\ j <= &(SUC n) /\ P(j)) <=>
     (?j. &1 <= j /\ j <= &n /\ P(j)) \/ P(&(SUC n))`,
    REWRITE_TAC[GSYM INT_OF_NUM_SUC] THEN
    REWRITE_TAC[INT_ARITH `x <= y + &1 <=> (x = y + &1) \/ x < y + &1`] THEN
    REWRITE_TAC[INT_LT_DISCRETE; INT_LE_RADD] THEN
    MESON_TAC[INT_ARITH `&0 <= x ==> &1 <= x + &1`; INT_POS; INT_LE_REFL]) in
  let base_conv = REWR_CONV pth_base
  and step_conv =
   BINDER_CONV(RAND_CONV(LAND_CONV(funpow 2 RAND_CONV num_CONV))) THENC
   REWR_CONV pth_step THENC
   RAND_CONV(ONCE_DEPTH_CONV NUM_SUC_CONV) in
  let rec conv tm =
    try base_conv tm with Failure _ ->
    (step_conv THENC LAND_CONV conv) tm in
  conv;;

(* ------------------------------------------------------------------------- *)
(* Canonicalize "t + c" in all "interp (t + c) P"s assuming t is canonical.  *)
(* ------------------------------------------------------------------------- *)

let CANON_INTERP_ADD =
  let pat = `interp (t + c) P` in
  fun vars ->
    let net = net_of_conv pat (LAND_CONV(POLYNOMIAL_ADD_CONV vars))
              empty_net in
    ONCE_DEPTH_CONV(REWRITES_CONV net);;

(* ------------------------------------------------------------------------- *)
(* Conversion to evaluate constant expressions.                              *)
(* ------------------------------------------------------------------------- *)

let EVAL_CONSTANT_CONV =
  let net =
      itlist (uncurry net_of_conv)
       ([`x < y`,INT_LT_CONV;
         `x > y`,INT_GT_CONV;
         `x:int = y`,INT_EQ_CONV;
         `x divides y`,INT_DIVIDES_CONV] @
        map (fun t -> t,REWR_CONV(REWRITE_CONV[] t))
            [`~F`; `~T`; `a /\ T`; `T /\ a`; `a /\ F`; `F /\ a`;
             `a \/ T`; `T \/ a`; `a \/ F`; `F \/ a`])
      empty_net in
    DEPTH_CONV(REWRITES_CONV net);;

(* ------------------------------------------------------------------------- *)
(* Basic quantifier elimination conversion.                                  *)
(* ------------------------------------------------------------------------- *)

let BASIC_COOPER_CONV =
  let p_tm = `p:cform`
  and d_tm = `d:int` in
  let pth_B = SPECL [p_tm; d_tm] MAINTHM_B in
  fun vars tm ->
    let x,bod = dest_exists tm in
    let th1 = (NORMALIZE_COEFF_CONV vars THENC SHADOW_CONV) tm in
    let p = rand(snd(dest_exists(rand(concl th1)))) in
    let th2 = INST [p,p_tm; mk_int_const(dplcm p),d_tm] pth_B in
    let tm2a,tm2b = dest_conj(lhand(concl th2)) in
    let th3 =
      CONJ (EQT_ELIM(ALLDIVIDE_CONV tm2a)) (EQT_ELIM(INT_LT_CONV tm2b)) in
    let th4 = TRANS th1 (MP th2 th3) in
    let th5 = CONV_RULE(RAND_CONV(BINDER_CONV(funpow 2 RAND_CONV(LAND_CONV
                        MINUSINF_CONV)))) th4 in
    let th6 = CONV_RULE(RAND_CONV(BINDER_CONV(funpow 3 RAND_CONV
                        (EXISTS_IN_BSET_CONV vars)))) th5 in
    let th7 = CONV_RULE(RAND_CONV EXPAND_INT_CASES_CONV) th6 in
    let th8 = CONV_RULE(RAND_CONV(CANON_INTERP_ADD vars)) th7 in
    let th9 = CONV_RULE(RAND_CONV(ONCE_DEPTH_CONV(INTERP_CONV vars))) th8 in
    CONV_RULE(RAND_CONV EVAL_CONSTANT_CONV) th9;;

(* ------------------------------------------------------------------------- *)
(* NNF transformation that also eliminates negated inequalities.             *)
(* ------------------------------------------------------------------------- *)

let NNF_POSINEQ_CONV =
  let pth = prove
   (`(~(&0 < x) <=> &0 < &1 - x) /\
     (~(&0 > x) <=> &0 < &1 + x)`,
    REWRITE_TAC[INT_NOT_LT; INT_GT] THEN
    REWRITE_TAC[INT_LT_DISCRETE; INT_GT_DISCRETE] THEN
    INT_ARITH_TAC) in
  let conv1 vars = REWR_CONV(CONJUNCT1 pth) THENC
                   RAND_CONV (POLYNOMIAL_SUB_CONV vars)
  and conv2 vars = REWR_CONV(CONJUNCT2 pth) THENC
                   RAND_CONV (POLYNOMIAL_ADD_CONV vars)
  and pat1 = `~(&0 < x)` and pat2 = `~(&0 > x)`
  and net = itlist (fun t -> net_of_conv (lhand t) (REWR_CONV(TAUT t)))
                   [`~(~ p) <=> p`; `~(p /\ q) <=> ~p \/ ~q`;
                    `~(p \/ q) <=> ~p /\ ~q`] empty_net in
  fun vars ->
   let net' = net_of_conv pat1 (conv1 vars)
               (net_of_conv pat2 (conv2 vars) net) in
   TOP_SWEEP_CONV(REWRITES_CONV net');;

(* ------------------------------------------------------------------------- *)
(* Overall function.                                                         *)
(* ------------------------------------------------------------------------- *)

let COOPER_CONV =
  let FORALL_ELIM_CONV = GEN_REWRITE_CONV I
   [prove(`(!x. P x) <=> ~(?x. ~(P x))`,MESON_TAC[])]
  and not_tm = `(~)` in
  let rec conv vars tm =
    if is_conj tm || is_disj tm then
      let lop,r = dest_comb tm in
      let op,l = dest_comb lop in
      MK_COMB(AP_TERM op (conv vars l),conv vars r)
    else if is_neg tm then
      let l,r = dest_comb tm in
      AP_TERM l (conv vars r)
    else if is_exists tm then
      let x,bod = dest_exists tm in
      let th1 = MK_EXISTS x (conv (x::vars) bod) in
      TRANS th1 (BASIC_COOPER_CONV vars (rand(concl th1)))
    else if is_forall tm then
      let x,bod = dest_forall tm in
      let th1 = AP_TERM not_tm (conv (x::vars) bod) in
      let th2 = CONV_RULE(RAND_CONV (NNF_POSINEQ_CONV (x::vars))) th1 in
      let th3 = MK_EXISTS x th2 in
      let th4 = CONV_RULE(RAND_CONV (BASIC_COOPER_CONV vars)) th3 in
      let th5 = CONV_RULE(RAND_CONV (NNF_POSINEQ_CONV (x::vars)))
          (AP_TERM not_tm th4) in
      TRANS (FORALL_ELIM_CONV tm) th5
    else REFL tm in
  let init_CONV =
    PRESIMP_CONV THENC
    GEN_REWRITE_CONV ONCE_DEPTH_CONV
     [INT_ABS;
      INT_ARITH `max m n = if m <= n then n else m`;
      INT_ARITH `min m n = if m <= n then m else n`] THENC
    CONDS_ELIM_CONV THENC NNF_CONV in
  fun tm ->
    let vars = frees tm in
    let th1 = (init_CONV THENC LINEARIZE_CONV vars) tm in
    let th2 = TRANS th1 (conv vars (rand(concl th1))) in
    TRANS th2 (EVAL_CONSTANT_CONV(rand(concl th2)));;

(* ------------------------------------------------------------------------- *)
(* Examples from the book.                                                   *)
(* ------------------------------------------------------------------------- *)

time COOPER_CONV `!x y. x < y ==> &2 * x + &1 < &2 * y`;;

time COOPER_CONV `!x y. ~(&2 * x + &1 = &2 * y)`;;

time COOPER_CONV
   `?x y. x > &0 /\ y >= &0 /\ (&3 * x - &5 * y = &1)`;;

time COOPER_CONV `?x y z. &4 * x - &6 * y = &1`;;

time COOPER_CONV `!x. b < x ==> a <= x`;;

time COOPER_CONV `!x. a < &3 * x ==> b < &3 * x`;;

time COOPER_CONV `!x y. x <= y ==> &2 * x + &1 < &2 * y`;;

time COOPER_CONV `(?d. y = &65 * d) ==> (?d. y = &5 * d)`;;

time COOPER_CONV `!y. (?d. y = &65 * d) ==> (?d. y = &5 * d)`;;

time COOPER_CONV `!x y. ~(&2 * x + &1 = &2 * y)`;;

time COOPER_CONV `!x y z. (&2 * x + &1 = &2 * y) ==> x + y + z > &129`;;

time COOPER_CONV `!x. a < x ==> b < x`;;

time COOPER_CONV `!x. a <= x ==> b < x`;;

(* ------------------------------------------------------------------------- *)
(* Formula examples from Cooper's paper.                                     *)
(* ------------------------------------------------------------------------- *)

time COOPER_CONV `!a b. ?x. a < &20 * x /\ &20 * x < b`;;

time COOPER_CONV `?x. a < &20 * x /\ &20 * x < b`;;

time COOPER_CONV `!b. ?x. a < &20 * x /\ &20 * x < b`;;

time COOPER_CONV `!a. ?b. a < &4 * b + &3 * a \/ (~(a < b) /\ a > b + &1)`;;

time COOPER_CONV `?y. !x. x + &5 * y > &1 /\ &13 * x - y > &1 /\ x + &2 < &0`;;

(* ------------------------------------------------------------------------- *)
(* More of my own.                                                           *)
(* ------------------------------------------------------------------------- *)

time COOPER_CONV `!x y. x >= &0 /\ y >= &0
                  ==> &12 * x - &8 * y < &0 \/ &12 * x - &8 * y > &2`;;

time COOPER_CONV `?x y. &5 * x + &3 * y = &1`;;

time COOPER_CONV `?x y. &5 * x + &10 * y = &1`;;

time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&5 * x - &6 * y = &1)`;;

time COOPER_CONV `?w x y z. &2 * w + &3 * x + &4 * y + &5 * z = &1`;;

time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&5 * x - &3 * y = &1)`;;

time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&3 * x - &5 * y = &1)`;;

time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&6 * x - &3 * y = &1)`;;

time COOPER_CONV `!x y. ~(x = &0) ==> &5 * y < &6 * x \/ &5 * y > &6 * x`;;

time COOPER_CONV
  `!x y. ~(&5 divides x) /\ ~(&6 divides y) ==> ~(&6 * x = &5 * y)`;;

time COOPER_CONV `!x y. ~(&5 divides x) ==> ~(&6 * x = &5 * y)`;;

time COOPER_CONV `!x y. ~(&6 * x = &5 * y)`;;

time COOPER_CONV `!x y. (&6 * x = &5 * y) ==> (?d. y = &3 * d)`;;

time COOPER_CONV `(&6 * x = &5 * y) ==> (?d. y = &3 * d)`;;

(* ------------------------------------------------------------------------- *)
(* Positive variant of the Bezout theorem (see the exercise).                *)
(* ------------------------------------------------------------------------- *)

time COOPER_CONV
  `!z. z > &7 ==> ?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = z)`;;

time COOPER_CONV
  `!z. z > &2 ==> ?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = z)`;;

time COOPER_CONV `!z. z <= &7 ==>
         ((?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = z)) <=>
          ~(?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = &7 - z)))`;;

(* ------------------------------------------------------------------------- *)
(* Basic result about congruences.                                           *)
(* ------------------------------------------------------------------------- *)

time COOPER_CONV `!x. ~(&2 divides x) /\ &3 divides (x - &1) <=>
                      &12 divides (x - &1) \/ &12 divides (x - &7)`;;

time COOPER_CONV `!x. ~(?m. x = &2 * m) /\ (?m. x = &3 * m + &1) <=>
                     (?m. x = &12 * m + &1) \/ (?m. x = &12 * m + &7)`;;

(* ------------------------------------------------------------------------- *)
(* Something else.                                                           *)
(* ------------------------------------------------------------------------- *)

time COOPER_CONV
 `!x. ~(&2 divides x)
      ==> &4 divides (x - &1) \/
          &8 divides (x - &1) \/
          &8 divides (x - &3) \/
          &6 divides (x - &1) \/
          &14 divides (x - &1) \/
          &14 divides (x - &9) \/
          &14 divides (x - &11) \/
          &24 divides (x - &5) \/
          &24 divides (x - &11)`;;

(* ------------------------------------------------------------------------- *)
(* Testing fix for an earlier version with negative result from formlcm.     *)
(* ------------------------------------------------------------------------- *)

time COOPER_CONV
 `!a b v_1 v_2 v_3.
    (a + &2 = b) /\ (v_3 = b - a + &1) /\ (v_2 = b - &2) /\ (v_1 = &3) ==> F`;;

(* ------------------------------------------------------------------------- *)
(* Inspired by the Collatz conjecture.                                       *)
(* ------------------------------------------------------------------------- *)

time COOPER_CONV
 `?a b. ~(a = &1) /\ ((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\
              (a = b)`;;

time COOPER_CONV
 `?a b. a > &1 /\ b > &1 /\
             ((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\
             (a = b)`;;

time COOPER_CONV
 `?b. a > &1 /\ b > &1 /\
      ((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\
      ((&2 * a = b) \/ (&2 * a = &3 * b + &1))`;;

(*************** These seem to take a long time

time COOPER_CONV
 `?a b. a > &1 /\ b > &1 /\
             ((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\
             ((&2 * a = b) \/ (&2 * a = &3 * b + &1))`;;

let fm = (dnf ** parse)
 `((2 * b = a) \/ (2 * b = &3 * a + 1)) /\
  ((2 * c = b) \/ (2 * c = &3 * b + 1)) /\
  ((2 * d = c) \/ (2 * d = &3 * c + 1)) /\
  ((2 * e = d) \/ (2 * e = &3 * d + 1)) /\
  ((2 * f = e) \/ (2 * f = &3 * e + 1)) /\
  (f = a)`;;

let fms =
  map (itlist (fun x p -> Exists(x,And(Atom(R(`>`,[Var x; Fn(`1`,[])])),p)))
              [`b`; `c`; `d`; `e`; `f`])
      (disjuncts fm);;

let fm = el &15 fms;;
integer_qelim fm;;

******************)

(* ------------------------------------------------------------------------- *)
(* More old examples.                                                        *)
(* ------------------------------------------------------------------------- *)

time COOPER_CONV
 `?x. &5 * x + x + x < x \/
      (y = &7 - x) /\ &33 + z < x /\ x + &1 <= &2 * y \/
      &3 divides &4 * x + z /\ (x + y + z = &7 * z)`;;

time COOPER_CONV
 `?x. &5 * x + x + x < x \/
      (y = &7 - x) /\
      &33 + z < x /\
      x + &1 <= &2 * y \/
      &3 divides (&4 * x + z) /\
      (x + y + z = &7 * z)`;;

time COOPER_CONV
 `?x. &5 * x + x + x < x \/
      (y = &7 - x) /\
      &33 + z < x /\
      x + &1 <= &2 * y \/
      &3 divides (&4 * x + z) /\
      (x + y + z = &7 * z)`;;

(**** This also seems very slow; one quantifier less maybe?

time COOPER_CONV
 `?z y x. &5 * x + x + x < x \/
          (y = &7 - x) /\
          &33 + z < x /\
          x + &1 <= &2 * y \/
          &3 divides (&4 * x + z) /\
          (x + y + z = &7 * z)`;;

time COOPER_CONV
 `?y x. &5 * x + x + x < x \/
        (y = &7 - x) /\
        &33 + z < x /\
        x + &1 <= &2 * y \/
        &3 divides (&4 * x + z) /\
        (x + y + z = &7 * z)`;;

*****)

time COOPER_CONV
     `?x. x + &1 < &2 * y /\
          &3 divides (&4 * x + z) /\
          (&6 * x + y + z = &7 * z)`;;

time COOPER_CONV
     `?x. &5 * x + x + x < x \/
          (y = &7 - x) /\
          &33 + z < x /\
          x + &1 < &2 * y \/
          &3 divides (&4 * x + z) /\
          (x + y + z = &7 * z)`;;

(* ------------------------------------------------------------------------- *)
(* Stamp problem.                                                            *)
(* ------------------------------------------------------------------------- *)

time COOPER_CONV `!x. x >= &8 ==> ?u v. u >= &0 /\ v >= &0 /\
                                         (x = &3 * u + &5 * v)`;;

time COOPER_CONV `!x. x >= &10 ==> ?u v. u >= &0 /\ v >= &0 /\
                                         (x = &3 * u + &7 * v)`;;

time COOPER_CONV `!x. x >= &30 ==> ?u v. u >= &0 /\ v >= &0 /\
                                         (x = &3 * u + &7 * v)`;;

(* ------------------------------------------------------------------------- *)
(* Decision procedures in the style of INT_ARITH and ARITH_RULE.             *)
(*                                                                           *)
(* Really I should locate the free alien subterms.                           *)
(* ------------------------------------------------------------------------- *)

let INT_COOPER tm =
  let fvs = frees tm in
  let tm' = list_mk_forall(fvs,tm) in
  SPECL fvs (EQT_ELIM(COOPER_CONV tm'));;

let COOPER_RULE tm =
  let fvs = frees tm in
  let tm' = list_mk_forall(fvs,tm) in
  let th = (NUM_TO_INT_CONV THENC COOPER_CONV) tm' in
  SPECL fvs (EQT_ELIM th);;

(* ------------------------------------------------------------------------- *)
(* Examples.                                                                 *)
(* ------------------------------------------------------------------------- *)

time INT_COOPER `abs(x) < &1 ==> (x = &0)`;;

time COOPER_RULE `ODD n ==> 2 * n DIV 2 < n`;;

time COOPER_RULE `!n. EVEN(n) ==> (2 * n DIV 2 = n)`;;

time COOPER_RULE `!n. ODD n <=> 2 * n DIV 2 < n`;;

(**** This seems quite slow (maybe not very) as well
time COOPER_RULE `n DIV 3 <= n DIV 2`;;
 ****)

(*** This one too?
time COOPER_RULE `!x. ?y. if EVEN x then x = 2 * y else x = 2 * (y - 1) + 1`;;
 ***)

time COOPER_RULE `!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b`;;