Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,680 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
(* ========================================================================= *)
(* #64: L'Hopital's rule. *)
(* ========================================================================= *)
needs "Library/analysis.ml";;
override_interface ("-->",`(tends_real_real)`);;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Cauchy mean value theorem. *)
(* ------------------------------------------------------------------------- *)
let MVT2 = prove
(`!f g a b.
a < b /\
(!x. a <= x /\ x <= b ==> f contl x /\ g contl x) /\
(!x. a < x /\ x < b ==> f differentiable x /\ g differentiable x)
==> ?z f' g'. a < z /\ z < b /\ (f diffl f') z /\ (g diffl g') z /\
(f b - f a) * g' = (g b - g a) * f'`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`\x:real. f(x) * (g(b) - g(a)) - g(x) * (f(b) - f(a))`;
`a:real`; `b:real`] MVT) THEN
ANTS_TAC THENL
[ASM_SIMP_TAC[CONT_SUB; CONT_MUL; CONT_CONST] THEN
X_GEN_TAC `x:real` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[differentiable] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_TAC `f':real`) (X_CHOOSE_TAC `g':real`)) THEN
EXISTS_TAC `f' * (g(b:real) - g a) - g' * (f b - f a)` THEN
ASM_SIMP_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] DIFF_CMUL; DIFF_SUB];
ALL_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:real` THEN
REWRITE_TAC[REAL_ARITH
`(fb * (gb - ga) - gb * (fb - fa)) -
(fa * (gb - ga) - ga * (fb - fa)) = y <=> y = &0`] THEN
ASM_SIMP_TAC[REAL_ENTIRE; REAL_SUB_0; REAL_LT_IMP_NE] THEN
DISCH_THEN(X_CHOOSE_THEN `l:real` STRIP_ASSUME_TAC) THEN
UNDISCH_THEN `l = &0` SUBST_ALL_TAC THEN
UNDISCH_TAC
`!x. a < x /\ x < b ==> f differentiable x /\ g differentiable x` THEN
DISCH_THEN(MP_TAC o SPEC `z:real`) THEN ASM_REWRITE_TAC[differentiable] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_TAC `f':real`) (X_CHOOSE_TAC `g':real`)) THEN
MAP_EVERY EXISTS_TAC [`f':real`; `g':real`] THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
MATCH_MP_TAC DIFF_UNIQ THEN
EXISTS_TAC `\x:real. f(x) * (g(b) - g(a)) - g(x) * (f(b) - f(a))` THEN
EXISTS_TAC `z:real` THEN
ASM_SIMP_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] DIFF_CMUL; DIFF_SUB]);;
(* ------------------------------------------------------------------------- *)
(* First, assume f and g actually take value zero at c. *)
(* ------------------------------------------------------------------------- *)
let LHOPITAL_WEAK = prove
(`!f g f' g' c L d.
&0 < d /\
(!x. &0 < abs(x - c) /\ abs(x - c) < d
==> (f diffl f'(x)) x /\ (g diffl g'(x)) x /\ ~(g'(x) = &0)) /\
f(c) = &0 /\ g(c) = &0 /\ (f --> &0) c /\ (g --> &0) c /\
((\x. f'(x) / g'(x)) --> L) c
==> ((\x. f(x) / g(x)) --> L) c`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN
`!x. &0 < abs(x - c) /\ abs(x - c) < d
==> ?z. &0 < abs(z - c) /\ abs(z - c) < abs(x - c) /\
f(x) * g'(z) = f'(z) * g(x)`
(LABEL_TAC "*") THENL
[X_GEN_TAC `x:real` THEN DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
`&0 < abs(x - c) /\ abs(x - c) < d
==> c < x /\ x < c + d \/ c - d < x /\ x < c`)) THEN
STRIP_TAC THENL
[MP_TAC(SPECL
[`f:real->real`; `g:real->real`; `c:real`; `x:real`] MVT2) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o funpow 2 LAND_CONV)
[REAL_LE_LT] THEN
ASM_MESON_TAC[CONTL_LIM; DIFF_CONT; REAL_LT_IMP_LE; differentiable;
REAL_ARITH
`c < z /\ z <= x /\ x < c + d ==> &0 < abs(z - c) /\ abs(z - c) < d`];
ALL_TAC] THEN
ASM_REWRITE_TAC[REAL_SUB_RZERO] THEN MATCH_MP_TAC MONO_EXISTS THEN
GEN_TAC THEN GEN_REWRITE_TAC (funpow 4 RAND_CONV) [REAL_MUL_SYM] THEN
REPEAT STRIP_TAC THENL
[ASM_REAL_ARITH_TAC;
ASM_REAL_ARITH_TAC;
FIRST_X_ASSUM(fun th -> MP_TAC th THEN
MATCH_MP_TAC EQ_IMP THEN BINOP_TAC) THEN
ASM_MESON_TAC[DIFF_UNIQ; REAL_ARITH
`c < z /\ z < x /\ x < c + d ==> &0 < abs(z - c) /\ abs(z - c) < d`]];
MP_TAC(SPECL
[`f:real->real`; `g:real->real`; `x:real`; `c:real`] MVT2) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o LAND_CONV o RAND_CONV)
[REAL_LE_LT] THEN
ASM_MESON_TAC[CONTL_LIM; DIFF_CONT; REAL_LT_IMP_LE; differentiable;
REAL_ARITH
`c - d < x /\ x <= z /\ z < c ==> &0 < abs(z - c) /\ abs(z - c) < d`];
ALL_TAC] THEN
ASM_REWRITE_TAC[REAL_SUB_LZERO; REAL_MUL_LNEG; REAL_EQ_NEG2] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
GEN_REWRITE_TAC (funpow 4 RAND_CONV) [REAL_MUL_SYM] THEN
REPEAT STRIP_TAC THENL
[ASM_REAL_ARITH_TAC;
ASM_REAL_ARITH_TAC;
FIRST_X_ASSUM(fun th -> MP_TAC th THEN
MATCH_MP_TAC EQ_IMP THEN BINOP_TAC) THEN
ASM_MESON_TAC[DIFF_UNIQ; REAL_ARITH
`c - d < x /\ x < z /\ z < c
==> &0 < abs(z - c) /\ abs(z - c) < d`]]];
ALL_TAC] THEN
REWRITE_TAC[LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
UNDISCH_TAC `((\x. f' x / g' x) --> L) c` THEN REWRITE_TAC[LIM] THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d:real`; `r:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:real` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN
UNDISCH_TAC
`!x. &0 < abs(x - c) /\ abs(x - c) < r ==> abs(f' x / g' x - L) < e` THEN
REMOVE_THEN "*" (MP_TAC o SPEC `x:real`) THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `z:real`) THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH `x = y ==> abs(x - l) < e ==> abs(y - l) < e`) THEN
MATCH_MP_TAC(REAL_FIELD
`~(gz = &0) /\ ~(gx = &0) /\ fx * gz = fz * gx ==> fz / gz = fx / gx`) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[ASM_MESON_TAC[REAL_LT_TRANS]; ALL_TAC] THEN
MP_TAC(ASSUME `&0 < abs(x - c)`) THEN DISCH_THEN(MP_TAC o MATCH_MP
(REAL_ARITH `&0 < abs(x - c) ==> c < x \/ x < c`)) THEN
REPEAT STRIP_TAC THENL
[MP_TAC(SPECL [`g:real->real`; `c:real`; `x:real`] ROLLE) THEN
ASM_REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL
[GEN_TAC THEN GEN_REWRITE_TAC (funpow 2 LAND_CONV) [REAL_LE_LT] THEN
ASM_MESON_TAC[CONTL_LIM; DIFF_CONT; REAL_LT_TRANS; REAL_ARITH
`c < z /\ z <= x /\ abs(x - c) < d
==> &0 < abs(z - c) /\ abs(z - c) < d`];
ALL_TAC] THEN
CONJ_TAC THENL
[ASM_MESON_TAC[differentiable; REAL_LT_TRANS; REAL_ARITH
`c < z /\ z < x /\ abs(x - c) < d
==> &0 < abs(z - c) /\ abs(z - c) < d`];
ALL_TAC] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `w:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `w:real`) THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
ASM_MESON_TAC[DIFF_UNIQ];
MP_TAC(SPECL [`g:real->real`; `x:real`; `c:real`] ROLLE) THEN
ASM_REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL
[GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_LE_LT] THEN
ASM_MESON_TAC[CONTL_LIM; DIFF_CONT; REAL_LT_TRANS; REAL_ARITH
`x <= z /\ z < c /\ z < c /\ abs(x - c) < d
==> &0 < abs(z - c) /\ abs(z - c) < d`];
ALL_TAC] THEN
CONJ_TAC THENL
[ASM_MESON_TAC[differentiable; REAL_LT_TRANS; REAL_ARITH
`x < z /\ z < c /\ abs(x - c) < d
==> &0 < abs(z - c) /\ abs(z - c) < d`];
ALL_TAC] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `w:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `w:real`) THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
ASM_MESON_TAC[DIFF_UNIQ]]);;
(* ------------------------------------------------------------------------- *)
(* Now generalize by continuity extension. *)
(* ------------------------------------------------------------------------- *)
let LHOPITAL = prove
(`!f g f' g' c L d.
&0 < d /\
(!x. &0 < abs(x - c) /\ abs(x - c) < d
==> (f diffl f'(x)) x /\ (g diffl g'(x)) x /\ ~(g'(x) = &0)) /\
(f --> &0) c /\ (g --> &0) c /\ ((\x. f'(x) / g'(x)) --> L) c
==> ((\x. f(x) / g(x)) --> L) c`,
REPEAT GEN_TAC THEN
MP_TAC(SPECL [`\x:real. if x = c then &0 else f(x)`;
`\x:real. if x = c then &0 else g(x)`;
`f':real->real`; `g':real->real`;
`c:real`; `L:real`; `d:real`] LHOPITAL_WEAK) THEN
SIMP_TAC[LIM; REAL_ARITH `&0 < abs(x - c) ==> ~(x = c)`] THEN
REWRITE_TAC[diffl] THEN STRIP_TAC THEN STRIP_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[diffl] THENL
[MATCH_MP_TAC LIM_TRANSFORM THEN EXISTS_TAC `\h. (f(x + h) - f x) / h`;
MATCH_MP_TAC LIM_TRANSFORM THEN EXISTS_TAC `\h. (g(x + h) - g x) / h`;
ASM_MESON_TAC[]] THEN
ASM_SIMP_TAC[REAL_ARITH `&0 < abs(x - c) ==> ~(x = c)`] THEN
REWRITE_TAC[LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
EXISTS_TAC `abs(x - c)` THEN REWRITE_TAC[REAL_SUB_RZERO] THEN
ASM_SIMP_TAC[REAL_ARITH
`&0 < abs(x - c) /\ &0 < abs z /\ abs z < abs(x - c) ==> ~(x + z = c)`] THEN
ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_NUM]);;
|