Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,659 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
(* ========================================================================= *)
(* Very trivial group theory, just to reach Lagrange theorem.                *)
(* NB: "Library/grouptheory.ml" has a more serious development of groups.    *)
(* ========================================================================= *)

loadt "Library/prime.ml";;

(* ------------------------------------------------------------------------- *)
(* Definition of what a group is.                                            *)
(* ------------------------------------------------------------------------- *)

let group = new_definition
  `group(g,( ** ),i,(e:A)) <=>
    (e IN g) /\ (!x. x IN g ==> i(x) IN g) /\
    (!x y. x IN g /\ y IN g ==> (x ** y) IN g) /\
    (!x y z. x IN g /\ y IN g /\ z IN g ==> (x ** (y ** z) = (x ** y) ** z)) /\
    (!x. x IN g ==> (x ** e = x) /\ (e ** x = x)) /\
    (!x. x IN g ==> (x ** i(x) = e) /\ (i(x) ** x = e))`;;

(* ------------------------------------------------------------------------- *)
(* Notion of a subgroup.                                                     *)
(* ------------------------------------------------------------------------- *)

let subgroup = new_definition
  `subgroup h (g,( ** ),i,(e:A)) <=> h SUBSET g /\ group(h,( ** ),i,e)`;;

(* ------------------------------------------------------------------------- *)
(* Lagrange theorem, introducing the coset representatives.                  *)
(* ------------------------------------------------------------------------- *)

let GROUP_LAGRANGE_COSETS = prove
 (`!g h ( ** ) i e.
        group (g,( ** ),i,e:A) /\ subgroup h (g,( ** ),i,e) /\ FINITE g
        ==> ?q. (CARD(g) = CARD(q) * CARD(h)) /\
                (!b. b IN g ==> ?a x. a IN q /\ x IN h /\ (b = a ** x))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[group; subgroup; SUBSET] THEN STRIP_TAC THEN
  ABBREV_TAC
   `coset = \a:A. {b:A | b IN g /\ (?x:A. x IN h /\ (b = a ** x))}` THEN
  SUBGOAL_THEN `!a:A. a IN g ==> a IN (coset a)` ASSUME_TAC THENL
   [GEN_TAC THEN DISCH_TAC THEN EXPAND_TAC "coset" THEN
    ASM_SIMP_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `FINITE(h:A->bool)` ASSUME_TAC THENL
   [ASM_MESON_TAC[FINITE_SUBSET; SUBSET]; ALL_TAC] THEN
  SUBGOAL_THEN `!a. FINITE((coset:A->A->bool) a)` ASSUME_TAC THENL
   [GEN_TAC THEN EXPAND_TAC "coset" THEN
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `g:A->bool` THEN
    ASM_SIMP_TAC[IN_ELIM_THM; SUBSET];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!a:A x:A y. a IN g /\ x IN g /\ y IN g /\ ((a ** x) :A = a ** y)
                ==> (x = y)`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    SUBGOAL_THEN `(e:A ** x:A):A = e ** y` (fun th -> ASM_MESON_TAC[th]) THEN
    SUBGOAL_THEN
     `((i(a):A ** a:A) ** x) = (i(a) ** a) ** y`
     (fun th -> ASM_MESON_TAC[th]) THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `!a:A. a IN g ==> (CARD(coset a :A->bool) = CARD(h:A->bool))`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    SUBGOAL_THEN
     `(coset:A->A->bool) (a:A) = IMAGE (\x. a ** x) (h:A->bool)`
    SUBST1_TAC THENL
     [EXPAND_TAC "coset" THEN
      REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; IN_ELIM_THM] THEN
      ASM_MESON_TAC[];
      ALL_TAC] THEN
    MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_REWRITE_TAC[] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `!x:A y. x IN g /\ y IN g ==> (i(x ** y) = i(y) ** i(x))`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    FIRST_ASSUM MATCH_MP_TAC THEN
    EXISTS_TAC `(x:A ** y:A) :A` THEN ASM_SIMP_TAC[] THEN
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `(x:A ** (y ** i(y))) ** i(x)` THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `!x:A. x IN g ==> (i(i(x)) = x)` ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    EXISTS_TAC `(i:A->A)(x)` THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!a b. a IN g /\ b IN g
          ==> ((coset:A->A->bool) a = coset b) \/
              ((coset a) INTER (coset b) = {})`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    ASM_CASES_TAC `((i:A->A)(b) ** a:A) IN (h:A->bool)` THENL
     [DISJ1_TAC THEN EXPAND_TAC "coset" THEN
      REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
      GEN_TAC THEN AP_TERM_TAC THEN
      SUBGOAL_THEN
       `!x:A. x IN h ==> (b ** (i(b) ** a:A) ** x = a ** x) /\
                         (a ** i(i(b) ** a) ** x = b ** x)`
       (fun th -> EQ_TAC THEN REPEAT STRIP_TAC THEN
          ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[th]) THEN
      ASM_SIMP_TAC[];
      ALL_TAC] THEN
    DISJ2_TAC THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTER] THEN
    X_GEN_TAC `x:A` THEN EXPAND_TAC "coset" THEN REWRITE_TAC[IN_ELIM_THM] THEN
    REWRITE_TAC[TAUT `(a /\ b) /\ (a /\ c) <=> a /\ b /\ c`] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC)
                               (X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC)) THEN
    SUBGOAL_THEN `(i(b:A) ** a ** y):A = i(b) ** b ** z` ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `(i(b:A) ** a:A ** y):A = e ** z` ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `(i(b:A) ** a:A ** y):A = z` ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `((i(b:A) ** a:A) ** y):A = z` ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `((i(b:A) ** a:A) ** y) ** i(y) = z ** i(y)` ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `(i(b:A) ** a:A) ** (y ** i(y)) = z ** i(y)` ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `(i(b:A) ** a:A) ** e = z ** i(y)` ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `(i(b:A) ** a:A):A = z ** i(y)` ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  EXISTS_TAC `{c:A | ?a:A. a IN g /\ (c = (@)(coset a))}` THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> b /\ a`) THEN CONJ_TAC THENL
   [X_GEN_TAC `b:A` THEN DISCH_TAC THEN
    EXISTS_TAC `(@)((coset:A->A->bool) b)` THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN CONJ_TAC THENL
     [REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `b:A` THEN
      ASM_REWRITE_TAC[];
      ALL_TAC] THEN
    SUBGOAL_THEN `(@)((coset:A->A->bool) b) IN (coset b)` MP_TAC THENL
     [REWRITE_TAC[IN] THEN MATCH_MP_TAC SELECT_AX THEN
      ASM_MESON_TAC[IN];
      ALL_TAC] THEN
    FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RATOR_CONV)
                         [SYM th]) THEN
    REWRITE_TAC[] THEN
    ABBREV_TAC `C = (@)((coset:A->A->bool) b)` THEN
    REWRITE_TAC[IN_ELIM_THM] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC
     (X_CHOOSE_THEN `c:A` STRIP_ASSUME_TAC)) THEN
    EXISTS_TAC `(i:A->A)(c)` THEN ASM_SIMP_TAC[] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  ABBREV_TAC `q = {c:A | ?a:A. a IN g /\ (c = (@)(coset a))}` THEN
  DISCH_TAC THEN
  SUBGOAL_THEN
   `!a:A b. a IN g /\ b IN g /\ a IN coset(b) ==> b IN coset(a)`
  ASSUME_TAC THENL
   [REPEAT GEN_TAC THEN EXPAND_TAC "coset" THEN
    REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN
    REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(X_CHOOSE_THEN `c:A` STRIP_ASSUME_TAC) THEN
    ASM_REWRITE_TAC[] THEN EXISTS_TAC `(i:A->A) c` THEN
    ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!a:A b c. a IN coset(b) /\ b IN coset(c) /\ c IN g ==> a IN coset(c)`
  ASSUME_TAC THENL
   [REPEAT GEN_TAC THEN EXPAND_TAC "coset" THEN
    REWRITE_TAC[IN_ELIM_THM] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `!a:A b:A. a IN coset(b) ==> a IN g` ASSUME_TAC THENL
   [EXPAND_TAC "coset" THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!a:A b. a IN coset(b) /\ b IN g ==> (coset a = coset b)`
  ASSUME_TAC THENL
   [REWRITE_TAC[EXTENSION] THEN
    MAP_EVERY UNDISCH_TAC
     [`!a:A b:A. a IN coset(b) ==> a IN g`;
      `!a:A b c. a IN coset(b) /\ b IN coset(c) /\ c IN g ==> a IN coset(c)`;
      `!a:A b. a IN g /\ b IN g /\ a IN coset(b) ==> b IN coset(a)`] THEN
    MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `!a:A. a IN g ==> (@)(coset a):A IN (coset a)` ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN UNDISCH_TAC `!a:A. a IN g ==> a IN coset a` THEN
    DISCH_THEN(MP_TAC o SPEC `a:A`) THEN
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN; SELECT_AX];
    ALL_TAC] THEN
  SUBGOAL_THEN `!a:A. a IN q ==> a IN g` ASSUME_TAC THENL
   [GEN_TAC THEN EXPAND_TAC "q" THEN REWRITE_TAC[IN_ELIM_THM] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!a:A x:A a' x'. a IN q /\ a' IN q /\ x IN h /\ x' IN h /\
                    ((a' ** x') :A = a ** x) ==> (a' = a) /\ (x' = x)`
  ASSUME_TAC THENL
   [REPEAT GEN_TAC THEN EXPAND_TAC "q" THEN REWRITE_TAC[IN_ELIM_THM] THEN
    MATCH_MP_TAC(TAUT `(c ==> a /\ b ==> d) ==> a /\ b /\ c ==> d`) THEN
    STRIP_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `a1:A` STRIP_ASSUME_TAC)
     (X_CHOOSE_THEN `a2:A` STRIP_ASSUME_TAC)) THEN
    SUBGOAL_THEN `a:A IN g /\ a' IN g` STRIP_ASSUME_TAC THENL
     [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    MATCH_MP_TAC(TAUT `(a ==> b) /\ a ==> a /\ b`) THEN
    CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN
     `((coset:A->A->bool) a1 = coset a) /\ (coset a2 = coset a')`
    MP_TAC THENL
     [CONJ_TAC THEN CONV_TAC SYM_CONV THEN FIRST_ASSUM MATCH_MP_TAC THEN
      ASM_SIMP_TAC[];
      ALL_TAC] THEN
    DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN
    ONCE_ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
    EXPAND_TAC "coset" THEN REWRITE_TAC[IN_ELIM_THM] THEN
    ASM_REWRITE_TAC[] THEN EXISTS_TAC `(x:A ** (i:A->A)(x')):A` THEN
    ASM_SIMP_TAC[] THEN UNDISCH_TAC `(a':A ** x':A):A = a ** x` THEN
    DISCH_THEN(MP_TAC o C AP_THM `(i:A->A) x'` o AP_TERM `(**):A->A->A`) THEN
    DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `g = IMAGE (\(a:A,x:A). (a ** x):A) {(a,x) | a IN q /\ x IN h}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
    REWRITE_TAC[EXISTS_PAIR_THM] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[PAIR_EQ] THEN
    REWRITE_TAC[CONJ_ASSOC; ONCE_REWRITE_RULE[CONJ_SYM] UNWIND_THM1] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `CARD {(a:A,x:A) | a IN q /\ x IN h}` THEN CONJ_TAC THENL
   [MATCH_MP_TAC CARD_IMAGE_INJ THEN CONJ_TAC THENL
     [REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
      CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
      REWRITE_TAC[PAIR_EQ] THEN REPEAT GEN_TAC THEN
      REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
      ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    MATCH_MP_TAC FINITE_PRODUCT THEN CONJ_TAC THEN
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `g:A->bool` THEN
    ASM_REWRITE_TAC[SUBSET];
    ALL_TAC] THEN
  MATCH_MP_TAC CARD_PRODUCT THEN CONJ_TAC THEN
  MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `g:A->bool` THEN
  ASM_REWRITE_TAC[SUBSET]);;

(* ------------------------------------------------------------------------- *)
(* Traditional statement is only part of this.                               *)
(* ------------------------------------------------------------------------- *)

let GROUP_LAGRANGE = prove
 (`!g h ( ** ) i e.
        group (g,( ** ),i,e:A) /\ subgroup h (g,( ** ),i,e) /\ FINITE g
        ==> (CARD h) divides (CARD g)`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_LAGRANGE_COSETS) THEN
  MESON_TAC[DIVIDES_LMUL; DIVIDES_REFL]);;