Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 9,680 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
(* ========================================================================= *)
(* #64: L'Hopital's rule.                                                    *)
(* ========================================================================= *)

needs "Library/analysis.ml";;

override_interface ("-->",`(tends_real_real)`);;

prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* Cauchy mean value theorem.                                                *)
(* ------------------------------------------------------------------------- *)

let MVT2 = prove
 (`!f g a b.
        a < b /\
        (!x. a <= x /\ x <= b ==> f contl x /\ g contl x) /\
        (!x. a < x /\ x < b ==> f differentiable x /\ g differentiable x)
        ==> ?z f' g'. a < z /\ z < b /\ (f diffl f') z /\ (g diffl g') z /\
                      (f b - f a) * g' = (g b - g a) * f'`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`\x:real. f(x) * (g(b) - g(a)) - g(x) * (f(b) - f(a))`;
                `a:real`; `b:real`] MVT) THEN
  ANTS_TAC THENL
   [ASM_SIMP_TAC[CONT_SUB; CONT_MUL; CONT_CONST] THEN
    X_GEN_TAC `x:real` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
    REWRITE_TAC[differentiable] THEN
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_TAC `f':real`) (X_CHOOSE_TAC `g':real`)) THEN
    EXISTS_TAC `f' * (g(b:real) - g a) - g' * (f b - f a)` THEN
    ASM_SIMP_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] DIFF_CMUL; DIFF_SUB];
    ALL_TAC] THEN
  GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:real` THEN
  REWRITE_TAC[REAL_ARITH
   `(fb * (gb - ga) - gb * (fb - fa)) -
    (fa * (gb - ga) - ga * (fb - fa)) = y <=> y = &0`] THEN
  ASM_SIMP_TAC[REAL_ENTIRE; REAL_SUB_0; REAL_LT_IMP_NE] THEN
  DISCH_THEN(X_CHOOSE_THEN `l:real` STRIP_ASSUME_TAC) THEN
  UNDISCH_THEN `l = &0` SUBST_ALL_TAC THEN
  UNDISCH_TAC
   `!x. a < x /\ x < b ==> f differentiable x /\ g differentiable x` THEN
  DISCH_THEN(MP_TAC o SPEC `z:real`) THEN ASM_REWRITE_TAC[differentiable] THEN
  DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_TAC `f':real`) (X_CHOOSE_TAC `g':real`)) THEN
  MAP_EVERY EXISTS_TAC [`f':real`; `g':real`] THEN
  ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
  MATCH_MP_TAC DIFF_UNIQ THEN
  EXISTS_TAC `\x:real. f(x) * (g(b) - g(a)) - g(x) * (f(b) - f(a))` THEN
  EXISTS_TAC `z:real` THEN
  ASM_SIMP_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] DIFF_CMUL; DIFF_SUB]);;

(* ------------------------------------------------------------------------- *)
(* First, assume f and g actually take value zero at c.                      *)
(* ------------------------------------------------------------------------- *)

let LHOPITAL_WEAK = prove
 (`!f g f' g' c L d.
        &0 < d /\
        (!x. &0 < abs(x - c) /\ abs(x - c) < d
             ==> (f diffl f'(x)) x /\ (g diffl g'(x)) x /\ ~(g'(x) = &0)) /\
        f(c) = &0 /\ g(c) = &0 /\ (f --> &0) c /\ (g --> &0) c /\
        ((\x. f'(x) / g'(x)) --> L) c
        ==> ((\x. f(x) / g(x)) --> L) c`,
  REPEAT STRIP_TAC THEN SUBGOAL_THEN
   `!x. &0 < abs(x - c) /\ abs(x - c) < d
        ==> ?z. &0 < abs(z - c) /\ abs(z - c) < abs(x - c) /\
                f(x) * g'(z) = f'(z) * g(x)`
  (LABEL_TAC "*") THENL
   [X_GEN_TAC `x:real` THEN DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
     `&0 < abs(x - c) /\ abs(x - c) < d
      ==> c < x /\ x < c + d \/ c - d < x /\ x < c`)) THEN
    STRIP_TAC THENL
     [MP_TAC(SPECL
       [`f:real->real`; `g:real->real`; `c:real`; `x:real`] MVT2) THEN
      ANTS_TAC THENL
       [ASM_REWRITE_TAC[] THEN
        GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o funpow 2 LAND_CONV)
          [REAL_LE_LT] THEN
        ASM_MESON_TAC[CONTL_LIM; DIFF_CONT; REAL_LT_IMP_LE; differentiable;
          REAL_ARITH
          `c < z /\ z <= x /\ x < c + d ==> &0 < abs(z - c) /\ abs(z - c) < d`];
        ALL_TAC] THEN
      ASM_REWRITE_TAC[REAL_SUB_RZERO] THEN MATCH_MP_TAC MONO_EXISTS THEN
      GEN_TAC THEN GEN_REWRITE_TAC (funpow 4 RAND_CONV) [REAL_MUL_SYM] THEN
      REPEAT STRIP_TAC THENL
       [ASM_REAL_ARITH_TAC;
        ASM_REAL_ARITH_TAC;
        FIRST_X_ASSUM(fun th -> MP_TAC th THEN
          MATCH_MP_TAC EQ_IMP THEN BINOP_TAC) THEN
        ASM_MESON_TAC[DIFF_UNIQ; REAL_ARITH
         `c < z /\ z < x /\ x < c + d ==> &0 < abs(z - c) /\ abs(z - c) < d`]];
      MP_TAC(SPECL
       [`f:real->real`; `g:real->real`; `x:real`; `c:real`] MVT2) THEN
      ANTS_TAC THENL
       [ASM_REWRITE_TAC[] THEN
        GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o LAND_CONV o RAND_CONV)
          [REAL_LE_LT] THEN
        ASM_MESON_TAC[CONTL_LIM; DIFF_CONT; REAL_LT_IMP_LE; differentiable;
          REAL_ARITH
          `c - d < x /\ x <= z /\ z < c ==> &0 < abs(z - c) /\ abs(z - c) < d`];
        ALL_TAC] THEN
      ASM_REWRITE_TAC[REAL_SUB_LZERO; REAL_MUL_LNEG; REAL_EQ_NEG2] THEN
      MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
      GEN_REWRITE_TAC (funpow 4 RAND_CONV) [REAL_MUL_SYM] THEN
      REPEAT STRIP_TAC THENL
       [ASM_REAL_ARITH_TAC;
        ASM_REAL_ARITH_TAC;
        FIRST_X_ASSUM(fun th -> MP_TAC th THEN
         MATCH_MP_TAC EQ_IMP THEN BINOP_TAC) THEN
        ASM_MESON_TAC[DIFF_UNIQ; REAL_ARITH
         `c - d < x /\ x < z /\ z < c
          ==> &0 < abs(z - c) /\ abs(z - c) < d`]]];
    ALL_TAC] THEN
  REWRITE_TAC[LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
  UNDISCH_TAC `((\x. f' x / g' x) --> L) c` THEN REWRITE_TAC[LIM] THEN
  DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPECL [`d:real`; `r:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:real` THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN
  UNDISCH_TAC
   `!x. &0 < abs(x - c) /\ abs(x - c) < r ==> abs(f' x / g' x - L) < e` THEN
  REMOVE_THEN "*" (MP_TAC o SPEC `x:real`) THEN
  ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC) THEN
  DISCH_THEN(MP_TAC o SPEC `z:real`) THEN
  ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  MATCH_MP_TAC(REAL_ARITH `x = y ==> abs(x - l) < e ==> abs(y - l) < e`) THEN
  MATCH_MP_TAC(REAL_FIELD
   `~(gz = &0) /\ ~(gx = &0) /\ fx * gz = fz * gx ==> fz / gz = fx / gx`) THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [ASM_MESON_TAC[REAL_LT_TRANS]; ALL_TAC] THEN
  MP_TAC(ASSUME `&0 < abs(x - c)`) THEN DISCH_THEN(MP_TAC o MATCH_MP
   (REAL_ARITH `&0 < abs(x - c) ==> c < x \/ x < c`)) THEN
  REPEAT STRIP_TAC THENL
   [MP_TAC(SPECL [`g:real->real`; `c:real`; `x:real`] ROLLE) THEN
    ASM_REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL
     [GEN_TAC THEN GEN_REWRITE_TAC (funpow 2 LAND_CONV) [REAL_LE_LT] THEN
      ASM_MESON_TAC[CONTL_LIM; DIFF_CONT; REAL_LT_TRANS; REAL_ARITH
       `c < z /\ z <= x /\ abs(x - c) < d
        ==> &0 < abs(z - c) /\ abs(z - c) < d`];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [ASM_MESON_TAC[differentiable; REAL_LT_TRANS; REAL_ARITH
       `c < z /\ z < x /\ abs(x - c) < d
        ==> &0 < abs(z - c) /\ abs(z - c) < d`];
      ALL_TAC] THEN
    REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `w:real` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `w:real`) THEN
    ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    ASM_MESON_TAC[DIFF_UNIQ];
    MP_TAC(SPECL [`g:real->real`; `x:real`; `c:real`] ROLLE) THEN
    ASM_REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL
     [GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_LE_LT] THEN
      ASM_MESON_TAC[CONTL_LIM; DIFF_CONT; REAL_LT_TRANS; REAL_ARITH
       `x <= z /\ z < c /\ z < c /\ abs(x - c) < d
        ==> &0 < abs(z - c) /\ abs(z - c) < d`];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [ASM_MESON_TAC[differentiable; REAL_LT_TRANS; REAL_ARITH
       `x < z /\ z < c /\ abs(x - c) < d
        ==> &0 < abs(z - c) /\ abs(z - c) < d`];
      ALL_TAC] THEN
    REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `w:real` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `w:real`) THEN
    ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    ASM_MESON_TAC[DIFF_UNIQ]]);;

(* ------------------------------------------------------------------------- *)
(* Now generalize by continuity extension.                                   *)
(* ------------------------------------------------------------------------- *)

let LHOPITAL = prove
 (`!f g f' g' c L d.
        &0 < d /\
        (!x. &0 < abs(x - c) /\ abs(x - c) < d
             ==> (f diffl f'(x)) x /\ (g diffl g'(x)) x /\ ~(g'(x) = &0)) /\
        (f --> &0) c /\ (g --> &0) c /\ ((\x. f'(x) / g'(x)) --> L) c
        ==> ((\x. f(x) / g(x)) --> L) c`,
  REPEAT GEN_TAC THEN
  MP_TAC(SPECL [`\x:real. if x = c then &0 else f(x)`;
                `\x:real. if x = c then &0 else g(x)`;
                `f':real->real`; `g':real->real`;
                `c:real`; `L:real`; `d:real`] LHOPITAL_WEAK) THEN
  SIMP_TAC[LIM; REAL_ARITH `&0 < abs(x - c) ==> ~(x = c)`] THEN
  REWRITE_TAC[diffl] THEN STRIP_TAC THEN STRIP_TAC THEN
  FIRST_X_ASSUM MATCH_MP_TAC THEN
  ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[diffl] THENL
   [MATCH_MP_TAC LIM_TRANSFORM THEN EXISTS_TAC `\h. (f(x + h) - f x) / h`;
    MATCH_MP_TAC LIM_TRANSFORM THEN EXISTS_TAC `\h. (g(x + h) - g x) / h`;
    ASM_MESON_TAC[]] THEN
  ASM_SIMP_TAC[REAL_ARITH `&0 < abs(x - c) ==> ~(x = c)`] THEN
  REWRITE_TAC[LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
  EXISTS_TAC `abs(x - c)` THEN REWRITE_TAC[REAL_SUB_RZERO] THEN
  ASM_SIMP_TAC[REAL_ARITH
   `&0 < abs(x - c) /\ &0 < abs z /\ abs z < abs(x - c) ==> ~(x + z = c)`] THEN
  ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_NUM]);;