Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,840 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
(* ========================================================================= *)
(* #26: Leibniz's series for pi                                              *)
(* ========================================================================= *)

needs "Library/transc.ml";;

prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* Summability of alternating series.                                        *)
(* ------------------------------------------------------------------------- *)

let ALTERNATING_SUM_BOUNDS = prove
 (`!a. (!n. a(2 * n + 1) <= &0 /\ &0 <= a(2 * n)) /\
       (!n. abs(a(n + 1)) <= abs(a(n)))
       ==> !m n. (EVEN m ==> &0 <= sum(m,n) a /\ sum(m,n) a <= a(m)) /\
                 (ODD m ==> a(m) <= sum(m,n) a /\ sum(m,n) a <= &0)`,
  GEN_TAC THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  INDUCT_TAC THEN REWRITE_TAC[ODD; EVEN] THENL
   [SIMP_TAC[sum; ODD_EXISTS; EVEN_EXISTS; LEFT_IMP_EXISTS_THM; ADD1] THEN
    ASM_SIMP_TAC[REAL_LE_REFL];
    ALL_TAC] THEN
  X_GEN_TAC `m:num` THEN
  REWRITE_TAC[ARITH_RULE `SUC n = 1 + n`; GSYM SUM_SPLIT] THEN
  FIRST_X_ASSUM(MP_TAC o check (is_conj o concl) o SPEC `SUC m`) THEN
  REWRITE_TAC[ODD; EVEN; SUM_1] THEN REWRITE_TAC[ADD1; GSYM NOT_EVEN] THEN
  UNDISCH_THEN `!n. abs(a(n + 1)) <= abs(a n)` (MP_TAC o SPEC `m:num`) THEN
  ASM_CASES_TAC `EVEN m` THEN ASM_REWRITE_TAC[] THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]) THEN
    DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST_ALL_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN REAL_ARITH_TAC;
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EVEN]) THEN
    REWRITE_TAC[ODD_EXISTS] THEN
    DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST_ALL_TAC) THEN
    REWRITE_TAC[ADD1] THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN REAL_ARITH_TAC]);;

let ALTERNATING_SUM_BOUND = prove
 (`!a. (!n. a(2 * n + 1) <= &0 /\ &0 <= a(2 * n)) /\
       (!n. abs(a(n + 1)) <= abs(a(n)))
       ==> !m n. abs(sum(m,n) a) <= abs(a m)`,
  GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ALTERNATING_SUM_BOUNDS) THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  REWRITE_TAC[GSYM NOT_EVEN] THEN ASM_CASES_TAC `EVEN m` THEN
  ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;

let SUMMABLE_ALTERNATING = prove
 (`!v. (!n. a(2 * n + 1) <= &0 /\ &0 <= a(2 * n)) /\
       (!n. abs(a(n + 1)) <= abs(a(n))) /\ a tends_num_real &0
       ==> summable a`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[SER_CAUCHY] THEN
  X_GEN_TAC `e:real` THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `e:real` o GEN_REWRITE_RULE I [SEQ]) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN
  REWRITE_TAC[REAL_SUB_RZERO] THEN
  ASM_MESON_TAC[ALTERNATING_SUM_BOUND; REAL_LET_TRANS]);;

(* ------------------------------------------------------------------------- *)
(* Another version of the atan series.                                       *)
(* ------------------------------------------------------------------------- *)

let REAL_ATN_POWSER_ALT = prove
 (`!x. abs(x) < &1
       ==> (\n. (-- &1) pow n / &(2 * n + 1) * x pow (2 * n + 1))
           sums (atn x)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_ATN_POWSER) THEN
  FIRST_ASSUM(MP_TAC o C CONJ (ARITH_RULE `0 < 2`) o
              MATCH_MP SUM_SUMMABLE) THEN
  DISCH_THEN(MP_TAC o MATCH_MP SER_GROUP) THEN
  FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP SUM_UNIQ) THEN
  REWRITE_TAC[SUM_2; EVEN_MULT; EVEN_ADD; ARITH_EVEN; ADD_SUB] THEN
  ONCE_REWRITE_TAC[ARITH_RULE `n * 2 = 2 * n`] THEN
  SIMP_TAC[DIV_MULT; ARITH_EQ; REAL_MUL_LZERO; REAL_ADD_LID]);;

(* ------------------------------------------------------------------------- *)
(* Summability of the same series for x = 1.                                 *)
(* ------------------------------------------------------------------------- *)

let SUMMABLE_LEIBNIZ = prove
 (`summable (\n. (-- &1) pow n / &(2 * n + 1))`,
  MATCH_MP_TAC SUMMABLE_ALTERNATING THEN
  REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
   [REWRITE_TAC[REAL_POW_ADD; REAL_POW_MUL; GSYM REAL_POW_POW] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[REAL_POW_ONE; real_div; REAL_MUL_LID; REAL_MUL_LNEG] THEN
    REWRITE_TAC[REAL_LE_LNEG; REAL_ADD_RID; REAL_LE_INV_EQ; REAL_POS];
    GEN_TAC THEN REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NEG] THEN
    REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; real_div; REAL_MUL_LID] THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN
    REWRITE_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_LE] THEN ARITH_TAC;
    REWRITE_TAC[SEQ; REAL_SUB_RZERO; REAL_ABS_DIV; REAL_ABS_POW] THEN
    REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM; REAL_POW_ONE] THEN
    SIMP_TAC[REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH_RULE `0 < n + 1`] THEN
    GEN_TAC THEN DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o SPEC `&1` o MATCH_MP REAL_ARCH) THEN
    MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[GE] THEN REPEAT STRIP_TAC THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
     `&1 < x * e ==> e * x <= y ==> &1 < y`)) THEN
    ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_OF_NUM_LE] THEN
    ASM_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* The tricky sum-bounding lemma.                                            *)
(* ------------------------------------------------------------------------- *)

let SUM_DIFFERENCES = prove
 (`!a m n. m <= n + 1 ==> sum(m..n) (\i. a(i) - a(i+1)) = a(m) - a(n + 1)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THENL
   [REWRITE_TAC[ARITH_RULE `m <= 0 + 1 <=> m = 0 \/ m = 1`] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[SUM_SING_NUMSEG] THEN
    ASM_SIMP_TAC[SUM_TRIV_NUMSEG; ARITH; REAL_SUB_REFL];
    ALL_TAC] THEN
  REWRITE_TAC[ARITH_RULE `m <= SUC n + 1 <=> m <= n + 1 \/ m = SUC n + 1`] THEN
  STRIP_TAC THEN
  ASM_SIMP_TAC[SUM_TRIV_NUMSEG; ARITH_RULE `n < n + 1`; REAL_SUB_REFL] THEN
  ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG;
    ARITH_RULE `m <= n + 1 ==> m <= SUC n /\ m <= SUC n + 1`] THEN
  REWRITE_TAC[ADD1] THEN REAL_ARITH_TAC);;

let SUM_REARRANGE_LEMMA = prove
 (`!a v m n.
        m <= n + 1
        ==> sum(m..n+1) (\i. a i * v i) =
            sum(m..n) (\k. sum(m..k) a * (v(k) - v(k+1))) +
            sum(m..n+1) a * v(n+1)`,
  REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THENL
   [REWRITE_TAC[SUM_CLAUSES_NUMSEG; num_CONV `1`; ADD_CLAUSES] THEN
    ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[ARITH] THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[ADD_CLAUSES; SUM_CLAUSES_NUMSEG] THEN
  DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN
  ASM_CASES_TAC `m = SUC(n + 1)` THENL
   [ASM_REWRITE_TAC[LE_SUC; ARITH_RULE `~(n + 1 <= n)`] THEN
    ASM_SIMP_TAC[SUM_TRIV_NUMSEG; ARITH_RULE
     `n < SUC n /\ n < SUC(n + 1)`] THEN
    REAL_ARITH_TAC;
    ALL_TAC] THEN
  ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
  DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[] THEN
  ONCE_REWRITE_TAC[ARITH_RULE
   `m <= SUC n <=> m <= SUC(n + 1) /\ ~(m = SUC(n + 1))`] THEN
  ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[GSYM REAL_ADD_ASSOC; REAL_EQ_ADD_LCANCEL] THEN
  REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_RDISTRIB; REAL_EQ_ADD_RCANCEL] THEN
  REWRITE_TAC[GSYM ADD1; SUM_CLAUSES_NUMSEG] THEN
  ASM_SIMP_TAC[ARITH_RULE
   `m <= SUC(n + 1) /\ ~(m = SUC(n + 1)) ==> m <= SUC n`] THEN
  REWRITE_TAC[REAL_ARITH
   `(s1 * (v - w) + x) + (s2 + y) * w =
    (x + y * w) + (v - w) * s1 + w * s2`] THEN
  GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
  SIMP_TAC[REAL_ADD_LDISTRIB; GSYM SUM_CMUL; GSYM SUM_ADD_NUMSEG] THEN
  REWRITE_TAC[REAL_SUB_ADD; REAL_SUB_RDISTRIB] THEN REAL_ARITH_TAC);;

let SUM_BOUNDS_LEMMA = prove
 (`!a v l u m n.
        m <= n /\
        (!i. m <= i /\ i <= n ==> &0 <= v(i) /\ v(i+1) <= v(i)) /\
        (!k. m <= k /\ k <= n ==> l <= sum(m..k) a /\ sum(m..k) a <= u)
        ==> l * v(m) <= sum(m..n) (\i. a(i) * v(i)) /\
            sum(m..n) (\i. a(i) * v(i)) <= u * v(m)`,
  REPLICATE_TAC 5 GEN_TAC THEN INDUCT_TAC THENL
   [REWRITE_TAC[LE; SUM_CLAUSES_NUMSEG] THEN
    SIMP_TAC[ARITH_RULE `m <= i /\ i = 0 <=> m = 0 /\ i = 0`] THEN
    REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
    ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[SUM_SING_NUMSEG] THEN
    SIMP_TAC[REAL_LE_RMUL];
    POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[ADD1]] THEN
  SIMP_TAC[SUM_REARRANGE_LEMMA] THEN STRIP_TAC THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum(m..n) (\k. l * (v(k) - v(k + 1))) + l * v(n+1)` THEN
    CONJ_TAC THENL
     [ASM_SIMP_TAC[SUM_LMUL; SUM_DIFFERENCES] THEN REAL_ARITH_TAC;
      ALL_TAC];
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum(m..n) (\k. u * (v(k) - v(k + 1))) + u * v(n+1)` THEN
    CONJ_TAC THENL
     [ALL_TAC;
      ASM_SIMP_TAC[SUM_LMUL; SUM_DIFFERENCES] THEN REAL_ARITH_TAC]] THEN
  MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_SIMP_TAC[REAL_LE_RMUL; LE_REFL] THEN
  MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN
  REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
  ASM_SIMP_TAC[REAL_SUB_LE; ARITH_RULE `k <= n ==> k <= n + 1`]);;

let SUM_BOUND_LEMMA = prove
 (`!a v b m n.
        m <= n /\
        (!i. m <= i /\ i <= n ==> &0 <= v(i) /\ v(i+1) <= v(i)) /\
        (!k. m <= k /\ k <= n ==> abs(sum(m..k) a) <= b)
        ==> abs(sum(m..n) (\i. a(i) * v(i))) <= b * abs(v m)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH
   `--b * k <= a /\ a <= b * k ==> abs(a) <= b * k`) THEN
  ASM_SIMP_TAC[LE_REFL; real_abs] THEN
  MATCH_MP_TAC SUM_BOUNDS_LEMMA THEN
  ASM_REWRITE_TAC[REAL_BOUNDS_LE]);;

(* ------------------------------------------------------------------------- *)
(* Hence the final theorem.                                                  *)
(* ------------------------------------------------------------------------- *)

let LEIBNIZ_PI = prove
 (`(\n. (-- &1) pow n / &(2 * n + 1)) sums (pi / &4)`,
  REWRITE_TAC[GSYM ATN_1] THEN
  ASSUME_TAC(MATCH_MP SUMMABLE_SUM SUMMABLE_LEIBNIZ) THEN
  ABBREV_TAC `s = suminf(\n. (-- &1) pow n / &(2 * n + 1))` THEN
  SUBGOAL_THEN `s = atn(&1)` (fun th -> ASM_MESON_TAC[th]) THEN
  MATCH_MP_TAC(REAL_ARITH `~(&0 < abs(x - y)) ==> x = y`) THEN
  ABBREV_TAC `e = abs(s - atn(&1))` THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP SUM_SUMMABLE) THEN
  REWRITE_TAC[SER_CAUCHY] THEN DISCH_THEN(MP_TAC o SPEC `e / &7`) THEN
  ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
  DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN
   `(\x. sum(0,N) (\n. (-- &1) pow n / &(2 * n + 1) * x pow (2 * n + 1)))
    contl (&1)`
  MP_TAC THENL
   [MATCH_MP_TAC DIFF_CONT THEN EXISTS_TAC
     `sum(0,N) (\n. (-- &1) pow n * &1 pow (2 * n))` THEN
    MATCH_MP_TAC DIFF_SUM THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN
    REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
    MATCH_MP_TAC DIFF_CMUL THEN
    MP_TAC(SPECL [`2 * k + 1`; `&1`] DIFF_POW) THEN
    DISCH_THEN(MP_TAC o SPEC `inv(&(2 * k + 1))` o MATCH_MP DIFF_CMUL) THEN
    MATCH_MP_TAC(TAUT `a = b ==> a ==> b`) THEN
    REWRITE_TAC[ADD_SUB] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
    REWRITE_TAC[REAL_POW_ONE] THEN CONV_TAC REAL_FIELD;
    ALL_TAC] THEN
  SUBGOAL_THEN `atn contl (&1)` MP_TAC THENL
   [MESON_TAC[DIFF_CONT; DIFF_ATN]; ALL_TAC] THEN
  REWRITE_TAC[CONTL_LIM; LIM] THEN
  REWRITE_TAC[TAUT `a ==> ~b <=> ~(a /\ b)`; AND_FORALL_THM] THEN
  DISCH_THEN(MP_TAC o SPEC `e / &6`) THEN
  ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; GSYM SUM_SUB] THEN
  ONCE_REWRITE_TAC[GSYM REAL_ABS_NEG] THEN
  REWRITE_TAC[GSYM SUM_NEG; REAL_NEG_SUB; GSYM REAL_MUL_RNEG] THEN
  REWRITE_TAC[REAL_POW_ONE; GSYM REAL_SUB_LDISTRIB] THEN DISCH_THEN
   (CONJUNCTS_THEN2 (X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC)
                    (X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC)) THEN
  ABBREV_TAC `x = &1 - min (min (d1 / &2) (d2 / &2)) (&1 / &2)` THEN
  REPEAT(FIRST_X_ASSUM (MP_TAC o SPEC `x:real`) THEN ANTS_TAC THENL
          [ASM_REAL_ARITH_TAC; DISCH_TAC]) THEN
  SUBGOAL_THEN `&0 < x /\ x < &1 /\ abs x < &1` STRIP_ASSUME_TAC THENL
   [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP REAL_ATN_POWSER_ALT) THEN
  REWRITE_TAC[sums; SEQ] THEN DISCH_THEN(MP_TAC o SPEC `e / &6`) THEN
  ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
  DISCH_THEN(X_CHOOSE_TAC `N1:num`) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [sums]) THEN
  REWRITE_TAC[SEQ] THEN DISCH_THEN(MP_TAC o SPEC `e / &6`) THEN
  ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
  DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `N + N1 + N2:num`) THEN
         ANTS_TAC THENL [ARITH_TAC; ALL_TAC]) THEN
  REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM SUM_SPLIT] THEN
  REWRITE_TAC[ADD_CLAUSES] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `abs(sum(N,N1+N2) (\n. -- &1 pow n / &(2 * n + 1) * x pow (2 * n + 1)))
     < e / &6`
  ASSUME_TAC THENL
   [ASM_CASES_TAC `N1 + N2 = 0` THENL
     [ASM_SIMP_TAC[sum; REAL_LT_DIV; REAL_OF_NUM_LT; REAL_ABS_NUM; ARITH];
      ALL_TAC] THEN
    MATCH_MP_TAC(REAL_ARITH `x <= e / &7 /\ &0 < e ==> x < e / &6`) THEN
    ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
     `e / &7 * abs(x pow (2 * N + 1))` THEN
    CONJ_TAC THENL
     [ALL_TAC;
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
      MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
      ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
      REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM] THEN
      MATCH_MP_TAC REAL_POW_1_LE THEN
      MAP_EVERY UNDISCH_TAC [`&0 < x`; `x < &1`] THEN REAL_ARITH_TAC] THEN
    ASM_SIMP_TAC[PSUM_SUM_NUMSEG] THEN MATCH_MP_TAC SUM_BOUND_LEMMA THEN
    CONJ_TAC THENL [UNDISCH_TAC `~(N1 + N2 = 0)` THEN ARITH_TAC; ALL_TAC] THEN
    REPEAT STRIP_TAC THENL
     [ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_POW_LT];
      REWRITE_TAC[ARITH_RULE `2 * (m + 1) + 1 = (2 * m + 1) + 2`] THEN
      GEN_REWRITE_TAC LAND_CONV [REAL_POW_ADD] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
      MATCH_MP_TAC REAL_LE_LMUL THEN
      ASM_SIMP_TAC[REAL_POW_LE; REAL_POW_1_LE; REAL_LT_IMP_LE];
      MATCH_MP_TAC REAL_LT_IMP_LE THEN
      FIRST_X_ASSUM(MP_TAC o SPECL [`N:num`; `(k - N:num) + 1`]) THEN
      SIMP_TAC[PSUM_SUM_NUMSEG; ADD_EQ_0; ARITH_EQ] THEN
      ASM_SIMP_TAC[ARITH_RULE `N <= k ==> (N + (k - N) + 1) - 1 = k`] THEN
      REWRITE_TAC[GE; LE_REFL; REAL_LT_IMP_LE]];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`N:num`; `N1 + N2:num`]) THEN
  REWRITE_TAC[GE; LE_REFL] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
   `abs((slo + shi) - s) < e / &6
    ==> ~(abs(slo - s) < e / &3) ==> ~(abs(shi) < e / &7)`)) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[REAL_SUB_LDISTRIB; SUM_SUB; REAL_MUL_RID]) THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
   `abs(s1 - sx) < e / &6
    ==> ~(abs(sx - s) < e / &2) ==> ~(abs(s1 - s) < e / &3)`)) THEN
  ASM_REAL_ARITH_TAC);;