Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,840 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
(* ========================================================================= *)
(* #26: Leibniz's series for pi *)
(* ========================================================================= *)
needs "Library/transc.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Summability of alternating series. *)
(* ------------------------------------------------------------------------- *)
let ALTERNATING_SUM_BOUNDS = prove
(`!a. (!n. a(2 * n + 1) <= &0 /\ &0 <= a(2 * n)) /\
(!n. abs(a(n + 1)) <= abs(a(n)))
==> !m n. (EVEN m ==> &0 <= sum(m,n) a /\ sum(m,n) a <= a(m)) /\
(ODD m ==> a(m) <= sum(m,n) a /\ sum(m,n) a <= &0)`,
GEN_TAC THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
INDUCT_TAC THEN REWRITE_TAC[ODD; EVEN] THENL
[SIMP_TAC[sum; ODD_EXISTS; EVEN_EXISTS; LEFT_IMP_EXISTS_THM; ADD1] THEN
ASM_SIMP_TAC[REAL_LE_REFL];
ALL_TAC] THEN
X_GEN_TAC `m:num` THEN
REWRITE_TAC[ARITH_RULE `SUC n = 1 + n`; GSYM SUM_SPLIT] THEN
FIRST_X_ASSUM(MP_TAC o check (is_conj o concl) o SPEC `SUC m`) THEN
REWRITE_TAC[ODD; EVEN; SUM_1] THEN REWRITE_TAC[ADD1; GSYM NOT_EVEN] THEN
UNDISCH_THEN `!n. abs(a(n + 1)) <= abs(a n)` (MP_TAC o SPEC `m:num`) THEN
ASM_CASES_TAC `EVEN m` THEN ASM_REWRITE_TAC[] THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN REAL_ARITH_TAC;
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EVEN]) THEN
REWRITE_TAC[ODD_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST_ALL_TAC) THEN
REWRITE_TAC[ADD1] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN REAL_ARITH_TAC]);;
let ALTERNATING_SUM_BOUND = prove
(`!a. (!n. a(2 * n + 1) <= &0 /\ &0 <= a(2 * n)) /\
(!n. abs(a(n + 1)) <= abs(a(n)))
==> !m n. abs(sum(m,n) a) <= abs(a m)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ALTERNATING_SUM_BOUNDS) THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
REWRITE_TAC[GSYM NOT_EVEN] THEN ASM_CASES_TAC `EVEN m` THEN
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let SUMMABLE_ALTERNATING = prove
(`!v. (!n. a(2 * n + 1) <= &0 /\ &0 <= a(2 * n)) /\
(!n. abs(a(n + 1)) <= abs(a(n))) /\ a tends_num_real &0
==> summable a`,
REPEAT STRIP_TAC THEN REWRITE_TAC[SER_CAUCHY] THEN
X_GEN_TAC `e:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:real` o GEN_REWRITE_RULE I [SEQ]) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN
REWRITE_TAC[REAL_SUB_RZERO] THEN
ASM_MESON_TAC[ALTERNATING_SUM_BOUND; REAL_LET_TRANS]);;
(* ------------------------------------------------------------------------- *)
(* Another version of the atan series. *)
(* ------------------------------------------------------------------------- *)
let REAL_ATN_POWSER_ALT = prove
(`!x. abs(x) < &1
==> (\n. (-- &1) pow n / &(2 * n + 1) * x pow (2 * n + 1))
sums (atn x)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_ATN_POWSER) THEN
FIRST_ASSUM(MP_TAC o C CONJ (ARITH_RULE `0 < 2`) o
MATCH_MP SUM_SUMMABLE) THEN
DISCH_THEN(MP_TAC o MATCH_MP SER_GROUP) THEN
FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP SUM_UNIQ) THEN
REWRITE_TAC[SUM_2; EVEN_MULT; EVEN_ADD; ARITH_EVEN; ADD_SUB] THEN
ONCE_REWRITE_TAC[ARITH_RULE `n * 2 = 2 * n`] THEN
SIMP_TAC[DIV_MULT; ARITH_EQ; REAL_MUL_LZERO; REAL_ADD_LID]);;
(* ------------------------------------------------------------------------- *)
(* Summability of the same series for x = 1. *)
(* ------------------------------------------------------------------------- *)
let SUMMABLE_LEIBNIZ = prove
(`summable (\n. (-- &1) pow n / &(2 * n + 1))`,
MATCH_MP_TAC SUMMABLE_ALTERNATING THEN
REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[REAL_POW_ADD; REAL_POW_MUL; GSYM REAL_POW_POW] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_POW_ONE; real_div; REAL_MUL_LID; REAL_MUL_LNEG] THEN
REWRITE_TAC[REAL_LE_LNEG; REAL_ADD_RID; REAL_LE_INV_EQ; REAL_POS];
GEN_TAC THEN REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NEG] THEN
REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; real_div; REAL_MUL_LID] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN
REWRITE_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_LE] THEN ARITH_TAC;
REWRITE_TAC[SEQ; REAL_SUB_RZERO; REAL_ABS_DIV; REAL_ABS_POW] THEN
REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM; REAL_POW_ONE] THEN
SIMP_TAC[REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH_RULE `0 < n + 1`] THEN
GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `&1` o MATCH_MP REAL_ARCH) THEN
MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[GE] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`&1 < x * e ==> e * x <= y ==> &1 < y`)) THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_OF_NUM_LE] THEN
ASM_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* The tricky sum-bounding lemma. *)
(* ------------------------------------------------------------------------- *)
let SUM_DIFFERENCES = prove
(`!a m n. m <= n + 1 ==> sum(m..n) (\i. a(i) - a(i+1)) = a(m) - a(n + 1)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THENL
[REWRITE_TAC[ARITH_RULE `m <= 0 + 1 <=> m = 0 \/ m = 1`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[SUM_SING_NUMSEG] THEN
ASM_SIMP_TAC[SUM_TRIV_NUMSEG; ARITH; REAL_SUB_REFL];
ALL_TAC] THEN
REWRITE_TAC[ARITH_RULE `m <= SUC n + 1 <=> m <= n + 1 \/ m = SUC n + 1`] THEN
STRIP_TAC THEN
ASM_SIMP_TAC[SUM_TRIV_NUMSEG; ARITH_RULE `n < n + 1`; REAL_SUB_REFL] THEN
ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG;
ARITH_RULE `m <= n + 1 ==> m <= SUC n /\ m <= SUC n + 1`] THEN
REWRITE_TAC[ADD1] THEN REAL_ARITH_TAC);;
let SUM_REARRANGE_LEMMA = prove
(`!a v m n.
m <= n + 1
==> sum(m..n+1) (\i. a i * v i) =
sum(m..n) (\k. sum(m..k) a * (v(k) - v(k+1))) +
sum(m..n+1) a * v(n+1)`,
REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THENL
[REWRITE_TAC[SUM_CLAUSES_NUMSEG; num_CONV `1`; ADD_CLAUSES] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[ARITH] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[ADD_CLAUSES; SUM_CLAUSES_NUMSEG] THEN
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN
ASM_CASES_TAC `m = SUC(n + 1)` THENL
[ASM_REWRITE_TAC[LE_SUC; ARITH_RULE `~(n + 1 <= n)`] THEN
ASM_SIMP_TAC[SUM_TRIV_NUMSEG; ARITH_RULE
`n < SUC n /\ n < SUC(n + 1)`] THEN
REAL_ARITH_TAC;
ALL_TAC] THEN
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[ARITH_RULE
`m <= SUC n <=> m <= SUC(n + 1) /\ ~(m = SUC(n + 1))`] THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM REAL_ADD_ASSOC; REAL_EQ_ADD_LCANCEL] THEN
REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_RDISTRIB; REAL_EQ_ADD_RCANCEL] THEN
REWRITE_TAC[GSYM ADD1; SUM_CLAUSES_NUMSEG] THEN
ASM_SIMP_TAC[ARITH_RULE
`m <= SUC(n + 1) /\ ~(m = SUC(n + 1)) ==> m <= SUC n`] THEN
REWRITE_TAC[REAL_ARITH
`(s1 * (v - w) + x) + (s2 + y) * w =
(x + y * w) + (v - w) * s1 + w * s2`] THEN
GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
SIMP_TAC[REAL_ADD_LDISTRIB; GSYM SUM_CMUL; GSYM SUM_ADD_NUMSEG] THEN
REWRITE_TAC[REAL_SUB_ADD; REAL_SUB_RDISTRIB] THEN REAL_ARITH_TAC);;
let SUM_BOUNDS_LEMMA = prove
(`!a v l u m n.
m <= n /\
(!i. m <= i /\ i <= n ==> &0 <= v(i) /\ v(i+1) <= v(i)) /\
(!k. m <= k /\ k <= n ==> l <= sum(m..k) a /\ sum(m..k) a <= u)
==> l * v(m) <= sum(m..n) (\i. a(i) * v(i)) /\
sum(m..n) (\i. a(i) * v(i)) <= u * v(m)`,
REPLICATE_TAC 5 GEN_TAC THEN INDUCT_TAC THENL
[REWRITE_TAC[LE; SUM_CLAUSES_NUMSEG] THEN
SIMP_TAC[ARITH_RULE `m <= i /\ i = 0 <=> m = 0 /\ i = 0`] THEN
REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[SUM_SING_NUMSEG] THEN
SIMP_TAC[REAL_LE_RMUL];
POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[ADD1]] THEN
SIMP_TAC[SUM_REARRANGE_LEMMA] THEN STRIP_TAC THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum(m..n) (\k. l * (v(k) - v(k + 1))) + l * v(n+1)` THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[SUM_LMUL; SUM_DIFFERENCES] THEN REAL_ARITH_TAC;
ALL_TAC];
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum(m..n) (\k. u * (v(k) - v(k + 1))) + u * v(n+1)` THEN
CONJ_TAC THENL
[ALL_TAC;
ASM_SIMP_TAC[SUM_LMUL; SUM_DIFFERENCES] THEN REAL_ARITH_TAC]] THEN
MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_SIMP_TAC[REAL_LE_RMUL; LE_REFL] THEN
MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN
REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
ASM_SIMP_TAC[REAL_SUB_LE; ARITH_RULE `k <= n ==> k <= n + 1`]);;
let SUM_BOUND_LEMMA = prove
(`!a v b m n.
m <= n /\
(!i. m <= i /\ i <= n ==> &0 <= v(i) /\ v(i+1) <= v(i)) /\
(!k. m <= k /\ k <= n ==> abs(sum(m..k) a) <= b)
==> abs(sum(m..n) (\i. a(i) * v(i))) <= b * abs(v m)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH
`--b * k <= a /\ a <= b * k ==> abs(a) <= b * k`) THEN
ASM_SIMP_TAC[LE_REFL; real_abs] THEN
MATCH_MP_TAC SUM_BOUNDS_LEMMA THEN
ASM_REWRITE_TAC[REAL_BOUNDS_LE]);;
(* ------------------------------------------------------------------------- *)
(* Hence the final theorem. *)
(* ------------------------------------------------------------------------- *)
let LEIBNIZ_PI = prove
(`(\n. (-- &1) pow n / &(2 * n + 1)) sums (pi / &4)`,
REWRITE_TAC[GSYM ATN_1] THEN
ASSUME_TAC(MATCH_MP SUMMABLE_SUM SUMMABLE_LEIBNIZ) THEN
ABBREV_TAC `s = suminf(\n. (-- &1) pow n / &(2 * n + 1))` THEN
SUBGOAL_THEN `s = atn(&1)` (fun th -> ASM_MESON_TAC[th]) THEN
MATCH_MP_TAC(REAL_ARITH `~(&0 < abs(x - y)) ==> x = y`) THEN
ABBREV_TAC `e = abs(s - atn(&1))` THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP SUM_SUMMABLE) THEN
REWRITE_TAC[SER_CAUCHY] THEN DISCH_THEN(MP_TAC o SPEC `e / &7`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN
`(\x. sum(0,N) (\n. (-- &1) pow n / &(2 * n + 1) * x pow (2 * n + 1)))
contl (&1)`
MP_TAC THENL
[MATCH_MP_TAC DIFF_CONT THEN EXISTS_TAC
`sum(0,N) (\n. (-- &1) pow n * &1 pow (2 * n))` THEN
MATCH_MP_TAC DIFF_SUM THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN
REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
MATCH_MP_TAC DIFF_CMUL THEN
MP_TAC(SPECL [`2 * k + 1`; `&1`] DIFF_POW) THEN
DISCH_THEN(MP_TAC o SPEC `inv(&(2 * k + 1))` o MATCH_MP DIFF_CMUL) THEN
MATCH_MP_TAC(TAUT `a = b ==> a ==> b`) THEN
REWRITE_TAC[ADD_SUB] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
REWRITE_TAC[REAL_POW_ONE] THEN CONV_TAC REAL_FIELD;
ALL_TAC] THEN
SUBGOAL_THEN `atn contl (&1)` MP_TAC THENL
[MESON_TAC[DIFF_CONT; DIFF_ATN]; ALL_TAC] THEN
REWRITE_TAC[CONTL_LIM; LIM] THEN
REWRITE_TAC[TAUT `a ==> ~b <=> ~(a /\ b)`; AND_FORALL_THM] THEN
DISCH_THEN(MP_TAC o SPEC `e / &6`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; GSYM SUM_SUB] THEN
ONCE_REWRITE_TAC[GSYM REAL_ABS_NEG] THEN
REWRITE_TAC[GSYM SUM_NEG; REAL_NEG_SUB; GSYM REAL_MUL_RNEG] THEN
REWRITE_TAC[REAL_POW_ONE; GSYM REAL_SUB_LDISTRIB] THEN DISCH_THEN
(CONJUNCTS_THEN2 (X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC)) THEN
ABBREV_TAC `x = &1 - min (min (d1 / &2) (d2 / &2)) (&1 / &2)` THEN
REPEAT(FIRST_X_ASSUM (MP_TAC o SPEC `x:real`) THEN ANTS_TAC THENL
[ASM_REAL_ARITH_TAC; DISCH_TAC]) THEN
SUBGOAL_THEN `&0 < x /\ x < &1 /\ abs x < &1` STRIP_ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP REAL_ATN_POWSER_ALT) THEN
REWRITE_TAC[sums; SEQ] THEN DISCH_THEN(MP_TAC o SPEC `e / &6`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_TAC `N1:num`) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [sums]) THEN
REWRITE_TAC[SEQ] THEN DISCH_THEN(MP_TAC o SPEC `e / &6`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `N + N1 + N2:num`) THEN
ANTS_TAC THENL [ARITH_TAC; ALL_TAC]) THEN
REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM SUM_SPLIT] THEN
REWRITE_TAC[ADD_CLAUSES] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`abs(sum(N,N1+N2) (\n. -- &1 pow n / &(2 * n + 1) * x pow (2 * n + 1)))
< e / &6`
ASSUME_TAC THENL
[ASM_CASES_TAC `N1 + N2 = 0` THENL
[ASM_SIMP_TAC[sum; REAL_LT_DIV; REAL_OF_NUM_LT; REAL_ABS_NUM; ARITH];
ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH `x <= e / &7 /\ &0 < e ==> x < e / &6`) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
`e / &7 * abs(x pow (2 * N + 1))` THEN
CONJ_TAC THENL
[ALL_TAC;
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM] THEN
MATCH_MP_TAC REAL_POW_1_LE THEN
MAP_EVERY UNDISCH_TAC [`&0 < x`; `x < &1`] THEN REAL_ARITH_TAC] THEN
ASM_SIMP_TAC[PSUM_SUM_NUMSEG] THEN MATCH_MP_TAC SUM_BOUND_LEMMA THEN
CONJ_TAC THENL [UNDISCH_TAC `~(N1 + N2 = 0)` THEN ARITH_TAC; ALL_TAC] THEN
REPEAT STRIP_TAC THENL
[ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_POW_LT];
REWRITE_TAC[ARITH_RULE `2 * (m + 1) + 1 = (2 * m + 1) + 2`] THEN
GEN_REWRITE_TAC LAND_CONV [REAL_POW_ADD] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN
ASM_SIMP_TAC[REAL_POW_LE; REAL_POW_1_LE; REAL_LT_IMP_LE];
MATCH_MP_TAC REAL_LT_IMP_LE THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`N:num`; `(k - N:num) + 1`]) THEN
SIMP_TAC[PSUM_SUM_NUMSEG; ADD_EQ_0; ARITH_EQ] THEN
ASM_SIMP_TAC[ARITH_RULE `N <= k ==> (N + (k - N) + 1) - 1 = k`] THEN
REWRITE_TAC[GE; LE_REFL; REAL_LT_IMP_LE]];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`N:num`; `N1 + N2:num`]) THEN
REWRITE_TAC[GE; LE_REFL] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`abs((slo + shi) - s) < e / &6
==> ~(abs(slo - s) < e / &3) ==> ~(abs(shi) < e / &7)`)) THEN
RULE_ASSUM_TAC(REWRITE_RULE[REAL_SUB_LDISTRIB; SUM_SUB; REAL_MUL_RID]) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`abs(s1 - sx) < e / &6
==> ~(abs(sx - s) < e / &2) ==> ~(abs(s1 - s) < e / &3)`)) THEN
ASM_REAL_ARITH_TAC);;
|