Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 22,239 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
(* ========================================================================= *)
(* First order logic based on the language of arithmetic. *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Syntax of terms. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("++",(20,"right"));;
parse_as_infix("**",(22,"right"));;
let term_INDUCT,term_RECURSION = define_type
"term = Z
| V num
| Suc term
| ++ term term
| ** term term";;
let term_CASES = prove_cases_thm term_INDUCT;;
let term_DISTINCT = distinctness "term";;
let term_INJ = injectivity "term";;
(* ------------------------------------------------------------------------- *)
(* Syntax of formulas. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("===",(18,"right"));;
parse_as_infix("<<",(18,"right"));;
parse_as_infix("<<=",(18,"right"));;
parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(15,"right"));;
parse_as_infix("-->",(14,"right"));;
parse_as_infix("<->",(13,"right"));;
let form_INDUCT,form_RECURSION = define_type
"form = False
| True
| === term term
| << term term
| <<= term term
| Not form
| && form form
| || form form
| --> form form
| <-> form form
| !! num form
| ?? num form";;
let form_CASES = prove_cases_thm form_INDUCT;;
let form_DISTINCT = distinctness "form";;
let form_INJ = injectivity "form";;
(* ------------------------------------------------------------------------- *)
(* Semantics of terms and formulas in the standard model. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|->",(22,"right"));;
let valmod = new_definition
`(x |-> a) (v:A->B) = \y. if y = x then a else v(y)`;;
let termval = new_recursive_definition term_RECURSION
`(termval v Z = 0) /\
(termval v (V n) = v(n)) /\
(termval v (Suc t) = SUC (termval v t)) /\
(termval v (s ++ t) = termval v s + termval v t) /\
(termval v (s ** t) = termval v s * termval v t)`;;
let holds = new_recursive_definition form_RECURSION
`(holds v False <=> F) /\
(holds v True <=> T) /\
(holds v (s === t) <=> (termval v s = termval v t)) /\
(holds v (s << t) <=> (termval v s < termval v t)) /\
(holds v (s <<= t) <=> (termval v s <= termval v t)) /\
(holds v (Not p) <=> ~(holds v p)) /\
(holds v (p && q) <=> holds v p /\ holds v q) /\
(holds v (p || q) <=> holds v p \/ holds v q) /\
(holds v (p --> q) <=> holds v p ==> holds v q) /\
(holds v (p <-> q) <=> (holds v p <=> holds v q)) /\
(holds v (!! x p) <=> !a. holds ((x|->a) v) p) /\
(holds v (?? x p) <=> ?a. holds ((x|->a) v) p)`;;
let true_def = new_definition
`true p <=> !v. holds v p`;;
let VALMOD = prove
(`!v x y a. ((x |-> y) v) a = if a = x then y else v(a)`,
REWRITE_TAC[valmod]);;
let VALMOD_BASIC = prove
(`!v x y. (x |-> y) v x = y`,
REWRITE_TAC[valmod]);;
let VALMOD_VALMOD_BASIC = prove
(`!v a b x. (x |-> a) ((x |-> b) v) = (x |-> a) v`,
REWRITE_TAC[valmod; FUN_EQ_THM] THEN
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;
let VALMOD_REPEAT = prove
(`!v x. (x |-> v(x)) v = v`,
REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);;
let FORALL_VALMOD = prove
(`!x. (!v a. P((x |-> a) v)) <=> (!v. P v)`,
MESON_TAC[VALMOD_REPEAT]);;
let VALMOD_SWAP = prove
(`!v x y a b.
~(x = y) ==> ((x |-> a) ((y |-> b) v) = (y |-> b) ((x |-> a) v))`,
REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);;
let VALMOD_TRIVIAL = prove
(`!v x. v x = t ==> (x |-> t) v = v`,
REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Assignment. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|=>",(22,"right"));;
let assign = new_definition
`(x |=> a) = (x |-> a) V`;;
let ASSIGN = prove
(`!x y a. (x |=> a) y = if y = x then a else V(y)`,
REWRITE_TAC[assign; valmod]);;
let ASSIGN_TRIV = prove
(`!x. (x |=> V x) = V`,
REWRITE_TAC[VALMOD_REPEAT; assign]);;
(* ------------------------------------------------------------------------- *)
(* Variables in a term and free variables in a formula. *)
(* ------------------------------------------------------------------------- *)
let FVT = new_recursive_definition term_RECURSION
`(FVT Z = {}) /\
(FVT (V n) = {n}) /\
(FVT (Suc t) = FVT t) /\
(FVT (s ++ t) = (FVT s) UNION (FVT t)) /\
(FVT (s ** t) = (FVT s) UNION (FVT t))`;;
let FV = new_recursive_definition form_RECURSION
`(FV False = {}) /\
(FV True = {}) /\
(FV (s === t) = (FVT s) UNION (FVT t)) /\
(FV (s << t) = (FVT s) UNION (FVT t)) /\
(FV (s <<= t) = (FVT s) UNION (FVT t)) /\
(FV (Not p) = FV p) /\
(FV (p && q) = (FV p) UNION (FV q)) /\
(FV (p || q) = (FV p) UNION (FV q)) /\
(FV (p --> q) = (FV p) UNION (FV q)) /\
(FV (p <-> q) = (FV p) UNION (FV q)) /\
(FV (!!x p) = (FV p) DELETE x) /\
(FV (??x p) = (FV p) DELETE x)`;;
let FVT_FINITE = prove
(`!t. FINITE(FVT t)`,
MATCH_MP_TAC term_INDUCT THEN
SIMP_TAC[FVT; FINITE_RULES; FINITE_INSERT; FINITE_UNION]);;
let FV_FINITE = prove
(`!p. FINITE(FV p)`,
MATCH_MP_TAC form_INDUCT THEN
SIMP_TAC[FV; FVT_FINITE; FINITE_RULES; FINITE_DELETE; FINITE_UNION]);;
(* ------------------------------------------------------------------------- *)
(* Logical axioms. *)
(* ------------------------------------------------------------------------- *)
let axiom_RULES,axiom_INDUCT,axiom_CASES = new_inductive_definition
`(!p q. axiom(p --> (q --> p))) /\
(!p q r. axiom((p --> q --> r) --> (p --> q) --> (p --> r))) /\
(!p. axiom(((p --> False) --> False) --> p)) /\
(!x p q. axiom((!!x (p --> q)) --> (!!x p) --> (!!x q))) /\
(!x p. ~(x IN FV p) ==> axiom(p --> !!x p)) /\
(!x t. ~(x IN FVT t) ==> axiom(??x (V x === t))) /\
(!t. axiom(t === t)) /\
(!s t. axiom((s === t) --> (Suc s === Suc t))) /\
(!s t u v. axiom(s === t --> u === v --> s ++ u === t ++ v)) /\
(!s t u v. axiom(s === t --> u === v --> s ** u === t ** v)) /\
(!s t u v. axiom(s === t --> u === v --> s === u --> t === v)) /\
(!s t u v. axiom(s === t --> u === v --> s << u --> t << v)) /\
(!s t u v. axiom(s === t --> u === v --> s <<= u --> t <<= v)) /\
(!p q. axiom((p <-> q) --> p --> q)) /\
(!p q. axiom((p <-> q) --> q --> p)) /\
(!p q. axiom((p --> q) --> (q --> p) --> (p <-> q))) /\
axiom(True <-> (False --> False)) /\
(!p. axiom(Not p <-> (p --> False))) /\
(!p q. axiom((p && q) <-> (p --> q --> False) --> False)) /\
(!p q. axiom((p || q) <-> Not(Not p && Not q))) /\
(!x p. axiom((??x p) <-> Not(!!x (Not p))))`;;
(* ------------------------------------------------------------------------- *)
(* Deducibility from additional set of nonlogical axioms. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|--",(11,"right"));;
let proves_RULES,proves_INDUCT,proves_CASES = new_inductive_definition
`(!p. axiom p \/ p IN A ==> A |-- p) /\
(!p q. A |-- (p --> q) /\ A |-- p ==> A |-- q) /\
(!p x. A |-- p ==> A |-- (!!x p))`;;
(* ------------------------------------------------------------------------- *)
(* Some lemmas. *)
(* ------------------------------------------------------------------------- *)
let TERMVAL_VALUATION = prove
(`!t v v'. (!x. x IN FVT(t) ==> (v'(x) = v(x)))
==> (termval v' t = termval v t)`,
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval; FVT; IN_INSERT; IN_UNION; NOT_IN_EMPTY] THEN
REPEAT STRIP_TAC THEN ASM_MESON_TAC[]);;
let HOLDS_VALUATION = prove
(`!p v v'.
(!x. x IN (FV p) ==> (v'(x) = v(x)))
==> (holds v' p <=> holds v p)`,
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[FV; holds; IN_UNION; IN_DELETE] THEN
SIMP_TAC[TERMVAL_VALUATION] THEN
REWRITE_TAC[valmod] THEN REPEAT STRIP_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[]);;
let TERMVAL_VALMOD_OTHER = prove
(`!v x a t. ~(x IN FVT t) ==> (termval ((x |-> a) v) t = termval v t)`,
MESON_TAC[TERMVAL_VALUATION; VALMOD]);;
let HOLDS_VALMOD_OTHER = prove
(`!v x a p. ~(x IN FV p) ==> (holds ((x |-> a) v) p <=> holds v p)`,
MESON_TAC[HOLDS_VALUATION; VALMOD]);;
(* ------------------------------------------------------------------------- *)
(* Proof of soundness. *)
(* ------------------------------------------------------------------------- *)
let AXIOMS_TRUE = prove
(`!p. axiom p ==> true p`,
MATCH_MP_TAC axiom_INDUCT THEN
REWRITE_TAC[true_def] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[holds] THENL
[CONV_TAC TAUT;
CONV_TAC TAUT;
SIMP_TAC[];
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REPEAT GEN_TAC THEN
MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC HOLDS_VALUATION THEN
REWRITE_TAC[valmod] THEN GEN_TAC THEN COND_CASES_TAC THEN
ASM_MESON_TAC[];
EXISTS_TAC `termval v t` THEN
REWRITE_TAC[termval; valmod] THEN
MATCH_MP_TAC TERMVAL_VALUATION THEN
GEN_TAC THEN REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_MESON_TAC[];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
CONV_TAC TAUT;
CONV_TAC TAUT;
CONV_TAC TAUT;
MESON_TAC[]]);;
let THEOREMS_TRUE = prove
(`!A p. (!q. q IN A ==> true q) /\ A |-- p ==> true p`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
DISCH_TAC THEN MATCH_MP_TAC proves_INDUCT THEN
ASM_SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
REWRITE_TAC[IN; AXIOMS_TRUE] THEN
SIMP_TAC[holds; true_def]);;
(* ------------------------------------------------------------------------- *)
(* Variant variables for use in renaming substitution. *)
(* ------------------------------------------------------------------------- *)
let MAX_SYM = prove
(`!x y. MAX x y = MAX y x`,
ARITH_TAC);;
let MAX_ASSOC = prove
(`!x y z. MAX x (MAX y z) = MAX (MAX x y) z`,
ARITH_TAC);;
let SETMAX = new_definition
`SETMAX s = ITSET MAX s 0`;;
let VARIANT = new_definition
`VARIANT s = SETMAX s + 1`;;
let SETMAX_LEMMA = prove
(`(SETMAX {} = 0) /\
(!x s. FINITE s ==>
(SETMAX (x INSERT s) = if x IN s then SETMAX s
else MAX x (SETMAX s)))`,
REWRITE_TAC[SETMAX] THEN MATCH_MP_TAC FINITE_RECURSION THEN
REWRITE_TAC[MAX] THEN REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC
[`x:num <= s`; `y:num <= s`; `x:num <= y`; `y <= x`] THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LE_CASES; LE_TRANS; LE_ANTISYM]);;
let SETMAX_MEMBER = prove
(`!s. FINITE s ==> !x. x IN s ==> x <= SETMAX s`,
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[NOT_IN_EMPTY; IN_INSERT] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
ASM_SIMP_TAC [SETMAX_LEMMA] THEN
ASM_REWRITE_TAC[MAX] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[LE_REFL] THEN
ASM_MESON_TAC[LE_CASES; LE_TRANS]);;
let SETMAX_THM = prove
(`(SETMAX {} = 0) /\
(!x s. FINITE s ==>
(SETMAX (x INSERT s) = MAX x (SETMAX s)))`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC [SETMAX_LEMMA] THEN
COND_CASES_TAC THEN REWRITE_TAC[MAX] THEN
COND_CASES_TAC THEN ASM_MESON_TAC[SETMAX_MEMBER]);;
let SETMAX_UNION = prove
(`!s t. FINITE(s UNION t)
==> (SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))`,
let lemma = prove(`(x INSERT s) UNION t = x INSERT (s UNION t)`,SET_TAC[]) in
SUBGOAL_THEN `!t. FINITE(t) ==> !s. FINITE(s) ==>
(SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))`
(fun th -> MESON_TAC[th; FINITE_UNION]) THEN
GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[UNION_EMPTY; SETMAX_THM] THEN CONJ_TAC THENL
[REWRITE_TAC[MAX; LE_0]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[lemma] THEN
ASM_SIMP_TAC [SETMAX_THM; FINITE_UNION] THEN
REWRITE_TAC[MAX_ASSOC]);;
let VARIANT_FINITE = prove
(`!s:num->bool. FINITE(s) ==> ~(VARIANT(s) IN s)`,
REWRITE_TAC[VARIANT] THEN
MESON_TAC[SETMAX_MEMBER; ARITH_RULE `~(x + 1 <= x)`]);;
let VARIANT_THM = prove
(`!p. ~(VARIANT(FV p) IN FV(p))`,
GEN_TAC THEN MATCH_MP_TAC VARIANT_FINITE THEN REWRITE_TAC[FV_FINITE]);;
let NOT_IN_VARIANT = prove
(`!s t. FINITE s /\ t SUBSET s ==> ~(VARIANT(s) IN t)`,
MESON_TAC[SUBSET; VARIANT_FINITE]);;
(* ------------------------------------------------------------------------- *)
(* Substitution within terms. *)
(* ------------------------------------------------------------------------- *)
let termsubst = new_recursive_definition term_RECURSION
`(termsubst v Z = Z) /\
(!x. termsubst v (V x) = v(x)) /\
(!t. termsubst v (Suc t) = Suc(termsubst v t)) /\
(!s t. termsubst v (s ++ t) = termsubst v s ++ termsubst v t) /\
(!s t. termsubst v (s ** t) = termsubst v s ** termsubst v t)`;;
let TERMVAL_TERMSUBST = prove
(`!v i t. termval v (termsubst i t) = termval (termval v o i) t`,
GEN_TAC THEN GEN_TAC THEN
MATCH_MP_TAC term_INDUCT THEN SIMP_TAC[termval; termsubst; o_THM]);;
let TERMSUBST_TERMSUBST = prove
(`!i j t. termsubst j (termsubst i t) = termsubst (termsubst j o i) t`,
GEN_TAC THEN GEN_TAC THEN
MATCH_MP_TAC term_INDUCT THEN SIMP_TAC[termval; termsubst; o_THM]);;
let TERMSUBST_TRIV = prove
(`!t. termsubst V t = t`,
MATCH_MP_TAC term_INDUCT THEN SIMP_TAC[termsubst]);;
let TERMSUBST_EQ = prove
(`!t v v'. (!x. x IN (FVT t) ==> (v'(x) = v(x)))
==> (termsubst v' t = termsubst v t)`,
MATCH_MP_TAC term_INDUCT THEN
SIMP_TAC[termsubst; FVT; IN_SING; IN_UNION] THEN MESON_TAC[]);;
let TERMSUBST_FVT = prove
(`!t i. FVT(termsubst i t) = {x | ?y. y IN FVT(t) /\ x IN FVT(i y)}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[FVT; termsubst] THEN
REWRITE_TAC[IN_UNION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[]);;
let TERMSUBST_ASSIGN = prove
(`!x s t. ~(x IN FVT t) ==> (termsubst (x |=> s) t = t)`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM TERMSUBST_TRIV] THEN
MATCH_MP_TAC TERMSUBST_EQ THEN
REWRITE_TAC[ASSIGN] THEN ASM_MESON_TAC[]);;
let TERMSUBST_TRIVIAL = prove
(`!v t. (!x. x IN FVT t ==> v x = V x) ==> termsubst v t = t`,
MESON_TAC[TERMSUBST_EQ; TERMSUBST_TRIV]);;
(* ------------------------------------------------------------------------- *)
(* Formula substitution --- somewhat less trivial. *)
(* ------------------------------------------------------------------------- *)
let formsubst = new_recursive_definition form_RECURSION
`(formsubst v False = False) /\
(formsubst v True = True) /\
(formsubst v (s === t) = termsubst v s === termsubst v t) /\
(formsubst v (s << t) = termsubst v s << termsubst v t) /\
(formsubst v (s <<= t) = termsubst v s <<= termsubst v t) /\
(formsubst v (Not p) = Not(formsubst v p)) /\
(formsubst v (p && q) = formsubst v p && formsubst v q) /\
(formsubst v (p || q) = formsubst v p || formsubst v q) /\
(formsubst v (p --> q) = formsubst v p --> formsubst v q) /\
(formsubst v (p <-> q) = formsubst v p <-> formsubst v q) /\
(formsubst v (!!x q) =
let z = if ?y. y IN FV(!!x q) /\ x IN FVT(v(y))
then VARIANT(FV(formsubst ((x |-> V x) v) q)) else x in
!!z (formsubst ((x |-> V(z)) v) q)) /\
(formsubst v (??x q) =
let z = if ?y. y IN FV(??x q) /\ x IN FVT(v(y))
then VARIANT(FV(formsubst ((x |-> V x) v) q)) else x in
??z (formsubst ((x |-> V(z)) v) q))`;;
let FORMSUBST_PROPERTIES = prove
(`!p. (!i. FV(formsubst i p) = {x | ?y. y IN FV(p) /\ x IN FVT(i y)}) /\
(!i v. holds v (formsubst i p) = holds (termval v o i) p)`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[FV; holds; formsubst; TERMSUBST_FVT; IN_ELIM_THM; NOT_IN_EMPTY;
IN_UNION; TERMVAL_TERMSUBST] THEN
REPEAT(CONJ_TAC THENL [MESON_TAC[];ALL_TAC]) THEN CONJ_TAC THEN
(MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN STRIP_TAC THEN
REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `i:num->term` THEN
LET_TAC THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN
SUBGOAL_THEN `~(?y. y IN (FV(p) DELETE x) /\ z IN FVT(i y))`
ASSUME_TAC THENL
[EXPAND_TAC "z" THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
MP_TAC(SPEC `formsubst ((x |-> V x) i) p` VARIANT_THM) THEN
ASM_REWRITE_TAC[valmod; IN_DELETE; CONTRAPOS_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[];
ALL_TAC] THEN
CONJ_TAC THEN GEN_TAC THEN ASM_REWRITE_TAC[FV; IN_DELETE; holds] THENL
[REWRITE_TAC[LEFT_AND_EXISTS_THM; valmod] THEN AP_TERM_TAC THEN
ABS_TAC THEN COND_CASES_TAC THEN ASM_MESON_TAC[FVT; IN_SING; IN_DELETE];
AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN
GEN_TAC THEN REWRITE_TAC[valmod; o_DEF] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[termval] THEN DISCH_TAC THEN
MATCH_MP_TAC TERMVAL_VALUATION THEN GEN_TAC THEN
REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_MESON_TAC[IN_DELETE]]));;
let FORMSUBST_FV = prove
(`!p i. FV(formsubst i p) = {x | ?y. y IN FV(p) /\ x IN FVT(i y)}`,
REWRITE_TAC[FORMSUBST_PROPERTIES]);;
let HOLDS_FORMSUBST = prove
(`!p i v. holds v (formsubst i p) <=> holds (termval v o i) p`,
REWRITE_TAC[FORMSUBST_PROPERTIES]);;
let FORMSUBST_EQ = prove
(`!p i j. (!x. x IN FV(p) ==> (i(x) = j(x)))
==> (formsubst i p = formsubst j p)`,
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[FV; formsubst; IN_UNION; IN_DELETE] THEN
SIMP_TAC[] THEN REWRITE_TAC[CONJ_ASSOC] THEN
GEN_REWRITE_TAC I [GSYM CONJ_ASSOC] THEN CONJ_TAC THENL
[MESON_TAC[TERMSUBST_EQ]; ALL_TAC] THEN
CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN
(DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`i:num->term`; `j:num->term`] THEN
DISCH_TAC THEN REWRITE_TAC[LET_DEF; LET_END_DEF; form_INJ] THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN SIMP_TAC[] THEN
CONJ_TAC THENL
[ALL_TAC;
DISCH_THEN(K ALL_TAC) THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[valmod] THEN ASM_SIMP_TAC[]] THEN
AP_THM_TAC THEN BINOP_TAC THENL
[ASM_MESON_TAC[];
AP_TERM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[valmod] THEN ASM_MESON_TAC[]]));;
let FORMSUBST_TRIV = prove
(`!p. formsubst V p = p`,
MATCH_MP_TAC form_INDUCT THEN
SIMP_TAC[formsubst; TERMSUBST_TRIV] THEN
REWRITE_TAC[FVT; IN_SING; FV; IN_DELETE] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; VALMOD_REPEAT] THEN
ASM_MESON_TAC[]);;
let FORMSUBST_TRIVIAL = prove
(`!v p. (!x. x IN FV(p) ==> v x = V x) ==> formsubst v p = p`,
MESON_TAC[FORMSUBST_EQ; FORMSUBST_TRIV]);;
(* ------------------------------------------------------------------------- *)
(* Predicate ensuring that a substitution will not cause variable renaming. *)
(* ------------------------------------------------------------------------- *)
let safe_for = new_definition
`safe_for x v <=> !y. x IN FVT(v y) ==> y = x`;;
let SAFE_FOR_V = prove
(`!x. safe_for x V`,
SIMP_TAC[safe_for; FVT; IN_SING]);;
let SAFE_FOR_VALMOD = prove
(`!v x y t. safe_for x v /\ (x IN FVT t ==> y = x)
==> safe_for x ((y |-> t) v)`,
REWRITE_TAC[safe_for; VALMOD] THEN MESON_TAC[]);;
let SAFE_FOR_ASSIGN = prove
(`!x y t. safe_for x (y |=> t) <=> x IN FVT t ==> y = x`,
REWRITE_TAC[safe_for; ASSIGN] THEN MESON_TAC[FVT; IN_SING]);;
let FORMSUBST_SAFE_FOR = prove
(`(!v x p. safe_for x v
==> formsubst v (!! x p) = !!x (formsubst ((x |-> V x) v) p)) /\
(!v x p. safe_for x v
==> formsubst v (?? x p) = ??x (formsubst ((x |-> V x) v) p))`,
REWRITE_TAC[safe_for; formsubst; LET_DEF; LET_END_DEF; FV] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Quasi-substitution. *)
(* ------------------------------------------------------------------------- *)
let qsubst = new_definition
`qsubst (x,t) p = ??x (V x === t && p)`;;
let FV_QSUBST = prove
(`!x n p. FV(qsubst (x,t) p) = (FV(p) UNION FVT(t)) DELETE x`,
REWRITE_TAC[qsubst; FV; FVT] THEN SET_TAC[]);;
let HOLDS_QSUBST = prove
(`!v t p v. ~(x IN FVT(t))
==> (holds v (qsubst (x,t) p) <=>
holds ((x |-> termval v t) v) p)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `!v z. termval ((x |-> z) v) t = termval v t` ASSUME_TAC THENL
[REWRITE_TAC[valmod] THEN ASM_MESON_TAC[TERMVAL_VALUATION];
ASM_REWRITE_TAC[holds; qsubst; termval; VALMOD_BASIC; UNWIND_THM2]]);;
(* ------------------------------------------------------------------------- *)
(* The numeral mapping. *)
(* ------------------------------------------------------------------------- *)
let numeral = new_recursive_definition num_RECURSION
`(numeral 0 = Z) /\
(!n. numeral (SUC n) = Suc(numeral n))`;;
let TERMVAL_NUMERAL = prove
(`!v n. termval v (numeral n) = n`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[termval;numeral]);;
let FVT_NUMERAL = prove
(`!n. FVT(numeral n) = {}`,
INDUCT_TAC THEN ASM_REWRITE_TAC[FVT; numeral]);;
(* ------------------------------------------------------------------------- *)
(* Closed-ness. *)
(* ------------------------------------------------------------------------- *)
let closed = new_definition
`closed p <=> (FV p = {})`;;
|