Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 37,338 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
(* ========================================================================= *)
(* The friendship theorem.                                                   *)
(*                                                                           *)
(* Proof from "Combinatorics Tutorial 2: Friendship Theorem", copyright      *)
(* MathOlymp.com, 2001. Apparently due to J. Q. Longyear and T. D. Parsons.  *)
(* ========================================================================= *)

needs "Library/prime.ml";;
needs "Library/pocklington.ml";;

(* ------------------------------------------------------------------------- *)
(* Useful inductive breakdown principle ending at gcd.                       *)
(* ------------------------------------------------------------------------- *)

let GCD_INDUCT = prove
 (`!P. (!m n. P m /\ P (m + n) ==> P n)
       ==> !m n. P m /\ P n ==> P (gcd(m,n))`,
  GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN
  WF_INDUCT_TAC `m + n:num` THEN REPEAT(POP_ASSUM MP_TAC) THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`n:num`; `m:num`] THEN
  MATCH_MP_TAC WLOG_LE THEN CONJ_TAC THENL
   [REWRITE_TAC[CONJ_ACI; GCD_SYM; ADD_SYM]; REPEAT STRIP_TAC] THEN
  ASM_CASES_TAC `m = 0` THENL [ASM_MESON_TAC[GCD_0]; ALL_TAC] THEN
  UNDISCH_TAC `!m n:num. P m /\ P (m + n) ==> P n` THEN
  DISCH_THEN(MP_TAC o SPECL [`m:num`; `n - m:num`]) THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_SIMP_TAC[SUB_ADD; LT_IMP_LE] THEN
  DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`m:num`; `n - m:num`]) THEN
  REWRITE_TAC[IMP_IMP] THEN ANTS_TAC THENL
   [ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN
  REWRITE_TAC[ADD_SUB2; GCD_ADD]);;

(* ------------------------------------------------------------------------- *)
(* General theorems about loops in a sequence.                               *)
(* ------------------------------------------------------------------------- *)

let LOOP_GCD = prove
 (`!x m n. (!i. x(i + m) = x(i)) /\ (!i. x(i + n) = x(i))
           ==> !i. x(i + gcd(m,n)) = x(i)`,
  GEN_TAC THEN MATCH_MP_TAC GCD_INDUCT THEN MESON_TAC[ADD_AC]);;

let LOOP_COPRIME = prove
 (`!x m n. (!i. x(i + m) = x(i)) /\ (!i. x(i + n) = x(i)) /\ coprime(m,n)
           ==> !i. x i = x 0`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN REWRITE_TAC[ADD1] THEN
  ASM_MESON_TAC[LOOP_GCD; COPRIME_GCD]);;

(* ------------------------------------------------------------------------- *)
(* General theorem about partition into equally-sized eqv classes.           *)
(* ------------------------------------------------------------------------- *)

let EQUIVALENCE_UNIFORM_PARTITION = prove
 (`!R s k. FINITE s /\
           (!x. x IN s ==> R x x) /\
           (!x y. R x y ==> R y x) /\
           (!x y z. R x y /\ R y z ==> R x z) /\
           (!x:A. x IN s ==> CARD {y | y IN s /\ R x y} = k)
           ==> k divides (CARD s)`,
  REPEAT GEN_TAC THEN
  WF_INDUCT_TAC `CARD(s:A->bool)` THEN
  ASM_CASES_TAC `s:A->bool = {}` THENL
   [ASM_MESON_TAC[CARD_CLAUSES; DIVIDES_0]; REPEAT STRIP_TAC] THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
  DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `{y:A | y IN s /\ ~(R (a:A) y)}`) THEN
  REWRITE_TAC[IMP_IMP] THEN ANTS_TAC THENL
   [ASM_SIMP_TAC[IN_ELIM_THM; FINITE_RESTRICT] THEN ASM_REWRITE_TAC[] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC CARD_PSUBSET THEN
      ASM_SIMP_TAC[PSUBSET; SUBSET; EXTENSION; IN_ELIM_THM] THEN
      ASM_MESON_TAC[];
      GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN
      DISCH_THEN(CONJUNCTS_THEN2 (ANTE_RES_THEN MP_TAC) ASSUME_TAC) THEN
      DISCH_TAC THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
      AP_TERM_TAC THEN ASM SET_TAC[]];
    ALL_TAC] THEN
  DISCH_TAC THEN
  SUBGOAL_THEN `CARD(s) = CARD {y | y IN s /\ (R:A->A->bool) a y} +
                          CARD {y | y IN s /\ ~(R a y)}`
   (fun th -> ASM_SIMP_TAC[th; DIVIDES_ADD; DIVIDES_REFL]) THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_UNION_EQ THEN ASM SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* With explicit restricted quantification.                                  *)
(* ------------------------------------------------------------------------- *)

let EQUIVALENCE_UNIFORM_PARTITION_RESTRICT = prove
 (`!R s k. FINITE s /\
           (!x. x IN s ==> R x x) /\
           (!x y. x IN s /\ y IN s /\ R x y ==> R y x) /\
           (!x y z. x IN s /\ y IN s /\ z IN s /\ R x y /\ R y z ==> R x z) /\
           (!x:A. x IN s ==> CARD {y | y IN s /\ R x y} = k)
           ==> k divides (CARD s)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EQUIVALENCE_UNIFORM_PARTITION THEN
  EXISTS_TAC `\x y:A. x IN s /\ y IN s /\ R x y` THEN
  SIMP_TAC[] THEN ASM_REWRITE_TAC[CONJ_ASSOC] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* General theorem about pairing up elements of a set.                       *)
(* ------------------------------------------------------------------------- *)

let ELEMENTS_PAIR_UP = prove
 (`!s r. FINITE s /\
         (!x. x IN s ==> ~(r x x)) /\
         (!x y. x IN s /\ y IN s /\ r x y ==> r y x) /\
         (!x:A. x IN s ==> ?!y. y IN s /\ r x y)
         ==> EVEN(CARD s)`,
  REPEAT GEN_TAC THEN WF_INDUCT_TAC `CARD(s:A->bool)` THEN
  STRIP_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THEN
  ASM_REWRITE_TAC[CARD_CLAUSES; ARITH] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
  DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN
  MP_TAC(ASSUME `!x:A. x IN s ==> (?!y:A. y IN s /\ r x y)`) THEN
  DISCH_THEN(MP_TAC o SPEC `a:A`) THEN REWRITE_TAC[ASSUME `a:A IN s`] THEN
  DISCH_THEN(MP_TAC o EXISTENCE) THEN
  DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `s DELETE (a:A) DELETE b`) THEN
  REWRITE_TAC[IMP_IMP] THEN ANTS_TAC THENL
   [ALL_TAC;
    DISCH_TAC THEN
    SUBGOAL_THEN `s = (a:A) INSERT b INSERT (s DELETE a DELETE b)`
    SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
    ASM_SIMP_TAC[CARD_CLAUSES; FINITE_DELETE; FINITE_INSERT] THEN
    REWRITE_TAC[IN_INSERT; IN_DELETE] THEN ASM_MESON_TAC[EVEN]] THEN
  ASM_SIMP_TAC[FINITE_DELETE; IN_DELETE] THEN CONJ_TAC THENL
   [MATCH_MP_TAC CARD_PSUBSET THEN ASM SET_TAC[]; ALL_TAC] THEN
  X_GEN_TAC `x:A` THEN STRIP_TAC THEN
  MP_TAC(ASSUME `!x:A. x IN s ==> (?!y. y IN s /\ r x y)`) THEN
  DISCH_THEN(MP_TAC o SPEC `x:A`) THEN REWRITE_TAC[ASSUME `x:A IN s`] THEN
  MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN
  X_GEN_TAC `y:A` THEN EQ_TAC THEN SIMP_TAC[] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Cycles and paths.                                                         *)
(* ------------------------------------------------------------------------- *)

let cycle = new_definition
 `cycle r k x <=> (!i. r (x i) (x(i + 1))) /\ (!i. x(i + k) = x(i))`;;

let path = new_definition
 `path r k x <=> (!i. i < k ==> r (x i) (x(i + 1))) /\
                 (!i. k < i ==> x(i) = @x. T)`;;

(* ------------------------------------------------------------------------- *)
(* Lemmas about these concepts.                                              *)
(* ------------------------------------------------------------------------- *)

let CYCLE_OFFSET = prove
 (`!r k x:num->A. cycle r k x ==> !i m. x(m * k + i) = x(i)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[cycle] THEN STRIP_TAC THEN GEN_TAC THEN
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN
  ASM_MESON_TAC[ADD_AC]);;

let CYCLE_MOD = prove
 (`!r k x:num->A. cycle r k x /\ ~(k = 0) ==> !i. x(i MOD k) = x(i)`,
  MESON_TAC[CYCLE_OFFSET; DIVISION]);;

let PATHS_MONO = prove
 (`(!x y. r x y ==> s x y) ==> {x | path r k x} SUBSET {x | path s k x}`,
  REWRITE_TAC[path; IN_ELIM_THM; SUBSET] THEN MESON_TAC[]);;

let HAS_SIZE_PATHS = prove
 (`!N m r k. (:A) HAS_SIZE N /\ (!x. {y | r x y} HAS_SIZE m)
             ==> {x:num->A | path r k x} HAS_SIZE (N * m EXP k)`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
  INDUCT_TAC THEN REWRITE_TAC[EXP; MULT_CLAUSES] THENL
   [SUBGOAL_THEN `{x:num->A | path r 0 x} =
                  IMAGE (\a i. if i = 0 then a else @x. T) (:A)`
    SUBST1_TAC THENL
     [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; IN_UNIV; path; LT] THEN
      REWRITE_TAC[FUN_EQ_THM; LT_NZ] THEN MESON_TAC[];
      ALL_TAC] THEN
    MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN ASM_REWRITE_TAC[IN_UNIV] THEN
    REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `{x:num->A | path r (SUC k) x} =
    IMAGE (\(x,a) i. if i = SUC k then a else x i)
          {x,a | x IN {x | path r k x} /\ a IN {u | r (x k) u}}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; EXISTS_PAIR_THM] THEN
    X_GEN_TAC `x:num->A` THEN REWRITE_TAC[PAIR_EQ] THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
    REWRITE_TAC[FUN_EQ_THM; path; LT] THEN EQ_TAC THENL
     [STRIP_TAC THEN EXISTS_TAC `\i. if i = SUC k then @x. T else x(i):A` THEN
      EXISTS_TAC `x(SUC k):A` THEN SIMP_TAC[] THEN
      CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
      SIMP_TAC[ARITH_RULE `~(k = SUC k) /\ (i < k ==> ~(i = SUC k))`] THEN
      ASM_SIMP_TAC[ADD1; ARITH_RULE `i < k ==> ~(i + 1 = SUC k)`] THEN
      ASM_MESON_TAC[ARITH_RULE `k < i /\ ~(i = k + 1) ==> SUC k < i`];
      ALL_TAC] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`z:num->A`; `a:A`] THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[] THEN
    SIMP_TAC[ARITH_RULE `i = k \/ i < k ==> ~(i = SUC k)`] THEN
    REWRITE_TAC[ARITH_RULE `i + 1 = SUC k <=> i = k`] THEN
    ASM_MESON_TAC[ARITH_RULE `SUC k < i ==> ~(i = SUC k) /\ k < i`];
    ALL_TAC] THEN
  ONCE_REWRITE_TAC[ARITH_RULE `N * m * m EXP k = (N * m EXP k) * m`] THEN
  MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
   [REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_ELIM_THM] THEN
    REWRITE_TAC[FUN_EQ_THM; path; PAIR_EQ] THEN REPEAT GEN_TAC THEN
    STRIP_TAC THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
    X_GEN_TAC `i:num` THEN ASM_CASES_TAC `i = SUC k` THEN
    ASM_MESON_TAC[ARITH_RULE `k < SUC k`];
    ALL_TAC] THEN
  ASM_SIMP_TAC[HAS_SIZE_PRODUCT_DEPENDENT]);;

let FINITE_PATHS = prove
 (`!r k. FINITE(:A) ==> FINITE {x:num->A | path r k x}`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `{x:num->A | path (\a b. T) k x}` THEN SIMP_TAC[PATHS_MONO] THEN
  MP_TAC(ISPECL [`CARD(:A)`; `CARD(:A)`; `\a:A b:A. T`; `k:num`]
                HAS_SIZE_PATHS) THEN
  ANTS_TAC THEN ASM_SIMP_TAC[HAS_SIZE; SET_RULE `{y | T} = (:A)`]);;

let HAS_SIZE_CYCLES = prove
 (`!r k. FINITE(:A) /\ ~(k = 0)
         ==> {x:num->A | cycle r k x} HAS_SIZE
             CARD{x:num->A | path r k x /\ x(k) = x(0)}`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `{x:num->A | cycle r k x} =
    IMAGE (\x i. x(i MOD k)) {x | path r k x /\ x(k) = x(0)}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
    X_GEN_TAC `x:num->A` THEN EQ_TAC THENL
     [DISCH_TAC THEN
      EXISTS_TAC `\i. if i <= k then x(i):A else @x. T` THEN
      REPEAT CONJ_TAC THENL
       [ASM_SIMP_TAC[FUN_EQ_THM; LT_IMP_LE; DIVISION] THEN
        ASM_MESON_TAC[CYCLE_MOD];
        SIMP_TAC[path; LT_IMP_LE] THEN REWRITE_TAC[GSYM NOT_LT] THEN
        SIMP_TAC[ARITH_RULE `i < k ==> ~(k < i + 1)`] THEN
        ASM_MESON_TAC[cycle];
        REWRITE_TAC[LE_0; LE_REFL] THEN ASM_MESON_TAC[cycle; ADD_CLAUSES]];
      REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
      X_GEN_TAC `y:num->A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[cycle] THEN CONJ_TAC THEN X_GEN_TAC `i:num` THENL
       [ALL_TAC;
        AP_TERM_TAC THEN MATCH_MP_TAC MOD_EQ THEN EXISTS_TAC `1` THEN
        REWRITE_TAC[MULT_CLAUSES]] THEN
      SUBGOAL_THEN `y((i + 1) MOD k):A = y(i MOD k + 1)` SUBST1_TAC THENL
       [ALL_TAC; ASM_MESON_TAC[path; DIVISION]] THEN
      SUBGOAL_THEN `(i + 1) MOD k = (i MOD k + 1) MOD k` SUBST1_TAC THENL
       [MATCH_MP_TAC MOD_EQ THEN EXISTS_TAC `i DIV k` THEN
        REWRITE_TAC[ARITH_RULE `i + 1 = (m + 1) + ik <=> i = ik + m`] THEN
        ASM_MESON_TAC[DIVISION];
        ALL_TAC] THEN
      FIRST_ASSUM(MP_TAC o CONJUNCT2 o SPEC `i:num` o MATCH_MP DIVISION) THEN
      SPEC_TAC(`i MOD k`,`j:num`) THEN GEN_TAC THEN
      ONCE_REWRITE_TAC[ARITH_RULE `j < k <=> j + 1 < k \/ j + 1 = k`] THEN
      STRIP_TAC THEN ASM_SIMP_TAC[MOD_LT] THEN AP_TERM_TAC THEN
      MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `1` THEN
      UNDISCH_TAC `~(k = 0)` THEN ARITH_TAC];
    ALL_TAC] THEN
  MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[HAS_SIZE] THEN MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC `{x:num->A | path r k x}` THEN
    ASM_SIMP_TAC[FINITE_PATHS] THEN SET_TAC[]] THEN
  MAP_EVERY X_GEN_TAC [`x:num->A`; `y:num->A`] THEN SIMP_TAC[IN_ELIM_THM] THEN
  REWRITE_TAC[path; FUN_EQ_THM] THEN STRIP_TAC THEN X_GEN_TAC `i:num` THEN
  REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
   (SPECL [`i:num`; `k:num`] LT_CASES)
  THENL [ASM_MESON_TAC[MOD_LT]; ASM_MESON_TAC[]; ASM_REWRITE_TAC[]] THEN
  ASM_MESON_TAC[MOD_0]);;

let FINITE_CYCLES = prove
 (`!r k. FINITE(:A) /\ ~(k = 0) ==> FINITE {x:num->A | cycle r k x}`,
  MESON_TAC[HAS_SIZE_CYCLES; HAS_SIZE]);;

let CARD_PATHCYCLES_STEP = prove
 (`!N m r k.
     (:A) HAS_SIZE N /\ ~(k = 0) /\ ~(m = 0) /\
     (!x:A. {y | r x y} HAS_SIZE m) /\
     (!x y. r x y ==> r y x) /\
     (!x y. ~(x = y) ==> ?!z. r x z /\ r z y)
     ==> {x | path r (k + 2) x /\ x(k + 2) = x(0)} HAS_SIZE
         (m * CARD {x | path r k x /\ x(k) = x(0)} +
          CARD {x | path r (k) x /\ ~(x(k) = x(0))})`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[SET_RULE
   `{x | path r (k + 2) x /\ x(k + 2) = x(0)} =
    {x | path r (k + 2) x /\ x k = x 0 /\ x(k + 2) = x(0)} UNION
    {x | path r (k + 2) x /\ ~(x k = x 0) /\ x(k + 2) = x(0)}`] THEN
  MATCH_MP_TAC HAS_SIZE_UNION THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN
  CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN CONJ_TAC THENL
   [SUBGOAL_THEN
     `{x:num->A | path r (k + 2) x /\ x k = x 0 /\ x (k + 2) = x 0} =
      IMAGE (\(x,a) i. if i = k + 1 then a
                     else if i = k + 2 then x(0)
                     else x(i))
            {x,a | x IN {x | path r k x /\ x(k) = x(0)} /\
                   a IN {u | r (x k) u}}`
    SUBST1_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
       [REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
        REWRITE_TAC[IN_ELIM_THM; FUN_EQ_THM; PAIR_EQ] THEN
        MAP_EVERY X_GEN_TAC [`y:num->A`; `a:A`; `z:num->A`; `b:A`] THEN
        DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th THENL
         [ALL_TAC; MESON_TAC[]]) THEN
        REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
        DISCH_THEN(fun th -> X_GEN_TAC `i:num` THEN MP_TAC th) THEN
        DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(SPEC `0` th)) THEN
        REWRITE_TAC[ARITH_RULE `~(0 = k + 1) /\ ~(0 = k + 2)`] THEN
        DISCH_TAC THEN ASM_CASES_TAC `k:num < i` THENL
         [ASM_MESON_TAC[path]; ALL_TAC] THEN
        DISCH_THEN(MP_TAC o SPEC `i:num`) THEN
        ASM_MESON_TAC[ARITH_RULE `k < k + 1 /\ k < k + 2`];
        ALL_TAC] THEN
      ONCE_REWRITE_TAC[MULT_SYM] THEN
      MATCH_MP_TAC HAS_SIZE_PRODUCT_DEPENDENT THEN
      ASM_REWRITE_TAC[] THEN REWRITE_TAC[HAS_SIZE] THEN
      MATCH_MP_TAC FINITE_SUBSET THEN
      EXISTS_TAC `{x:num->A | path r k x}` THEN CONJ_TAC THENL
       [ALL_TAC; SET_TAC[]] THEN
      ASM_MESON_TAC[HAS_SIZE; FINITE_PATHS]] THEN
    REWRITE_TAC[EXTENSION; IN_IMAGE] THEN
    REWRITE_TAC[EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN
    REWRITE_TAC[FUN_EQ_THM; IN_ELIM_THM] THEN
    X_GEN_TAC `x:num->A` THEN EQ_TAC THENL
     [STRIP_TAC THEN
      EXISTS_TAC `\i. if i <= k then x(i):A else @x. T` THEN
      EXISTS_TAC `(x:num->A) (k + 1)` THEN
      REWRITE_TAC[IN_ELIM_THM; LE_REFL; LE_0] THEN
      ASM_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL
       [ALL_TAC; ASM_MESON_TAC[path; ARITH_RULE `k < k + 2`]] THEN
      CONJ_TAC THENL
       [ALL_TAC;
        UNDISCH_TAC `path r (k + 2) (x:num->A)` THEN
        SIMP_TAC[path; LT_IMP_LE; ARITH_RULE `i < k ==> i + 1 <= k`] THEN
        SIMP_TAC[GSYM NOT_LT] THEN
        MESON_TAC[ARITH_RULE `i < k ==> i < k + 2`]] THEN
      X_GEN_TAC `i:num` THEN
      ASM_CASES_TAC `i = k + 1` THEN ASM_REWRITE_TAC[] THEN
      ASM_CASES_TAC `i = k + 2` THEN ASM_REWRITE_TAC[] THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [path]) THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(MP_TAC o SPEC `i:num` o CONJUNCT2) THEN
      ASM_REWRITE_TAC[ARITH_RULE
       `k + 2 < i <=> ~(i <= k) /\ ~(i = k + 1) /\ ~(i = k + 2)`];
      ALL_TAC] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`z:num->A`; `b:A`] THEN
    DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
    DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(SPEC `0` th)) THEN
    REWRITE_TAC[COND_ID; ARITH_RULE `~(0 = k + 1)`] THEN DISCH_TAC THEN
    REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(LABEL_TAC "*") THEN CONJ_TAC THENL
     [ALL_TAC; REMOVE_THEN "*" (MP_TAC o SPEC `k + 2`) THEN
      ASM_REWRITE_TAC[ARITH_RULE `~(k + 2 = k + 1)`]] THEN
    CONJ_TAC THENL
     [ALL_TAC; REMOVE_THEN "*" (MP_TAC o SPEC `k:num`) THEN
      ASM_REWRITE_TAC[ARITH_RULE `~(k = k + 2) /\ ~(k = k + 1)`]] THEN
    UNDISCH_TAC `path r k (z:num->A)` THEN ASM_REWRITE_TAC[path] THEN
    SIMP_TAC[ARITH_RULE
     `k + 2 < i ==> k < i /\ ~(i = k + 1) /\ ~(i = k + 2)`] THEN
    STRIP_TAC THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN
    ASM_SIMP_TAC[ARITH_RULE `i < k + 2 ==> ~(i = k + 2)`] THEN
    REWRITE_TAC[ARITH_RULE `i + 1 = k + 2 <=> i = k + 1`] THEN
    ASM_CASES_TAC `i = k + 1` THEN ASM_REWRITE_TAC[] THENL
     [ASM_MESON_TAC[ARITH_RULE `~(x + 1 = x)`]; ALL_TAC] THEN
    REWRITE_TAC[EQ_ADD_RCANCEL] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_MESON_TAC[ARITH_RULE `i < k + 2 /\ ~(i = k) /\ ~(i = k + 1)
                              ==> i < k`];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `{x:num->A | path r (k + 2) x /\ ~(x k = x 0) /\ x (k + 2) = x 0} =
    IMAGE (\x i. if i = k + 1 then @z. r (x k) z /\ r z (x 0)
               else if i = k + 2 then x(0)
               else x(i))
        {x | path r k x /\ ~(x(k) = x(0))}`
  SUBST1_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
     [ALL_TAC;
      REWRITE_TAC[HAS_SIZE] THEN
      MATCH_MP_TAC FINITE_SUBSET THEN
      EXISTS_TAC `{x:num->A | path r k x}` THEN CONJ_TAC THENL
       [ALL_TAC; SET_TAC[]] THEN
      ASM_MESON_TAC[HAS_SIZE; FINITE_PATHS]] THEN
    MAP_EVERY X_GEN_TAC [`x:num->A`; `y:num->A`] THEN
    REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
    REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `i:num` THEN
    ASM_CASES_TAC `k:num < i` THENL
     [ASM_MESON_TAC[path]; ALL_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN
    DISCH_THEN(MP_TAC o SPEC `i:num`) THEN
    ASM_MESON_TAC[ARITH_RULE `k < k + 1 /\ k < k + 2`]] THEN
  REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
  X_GEN_TAC `x:num->A` THEN REWRITE_TAC[IN_ELIM_THM] THEN EQ_TAC THENL
   [STRIP_TAC THEN
    EXISTS_TAC `\i. if i <= k then x(i):A else @x. T` THEN
    ASM_REWRITE_TAC[LE_REFL; LE_0] THEN CONJ_TAC THENL
     [ALL_TAC;
      UNDISCH_TAC `path r (k + 2) (x:num->A)` THEN
      SIMP_TAC[path; LT_IMP_LE; ARITH_RULE `i < k ==> i + 1 <= k`] THEN
      SIMP_TAC[GSYM NOT_LT] THEN
      MESON_TAC[ARITH_RULE `i < k ==> i < k + 2`]] THEN
    REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `i:num` THEN
    ASM_CASES_TAC `i = k + 1` THEN ASM_REWRITE_TAC[] THENL
     [CONV_TAC SYM_CONV THEN MATCH_MP_TAC SELECT_UNIQUE THEN
      UNDISCH_TAC `path r (k + 2) (x:num->A)` THEN REWRITE_TAC[path] THEN
      DISCH_THEN(MP_TAC o CONJUNCT1) THEN
      DISCH_THEN(fun th -> MP_TAC(SPEC `k:num` th) THEN
                           MP_TAC(SPEC `k + 1` th)) THEN
      REWRITE_TAC[ARITH_RULE `k < k + 2 /\ k + 1 < k + 2`] THEN
      REWRITE_TAC[GSYM ADD_ASSOC; ARITH] THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    ASM_CASES_TAC `i = k + 2` THEN ASM_REWRITE_TAC[] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    UNDISCH_TAC `path r (k + 2) (x:num->A)` THEN REWRITE_TAC[path] THEN
    DISCH_THEN(MP_TAC o CONJUNCT2) THEN
    ASM_MESON_TAC[ARITH_RULE `~(i <= k) /\ ~(i = k + 1) /\ ~(i = k + 2)
                              ==> k + 2 < i`];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `y:num->A` STRIP_ASSUME_TAC) THEN
  ASM_REWRITE_TAC[ARITH_RULE
   `~(k + 2 = k + 1) /\ ~(0 = k + 1) /\ ~(0 = k + 2) /\ ~(k = k + 1) /\
    ~(k = k + 2)`] THEN
  REWRITE_TAC[path] THEN CONJ_TAC THEN X_GEN_TAC `i:num` THEN DISCH_TAC THENL
   [REWRITE_TAC[ARITH_RULE `i + 1 = k + 2 <=> i = k + 1`] THEN
    ASM_CASES_TAC `i = k + 1` THEN ASM_REWRITE_TAC[] THENL
     [REWRITE_TAC[ARITH_RULE `(k + 1) + 1 = k + 1 <=> F`] THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    ASM_SIMP_TAC[ARITH_RULE `i < k + 2 ==> ~(i = k + 2)`] THEN
    REWRITE_TAC[EQ_ADD_RCANCEL] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    UNDISCH_TAC `path r k (y:num->A)` THEN REWRITE_TAC[path] THEN
    DISCH_THEN(MATCH_MP_TAC o CONJUNCT1) THEN
    MAP_EVERY UNDISCH_TAC [`~(i:num = k)`; `~(i = k + 1)`; `i < k + 2`] THEN
    ARITH_TAC;
    ALL_TAC] THEN
  ASM_SIMP_TAC[ARITH_RULE `k + 2 < i ==> ~(i = k + 1) /\ ~(i = k + 2)`] THEN
  ASM_MESON_TAC[path; ARITH_RULE `k + 2 < i ==> k < i`]);;

(* ------------------------------------------------------------------------- *)
(* The first lemma about the number of cycles.                               *)
(* ------------------------------------------------------------------------- *)

let shiftable = new_definition
 `shiftable x y <=> ?k. !i. x(i) = y(i + k)`;;

let SHIFTABLE_REFL = prove
 (`!x. shiftable x x`,
  REWRITE_TAC[shiftable] THEN MESON_TAC[ADD_CLAUSES]);;

let SHIFTABLE_TRANS = prove
 (`!x y z. shiftable x y /\ shiftable y z ==> shiftable x z`,
  REWRITE_TAC[shiftable] THEN MESON_TAC[ADD_ASSOC]);;

let SHIFTABLE_LOCAL = prove
 (`!x y p r. cycle r p x /\ cycle r p y /\ ~(p = 0)
             ==> (shiftable x y <=> ?k. k < p /\ !i. x(i) = y(i + k))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[shiftable] THEN
  EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
  DISCH_THEN(X_CHOOSE_TAC `k:num`) THEN EXISTS_TAC `k MOD p` THEN
  FIRST_ASSUM(MP_TAC o SPEC `k:num` o MATCH_MP DIVISION) THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(fun th -> GEN_REWRITE_TAC
   (BINDER_CONV o LAND_CONV o ONCE_DEPTH_CONV) [th]) THEN
  ASM_MESON_TAC[CYCLE_OFFSET; ADD_AC]);;

let SHIFTABLE_SYM = prove
 (`!x y p r. cycle r p x /\ cycle r p y /\ ~(p = 0) /\ shiftable x y
             ==> shiftable y x`,
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> (a /\ b /\ c) /\ d`] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  FIRST_ASSUM(SUBST1_TAC o MATCH_MP SHIFTABLE_LOCAL) THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
  REWRITE_TAC[shiftable] THEN EXISTS_TAC `p - k:num` THEN
  ASM_SIMP_TAC[ARITH_RULE `k < p ==> (i + (p - k)) + k = i + p:num`] THEN
  ASM_MESON_TAC[cycle]);;

let CYCLES_PRIME_LEMMA = prove
 (`!r p x. FINITE(:A) /\ prime p /\ (!x. ~(r x x))
           ==> p divides CARD {x:num->A | cycle r p x}`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
  STRIP_TAC THEN MATCH_MP_TAC EQUIVALENCE_UNIFORM_PARTITION_RESTRICT THEN
  EXISTS_TAC `shiftable:(num->A)->(num->A)->bool` THEN
  ASM_SIMP_TAC[IN_ELIM_THM; FINITE_CYCLES] THEN
  CONJ_TAC THENL [MESON_TAC[SHIFTABLE_REFL]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[SHIFTABLE_SYM]; ALL_TAC] THEN
  CONJ_TAC THENL [MESON_TAC[SHIFTABLE_TRANS]; ALL_TAC] THEN
  X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN
  SUBGOAL_THEN `{y:num->A | cycle r p y /\ shiftable x y} HAS_SIZE p`
   (fun th -> MESON_TAC[HAS_SIZE; th]) THEN
  SUBGOAL_THEN `{y:num->A | cycle r p y /\ shiftable x y} =
                IMAGE (\k i. x(i + k)) {k | k < p}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
    X_GEN_TAC `y:num->A` THEN REWRITE_TAC[FUN_EQ_THM] THEN EQ_TAC THENL
     [ASM_MESON_TAC[SHIFTABLE_LOCAL; SHIFTABLE_SYM]; ALL_TAC] THEN
    REPEAT STRIP_TAC THENL
     [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cycle]) THEN
      ASM_REWRITE_TAC[cycle] THEN MESON_TAC[ADD_AC];
      ALL_TAC] THEN
    MATCH_MP_TAC SHIFTABLE_SYM THEN
    MAP_EVERY EXISTS_TAC [`p:num`; `r:A->A->bool`] THEN
    ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cycle]) THEN
    ASM_REWRITE_TAC[cycle; shiftable] THEN MESON_TAC[ADD_AC];
    ALL_TAC] THEN
  MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN REWRITE_TAC[HAS_SIZE_NUMSEG_LT] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC WLOG_LE THEN
  REWRITE_TAC[FUN_EQ_THM] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`k:num`; `l:num`] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN
  SUBGOAL_THEN `!i. x(i):A = x(0)` MP_TAC THENL
   [ALL_TAC; ASM_MESON_TAC[cycle]] THEN
  MATCH_MP_TAC LOOP_COPRIME THEN EXISTS_TAC `p:num` THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[cycle]; ALL_TAC] THEN
  EXISTS_TAC `l + (p - k):num` THEN CONJ_TAC THENL
   [X_GEN_TAC `i:num` THEN
    ONCE_REWRITE_TAC[ARITH_RULE `i + l + pk = (i + pk) + l:num`] THEN
    ASSUM_LIST(REWRITE_TAC o map GSYM) THEN
    SIMP_TAC[ARITH_RULE `k < p ==> (i + p - k) + k = i + p:num`;
             ASSUME `k < p:num`] THEN
    ASM_MESON_TAC[cycle];
    ALL_TAC] THEN
  SUBGOAL_THEN `l + p - k = p + l - k:num` SUBST1_TAC THENL
   [MAP_EVERY UNDISCH_TAC [`k < p:num`; `k <= l:num`] THEN ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[NUMBER_RULE `coprime(p,p + d) <=> coprime(d,p)`] THEN
  MATCH_MP_TAC PRIME_COPRIME_LT THEN
  ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* The theorem itself.                                                       *)
(* ------------------------------------------------------------------------- *)

let FRIENDSHIP = prove
 (`!friend:person->person->bool.
      FINITE(:person) /\
      (!x. ~(friend x x)) /\
      (!x y. friend x y ==> friend y x) /\
      (!x y. ~(x = y) ==> ?!z. friend x z /\ friend y z)
      ==> ?u. !v. ~(v = u) ==> friend u v`,
  REPEAT STRIP_TAC THEN UNDISCH_TAC
   `!x y:person. ~(x = y) ==> ?!z:person. friend x z /\ friend y z` THEN
  REWRITE_TAC[EXISTS_UNIQUE_THM] THEN
  REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN
  REWRITE_TAC[FORALL_AND_THM; RIGHT_IMP_FORALL_THM] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[SKOLEM_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_TAC `mutualfriend:person->person->person`) THEN
  SUBGOAL_THEN `!s:person->bool. FINITE s` ASSUME_TAC THENL
   [ASM_MESON_TAC[SUBSET_UNIV; FINITE_SUBSET]; ALL_TAC] THEN
  ABBREV_TAC `degree = \p:person. CARD {q:person | friend p q}` THEN
  SUBGOAL_THEN `!x y:person. ~(friend x y) ==> degree(x):num <= degree(y)`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN ASM_CASES_TAC `x:person = y` THENL
     [ASM_MESON_TAC[LE_REFL]; ALL_TAC] THEN
    EXPAND_TAC "degree" THEN MATCH_MP_TAC LE_TRANS THEN
    EXISTS_TAC `CARD(IMAGE (\u. (mutualfriend:person->person->person) u y)
                           {q | friend (x:person) q})` THEN
    CONJ_TAC THENL
     [ALL_TAC; MATCH_MP_TAC CARD_SUBSET THEN ASM SET_TAC[]] THEN
    MATCH_MP_TAC EQ_IMP_LE THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN
    MAP_EVERY X_GEN_TAC [`u1:person`; `u2:person`] THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPECL
     [`x:person`; `(mutualfriend:person->person->person) u1 y`;
      `u1:person`; `u2:person`]) THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `!x y:person. ~(friend x y) ==> degree x:num = degree y`
  ASSUME_TAC THENL [ASM_MESON_TAC[LE_ANTISYM]; ALL_TAC] THEN
  GEN_REWRITE_TAC I [TAUT `p <=> ~ ~ p`] THEN
  GEN_REWRITE_TAC RAND_CONV [NOT_EXISTS_THM] THEN
  DISCH_THEN(ASSUME_TAC o REWRITE_RULE[NOT_FORALL_THM; NOT_IMP]) THEN
  SUBGOAL_THEN `?m:num. !x:person. degree(x) = m` STRIP_ASSUME_TAC THENL
   [FIRST_ASSUM(X_CHOOSE_THEN `b:person` STRIP_ASSUME_TAC o
      SPEC `a:person`) THEN
    ABBREV_TAC `c = (mutualfriend:person->person->person) a b` THEN
    ABBREV_TAC `k = (degree:person->num) a` THEN EXISTS_TAC `k:num` THEN
    SUBGOAL_THEN `(degree:person->num)(b) = k /\ ~(friend a b) /\
                  friend a c /\ friend b c`
    STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `!x:person. ~(x = c) ==> degree x = (k:num)` ASSUME_TAC THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `!p:person. {q:person | friend p q} HAS_SIZE m`
  ASSUME_TAC THENL [ASM_MESON_TAC[HAS_SIZE]; ALL_TAC] THEN
  SUBGOAL_THEN `~(m = 0)` ASSUME_TAC THENL
   [DISCH_TAC THEN
    UNDISCH_TAC `!p:person. {q:person | friend p q} HAS_SIZE m` THEN
    ASM_REWRITE_TAC[HAS_SIZE_0; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `EVEN(m)` ASSUME_TAC THENL
   [UNDISCH_TAC `!x:person. degree x = (m:num)` THEN
    DISCH_THEN(SUBST1_TAC o SYM o SPEC `a:person`) THEN
    EXPAND_TAC "degree" THEN MATCH_MP_TAC ELEMENTS_PAIR_UP THEN
    EXISTS_TAC `\x y:person. friend a x /\ friend a y /\ friend x y` THEN
    REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[HAS_SIZE];
    ALL_TAC] THEN
  ABBREV_TAC `N = CARD(:person)` THEN
  SUBGOAL_THEN `N = m * (m - 1) + 1` ASSUME_TAC THENL
   [ABBREV_TAC `t = {q:person | friend (a:person) q}` THEN
    SUBGOAL_THEN `FINITE(t:person->bool) /\ CARD t = m` STRIP_ASSUME_TAC THENL
     [ASM_MESON_TAC[HAS_SIZE]; ALL_TAC] THEN
    ABBREV_TAC
     `u = \b:person. {c:person | friend b c /\ ~(c IN (a INSERT t))}` THEN
    EXPAND_TAC "N" THEN
    SUBGOAL_THEN `(:person) = (a INSERT t) UNION UNIONS {u(b) | b IN t}`
    SUBST1_TAC THENL
     [REWRITE_TAC[EXTENSION; IN_INSERT; IN_UNIV; IN_UNION; IN_UNIONS] THEN
      MAP_EVERY EXPAND_TAC ["t"; "u"] THEN REWRITE_TAC[IN_ELIM_THM] THEN
      X_GEN_TAC `x:person` THEN
      MATCH_MP_TAC(TAUT `(~a /\ ~b ==> c) ==> (a \/ b) \/ c`) THEN
      STRIP_TAC THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
      ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
      ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN
      REWRITE_TAC[IN_ELIM_THM; IN_INSERT; DE_MORGAN_THM] THEN
      EXISTS_TAC `mutualfriend (a:person) (x:person) :person` THEN
      EXPAND_TAC "t" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    SUBGOAL_THEN `m * (m - 1) + 1 = (m + 1) + m * (m - 2)` SUBST1_TAC THENL
     [SIMP_TAC[ARITH_RULE `a + 1 = (m + 1) + m * c <=> a = m * (1 + c)`] THEN
      AP_TERM_TAC THEN UNDISCH_TAC `EVEN m` THEN
      ASM_CASES_TAC `m = 1` THEN ASM_REWRITE_TAC[ARITH] THEN DISCH_TAC THEN
      MAP_EVERY UNDISCH_TAC [`~(m = 0)`; `~(m = 1)`] THEN ARITH_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN `m + 1 = CARD((a:person) INSERT t)` SUBST1_TAC THENL
     [ASM_SIMP_TAC[CARD_CLAUSES; ADD1] THEN EXPAND_TAC "t" THEN
      REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `UNIONS {u b :person->bool | (b:person) IN t} HAS_SIZE m * (m - 2)`
    MP_TAC THENL
     [MATCH_MP_TAC HAS_SIZE_UNIONS THEN CONJ_TAC THENL
       [ASM_MESON_TAC[HAS_SIZE]; ALL_TAC] THEN
      CONJ_TAC THENL
       [ALL_TAC;
        EXPAND_TAC "u" THEN REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER] THEN
        REWRITE_TAC[NOT_IN_EMPTY; IN_ELIM_THM; IN_INSERT] THEN
        EXPAND_TAC "t" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]] THEN
      REPEAT STRIP_TAC THEN
      MP_TAC(ASSUME `(b:person) IN t`) THEN EXPAND_TAC "t" THEN
      REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
      SUBGOAL_THEN
       `u (b:person) =
        {q:person | friend q b} DELETE a DELETE (mutualfriend a b)`
      SUBST1_TAC THENL
       [MAP_EVERY EXPAND_TAC ["u"; "t"] THEN
        REWRITE_TAC[EXTENSION; IN_INSERT; IN_DELETE; IN_ELIM_THM] THEN
        X_GEN_TAC `x:person` THEN
        FIRST_X_ASSUM(MP_TAC o SPECL [`a:person`; `b:person`;
         `(mutualfriend:person->person->person) a b`; `x:person`]) THEN
        ASM_MESON_TAC[];
        ALL_TAC] THEN
      ASM_SIMP_TAC[CARD_DELETE; HAS_SIZE] THEN
      REWRITE_TAC[IN_ELIM_THM; IN_DELETE] THEN
      COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
      SUBGOAL_THEN `{q:person | friend q (b:person)} = {q | friend b q}`
      SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
      ASM_REWRITE_TAC[ARITH_RULE `m - 1 - 1 = m - 2`] THEN
      ASM_MESON_TAC[HAS_SIZE];
      ALL_TAC] THEN
    REWRITE_TAC[HAS_SIZE] THEN DISCH_THEN(SUBST1_TAC o SYM o CONJUNCT2) THEN
    MATCH_MP_TAC CARD_UNION THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[EXTENSION; IN_INSERT; IN_INTER; NOT_IN_EMPTY; IN_UNIONS] THEN
    REWRITE_TAC[IN_ELIM_THM; LEFT_AND_EXISTS_THM] THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
    ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN
    MAP_EVERY EXPAND_TAC ["u"; "t"] THEN
    REWRITE_TAC[IN_ELIM_THM; IN_INSERT] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `~(m = 2)` ASSUME_TAC THENL
   [DISCH_THEN SUBST_ALL_TAC THEN
    RULE_ASSUM_TAC(CONV_RULE NUM_REDUCE_CONV) THEN
    SUBGOAL_THEN `(:person) HAS_SIZE 3` MP_TAC THENL
     [ASM_REWRITE_TAC[HAS_SIZE]; ALL_TAC] THEN
    CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN REWRITE_TAC[NOT_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`a:person`; `b:person`; `c:person`] THEN
    REWRITE_TAC[EXTENSION; IN_UNIV; IN_INSERT; NOT_IN_EMPTY] THEN
    STRIP_TAC THEN
    UNDISCH_TAC `!u:person. ?v:person. ~(v = u) /\ ~friend u v` THEN
    REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM] THEN
    EXISTS_TAC `a:person` THEN
    UNDISCH_TAC `!p:person. {q:person | friend p q} HAS_SIZE 2` THEN
    DISCH_THEN(MP_TAC o SPEC `a:person`) THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`x:person`; `y:person`] THEN
    STRIP_TAC THEN X_GEN_TAC `z:person` THEN
    UNDISCH_TAC `!x:person. x = a \/ x = b \/ x = c` THEN
    DISCH_THEN(fun th -> MAP_EVERY (fun x -> MP_TAC(SPEC x th))
     [`x:person`; `y:person`; `z:person`]) THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  MP_TAC(SPEC `m - 1` PRIME_FACTOR) THEN ANTS_TAC THENL
   [UNDISCH_TAC `~(m = 2)` THEN ARITH_TAC; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `~(p divides 1)` MP_TAC THENL
   [ASM_MESON_TAC[DIVIDES_ONE; PRIME_1]; ALL_TAC] THEN
  REWRITE_TAC[] THEN
  MATCH_MP_TAC(NUMBER_RULE
   `!x. p divides (x + 1) /\ p divides x ==> p divides 1`) THEN
  EXISTS_TAC `m - 1` THEN ASM_REWRITE_TAC[] THEN
  ASM_SIMP_TAC[ARITH_RULE `~(m = 0) ==> m - 1 + 1 = m`] THEN
  MATCH_MP_TAC PRIME_DIVEXP THEN EXISTS_TAC `p - 2` THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(NUMBER_RULE
   `!q c K1 K2.
        p divides q /\ p divides c /\
        c = (q + 1) * K1 + K2 /\
        K1 + K2 = ((q + 1) * q + 1) * nep2
        ==> p divides nep2`) THEN
  MAP_EVERY EXISTS_TAC
   [`m - 1`; `CARD {x:num->person | cycle friend p x}`;
    `CARD {x:num->person | path friend (p-2) x /\ x (p-2) = x 0}`;
    `CARD {x:num->person | path friend (p-2) x /\ ~(x (p-2) = x 0)}`] THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [MATCH_MP_TAC CYCLES_PRIME_LEMMA THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `3 <= p` ASSUME_TAC THENL
   [MATCH_MP_TAC(ARITH_RULE `2 <= p /\ ~(p = 2) ==> 3 <= p`) THEN
    ASM_SIMP_TAC[PRIME_GE_2] THEN DISCH_THEN SUBST_ALL_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM DIVIDES_2]) THEN
    MP_TAC(DIVIDES_CONV `2 divides 1`) THEN REWRITE_TAC[CONTRAPOS_THM] THEN
    MATCH_MP_TAC(NUMBER_RULE
     `!q. t divides q /\ m = q + 1 ==> t divides m ==> t divides w`) THEN
    EXISTS_TAC `m - 1` THEN ASM_REWRITE_TAC[] THEN
    UNDISCH_TAC `~(m = 0)` THEN ARITH_TAC;
    ALL_TAC] THEN
  ASM_SIMP_TAC[ARITH_RULE `~(m = 0) ==> m - 1 + 1 = m`] THEN CONJ_TAC THENL
   [MP_TAC(ISPECL[`friend:person->person->bool`; `p:num`] HAS_SIZE_CYCLES) THEN
    ANTS_TAC THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
    SIMP_TAC[HAS_SIZE] THEN DISCH_THEN(K ALL_TAC) THEN
    MATCH_MP_TAC HAS_SIZE_CARD THEN
    SUBGOAL_THEN `p = (p - 2) + 2` (fun th ->
      GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th])
    THENL [ASM_MESON_TAC[PRIME_GE_2; SUB_ADD]; ALL_TAC] THEN
    MATCH_MP_TAC CARD_PATHCYCLES_STEP THEN EXISTS_TAC `N:num` THEN
    ASM_REWRITE_TAC[] THEN
    CONJ_TAC THENL [ASM_MESON_TAC[HAS_SIZE]; ALL_TAC] THEN
    CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
    UNDISCH_TAC `3 <= p` THEN ARITH_TAC;
    ALL_TAC] THEN
  MP_TAC(ISPECL [`N:num`; `m:num`; `friend:person->person->bool`; `p - 2`]
               HAS_SIZE_PATHS) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[HAS_SIZE]; ALL_TAC] THEN
  ASM_REWRITE_TAC[HAS_SIZE] THEN
  DISCH_THEN(SUBST1_TAC o SYM o CONJUNCT2) THEN
  MATCH_MP_TAC CARD_UNION_EQ THEN ASM_SIMP_TAC[FINITE_PATHS] THEN SET_TAC[]);;