Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 23,992 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
(* ========================================================================= *)
(* Proof that provability is definable; weak form of Godel's theorem. *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Auxiliary predicate: all numbers in an iterated-pair "list". *)
(* ------------------------------------------------------------------------- *)
let ALLN_DEF =
let th = prove
(`!P. ?ALLN. !z.
ALLN z <=>
if ?x y. z = NPAIR x y
then P (@x. ?y. NPAIR x y = z) /\
ALLN (@y. ?x. NPAIR x y = z)
else T`,
GEN_TAC THEN MATCH_MP_TAC(MATCH_MP WF_REC WF_num) THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
BINOP_TAC THENL [ALL_TAC; FIRST_ASSUM MATCH_MP_TAC] THEN
FIRST_ASSUM(REPEAT_TCL CHOOSE_THEN SUBST1_TAC) THEN
REWRITE_TAC[NPAIR_INJ; RIGHT_EXISTS_AND_THM; EXISTS_REFL;
SELECT_REFL; NPAIR_LT; LEFT_EXISTS_AND_THM]) in
new_specification ["ALLN"] (REWRITE_RULE[SKOLEM_THM] th);;
let ALLN = prove
(`(ALLN P 0 <=> T) /\
(ALLN P (NPAIR x y) <=> P x /\ ALLN P y)`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [ALLN_DEF] THEN
REWRITE_TAC[NPAIR_NONZERO] THEN
REWRITE_TAC[NPAIR_INJ; LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM] THEN
REWRITE_TAC[EXISTS_REFL; GSYM EXISTS_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Valid term. *)
(* ------------------------------------------------------------------------- *)
let TERM1 = new_definition
`TERM1 x y <=>
(?l u. (x = l) /\ (y = NPAIR (NPAIR 0 u) l)) \/
(?l. (x = l) /\ (y = NPAIR (NPAIR 1 0) l)) \/
(?t l. (x = NPAIR t l) /\ (y = NPAIR (NPAIR 2 t) l)) \/
(?n s t l. ((n = 3) \/ (n = 4)) /\
(x = NPAIR s (NPAIR t l)) /\
(y = NPAIR (NPAIR n (NPAIR s t)) l))`;;
let TERM = new_definition
`TERM n <=> RTC TERM1 0 (NPAIR n 0)`;;
let isagterm = new_definition
`isagterm n <=> ?t. n = gterm t`;;
let TERM_LEMMA1 = prove
(`!x y. TERM1 x y ==> ALLN isagterm x ==> ALLN isagterm y`,
REPEAT GEN_TAC THEN REWRITE_TAC[TERM1] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN; isagterm] THEN
MESON_TAC[gterm; NUMBER_SURJ]);;
let TERM_LEMMA2 = prove
(`!t a. RTC TERM1 a (NPAIR (gterm t) a)`,
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[gterm] THEN
MESON_TAC[RTC_INC; RTC_TRANS; TERM1]);;
let TERM_THM = prove
(`!n. TERM n <=> ?t. n = gterm t`,
GEN_TAC THEN REWRITE_TAC[TERM] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[TERM_LEMMA2]] THEN
SUBGOAL_THEN `!x y. RTC TERM1 x y ==> ALLN isagterm x ==> ALLN isagterm y`
(fun th -> MESON_TAC[ALLN; isagterm; th]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[TERM_LEMMA1] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Valid formula. *)
(* ------------------------------------------------------------------------- *)
let FORM1 = new_definition
`FORM1 x y <=>
(?l. (x = l) /\ (y = NPAIR (NPAIR 0 0) l)) \/
(?l. (x = l) /\ (y = NPAIR (NPAIR 0 1) l)) \/
(?n s t l. ((n = 1) \/ (n = 2) \/ (n = 3)) /\
TERM s /\ TERM t /\
(x = l) /\
(y = NPAIR (NPAIR n (NPAIR s t)) l)) \/
(?p l. (x = NPAIR p l) /\
(y = NPAIR (NPAIR 4 p) l)) \/
(?n p q l. ((n = 5) \/ (n = 6) \/ (n = 7) \/ (n = 8)) /\
(x = NPAIR p (NPAIR q l)) /\
(y = NPAIR (NPAIR n (NPAIR p q)) l)) \/
(?n u p l. ((n = 9) \/ (n = 10)) /\
(x = NPAIR p l) /\
(y = NPAIR (NPAIR n (NPAIR u p)) l))`;;
let FORM = new_definition
`FORM n <=> RTC FORM1 0 (NPAIR n 0)`;;
let isagform = new_definition
`isagform n <=> ?t. n = gform t`;;
let FORM_LEMMA1 = prove
(`!x y. FORM1 x y ==> ALLN isagform x ==> ALLN isagform y`,
REPEAT GEN_TAC THEN REWRITE_TAC[FORM1] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN; isagform] THEN
MESON_TAC[gform; TERM_THM; NUMBER_SURJ]);;
(*** Following really blows up if we just use FORM1
*** instead of manually breaking up the conjuncts
***)
let FORM_LEMMA2 = prove
(`!p a. RTC FORM1 a (NPAIR (gform p) a)`,
MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[gform] THEN
REPEAT CONJ_TAC THEN
MESON_TAC[RTC_INC; RTC_TRANS; TERM_THM;
REWRITE_RULE[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`]
(snd(EQ_IMP_RULE (SPEC_ALL FORM1)))]);;
let FORM_THM = prove
(`!n. FORM n <=> ?p. n = gform p`,
GEN_TAC THEN REWRITE_TAC[FORM] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[FORM_LEMMA2]] THEN
SUBGOAL_THEN `!x y. RTC FORM1 x y ==> ALLN isagform x ==> ALLN isagform y`
(fun th -> MESON_TAC[ALLN; isagform; th]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[FORM_LEMMA1] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Term without particular variable. *)
(* ------------------------------------------------------------------------- *)
let FREETERM1 = new_definition
`FREETERM1 m x y <=>
(?l u. ~(u = m) /\ (x = l) /\ (y = NPAIR (NPAIR 0 u) l)) \/
(?l. (x = l) /\ (y = NPAIR (NPAIR 1 0) l)) \/
(?t l. (x = NPAIR t l) /\ (y = NPAIR (NPAIR 2 t) l)) \/
(?n s t l. ((n = 3) \/ (n = 4)) /\
(x = NPAIR s (NPAIR t l)) /\
(y = NPAIR (NPAIR n (NPAIR s t)) l))`;;
let FREETERM = new_definition
`FREETERM m n <=> RTC (FREETERM1 m) 0 (NPAIR n 0)`;;
let isafterm = new_definition
`isafterm m n <=> ?t. ~(m IN IMAGE number (FVT t)) /\ (n = gterm t)`;;
let ISAFTERM = prove
(`(~(number x = m) ==> isafterm m (NPAIR 0 (number x))) /\
isafterm m (NPAIR 1 0) /\
(isafterm m t ==> isafterm m (NPAIR 2 t)) /\
(isafterm m s /\ isafterm m t ==> isafterm m (NPAIR 3 (NPAIR s t))) /\
(isafterm m s /\ isafterm m t ==> isafterm m (NPAIR 4 (NPAIR s t)))`,
REWRITE_TAC[isafterm; gterm] THEN REPEAT CONJ_TAC THENL
[DISCH_TAC THEN EXISTS_TAC `V x`;
EXISTS_TAC `Z`;
DISCH_THEN(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `Suc t`;
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `s ++ t`;
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `s ** t`] THEN
ASM_REWRITE_TAC[gterm; FVT; IMAGE_UNION; NOT_IN_EMPTY; IN_SING; IN_UNION;
IMAGE_CLAUSES]);;
let FREETERM_LEMMA1 = prove
(`!m x y. FREETERM1 m x y ==> ALLN (isafterm m) x ==> ALLN (isafterm m) y`,
REPEAT GEN_TAC THEN REWRITE_TAC[FREETERM1] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN] THEN
MESON_TAC[ISAFTERM; NUMBER_SURJ]);;
let FREETERM_LEMMA2 = prove
(`!m t a. ~(m IN IMAGE number (FVT t))
==> RTC (FREETERM1 m) a (NPAIR (gterm t) a)`,
GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[gterm; FVT; NOT_IN_EMPTY; IN_SING; IN_UNION;
IMAGE_CLAUSES; IMAGE_UNION] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN
REPEAT CONJ_TAC THEN
TRY(REPEAT GEN_TAC THEN DISCH_THEN
(fun th -> GEN_TAC THEN STRIP_TAC THEN MP_TAC th)) THEN
ASM_REWRITE_TAC[] THEN
MESON_TAC[RTC_INC; RTC_TRANS; FREETERM1]);;
let FREETERM_THM = prove
(`!m n. FREETERM m n <=> ?t. ~(m IN IMAGE number (FVT(t))) /\ (n = gterm t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FREETERM] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[FREETERM_LEMMA2]] THEN
SUBGOAL_THEN `!x y. RTC (FREETERM1 m) x y
==> ALLN (isafterm m) x ==> ALLN (isafterm m) y`
(fun th -> MESON_TAC[ALLN; isagterm; isafterm; th]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[FREETERM_LEMMA1] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Formula without particular free variable. *)
(* ------------------------------------------------------------------------- *)
let FREEFORM1 = new_definition
`FREEFORM1 m x y <=>
(?l. (x = l) /\ (y = NPAIR (NPAIR 0 0) l)) \/
(?l. (x = l) /\ (y = NPAIR (NPAIR 0 1) l)) \/
(?n s t l. ((n = 1) \/ (n = 2) \/ (n = 3)) /\
FREETERM m s /\ FREETERM m t /\
(x = l) /\
(y = NPAIR (NPAIR n (NPAIR s t)) l)) \/
(?p l. (x = NPAIR p l) /\
(y = NPAIR (NPAIR 4 p) l)) \/
(?n p q l. ((n = 5) \/ (n = 6) \/ (n = 7) \/ (n = 8)) /\
(x = NPAIR p (NPAIR q l)) /\
(y = NPAIR (NPAIR n (NPAIR p q)) l)) \/
(?n u p l. ((n = 9) \/ (n = 10)) /\
(x = NPAIR p l) /\
(y = NPAIR (NPAIR n (NPAIR u p)) l)) \/
(?n p l. ((n = 9) \/ (n = 10)) /\
(x = l) /\ FORM p /\
(y = NPAIR (NPAIR n (NPAIR m p)) l))`;;
let FREEFORM = new_definition
`FREEFORM m n <=> RTC (FREEFORM1 m) 0 (NPAIR n 0)`;;
let isafform = new_definition
`isafform m n <=> ?p. ~(m IN IMAGE number (FV p)) /\ (n = gform p)`;;
let ISAFFORM = prove
(`isafform m (NPAIR 0 0) /\
isafform m (NPAIR 0 1) /\
(isafterm m s /\ isafterm m t ==> isafform m (NPAIR 1 (NPAIR s t))) /\
(isafterm m s /\ isafterm m t ==> isafform m (NPAIR 2 (NPAIR s t))) /\
(isafterm m s /\ isafterm m t ==> isafform m (NPAIR 3 (NPAIR s t))) /\
(isafform m p ==> isafform m (NPAIR 4 p)) /\
(isafform m p /\ isafform m q ==> isafform m (NPAIR 5 (NPAIR p q))) /\
(isafform m p /\ isafform m q ==> isafform m (NPAIR 6 (NPAIR p q))) /\
(isafform m p /\ isafform m q ==> isafform m (NPAIR 7 (NPAIR p q))) /\
(isafform m p /\ isafform m q ==> isafform m (NPAIR 8 (NPAIR p q))) /\
(isafform m p ==> isafform m (NPAIR 9 (NPAIR x p))) /\
(isafform m p ==> isafform m (NPAIR 10 (NPAIR x p))) /\
(isagform p ==> isafform m (NPAIR 9 (NPAIR m p))) /\
(isagform p ==> isafform m (NPAIR 10 (NPAIR m p)))`,
let tac0 = DISCH_THEN(X_CHOOSE_THEN `p:form` STRIP_ASSUME_TAC)
and tac1 =
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC))
and tac2 =
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `p:form` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC)) in
REWRITE_TAC[isafform; gform; isagform; isafterm] THEN REPEAT CONJ_TAC THENL
[EXISTS_TAC `False`;
EXISTS_TAC `True`;
tac1 THEN EXISTS_TAC `s === t`;
tac1 THEN EXISTS_TAC `s << t`;
tac1 THEN EXISTS_TAC `s <<= t`;
tac0 THEN EXISTS_TAC `Not p`;
tac2 THEN EXISTS_TAC `p && q`;
tac2 THEN EXISTS_TAC `p || q`;
tac2 THEN EXISTS_TAC `p --> q`;
tac2 THEN EXISTS_TAC `p <-> q`;
tac0 THEN EXISTS_TAC `!!(denumber x) p`;
tac0 THEN EXISTS_TAC `??(denumber x) p`;
tac0 THEN EXISTS_TAC `!!(denumber m) p`;
tac0 THEN EXISTS_TAC `??(denumber m) p`] THEN
ASM_REWRITE_TAC[FV; IN_DELETE; NOT_IN_EMPTY; IN_SING; IN_UNION; gform;
NUMBER_DENUMBER; IMAGE_CLAUSES; IMAGE_UNION] THEN
ASM SET_TAC[NUMBER_DENUMBER]);;
let FREEFORM_LEMMA1 = prove
(`!x y. FREEFORM1 m x y ==> ALLN (isafform m) x ==> ALLN (isafform m) y`,
REPEAT GEN_TAC THEN REWRITE_TAC[FREEFORM1] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN] THEN
REWRITE_TAC[FREETERM_THM; GSYM isafterm] THEN
REWRITE_TAC[FORM_THM; GSYM isagform] THEN MESON_TAC[ISAFFORM]);;
let FREEFORM_LEMMA2 = prove
(`!m p a. ~(m IN IMAGE number (FV p))
==> RTC (FREEFORM1 m) a (NPAIR (gform p) a)`,
let lemma = prove
(`m IN IMAGE number (s DELETE k) <=>
m IN IMAGE number s /\ ~(m = number k)`,
SET_TAC[NUMBER_INJ]) in
GEN_TAC THEN MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[gform; FV; NOT_IN_EMPTY; IN_DELETE; IN_SING; IN_UNION;
lemma; IMAGE_UNION; IMAGE_CLAUSES] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN
REPEAT CONJ_TAC THEN
TRY(REPEAT GEN_TAC THEN DISCH_THEN
(fun th -> GEN_TAC THEN STRIP_TAC THEN MP_TAC th)) THEN
ASM_REWRITE_TAC[] THEN
MESON_TAC[RTC_INC; RTC_TRANS; FORM_THM;
REWRITE_RULE[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`;
FREETERM_THM]
(snd(EQ_IMP_RULE (SPEC_ALL FREEFORM1)))]);;
let FREEFORM_THM = prove
(`!m n. FREEFORM m n <=> ?p. ~(m IN IMAGE number (FV p)) /\ (n = gform p)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FREEFORM] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[FREEFORM_LEMMA2]] THEN
SUBGOAL_THEN `!x y. RTC (FREEFORM1 m) x y
==> ALLN (isafform m) x ==> ALLN (isafform m) y`
(fun th -> MESON_TAC[ALLN; isagform; isafform; th]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[FREEFORM_LEMMA1] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Arithmetization of logical axioms --- autogenerated. *)
(* ------------------------------------------------------------------------- *)
let AXIOM,AXIOM_THM =
let th0 = prove
(`((?x p. P (number x) (gform p) /\ ~(x IN FV(p))) <=>
(?x p. FREEFORM x p /\ P x p)) /\
((?x t. P (number x) (gterm t) /\ ~(x IN FVT(t))) <=>
(?x t. FREETERM x t /\ P x t))`,
REWRITE_TAC[FREETERM_THM; FREEFORM_THM] THEN CONJ_TAC THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
REWRITE_TAC[UNWIND_THM2; IN_IMAGE] THEN
ASM_MESON_TAC[IN_IMAGE; NUMBER_DENUMBER])
and th1 = prove
(`((?p. P(gform p)) <=> (?p. FORM(p) /\ P p)) /\
((?t. P(gterm t)) <=> (?t. TERM(t) /\ P t))`,
MESON_TAC[FORM_THM; TERM_THM])
and th2 = prove
(`(?x. P(number x)) <=> (?x. P x)`,
MESON_TAC[NUMBER_DENUMBER]) in
let th = (REWRITE_CONV[GSYM GFORM_INJ] THENC
REWRITE_CONV[gform; gterm] THENC
REWRITE_CONV[th0] THENC REWRITE_CONV[th1] THENC
REWRITE_CONV[th2] THENC
REWRITE_CONV[RIGHT_AND_EXISTS_THM])
(rhs(concl(SPEC `a:form` axiom_CASES))) in
let dtm = mk_eq(`(AXIOM:num->bool) a`,
subst [`a:num`,`gform a`] (rhs(concl th))) in
let AXIOM = new_definition dtm in
let AXIOM_THM = prove
(`!p. AXIOM(gform p) <=> axiom p`,
REWRITE_TAC[axiom_CASES; AXIOM; th]) in
AXIOM,AXIOM_THM;;
(* ------------------------------------------------------------------------- *)
(* Prove also that all AXIOMs are in fact numbers of formulas. *)
(* ------------------------------------------------------------------------- *)
let GTERM_CASES_ALT = prove
(`(gterm u = NPAIR 0 x <=> u = V(denumber x))`,
REWRITE_TAC[GSYM GTERM_CASES; NUMBER_DENUMBER]);;
let GFORM_CASES_ALT = prove
(`(gform r = NPAIR 9 (NPAIR x n) <=>
(?p. r = !!(denumber x) p /\ gform p = n)) /\
(gform r = NPAIR 10 (NPAIR x n) <=>
(?p. r = ??(denumber x) p /\ gform p = n))`,
REWRITE_TAC[GSYM GFORM_CASES; NUMBER_DENUMBER]);;
let AXIOM_FORMULA = prove
(`!a. AXIOM a ==> ?p. a = gform p`,
REWRITE_TAC[AXIOM; FREEFORM_THM; FREETERM_THM; FORM_THM; TERM_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(BINDER_CONV SYM_CONV) THEN
REWRITE_TAC[GFORM_CASES; GTERM_CASES;
GTERM_CASES_ALT; GFORM_CASES_ALT] THEN
MESON_TAC[NUMBER_DENUMBER]);;
let AXIOM_THM_STRONG = prove
(`!a. AXIOM a <=> ?p. axiom p /\ (a = gform p)`,
MESON_TAC[AXIOM_THM; AXIOM_FORMULA]);;
(* ------------------------------------------------------------------------- *)
(* Arithmetization of the full logical inference rules. *)
(* ------------------------------------------------------------------------- *)
let PROV1 = new_definition
`PROV1 A x y <=>
(?a. (AXIOM a \/ a IN A) /\ (y = NPAIR a x)) \/
(?p q l. (x = NPAIR (NPAIR 7 (NPAIR p q)) (NPAIR p l)) /\
(y = NPAIR q l)) \/
(?p u l. (x = NPAIR p l) /\ (y = NPAIR (NPAIR 9 (NPAIR u p)) l))`;;
let PROV = new_definition
`PROV A n <=> RTC (PROV1 A) 0 (NPAIR n 0)`;;
let isaprove = new_definition
`isaprove A n <=> ?p. (gform p = n) /\ A |-- p`;;
let PROV_LEMMA1 = prove
(`!A p q. PROV1 (IMAGE gform A) x y
==> ALLN (isaprove A) x ==> ALLN (isaprove A) y`,
REPEAT GEN_TAC THEN REWRITE_TAC[PROV1] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN] THEN
REWRITE_TAC[isaprove] THEN REPEAT CONJ_TAC THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[AXIOM_THM_STRONG; proves_RULES];
ASM_MESON_TAC[IN_IMAGE; GFORM_INJ; proves_RULES; gform];
ALL_TAC;
ASM_MESON_TAC[NUMBER_DENUMBER;
IN_IMAGE; GFORM_INJ; proves_RULES; gform]] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[gform; NPAIR_INJ; ARITH_EQ] THEN
MAP_EVERY X_GEN_TAC [`P:form`; `Q:form`] THEN
DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (STRIP_ASSUME_TAC o GSYM) MP_TAC) THEN
ASM_REWRITE_TAC[GFORM_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2] THEN
ASM_MESON_TAC[proves_RULES]);;
let PROV_LEMMA2 = prove
(`!A p. A |-- p ==> !a. RTC (PROV1 (IMAGE gform A)) a (NPAIR (gform p) a)`,
GEN_TAC THEN MATCH_MP_TAC proves_INDUCT THEN REWRITE_TAC[gform] THEN
MESON_TAC[RTC_INC; RTC_TRANS; PROV1; IN_IMAGE; AXIOM_THM]);;
let PROV_THM_STRONG = prove
(`!A n. PROV (IMAGE gform A) n <=> ?p. A |-- p /\ (gform p = n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[PROV] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[PROV_LEMMA2]] THEN
SUBGOAL_THEN
`!x y. RTC (PROV1 (IMAGE gform A)) x y
==> ALLN (isaprove A) x ==> ALLN (isaprove A) y`
(fun th -> MESON_TAC[ALLN; isaprove; GFORM_INJ; th]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[PROV_LEMMA1] THEN MESON_TAC[]);;
let PROV_THM = prove
(`!A p. PROV (IMAGE gform A) (gform p) <=> A |-- p`,
MESON_TAC[PROV_THM_STRONG; GFORM_INJ]);;
(* ------------------------------------------------------------------------- *)
(* Now really objectify all that. *)
(* ------------------------------------------------------------------------- *)
let arith_term1,ARITH_TERM1 = OBJECTIFY [] "arith_term1" TERM1;;
let FV_TERM1 = prove
(`!s t. FV(arith_term1 s t) = (FVT s) UNION (FVT t)`,
FV_TAC[arith_term1; FVT_PAIR; FVT_NUMERAL]);;
let arith_term,ARITH_TERM = OBJECTIFY_RTC ARITH_TERM1 "arith_term" TERM;;
let FV_TERM = prove
(`!t. FV(arith_term t) = FVT t`,
FV_TAC[arith_term; FV_RTC; FV_TERM1; FVT_PAIR; FVT_NUMERAL]);;
let arith_form1,ARITH_FORM1 =
OBJECTIFY [ARITH_TERM] "arith_form1" FORM1;;
let FV_FORM1 = prove
(`!s t. FV(arith_form1 s t) = (FVT s) UNION (FVT t)`,
FV_TAC[arith_form1; FV_TERM; FVT_PAIR; FVT_NUMERAL]);;
let arith_form,ARITH_FORM = OBJECTIFY_RTC ARITH_FORM1 "arith_form" FORM;;
let FV_FORM = prove
(`!t. FV(arith_form t) = FVT t`,
FV_TAC[arith_form; FV_RTC; FV_FORM1; FVT_PAIR; FVT_NUMERAL]);;
let arith_freeterm1,ARITH_FREETERM1 =
OBJECTIFY [] "arith_freeterm1" FREETERM1;;
let FV_FREETERM1 = prove
(`!s t u. FV(arith_freeterm1 s t u) = (FVT s) UNION (FVT t) UNION (FVT u)`,
FV_TAC[arith_freeterm1; FVT_PAIR; FVT_NUMERAL]);;
let arith_freeterm,ARITH_FREETERM =
OBJECTIFY_RTCP ARITH_FREETERM1 "arith_freeterm" FREETERM;;
let FV_FREETERM = prove
(`!s t. FV(arith_freeterm s t) = (FVT s) UNION (FVT t)`,
FV_TAC[arith_freeterm; FV_RTCP; FV_FREETERM1; FVT_PAIR; FVT_NUMERAL]);;
let arith_freeform1,ARITH_FREEFORM1 =
OBJECTIFY [ARITH_FREETERM; ARITH_FORM] "arith_freeform1" FREEFORM1;;
let FV_FREEFORM1 = prove
(`!s t u. FV(arith_freeform1 s t u) = (FVT s) UNION (FVT t) UNION (FVT u)`,
FV_TAC[arith_freeform1; FV_FREETERM; FV_FORM; FVT_PAIR; FVT_NUMERAL]);;
let arith_freeform,ARITH_FREEFORM =
OBJECTIFY_RTCP ARITH_FREEFORM1 "arith_freeform" FREEFORM;;
let FV_FREEFORM = prove
(`!s t. FV(arith_freeform s t) = (FVT s) UNION (FVT t)`,
FV_TAC[arith_freeform; FV_RTCP; FV_FREEFORM1; FVT_PAIR; FVT_NUMERAL]);;
let arith_axiom,ARITH_AXIOM =
OBJECTIFY [ARITH_FORM; ARITH_FREEFORM; ARITH_FREETERM; ARITH_TERM]
"arith_axiom" AXIOM;;
let FV_AXIOM = prove
(`!t. FV(arith_axiom t) = FVT t`,
FV_TAC[arith_axiom; FV_FREETERM; FV_FREEFORM; FV_TERM; FV_FORM;
FVT_PAIR; FVT_NUMERAL]);;
(* ------------------------------------------------------------------------- *)
(* Parametrization by A means it's easier to do these cases manually. *)
(* ------------------------------------------------------------------------- *)
let arith_prov1,ARITH_PROV1 =
let PROV1' = REWRITE_RULE[IN] PROV1 in
OBJECTIFY [ASSUME `!v n. holds v (A n) <=> Ax (termval v n)`; ARITH_AXIOM]
"arith_prov1" PROV1';;
let ARITH_PROV1 = prove
(`(!v t. holds v (A t) <=> Ax(termval v t))
==> (!v s t.
holds v (arith_prov1 A s t) <=>
PROV1 Ax (termval v s) (termval v t))`,
REWRITE_TAC[arith_prov1; holds; HOLDS_FORMSUBST] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[termval; valmod; o_THM; ARITH_EQ; ARITH_PAIR;
TERMVAL_NUMERAL; ARITH_AXIOM] THEN
REWRITE_TAC[PROV1; IN]);;
let FV_PROV1 = prove
(`(!t. FV(A t) = FVT t) ==> !s t. FV(arith_prov1 A s t) = FVT(s) UNION FVT(t)`,
FV_TAC[arith_prov1; FV_AXIOM; FVT_NUMERAL; FVT_PAIR]);;
let arith_prov = new_definition
`arith_prov A n =
formsubst ((0 |-> n) V)
(arith_rtc (arith_prov1 A) (numeral 0)
(arith_pair (V 0) (numeral 0)))`;;
let ARITH_PROV = prove
(`!Ax A. (!v t. holds v (A t) <=> Ax(termval v t))
==> !v n. holds v (arith_prov A n) <=> PROV Ax (termval v n)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ARITH_PROV1) THEN
DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC) THEN
CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN DISCH_TAC THEN
ASM_REWRITE_TAC[arith_prov; HOLDS_FORMSUBST] THEN
REWRITE_TAC[termval; valmod; o_DEF; TERMVAL_NUMERAL; ARITH_PAIR] THEN
REWRITE_TAC[PROV]);;
let FV_PROV = prove
(`(!t. FV(A t) = FVT t) ==> !t. FV(arith_prov A t) = FVT t`,
FV_TAC[arith_prov; FV_PROV1; FV_RTC; FVT_NUMERAL; FVT_PAIR]);;
(* ------------------------------------------------------------------------- *)
(* Our final conclusion. *)
(* ------------------------------------------------------------------------- *)
let PROV_DEFINABLE = prove
(`!Ax. definable {gform p | p IN Ax} ==> definable {gform p | Ax |-- p}`,
GEN_TAC THEN REWRITE_TAC[definable; IN_ELIM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `A:form` (X_CHOOSE_TAC `x:num`)) THEN
MP_TAC(SPECL [`IMAGE gform Ax`; `\t. formsubst ((x |-> t) V) A`]
ARITH_PROV) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN
REWRITE_TAC[o_THM; VALMOD_BASIC; IMAGE; IN_ELIM_THM];
ALL_TAC] THEN
REWRITE_TAC[PROV_THM_STRONG] THEN DISCH_TAC THEN
EXISTS_TAC `arith_prov (\t. formsubst ((x |-> t) V) A) (V x)` THEN
ASM_REWRITE_TAC[termval] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* The crudest conclusion: truth undefinable, provability not, so: *)
(* ------------------------------------------------------------------------- *)
let GODEL_CRUDE = prove
(`!Ax. definable {gform p | p IN Ax} ==> ?p. ~(true p <=> Ax |-- p)`,
REPEAT STRIP_TAC THEN MP_TAC TARSKI_THEOREM THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP PROV_DEFINABLE) THEN
MATCH_MP_TAC(TAUT `(~c ==> (a <=> b)) ==> a ==> ~b ==> c`) THEN
SIMP_TAC[NOT_EXISTS_THM]);;
|