Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 23,992 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
(* ========================================================================= *)
(* Proof that provability is definable; weak form of Godel's theorem.        *)
(* ========================================================================= *)

prioritize_num();;

(* ------------------------------------------------------------------------- *)
(* Auxiliary predicate: all numbers in an iterated-pair "list".              *)
(* ------------------------------------------------------------------------- *)

let ALLN_DEF =
  let th = prove
   (`!P. ?ALLN. !z.
         ALLN z <=>
                if ?x y. z = NPAIR x y
                then P (@x. ?y. NPAIR x y = z) /\
                     ALLN (@y. ?x. NPAIR x y = z)
                else T`,
    GEN_TAC THEN MATCH_MP_TAC(MATCH_MP WF_REC WF_num) THEN
    REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    BINOP_TAC THENL [ALL_TAC; FIRST_ASSUM MATCH_MP_TAC] THEN
    FIRST_ASSUM(REPEAT_TCL CHOOSE_THEN SUBST1_TAC) THEN
    REWRITE_TAC[NPAIR_INJ; RIGHT_EXISTS_AND_THM; EXISTS_REFL;
                SELECT_REFL; NPAIR_LT; LEFT_EXISTS_AND_THM]) in
  new_specification ["ALLN"] (REWRITE_RULE[SKOLEM_THM] th);;

let ALLN = prove
 (`(ALLN P 0 <=> T) /\
   (ALLN P (NPAIR x y) <=> P x /\ ALLN P y)`,
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [ALLN_DEF] THEN
  REWRITE_TAC[NPAIR_NONZERO] THEN
  REWRITE_TAC[NPAIR_INJ; LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM] THEN
  REWRITE_TAC[EXISTS_REFL; GSYM EXISTS_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Valid term.                                                               *)
(* ------------------------------------------------------------------------- *)

let TERM1 = new_definition
  `TERM1 x y <=>
        (?l u. (x = l) /\ (y = NPAIR (NPAIR 0 u) l)) \/
        (?l. (x = l) /\ (y = NPAIR (NPAIR 1 0) l)) \/
        (?t l. (x = NPAIR t l) /\ (y = NPAIR (NPAIR 2 t) l)) \/
        (?n s t l. ((n = 3) \/ (n = 4)) /\
                   (x = NPAIR s (NPAIR t l)) /\
                   (y = NPAIR (NPAIR n (NPAIR s t)) l))`;;

let TERM = new_definition
  `TERM n <=> RTC TERM1 0 (NPAIR n 0)`;;

let isagterm = new_definition
  `isagterm n <=> ?t. n = gterm t`;;

let TERM_LEMMA1 = prove
 (`!x y. TERM1 x y ==> ALLN isagterm x ==> ALLN isagterm y`,
  REPEAT GEN_TAC THEN REWRITE_TAC[TERM1] THEN
  REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN; isagterm] THEN
  MESON_TAC[gterm; NUMBER_SURJ]);;

let TERM_LEMMA2 = prove
 (`!t a. RTC TERM1 a (NPAIR (gterm t) a)`,
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[gterm] THEN
  MESON_TAC[RTC_INC; RTC_TRANS; TERM1]);;

let TERM_THM = prove
 (`!n. TERM n <=> ?t. n = gterm t`,
  GEN_TAC THEN REWRITE_TAC[TERM] THEN EQ_TAC THENL
   [ALL_TAC; MESON_TAC[TERM_LEMMA2]] THEN
  SUBGOAL_THEN `!x y. RTC TERM1 x y ==> ALLN isagterm x ==> ALLN isagterm y`
   (fun th -> MESON_TAC[ALLN; isagterm; th]) THEN
  MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[TERM_LEMMA1] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Valid formula.                                                            *)
(* ------------------------------------------------------------------------- *)

let FORM1 = new_definition
  `FORM1 x y <=>
        (?l. (x = l) /\ (y = NPAIR (NPAIR 0 0) l)) \/
        (?l. (x = l) /\ (y = NPAIR (NPAIR 0 1) l)) \/
        (?n s t l. ((n = 1) \/ (n = 2) \/ (n = 3)) /\
                   TERM s /\ TERM t /\
                   (x = l) /\
                   (y = NPAIR (NPAIR n (NPAIR s t)) l)) \/
        (?p l. (x = NPAIR p l) /\
               (y = NPAIR (NPAIR 4 p) l)) \/
        (?n p q l. ((n = 5) \/ (n = 6) \/ (n = 7) \/ (n = 8)) /\
                   (x = NPAIR p (NPAIR q l)) /\
                   (y = NPAIR (NPAIR n (NPAIR p q)) l)) \/
        (?n u p l. ((n = 9) \/ (n = 10)) /\
                   (x = NPAIR p l) /\
                   (y = NPAIR (NPAIR n (NPAIR u p)) l))`;;

let FORM = new_definition
  `FORM n <=> RTC FORM1 0 (NPAIR n 0)`;;

let isagform = new_definition
  `isagform n <=> ?t. n = gform t`;;

let FORM_LEMMA1 = prove
 (`!x y. FORM1 x y ==> ALLN isagform x ==> ALLN isagform y`,
  REPEAT GEN_TAC THEN REWRITE_TAC[FORM1] THEN
  REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN; isagform] THEN
  MESON_TAC[gform; TERM_THM; NUMBER_SURJ]);;

(*** Following really blows up if we just use FORM1
 *** instead of manually breaking up the conjuncts
 ***)

let FORM_LEMMA2 = prove
 (`!p a. RTC FORM1 a (NPAIR (gform p) a)`,
  MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[gform] THEN
  REPEAT CONJ_TAC THEN
  MESON_TAC[RTC_INC; RTC_TRANS; TERM_THM;
     REWRITE_RULE[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`]
                 (snd(EQ_IMP_RULE (SPEC_ALL FORM1)))]);;

let FORM_THM = prove
 (`!n. FORM n <=> ?p. n = gform p`,
  GEN_TAC THEN REWRITE_TAC[FORM] THEN EQ_TAC THENL
   [ALL_TAC; MESON_TAC[FORM_LEMMA2]] THEN
  SUBGOAL_THEN `!x y. RTC FORM1 x y ==> ALLN isagform x ==> ALLN isagform y`
   (fun th -> MESON_TAC[ALLN; isagform; th]) THEN
  MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[FORM_LEMMA1] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Term without particular variable.                                         *)
(* ------------------------------------------------------------------------- *)

let FREETERM1 = new_definition
  `FREETERM1 m x y <=>
        (?l u. ~(u = m) /\ (x = l) /\ (y = NPAIR (NPAIR 0 u) l)) \/
        (?l. (x = l) /\ (y = NPAIR (NPAIR 1 0) l)) \/
        (?t l. (x = NPAIR t l) /\ (y = NPAIR (NPAIR 2 t) l)) \/
        (?n s t l. ((n = 3) \/ (n = 4)) /\
                   (x = NPAIR s (NPAIR t l)) /\
                   (y = NPAIR (NPAIR n (NPAIR s t)) l))`;;

let FREETERM = new_definition
  `FREETERM m n <=> RTC (FREETERM1 m) 0 (NPAIR n 0)`;;

let isafterm = new_definition
  `isafterm m n <=> ?t. ~(m IN IMAGE number (FVT t)) /\ (n = gterm t)`;;

let ISAFTERM = prove
 (`(~(number x = m) ==> isafterm m (NPAIR 0 (number x))) /\
   isafterm m (NPAIR 1 0) /\
   (isafterm m t ==> isafterm m (NPAIR 2 t)) /\
   (isafterm m s /\ isafterm m t ==> isafterm m (NPAIR 3 (NPAIR s t))) /\
   (isafterm m s /\ isafterm m t ==> isafterm m (NPAIR 4 (NPAIR s t)))`,
  REWRITE_TAC[isafterm; gterm] THEN REPEAT CONJ_TAC THENL
   [DISCH_TAC THEN EXISTS_TAC `V x`;
    EXISTS_TAC `Z`;
    DISCH_THEN(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `Suc t`;
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC)
     (X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC)) THEN
    EXISTS_TAC `s ++ t`;
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC)
     (X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC)) THEN
    EXISTS_TAC `s ** t`] THEN
  ASM_REWRITE_TAC[gterm; FVT; IMAGE_UNION; NOT_IN_EMPTY; IN_SING; IN_UNION;
                  IMAGE_CLAUSES]);;

let FREETERM_LEMMA1 = prove
 (`!m x y. FREETERM1 m x y ==> ALLN (isafterm m) x ==> ALLN (isafterm m) y`,
  REPEAT GEN_TAC THEN REWRITE_TAC[FREETERM1] THEN
  REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN] THEN
  MESON_TAC[ISAFTERM; NUMBER_SURJ]);;

let FREETERM_LEMMA2 = prove
 (`!m t a. ~(m IN IMAGE number (FVT t))
           ==> RTC (FREETERM1 m) a (NPAIR (gterm t) a)`,
  GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[gterm; FVT; NOT_IN_EMPTY; IN_SING; IN_UNION;
              IMAGE_CLAUSES; IMAGE_UNION] THEN
  REWRITE_TAC[DE_MORGAN_THM] THEN
  REPEAT CONJ_TAC THEN
  TRY(REPEAT GEN_TAC THEN DISCH_THEN
   (fun th -> GEN_TAC THEN STRIP_TAC THEN MP_TAC th)) THEN
  ASM_REWRITE_TAC[] THEN
  MESON_TAC[RTC_INC; RTC_TRANS; FREETERM1]);;

let FREETERM_THM = prove
 (`!m n. FREETERM m n <=> ?t. ~(m IN IMAGE number (FVT(t))) /\ (n = gterm t)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[FREETERM] THEN EQ_TAC THENL
   [ALL_TAC; MESON_TAC[FREETERM_LEMMA2]] THEN
  SUBGOAL_THEN `!x y. RTC (FREETERM1 m) x y
                      ==> ALLN (isafterm m) x ==> ALLN (isafterm m) y`
   (fun th -> MESON_TAC[ALLN; isagterm; isafterm; th]) THEN
  MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[FREETERM_LEMMA1] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Formula without particular free variable.                                 *)
(* ------------------------------------------------------------------------- *)

let FREEFORM1 = new_definition
  `FREEFORM1 m x y <=>
        (?l. (x = l) /\ (y = NPAIR (NPAIR 0 0) l)) \/
        (?l. (x = l) /\ (y = NPAIR (NPAIR 0 1) l)) \/
        (?n s t l. ((n = 1) \/ (n = 2) \/ (n = 3)) /\
                   FREETERM m s /\ FREETERM m t /\
                   (x = l) /\
                   (y = NPAIR (NPAIR n (NPAIR s t)) l)) \/
        (?p l. (x = NPAIR p l) /\
               (y = NPAIR (NPAIR 4 p) l)) \/
        (?n p q l. ((n = 5) \/ (n = 6) \/ (n = 7) \/ (n = 8)) /\
                   (x = NPAIR p (NPAIR q l)) /\
                   (y = NPAIR (NPAIR n (NPAIR p q)) l)) \/
        (?n u p l. ((n = 9) \/ (n = 10)) /\
                   (x = NPAIR p l) /\
                   (y = NPAIR (NPAIR n (NPAIR u p)) l)) \/
        (?n p l. ((n = 9) \/ (n = 10)) /\
                 (x = l) /\ FORM p /\
                 (y = NPAIR (NPAIR n (NPAIR m p)) l))`;;

let FREEFORM = new_definition
  `FREEFORM m n <=> RTC (FREEFORM1 m) 0 (NPAIR n 0)`;;

let isafform = new_definition
  `isafform m n <=> ?p. ~(m IN IMAGE number (FV p)) /\ (n = gform p)`;;

let ISAFFORM = prove
 (`isafform m (NPAIR 0 0) /\
   isafform m (NPAIR 0 1) /\
   (isafterm m s /\ isafterm m t ==> isafform m (NPAIR 1 (NPAIR s t))) /\
   (isafterm m s /\ isafterm m t ==> isafform m (NPAIR 2 (NPAIR s t))) /\
   (isafterm m s /\ isafterm m t ==> isafform m (NPAIR 3 (NPAIR s t))) /\
   (isafform m p ==> isafform m (NPAIR 4 p)) /\
   (isafform m p /\ isafform m q ==> isafform m (NPAIR 5 (NPAIR p q))) /\
   (isafform m p /\ isafform m q ==> isafform m (NPAIR 6 (NPAIR p q))) /\
   (isafform m p /\ isafform m q ==> isafform m (NPAIR 7 (NPAIR p q))) /\
   (isafform m p /\ isafform m q ==> isafform m (NPAIR 8 (NPAIR p q))) /\
   (isafform m p ==> isafform m (NPAIR 9 (NPAIR x p))) /\
   (isafform m p ==> isafform m (NPAIR 10 (NPAIR x p))) /\
   (isagform p ==> isafform m (NPAIR 9 (NPAIR m p))) /\
   (isagform p ==> isafform m (NPAIR 10 (NPAIR m p)))`,
  let tac0 = DISCH_THEN(X_CHOOSE_THEN `p:form` STRIP_ASSUME_TAC)
  and  tac1 =
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC)
     (X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC))
  and tac2 =
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `p:form` STRIP_ASSUME_TAC)
     (X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC)) in
  REWRITE_TAC[isafform; gform; isagform; isafterm] THEN REPEAT CONJ_TAC THENL
   [EXISTS_TAC `False`;
    EXISTS_TAC `True`;
    tac1 THEN EXISTS_TAC `s === t`;
    tac1 THEN EXISTS_TAC `s << t`;
    tac1 THEN EXISTS_TAC `s <<= t`;
    tac0 THEN EXISTS_TAC `Not p`;
    tac2 THEN EXISTS_TAC `p && q`;
    tac2 THEN EXISTS_TAC `p || q`;
    tac2 THEN EXISTS_TAC `p --> q`;
    tac2 THEN EXISTS_TAC `p <-> q`;
    tac0 THEN EXISTS_TAC `!!(denumber x) p`;
    tac0 THEN EXISTS_TAC `??(denumber x) p`;
    tac0 THEN EXISTS_TAC `!!(denumber m) p`;
    tac0 THEN EXISTS_TAC `??(denumber m) p`] THEN
  ASM_REWRITE_TAC[FV; IN_DELETE; NOT_IN_EMPTY; IN_SING; IN_UNION; gform;
                  NUMBER_DENUMBER; IMAGE_CLAUSES; IMAGE_UNION] THEN
  ASM SET_TAC[NUMBER_DENUMBER]);;

let FREEFORM_LEMMA1 = prove
 (`!x y. FREEFORM1 m x y ==> ALLN (isafform m) x ==> ALLN (isafform m) y`,
  REPEAT GEN_TAC THEN REWRITE_TAC[FREEFORM1] THEN
  REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN] THEN
  REWRITE_TAC[FREETERM_THM; GSYM isafterm] THEN
  REWRITE_TAC[FORM_THM; GSYM isagform] THEN MESON_TAC[ISAFFORM]);;

let FREEFORM_LEMMA2 = prove
 (`!m p a. ~(m IN IMAGE number (FV p))
           ==> RTC (FREEFORM1 m) a (NPAIR (gform p) a)`,
  let lemma = prove
   (`m IN IMAGE number (s DELETE k) <=>
     m IN IMAGE number s /\ ~(m = number k)`,
    SET_TAC[NUMBER_INJ]) in
  GEN_TAC THEN MATCH_MP_TAC form_INDUCT THEN
  REWRITE_TAC[gform; FV; NOT_IN_EMPTY; IN_DELETE; IN_SING; IN_UNION;
              lemma; IMAGE_UNION; IMAGE_CLAUSES] THEN
  REWRITE_TAC[DE_MORGAN_THM] THEN
  REPEAT CONJ_TAC THEN
  TRY(REPEAT GEN_TAC THEN DISCH_THEN
   (fun th -> GEN_TAC THEN STRIP_TAC THEN MP_TAC th)) THEN
  ASM_REWRITE_TAC[] THEN
  MESON_TAC[RTC_INC; RTC_TRANS; FORM_THM;
        REWRITE_RULE[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`;
                     FREETERM_THM]
                 (snd(EQ_IMP_RULE (SPEC_ALL FREEFORM1)))]);;

let FREEFORM_THM = prove
 (`!m n. FREEFORM m n <=> ?p. ~(m IN IMAGE number (FV p)) /\ (n = gform p)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[FREEFORM] THEN EQ_TAC THENL
   [ALL_TAC; MESON_TAC[FREEFORM_LEMMA2]] THEN
  SUBGOAL_THEN `!x y. RTC (FREEFORM1 m) x y
                      ==> ALLN (isafform m) x ==> ALLN (isafform m) y`
   (fun th -> MESON_TAC[ALLN; isagform; isafform; th]) THEN
  MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[FREEFORM_LEMMA1] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Arithmetization of logical axioms --- autogenerated.                      *)
(* ------------------------------------------------------------------------- *)

let AXIOM,AXIOM_THM =
  let th0 = prove
   (`((?x p. P (number x) (gform p) /\ ~(x IN FV(p))) <=>
      (?x p. FREEFORM x p /\ P x p)) /\
     ((?x t. P (number x) (gterm t) /\ ~(x IN FVT(t))) <=>
      (?x t. FREETERM x t /\ P x t))`,
    REWRITE_TAC[FREETERM_THM; FREEFORM_THM] THEN CONJ_TAC THEN
    REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
    GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
    REWRITE_TAC[UNWIND_THM2; IN_IMAGE] THEN
    ASM_MESON_TAC[IN_IMAGE; NUMBER_DENUMBER])
  and th1 = prove
   (`((?p. P(gform p)) <=> (?p. FORM(p) /\ P p)) /\
     ((?t. P(gterm t)) <=> (?t. TERM(t) /\ P t))`,
    MESON_TAC[FORM_THM; TERM_THM])
  and th2 = prove
   (`(?x. P(number x)) <=> (?x. P x)`,
    MESON_TAC[NUMBER_DENUMBER]) in
  let th = (REWRITE_CONV[GSYM GFORM_INJ] THENC
          REWRITE_CONV[gform; gterm] THENC
          REWRITE_CONV[th0] THENC REWRITE_CONV[th1] THENC
          REWRITE_CONV[th2] THENC
          REWRITE_CONV[RIGHT_AND_EXISTS_THM])
         (rhs(concl(SPEC `a:form` axiom_CASES))) in
  let dtm = mk_eq(`(AXIOM:num->bool) a`,
                   subst [`a:num`,`gform a`] (rhs(concl th))) in
  let AXIOM = new_definition dtm in
  let AXIOM_THM = prove
   (`!p. AXIOM(gform p) <=> axiom p`,
    REWRITE_TAC[axiom_CASES; AXIOM; th]) in
  AXIOM,AXIOM_THM;;

(* ------------------------------------------------------------------------- *)
(* Prove also that all AXIOMs are in fact numbers of formulas.               *)
(* ------------------------------------------------------------------------- *)

let GTERM_CASES_ALT = prove
 (`(gterm u = NPAIR 0 x <=> u = V(denumber x))`,
  REWRITE_TAC[GSYM GTERM_CASES; NUMBER_DENUMBER]);;

let GFORM_CASES_ALT = prove
 (`(gform r = NPAIR 9 (NPAIR x n) <=>
    (?p. r = !!(denumber x) p /\ gform p = n)) /\
   (gform r = NPAIR 10 (NPAIR x n) <=>
    (?p. r = ??(denumber x) p /\ gform p = n))`,
  REWRITE_TAC[GSYM GFORM_CASES; NUMBER_DENUMBER]);;

let AXIOM_FORMULA = prove
 (`!a. AXIOM a ==> ?p. a = gform p`,
  REWRITE_TAC[AXIOM; FREEFORM_THM; FREETERM_THM; FORM_THM; TERM_THM] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  CONV_TAC(BINDER_CONV SYM_CONV) THEN
  REWRITE_TAC[GFORM_CASES; GTERM_CASES;
              GTERM_CASES_ALT; GFORM_CASES_ALT] THEN
  MESON_TAC[NUMBER_DENUMBER]);;

let AXIOM_THM_STRONG = prove
 (`!a. AXIOM a <=> ?p. axiom p /\ (a = gform p)`,
  MESON_TAC[AXIOM_THM; AXIOM_FORMULA]);;

(* ------------------------------------------------------------------------- *)
(* Arithmetization of the full logical inference rules.                      *)
(* ------------------------------------------------------------------------- *)

let PROV1 = new_definition
  `PROV1 A x y <=>
        (?a. (AXIOM a \/ a IN A) /\ (y = NPAIR a x)) \/
        (?p q l. (x = NPAIR (NPAIR 7 (NPAIR p q)) (NPAIR p l)) /\
                 (y = NPAIR q l)) \/
        (?p u l. (x = NPAIR p l) /\ (y = NPAIR (NPAIR 9 (NPAIR u p)) l))`;;

let PROV = new_definition
  `PROV A n <=> RTC (PROV1 A) 0 (NPAIR n 0)`;;

let isaprove = new_definition
  `isaprove A n <=> ?p. (gform p = n) /\ A |-- p`;;

let PROV_LEMMA1 = prove
 (`!A p q. PROV1 (IMAGE gform A) x y
           ==> ALLN (isaprove A) x ==> ALLN (isaprove A) y`,
  REPEAT GEN_TAC THEN REWRITE_TAC[PROV1] THEN
  REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN] THEN
  REWRITE_TAC[isaprove] THEN REPEAT CONJ_TAC THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [ASM_MESON_TAC[AXIOM_THM_STRONG; proves_RULES];
    ASM_MESON_TAC[IN_IMAGE; GFORM_INJ; proves_RULES; gform];
    ALL_TAC;
    ASM_MESON_TAC[NUMBER_DENUMBER;
                  IN_IMAGE; GFORM_INJ; proves_RULES; gform]] THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MATCH_MP_TAC form_INDUCT THEN
  REWRITE_TAC[gform; NPAIR_INJ; ARITH_EQ] THEN
  MAP_EVERY X_GEN_TAC [`P:form`; `Q:form`] THEN
  DISCH_THEN(K ALL_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 (STRIP_ASSUME_TAC o GSYM) MP_TAC) THEN
  ASM_REWRITE_TAC[GFORM_INJ] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2] THEN
  ASM_MESON_TAC[proves_RULES]);;

let PROV_LEMMA2 = prove
 (`!A p. A |-- p ==> !a. RTC (PROV1 (IMAGE gform A)) a (NPAIR (gform p) a)`,
  GEN_TAC THEN MATCH_MP_TAC proves_INDUCT THEN REWRITE_TAC[gform] THEN
  MESON_TAC[RTC_INC; RTC_TRANS; PROV1; IN_IMAGE; AXIOM_THM]);;

let PROV_THM_STRONG = prove
 (`!A n. PROV (IMAGE gform A) n <=> ?p. A |-- p /\ (gform p = n)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[PROV] THEN EQ_TAC THENL
   [ALL_TAC; MESON_TAC[PROV_LEMMA2]] THEN
  SUBGOAL_THEN
   `!x y. RTC (PROV1 (IMAGE gform A)) x y
           ==> ALLN (isaprove A) x ==> ALLN (isaprove A) y`
   (fun th -> MESON_TAC[ALLN; isaprove; GFORM_INJ; th]) THEN
  MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[PROV_LEMMA1] THEN MESON_TAC[]);;

let PROV_THM = prove
 (`!A p. PROV (IMAGE gform A) (gform p) <=> A |-- p`,
  MESON_TAC[PROV_THM_STRONG; GFORM_INJ]);;

(* ------------------------------------------------------------------------- *)
(* Now really objectify all that.                                            *)
(* ------------------------------------------------------------------------- *)

let arith_term1,ARITH_TERM1 = OBJECTIFY [] "arith_term1" TERM1;;

let FV_TERM1 = prove
 (`!s t. FV(arith_term1 s t) = (FVT s) UNION (FVT t)`,
  FV_TAC[arith_term1; FVT_PAIR; FVT_NUMERAL]);;

let arith_term,ARITH_TERM = OBJECTIFY_RTC ARITH_TERM1 "arith_term" TERM;;

let FV_TERM = prove
 (`!t. FV(arith_term t) = FVT t`,
  FV_TAC[arith_term; FV_RTC; FV_TERM1; FVT_PAIR; FVT_NUMERAL]);;

let arith_form1,ARITH_FORM1 =
 OBJECTIFY [ARITH_TERM] "arith_form1" FORM1;;

let FV_FORM1 = prove
 (`!s t. FV(arith_form1 s t) = (FVT s) UNION (FVT t)`,
  FV_TAC[arith_form1; FV_TERM; FVT_PAIR; FVT_NUMERAL]);;

let arith_form,ARITH_FORM = OBJECTIFY_RTC ARITH_FORM1 "arith_form" FORM;;

let FV_FORM = prove
 (`!t. FV(arith_form t) = FVT t`,
  FV_TAC[arith_form; FV_RTC; FV_FORM1; FVT_PAIR; FVT_NUMERAL]);;

let arith_freeterm1,ARITH_FREETERM1 =
 OBJECTIFY [] "arith_freeterm1" FREETERM1;;

let FV_FREETERM1 = prove
 (`!s t u. FV(arith_freeterm1 s t u) = (FVT s) UNION (FVT t) UNION (FVT u)`,
  FV_TAC[arith_freeterm1; FVT_PAIR; FVT_NUMERAL]);;

let arith_freeterm,ARITH_FREETERM =
  OBJECTIFY_RTCP ARITH_FREETERM1 "arith_freeterm" FREETERM;;

let FV_FREETERM = prove
 (`!s t. FV(arith_freeterm s t) = (FVT s) UNION (FVT t)`,
  FV_TAC[arith_freeterm; FV_RTCP; FV_FREETERM1; FVT_PAIR; FVT_NUMERAL]);;

let arith_freeform1,ARITH_FREEFORM1 =
 OBJECTIFY [ARITH_FREETERM; ARITH_FORM] "arith_freeform1" FREEFORM1;;

let FV_FREEFORM1 = prove
 (`!s t u. FV(arith_freeform1 s t u) = (FVT s) UNION (FVT t) UNION (FVT u)`,
  FV_TAC[arith_freeform1; FV_FREETERM; FV_FORM; FVT_PAIR; FVT_NUMERAL]);;

let arith_freeform,ARITH_FREEFORM =
 OBJECTIFY_RTCP ARITH_FREEFORM1 "arith_freeform" FREEFORM;;

let FV_FREEFORM = prove
 (`!s t. FV(arith_freeform s t) = (FVT s) UNION (FVT t)`,
  FV_TAC[arith_freeform; FV_RTCP; FV_FREEFORM1; FVT_PAIR; FVT_NUMERAL]);;

let arith_axiom,ARITH_AXIOM =
 OBJECTIFY [ARITH_FORM; ARITH_FREEFORM; ARITH_FREETERM; ARITH_TERM]
           "arith_axiom" AXIOM;;

let FV_AXIOM = prove
 (`!t. FV(arith_axiom t) = FVT t`,
  FV_TAC[arith_axiom; FV_FREETERM; FV_FREEFORM; FV_TERM; FV_FORM;
         FVT_PAIR; FVT_NUMERAL]);;

(* ------------------------------------------------------------------------- *)
(* Parametrization by A means it's easier to do these cases manually.        *)
(* ------------------------------------------------------------------------- *)

let arith_prov1,ARITH_PROV1 =
  let PROV1' = REWRITE_RULE[IN] PROV1 in
 OBJECTIFY [ASSUME `!v n. holds v (A n) <=> Ax (termval v n)`; ARITH_AXIOM]
   "arith_prov1" PROV1';;

let ARITH_PROV1 = prove
 (`(!v t. holds v (A t) <=> Ax(termval v t))
   ==> (!v s t.
             holds v (arith_prov1 A s t) <=>
             PROV1 Ax (termval v s) (termval v t))`,
  REWRITE_TAC[arith_prov1; holds; HOLDS_FORMSUBST] THEN
  REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[termval; valmod; o_THM; ARITH_EQ; ARITH_PAIR;
                  TERMVAL_NUMERAL; ARITH_AXIOM] THEN
  REWRITE_TAC[PROV1; IN]);;

let FV_PROV1 = prove
 (`(!t. FV(A t) = FVT t) ==> !s t. FV(arith_prov1 A s t) = FVT(s) UNION FVT(t)`,
  FV_TAC[arith_prov1; FV_AXIOM; FVT_NUMERAL; FVT_PAIR]);;

let arith_prov = new_definition
 `arith_prov A n =
    formsubst ((0 |-> n) V)
        (arith_rtc (arith_prov1 A) (numeral 0)
                   (arith_pair (V 0) (numeral 0)))`;;

let ARITH_PROV = prove
 (`!Ax A. (!v t. holds v (A t) <=> Ax(termval v t))
          ==> !v n. holds v (arith_prov A n) <=> PROV Ax (termval v n)`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ARITH_PROV1) THEN
  DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC) THEN
  CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[arith_prov; HOLDS_FORMSUBST] THEN
  REWRITE_TAC[termval; valmod; o_DEF; TERMVAL_NUMERAL; ARITH_PAIR] THEN
  REWRITE_TAC[PROV]);;

let FV_PROV = prove
 (`(!t. FV(A t) = FVT t) ==> !t. FV(arith_prov A t) = FVT t`,
  FV_TAC[arith_prov; FV_PROV1; FV_RTC; FVT_NUMERAL; FVT_PAIR]);;

(* ------------------------------------------------------------------------- *)
(* Our final conclusion.                                                     *)
(* ------------------------------------------------------------------------- *)

let PROV_DEFINABLE = prove
 (`!Ax. definable {gform p | p IN Ax} ==> definable {gform p | Ax |-- p}`,
  GEN_TAC THEN REWRITE_TAC[definable; IN_ELIM_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `A:form` (X_CHOOSE_TAC `x:num`)) THEN
  MP_TAC(SPECL [`IMAGE gform Ax`; `\t. formsubst ((x |-> t) V) A`]
               ARITH_PROV) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN
    REWRITE_TAC[o_THM; VALMOD_BASIC; IMAGE; IN_ELIM_THM];
    ALL_TAC] THEN
  REWRITE_TAC[PROV_THM_STRONG] THEN DISCH_TAC THEN
  EXISTS_TAC `arith_prov (\t. formsubst ((x |-> t) V) A) (V x)` THEN
  ASM_REWRITE_TAC[termval] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* The crudest conclusion: truth undefinable, provability not, so:           *)
(* ------------------------------------------------------------------------- *)

let GODEL_CRUDE = prove
 (`!Ax. definable {gform p | p IN Ax} ==> ?p. ~(true p <=> Ax |-- p)`,
  REPEAT STRIP_TAC THEN MP_TAC TARSKI_THEOREM THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP PROV_DEFINABLE) THEN
  MATCH_MP_TAC(TAUT `(~c ==> (a <=> b)) ==> a ==> ~b ==> c`) THEN
  SIMP_TAC[NOT_EXISTS_THM]);;