Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,659 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
(* ========================================================================= *)
(* Very trivial group theory, just to reach Lagrange theorem. *)
(* NB: "Library/grouptheory.ml" has a more serious development of groups. *)
(* ========================================================================= *)
loadt "Library/prime.ml";;
(* ------------------------------------------------------------------------- *)
(* Definition of what a group is. *)
(* ------------------------------------------------------------------------- *)
let group = new_definition
`group(g,( ** ),i,(e:A)) <=>
(e IN g) /\ (!x. x IN g ==> i(x) IN g) /\
(!x y. x IN g /\ y IN g ==> (x ** y) IN g) /\
(!x y z. x IN g /\ y IN g /\ z IN g ==> (x ** (y ** z) = (x ** y) ** z)) /\
(!x. x IN g ==> (x ** e = x) /\ (e ** x = x)) /\
(!x. x IN g ==> (x ** i(x) = e) /\ (i(x) ** x = e))`;;
(* ------------------------------------------------------------------------- *)
(* Notion of a subgroup. *)
(* ------------------------------------------------------------------------- *)
let subgroup = new_definition
`subgroup h (g,( ** ),i,(e:A)) <=> h SUBSET g /\ group(h,( ** ),i,e)`;;
(* ------------------------------------------------------------------------- *)
(* Lagrange theorem, introducing the coset representatives. *)
(* ------------------------------------------------------------------------- *)
let GROUP_LAGRANGE_COSETS = prove
(`!g h ( ** ) i e.
group (g,( ** ),i,e:A) /\ subgroup h (g,( ** ),i,e) /\ FINITE g
==> ?q. (CARD(g) = CARD(q) * CARD(h)) /\
(!b. b IN g ==> ?a x. a IN q /\ x IN h /\ (b = a ** x))`,
REPEAT GEN_TAC THEN REWRITE_TAC[group; subgroup; SUBSET] THEN STRIP_TAC THEN
ABBREV_TAC
`coset = \a:A. {b:A | b IN g /\ (?x:A. x IN h /\ (b = a ** x))}` THEN
SUBGOAL_THEN `!a:A. a IN g ==> a IN (coset a)` ASSUME_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN EXPAND_TAC "coset" THEN
ASM_SIMP_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `FINITE(h:A->bool)` ASSUME_TAC THENL
[ASM_MESON_TAC[FINITE_SUBSET; SUBSET]; ALL_TAC] THEN
SUBGOAL_THEN `!a. FINITE((coset:A->A->bool) a)` ASSUME_TAC THENL
[GEN_TAC THEN EXPAND_TAC "coset" THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `g:A->bool` THEN
ASM_SIMP_TAC[IN_ELIM_THM; SUBSET];
ALL_TAC] THEN
SUBGOAL_THEN
`!a:A x:A y. a IN g /\ x IN g /\ y IN g /\ ((a ** x) :A = a ** y)
==> (x = y)`
ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN
SUBGOAL_THEN `(e:A ** x:A):A = e ** y` (fun th -> ASM_MESON_TAC[th]) THEN
SUBGOAL_THEN
`((i(a):A ** a:A) ** x) = (i(a) ** a) ** y`
(fun th -> ASM_MESON_TAC[th]) THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!a:A. a IN g ==> (CARD(coset a :A->bool) = CARD(h:A->bool))`
ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(coset:A->A->bool) (a:A) = IMAGE (\x. a ** x) (h:A->bool)`
SUBST1_TAC THENL
[EXPAND_TAC "coset" THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; IN_ELIM_THM] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!x:A y. x IN g /\ y IN g ==> (i(x ** y) = i(y) ** i(x))`
ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `(x:A ** y:A) :A` THEN ASM_SIMP_TAC[] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `(x:A ** (y ** i(y))) ** i(x)` THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!x:A. x IN g ==> (i(i(x)) = x)` ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `(i:A->A)(x)` THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`!a b. a IN g /\ b IN g
==> ((coset:A->A->bool) a = coset b) \/
((coset a) INTER (coset b) = {})`
ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN
ASM_CASES_TAC `((i:A->A)(b) ** a:A) IN (h:A->bool)` THENL
[DISJ1_TAC THEN EXPAND_TAC "coset" THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
GEN_TAC THEN AP_TERM_TAC THEN
SUBGOAL_THEN
`!x:A. x IN h ==> (b ** (i(b) ** a:A) ** x = a ** x) /\
(a ** i(i(b) ** a) ** x = b ** x)`
(fun th -> EQ_TAC THEN REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[th]) THEN
ASM_SIMP_TAC[];
ALL_TAC] THEN
DISJ2_TAC THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTER] THEN
X_GEN_TAC `x:A` THEN EXPAND_TAC "coset" THEN REWRITE_TAC[IN_ELIM_THM] THEN
REWRITE_TAC[TAUT `(a /\ b) /\ (a /\ c) <=> a /\ b /\ c`] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC)) THEN
SUBGOAL_THEN `(i(b:A) ** a ** y):A = i(b) ** b ** z` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `(i(b:A) ** a:A ** y):A = e ** z` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `(i(b:A) ** a:A ** y):A = z` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `((i(b:A) ** a:A) ** y):A = z` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `((i(b:A) ** a:A) ** y) ** i(y) = z ** i(y)` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `(i(b:A) ** a:A) ** (y ** i(y)) = z ** i(y)` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `(i(b:A) ** a:A) ** e = z ** i(y)` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `(i(b:A) ** a:A):A = z ** i(y)` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
EXISTS_TAC `{c:A | ?a:A. a IN g /\ (c = (@)(coset a))}` THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> b /\ a`) THEN CONJ_TAC THENL
[X_GEN_TAC `b:A` THEN DISCH_TAC THEN
EXISTS_TAC `(@)((coset:A->A->bool) b)` THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN CONJ_TAC THENL
[REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `b:A` THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `(@)((coset:A->A->bool) b) IN (coset b)` MP_TAC THENL
[REWRITE_TAC[IN] THEN MATCH_MP_TAC SELECT_AX THEN
ASM_MESON_TAC[IN];
ALL_TAC] THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RATOR_CONV)
[SYM th]) THEN
REWRITE_TAC[] THEN
ABBREV_TAC `C = (@)((coset:A->A->bool) b)` THEN
REWRITE_TAC[IN_ELIM_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC
(X_CHOOSE_THEN `c:A` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `(i:A->A)(c)` THEN ASM_SIMP_TAC[] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
ABBREV_TAC `q = {c:A | ?a:A. a IN g /\ (c = (@)(coset a))}` THEN
DISCH_TAC THEN
SUBGOAL_THEN
`!a:A b. a IN g /\ b IN g /\ a IN coset(b) ==> b IN coset(a)`
ASSUME_TAC THENL
[REPEAT GEN_TAC THEN EXPAND_TAC "coset" THEN
REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(X_CHOOSE_THEN `c:A` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[] THEN EXISTS_TAC `(i:A->A) c` THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`!a:A b c. a IN coset(b) /\ b IN coset(c) /\ c IN g ==> a IN coset(c)`
ASSUME_TAC THENL
[REPEAT GEN_TAC THEN EXPAND_TAC "coset" THEN
REWRITE_TAC[IN_ELIM_THM] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!a:A b:A. a IN coset(b) ==> a IN g` ASSUME_TAC THENL
[EXPAND_TAC "coset" THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`!a:A b. a IN coset(b) /\ b IN g ==> (coset a = coset b)`
ASSUME_TAC THENL
[REWRITE_TAC[EXTENSION] THEN
MAP_EVERY UNDISCH_TAC
[`!a:A b:A. a IN coset(b) ==> a IN g`;
`!a:A b c. a IN coset(b) /\ b IN coset(c) /\ c IN g ==> a IN coset(c)`;
`!a:A b. a IN g /\ b IN g /\ a IN coset(b) ==> b IN coset(a)`] THEN
MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!a:A. a IN g ==> (@)(coset a):A IN (coset a)` ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN UNDISCH_TAC `!a:A. a IN g ==> a IN coset a` THEN
DISCH_THEN(MP_TAC o SPEC `a:A`) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN; SELECT_AX];
ALL_TAC] THEN
SUBGOAL_THEN `!a:A. a IN q ==> a IN g` ASSUME_TAC THENL
[GEN_TAC THEN EXPAND_TAC "q" THEN REWRITE_TAC[IN_ELIM_THM] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`!a:A x:A a' x'. a IN q /\ a' IN q /\ x IN h /\ x' IN h /\
((a' ** x') :A = a ** x) ==> (a' = a) /\ (x' = x)`
ASSUME_TAC THENL
[REPEAT GEN_TAC THEN EXPAND_TAC "q" THEN REWRITE_TAC[IN_ELIM_THM] THEN
MATCH_MP_TAC(TAUT `(c ==> a /\ b ==> d) ==> a /\ b /\ c ==> d`) THEN
STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `a1:A` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `a2:A` STRIP_ASSUME_TAC)) THEN
SUBGOAL_THEN `a:A IN g /\ a' IN g` STRIP_ASSUME_TAC THENL
[ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(TAUT `(a ==> b) /\ a ==> a /\ b`) THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`((coset:A->A->bool) a1 = coset a) /\ (coset a2 = coset a')`
MP_TAC THENL
[CONJ_TAC THEN CONV_TAC SYM_CONV THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[];
ALL_TAC] THEN
DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN
ONCE_ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
EXPAND_TAC "coset" THEN REWRITE_TAC[IN_ELIM_THM] THEN
ASM_REWRITE_TAC[] THEN EXISTS_TAC `(x:A ** (i:A->A)(x')):A` THEN
ASM_SIMP_TAC[] THEN UNDISCH_TAC `(a':A ** x':A):A = a ** x` THEN
DISCH_THEN(MP_TAC o C AP_THM `(i:A->A) x'` o AP_TERM `(**):A->A->A`) THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `g = IMAGE (\(a:A,x:A). (a ** x):A) {(a,x) | a IN q /\ x IN h}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
REWRITE_TAC[EXISTS_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[PAIR_EQ] THEN
REWRITE_TAC[CONJ_ASSOC; ONCE_REWRITE_RULE[CONJ_SYM] UNWIND_THM1] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `CARD {(a:A,x:A) | a IN q /\ x IN h}` THEN CONJ_TAC THENL
[MATCH_MP_TAC CARD_IMAGE_INJ THEN CONJ_TAC THENL
[REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[PAIR_EQ] THEN REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC FINITE_PRODUCT THEN CONJ_TAC THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `g:A->bool` THEN
ASM_REWRITE_TAC[SUBSET];
ALL_TAC] THEN
MATCH_MP_TAC CARD_PRODUCT THEN CONJ_TAC THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `g:A->bool` THEN
ASM_REWRITE_TAC[SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* Traditional statement is only part of this. *)
(* ------------------------------------------------------------------------- *)
let GROUP_LAGRANGE = prove
(`!g h ( ** ) i e.
group (g,( ** ),i,e:A) /\ subgroup h (g,( ** ),i,e) /\ FINITE g
==> (CARD h) divides (CARD g)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_LAGRANGE_COSETS) THEN
MESON_TAC[DIVIDES_LMUL; DIVIDES_REFL]);;
|