Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,492 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
(* ========================================================================= *)
(* Divergence of prime reciprocal series.                                    *)
(* ========================================================================= *)

(* ------------------------------------------------------------------------- *)
(* Now load other stuff needed.                                              *)
(* ------------------------------------------------------------------------- *)

needs "100/bertrand.ml";;
needs "100/divharmonic.ml";;

(* ------------------------------------------------------------------------- *)
(* Variant of induction.                                                     *)
(* ------------------------------------------------------------------------- *)

let INDUCTION_FROM_1 = prove
 (`!P. P 0 /\ P 1 /\ (!n. 1 <= n /\ P n ==> P(SUC n)) ==> !n. P n`,
  GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[num_CONV `1`; ARITH_RULE `n = 0 \/ 1 <= n`]);;

(* ------------------------------------------------------------------------- *)
(* Evaluate sums over explicit intervals.                                    *)
(* ------------------------------------------------------------------------- *)

let SUM_CONV =
  let pth = prove
   (`sum(1..1) f = f 1 /\ sum(1..SUC n) f = sum(1..n) f + f(SUC n)`,
    SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0;
             ARITH_RULE `1 <= SUC n`; SUM_SING_NUMSEG]) in
  let econv_0 = GEN_REWRITE_CONV I [CONJUNCT1 pth]
  and econv_1 = GEN_REWRITE_CONV I [CONJUNCT2 pth] in
  let rec sconv tm =
    (econv_0 ORELSEC
     (LAND_CONV(RAND_CONV num_CONV) THENC econv_1 THENC
      COMB2_CONV (RAND_CONV sconv) (RAND_CONV NUM_SUC_CONV))) tm in
  sconv;;

(* ------------------------------------------------------------------------- *)
(* Lower bound relative to harmonic series.                                  *)
(* ------------------------------------------------------------------------- *)

let PRIMERECIP_HARMONIC_LBOUND = prove
 (`!n. (&3 / (&16 * ln(&32))) * sum(1..n) (\i. &1 / &i) <=
       sum(1..32 EXP n) (\i. if prime(i) then &1 / &i else &0)`,
  MATCH_MP_TAC INDUCTION_FROM_1 THEN CONJ_TAC THENL
   [SIMP_TAC[SUM_TRIV_NUMSEG; ARITH; SUM_SING_NUMSEG; REAL_MUL_RZERO] THEN
    REWRITE_TAC[PRIME_1; REAL_LE_REFL];
    ALL_TAC] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[ARITH; SUM_SING_NUMSEG] THEN
    CONV_TAC(RAND_CONV SUM_CONV) THEN REWRITE_TAC[] THEN
    CONV_TAC(ONCE_DEPTH_CONV PRIME_CONV) THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[SYM(REAL_RAT_REDUCE_CONV `&2 pow 5`)] THEN
    SIMP_TAC[LN_POW; REAL_OF_NUM_LT; ARITH; real_div; REAL_INV_MUL] THEN
    REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_RID] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
    SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_DIV] THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[LN_2_COMPOSITION; real_div; real_sub] THEN
    CONV_TAC REALCALC_REL_CONV;
    ALL_TAC] THEN
  X_GEN_TAC `n:num` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  MATCH_MP_TAC(REAL_ARITH
   `b - a <= s2 - s1 ==> a <= s1 ==> b <= s2`) THEN
  REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN
  REWRITE_TAC[SUM_CLAUSES_NUMSEG; REAL_ADD_SUB; ARITH_RULE `1 <= SUC n`] THEN
  MP_TAC(SPEC `32 EXP n` PII_UBOUND_5) THEN ANTS_TAC THENL
   [MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `32 EXP 1` THEN
    ASM_REWRITE_TAC[LE_EXP] THEN REWRITE_TAC[ARITH];
    ALL_TAC] THEN
  MP_TAC(SPEC `32 EXP (SUC n)` PII_LBOUND) THEN ANTS_TAC THENL
   [MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `32 EXP 1` THEN
    ASM_REWRITE_TAC[LE_EXP] THEN REWRITE_TAC[ARITH] THEN ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP(REAL_ARITH
   `a <= s1 /\ s2 <= b ==> a - b <= s1 - s2`)) THEN
  SIMP_TAC[pii; PSUM_SUM_NUMSEG; EXP_EQ_0; ARITH; ADD_SUB2] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_POW] THEN
  REWRITE_TAC[EXP; ARITH_RULE `32 * n = n + 31 * n`] THEN
  SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`; REAL_ADD_SUB] THEN
  REWRITE_TAC[ARITH_RULE `n + 31 * n = 32 * n`] THEN
  REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN STRIP_TAC THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC
   `inv(&32 pow (SUC n)) *
    sum(32 EXP n + 1 .. 32 EXP SUC n) (\i. if prime i then &1 else &0)` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN
    X_GEN_TAC `i:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN
    COND_CASES_TAC THEN REWRITE_TAC[REAL_LE_REFL; REAL_MUL_RZERO] THEN
    REWRITE_TAC[real_div; REAL_MUL_LID; REAL_MUL_RID] THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN
    ASM_REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN
    UNDISCH_TAC `32 EXP n + 1 <= i` THEN
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    SIMP_TAC[ARITH_RULE `~(0 < i) <=> i = 0`] THEN
    REWRITE_TAC[LE; ARITH; ADD_EQ_0]] THEN
  GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN
  SIMP_TAC[GSYM real_div; REAL_POW_LT; REAL_LE_RDIV_EQ;
           REAL_OF_NUM_LT; ARITH] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
    `a <= x ==> b <= a ==> b <= x`)) THEN
  SIMP_TAC[LN_POW; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN
  REWRITE_TAC[real_pow; GSYM REAL_OF_NUM_SUC] THEN
  REWRITE_TAC[REAL_FIELD
   `&1 / &2 * (&32 * n32) / (n1 * l) - &5 * n32 / (n * l) =
    (n32 / l) * (&16 / n1 - &5 / n)`] THEN
  REWRITE_TAC[REAL_FIELD
   `(&3 / (&16 * l) * i) * &32 * n32 = (n32 / l) * (&6 * i)`] THEN
  MATCH_MP_TAC REAL_LE_LMUL THEN
  SIMP_TAC[REAL_LE_DIV; REAL_POW_LE; LN_POS; REAL_OF_NUM_LE; ARITH] THEN
  REWRITE_TAC[real_div; REAL_ARITH
   `&6 * &1 * n1 <= &16 * n1 - &5 * n <=> n <= inv(inv(&2)) * n1`] THEN
  REWRITE_TAC[GSYM REAL_INV_MUL] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Hence an overall lower bound.                                             *)
(* ------------------------------------------------------------------------- *)

let PRIMERECIP_LBOUND = prove
 (`!n. &3 / (&32 * ln(&32)) * &n
       <= sum (1 .. 32 EXP (2 EXP n)) (\i. if prime i then &1 / &i else &0)`,
  GEN_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `&3 / (&16 * ln(&32)) * sum (1 .. 2 EXP n) (\i. &1 / &i)` THEN
  REWRITE_TAC[PRIMERECIP_HARMONIC_LBOUND] THEN
  REWRITE_TAC[REAL_FIELD
   `&3 / (&32 * ln(&32)) * &n = &3 / (&16 * ln(&32)) * (&n / &2)`] THEN
  MATCH_MP_TAC REAL_LE_LMUL THEN
  REWRITE_TAC[REWRITE_RULE[real_ge] HARMONIC_LEMMA] THEN
  SIMP_TAC[REAL_LE_DIV; REAL_LE_MUL; LN_POS; REAL_OF_NUM_LE; ARITH]);;

(* ------------------------------------------------------------------------- *)
(* General lemma.                                                            *)
(* ------------------------------------------------------------------------- *)

let UNBOUNDED_DIVERGENT = prove
 (`!s. (!k. ?N. !n. n >= N ==> sum(1..n) s >= k)
       ==> ~(convergent(\n. sum(1..n) s))`,
  REWRITE_TAC[convergent; SEQ] THEN
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `&1`) THEN
  REWRITE_TAC[REAL_LT_01] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `l + &1`) THEN
  REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `M:num` THEN
  DISCH_THEN(MP_TAC o SPEC `M + N:num`) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `M + N:num`) THEN
  REWRITE_TAC[LE_ADD; ONCE_REWRITE_RULE[ADD_SYM] LE_ADD; GE] THEN
  REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Hence divergence.                                                         *)
(* ------------------------------------------------------------------------- *)

let PRIMERECIP_DIVERGES_NUMSEG = prove
 (`~(convergent (\n. sum (1..n) (\i. if prime i then &1 / &i else &0)))`,
  MATCH_MP_TAC UNBOUNDED_DIVERGENT THEN X_GEN_TAC `k:real` THEN
  MP_TAC(SPEC `&3 / (&32 * ln(&32))` REAL_ARCH) THEN
  SIMP_TAC[REAL_LT_DIV; LN_POS_LT; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN
  DISCH_THEN(MP_TAC o SPEC `k:real`) THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
  EXISTS_TAC `32 EXP (2 EXP N)` THEN
  X_GEN_TAC `n:num` THEN REWRITE_TAC[GE; real_ge] THEN STRIP_TAC THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `&N * &3 / (&32 * ln (&32))` THEN
  ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
  GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
   `sum(1 .. 32 EXP (2 EXP N)) (\i. if prime i then &1 / &i else &0)` THEN
  REWRITE_TAC[PRIMERECIP_LBOUND] THEN
  FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
  SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`; REAL_LE_ADDR] THEN
  MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN REPEAT STRIP_TAC THEN
  REWRITE_TAC[] THEN COND_CASES_TAC THEN SIMP_TAC[REAL_LE_DIV; REAL_POS]);;

(* ------------------------------------------------------------------------- *)
(* A perhaps more intuitive formulation.                                     *)
(* ------------------------------------------------------------------------- *)

let PRIMERECIP_DIVERGES = prove
 (`~(convergent (\n. sum {p | prime p /\ p <= n} (\p. &1 / &p)))`,
  MP_TAC PRIMERECIP_DIVERGES_NUMSEG THEN
  MATCH_MP_TAC(TAUT `(a <=> b) ==> ~a ==> ~b`) THEN
  AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `n:num` THEN
  SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THENL
   [SUBGOAL_THEN `{p | prime p /\ p <= 0} = {}`
     (fun th -> SIMP_TAC[SUM_CLAUSES; SUM_TRIV_NUMSEG; th; ARITH]) THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LE] THEN
    MESON_TAC[PRIME_0];
    ALL_TAC] THEN
  ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; ARITH_RULE `1 <= SUC n`] THEN
  SUBGOAL_THEN
   `{p | prime p /\ p <= SUC n} =
        if prime(SUC n) then (SUC n) INSERT {p | prime p /\ p <= n}
        else {p | prime p /\ p <= n}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN
    GEN_TAC THEN COND_CASES_TAC THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; LE] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_ADD_RID] THEN
  SUBGOAL_THEN `FINITE {p | prime p /\ p <= n}`
   (fun th -> SIMP_TAC[SUM_CLAUSES; th])
  THENL
   [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `1..n` THEN
    SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; IN_ELIM_THM; SUBSET] THEN
    MESON_TAC[PRIME_0; ARITH_RULE `1 <= i <=> ~(i = 0)`];
    REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `~(SUC n <= n)`; REAL_ADD_AC]]);;