Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,492 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
(* ========================================================================= *)
(* Divergence of prime reciprocal series. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Now load other stuff needed. *)
(* ------------------------------------------------------------------------- *)
needs "100/bertrand.ml";;
needs "100/divharmonic.ml";;
(* ------------------------------------------------------------------------- *)
(* Variant of induction. *)
(* ------------------------------------------------------------------------- *)
let INDUCTION_FROM_1 = prove
(`!P. P 0 /\ P 1 /\ (!n. 1 <= n /\ P n ==> P(SUC n)) ==> !n. P n`,
GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[num_CONV `1`; ARITH_RULE `n = 0 \/ 1 <= n`]);;
(* ------------------------------------------------------------------------- *)
(* Evaluate sums over explicit intervals. *)
(* ------------------------------------------------------------------------- *)
let SUM_CONV =
let pth = prove
(`sum(1..1) f = f 1 /\ sum(1..SUC n) f = sum(1..n) f + f(SUC n)`,
SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0;
ARITH_RULE `1 <= SUC n`; SUM_SING_NUMSEG]) in
let econv_0 = GEN_REWRITE_CONV I [CONJUNCT1 pth]
and econv_1 = GEN_REWRITE_CONV I [CONJUNCT2 pth] in
let rec sconv tm =
(econv_0 ORELSEC
(LAND_CONV(RAND_CONV num_CONV) THENC econv_1 THENC
COMB2_CONV (RAND_CONV sconv) (RAND_CONV NUM_SUC_CONV))) tm in
sconv;;
(* ------------------------------------------------------------------------- *)
(* Lower bound relative to harmonic series. *)
(* ------------------------------------------------------------------------- *)
let PRIMERECIP_HARMONIC_LBOUND = prove
(`!n. (&3 / (&16 * ln(&32))) * sum(1..n) (\i. &1 / &i) <=
sum(1..32 EXP n) (\i. if prime(i) then &1 / &i else &0)`,
MATCH_MP_TAC INDUCTION_FROM_1 THEN CONJ_TAC THENL
[SIMP_TAC[SUM_TRIV_NUMSEG; ARITH; SUM_SING_NUMSEG; REAL_MUL_RZERO] THEN
REWRITE_TAC[PRIME_1; REAL_LE_REFL];
ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[ARITH; SUM_SING_NUMSEG] THEN
CONV_TAC(RAND_CONV SUM_CONV) THEN REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV PRIME_CONV) THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[SYM(REAL_RAT_REDUCE_CONV `&2 pow 5`)] THEN
SIMP_TAC[LN_POW; REAL_OF_NUM_LT; ARITH; real_div; REAL_INV_MUL] THEN
REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_RID] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_DIV] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[LN_2_COMPOSITION; real_div; real_sub] THEN
CONV_TAC REALCALC_REL_CONV;
ALL_TAC] THEN
X_GEN_TAC `n:num` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC(REAL_ARITH
`b - a <= s2 - s1 ==> a <= s1 ==> b <= s2`) THEN
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG; REAL_ADD_SUB; ARITH_RULE `1 <= SUC n`] THEN
MP_TAC(SPEC `32 EXP n` PII_UBOUND_5) THEN ANTS_TAC THENL
[MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `32 EXP 1` THEN
ASM_REWRITE_TAC[LE_EXP] THEN REWRITE_TAC[ARITH];
ALL_TAC] THEN
MP_TAC(SPEC `32 EXP (SUC n)` PII_LBOUND) THEN ANTS_TAC THENL
[MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `32 EXP 1` THEN
ASM_REWRITE_TAC[LE_EXP] THEN REWRITE_TAC[ARITH] THEN ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP(REAL_ARITH
`a <= s1 /\ s2 <= b ==> a - b <= s1 - s2`)) THEN
SIMP_TAC[pii; PSUM_SUM_NUMSEG; EXP_EQ_0; ARITH; ADD_SUB2] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_POW] THEN
REWRITE_TAC[EXP; ARITH_RULE `32 * n = n + 31 * n`] THEN
SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`; REAL_ADD_SUB] THEN
REWRITE_TAC[ARITH_RULE `n + 31 * n = 32 * n`] THEN
REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN STRIP_TAC THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC
`inv(&32 pow (SUC n)) *
sum(32 EXP n + 1 .. 32 EXP SUC n) (\i. if prime i then &1 else &0)` THEN
CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN
COND_CASES_TAC THEN REWRITE_TAC[REAL_LE_REFL; REAL_MUL_RZERO] THEN
REWRITE_TAC[real_div; REAL_MUL_LID; REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN
ASM_REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN
UNDISCH_TAC `32 EXP n + 1 <= i` THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
SIMP_TAC[ARITH_RULE `~(0 < i) <=> i = 0`] THEN
REWRITE_TAC[LE; ARITH; ADD_EQ_0]] THEN
GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN
SIMP_TAC[GSYM real_div; REAL_POW_LT; REAL_LE_RDIV_EQ;
REAL_OF_NUM_LT; ARITH] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`a <= x ==> b <= a ==> b <= x`)) THEN
SIMP_TAC[LN_POW; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN
REWRITE_TAC[real_pow; GSYM REAL_OF_NUM_SUC] THEN
REWRITE_TAC[REAL_FIELD
`&1 / &2 * (&32 * n32) / (n1 * l) - &5 * n32 / (n * l) =
(n32 / l) * (&16 / n1 - &5 / n)`] THEN
REWRITE_TAC[REAL_FIELD
`(&3 / (&16 * l) * i) * &32 * n32 = (n32 / l) * (&6 * i)`] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN
SIMP_TAC[REAL_LE_DIV; REAL_POW_LE; LN_POS; REAL_OF_NUM_LE; ARITH] THEN
REWRITE_TAC[real_div; REAL_ARITH
`&6 * &1 * n1 <= &16 * n1 - &5 * n <=> n <= inv(inv(&2)) * n1`] THEN
REWRITE_TAC[GSYM REAL_INV_MUL] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Hence an overall lower bound. *)
(* ------------------------------------------------------------------------- *)
let PRIMERECIP_LBOUND = prove
(`!n. &3 / (&32 * ln(&32)) * &n
<= sum (1 .. 32 EXP (2 EXP n)) (\i. if prime i then &1 / &i else &0)`,
GEN_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `&3 / (&16 * ln(&32)) * sum (1 .. 2 EXP n) (\i. &1 / &i)` THEN
REWRITE_TAC[PRIMERECIP_HARMONIC_LBOUND] THEN
REWRITE_TAC[REAL_FIELD
`&3 / (&32 * ln(&32)) * &n = &3 / (&16 * ln(&32)) * (&n / &2)`] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN
REWRITE_TAC[REWRITE_RULE[real_ge] HARMONIC_LEMMA] THEN
SIMP_TAC[REAL_LE_DIV; REAL_LE_MUL; LN_POS; REAL_OF_NUM_LE; ARITH]);;
(* ------------------------------------------------------------------------- *)
(* General lemma. *)
(* ------------------------------------------------------------------------- *)
let UNBOUNDED_DIVERGENT = prove
(`!s. (!k. ?N. !n. n >= N ==> sum(1..n) s >= k)
==> ~(convergent(\n. sum(1..n) s))`,
REWRITE_TAC[convergent; SEQ] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `&1`) THEN
REWRITE_TAC[REAL_LT_01] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `l + &1`) THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `M:num` THEN
DISCH_THEN(MP_TAC o SPEC `M + N:num`) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `M + N:num`) THEN
REWRITE_TAC[LE_ADD; ONCE_REWRITE_RULE[ADD_SYM] LE_ADD; GE] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Hence divergence. *)
(* ------------------------------------------------------------------------- *)
let PRIMERECIP_DIVERGES_NUMSEG = prove
(`~(convergent (\n. sum (1..n) (\i. if prime i then &1 / &i else &0)))`,
MATCH_MP_TAC UNBOUNDED_DIVERGENT THEN X_GEN_TAC `k:real` THEN
MP_TAC(SPEC `&3 / (&32 * ln(&32))` REAL_ARCH) THEN
SIMP_TAC[REAL_LT_DIV; LN_POS_LT; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(MP_TAC o SPEC `k:real`) THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
EXISTS_TAC `32 EXP (2 EXP N)` THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[GE; real_ge] THEN STRIP_TAC THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `&N * &3 / (&32 * ln (&32))` THEN
ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
`sum(1 .. 32 EXP (2 EXP N)) (\i. if prime i then &1 / &i else &0)` THEN
REWRITE_TAC[PRIMERECIP_LBOUND] THEN
FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`; REAL_LE_ADDR] THEN
MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[] THEN COND_CASES_TAC THEN SIMP_TAC[REAL_LE_DIV; REAL_POS]);;
(* ------------------------------------------------------------------------- *)
(* A perhaps more intuitive formulation. *)
(* ------------------------------------------------------------------------- *)
let PRIMERECIP_DIVERGES = prove
(`~(convergent (\n. sum {p | prime p /\ p <= n} (\p. &1 / &p)))`,
MP_TAC PRIMERECIP_DIVERGES_NUMSEG THEN
MATCH_MP_TAC(TAUT `(a <=> b) ==> ~a ==> ~b`) THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `n:num` THEN
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THENL
[SUBGOAL_THEN `{p | prime p /\ p <= 0} = {}`
(fun th -> SIMP_TAC[SUM_CLAUSES; SUM_TRIV_NUMSEG; th; ARITH]) THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LE] THEN
MESON_TAC[PRIME_0];
ALL_TAC] THEN
ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; ARITH_RULE `1 <= SUC n`] THEN
SUBGOAL_THEN
`{p | prime p /\ p <= SUC n} =
if prime(SUC n) then (SUC n) INSERT {p | prime p /\ p <= n}
else {p | prime p /\ p <= n}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN
GEN_TAC THEN COND_CASES_TAC THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; LE] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_ADD_RID] THEN
SUBGOAL_THEN `FINITE {p | prime p /\ p <= n}`
(fun th -> SIMP_TAC[SUM_CLAUSES; th])
THENL
[MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `1..n` THEN
SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; IN_ELIM_THM; SUBSET] THEN
MESON_TAC[PRIME_0; ARITH_RULE `1 <= i <=> ~(i = 0)`];
REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `~(SUC n <= n)`; REAL_ADD_AC]]);;
|