Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 27,229 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
(* ========================================================================= *)
(* #88: Formula for the number of derangements: round[n!/e] *)
(* ========================================================================= *)
needs "Library/transc.ml";;
needs "Library/calc_real.ml";;
needs "Library/floor.ml";;
let PAIR_BETA_THM = GEN_BETA_CONV `(\(x,y). P x y) (a,b)`;;
(* ------------------------------------------------------------------------- *)
(* Domain and range of a relation. *)
(* ------------------------------------------------------------------------- *)
let domain = new_definition
`domain r = {x | ?y. r(x,y)}`;;
let range = new_definition
`range r = {y | ?x. r(x,y)}`;;
(* ------------------------------------------------------------------------- *)
(* Relational composition. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("%",(26, "right"));;
let compose = new_definition
`(r % s) (x,y) <=> ?z. r(x,z) /\ s(z,y)`;;
(* ------------------------------------------------------------------------- *)
(* Identity relation on a domain. *)
(* ------------------------------------------------------------------------- *)
let id = new_definition
`id(s) (x,y) <=> x IN s /\ x = y`;;
(* ------------------------------------------------------------------------- *)
(* Converse relation. *)
(* ------------------------------------------------------------------------- *)
let converse = new_definition
`converse(r) (x,y) = r(y,x)`;;
(* ------------------------------------------------------------------------- *)
(* Transposition. *)
(* ------------------------------------------------------------------------- *)
let swap = new_definition
`swap(a,b) (x,y) <=> x = a /\ y = b \/ x = b /\ y = a`;;
(* ------------------------------------------------------------------------- *)
(* When a relation "pairs up" two sets bijectively. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("pairsup",(12,"right"));;
let pairsup = new_definition
`r pairsup (s,t) <=> (r % converse(r) = id(s)) /\ (converse(r) % r = id(t))`;;
(* ------------------------------------------------------------------------- *)
(* Special case of a permutation. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("permutes",(12,"right"));;
let permutes = new_definition
`r permutes s <=> r pairsup (s,s)`;;
(* ------------------------------------------------------------------------- *)
(* Even more special case of derangement. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("deranges",(12,"right"));;
let deranges = new_definition
`r deranges s <=> r permutes s /\ !x. ~(r(x,x))`;;
(* ------------------------------------------------------------------------- *)
(* Trivial tactic for properties of relations. *)
(* ------------------------------------------------------------------------- *)
let REL_TAC =
POP_ASSUM_LIST(K ALL_TAC) THEN
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; EXISTS_PAIR_THM; PAIR_BETA_THM;
permutes; pairsup; domain; range; compose; id; converse; swap;
deranges; IN_INSERT; IN_DELETE; NOT_IN_EMPTY; IN_ELIM_THM] THEN
REWRITE_TAC[IN; EMPTY; INSERT; DELETE; UNION; IN_ELIM_THM; PAIR_EQ;
id; converse; swap] THEN
REPEAT(STRIP_TAC ORELSE EQ_TAC) THEN
REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o check (is_var o lhs o concl))) THEN
REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o check (is_var o rhs o concl))) THEN
ASM_MESON_TAC[];;
let REL_RULE tm = prove(tm,REL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Some general properties of relations. *)
(* ------------------------------------------------------------------------- *)
let CONVERSE_COMPOSE = prove
(`!r s. converse(r % s) = converse(s) % converse(r)`,
REL_TAC);;
let CONVERSE_CONVERSE = prove
(`!r. converse(converse r) = r`,
REL_TAC);;
(* ------------------------------------------------------------------------- *)
(* More "explicit" definition of pairing and permutation. *)
(* ------------------------------------------------------------------------- *)
let PAIRSUP_EXPLICIT = prove
(`!p s t.
p pairsup (s,t) <=>
(!x y. p(x,y) ==> x IN s /\ y IN t) /\
(!x. x IN s ==> ?!y. y IN t /\ p(x,y)) /\
(!y. y IN t ==> ?!x. x IN s /\ p(x,y))`,
REL_TAC);;
let PERMUTES_EXPLICIT = prove
(`!p s. p permutes s <=>
(!x y. p(x,y) ==> x IN s /\ y IN s) /\
(!x. x IN s ==> ?!y. y IN s /\ p(x,y)) /\
(!y. y IN s ==> ?!x. x IN s /\ p(x,y))`,
REL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Other low-level properties. *)
(* ------------------------------------------------------------------------- *)
let PAIRSUP_DOMRAN = prove
(`!p s t. p pairsup (s,t) ==> domain p = s /\ range p = t`,
REL_TAC);;
let PERMUTES_DOMRAN = prove
(`!p s. p permutes s ==> domain p = s /\ range p = s`,
REL_TAC);;
let PAIRSUP_FUNCTIONAL = prove
(`!p s t. p pairsup (s,t) ==> !x y y'. p(x,y) /\ p(x,y') ==> y = y'`,
REL_TAC);;
let PERMUTES_FUNCTIONAL = prove
(`!p s. p permutes s ==> !x y y'. p(x,y) /\ p(x,y') ==> y = y'`,
REL_TAC);;
let PAIRSUP_COFUNCTIONAL = prove
(`!p s t. p pairsup (s,t) ==> !x x' y. p(x,y) /\ p(x',y) ==> x = x'`,
REL_TAC);;
let PERMUTES_COFUNCTIONAL = prove
(`!p s. p permutes s ==> !x x' y. p(x,y) /\ p(x',y) ==> x = x'`,
REL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Some more abstract properties. *)
(* ------------------------------------------------------------------------- *)
let PAIRSUP_ID = prove
(`!s. id(s) pairsup (s,s)`,
REL_TAC);;
let PERMUTES_ID = prove
(`!s. id(s) permutes s`,
REL_TAC);;
let PAIRSUP_CONVERSE = prove
(`!p s t. p pairsup (s,t) ==> converse(p) pairsup (t,s)`,
REL_TAC);;
let PERMUTES_CONVERSE = prove
(`!p s. p permutes s ==> converse(p) permutes s`,
REL_TAC);;
let PAIRSUP_COMPOSE = prove
(`!p p' s t u. p pairsup (s,t) /\ p' pairsup (t,u) ==> (p % p') pairsup (s,u)`,
REL_TAC);;
let PERMUTES_COMPOSE = prove
(`!p p' s. p permutes s /\ p' permutes s ==> (p % p') permutes s`,
REL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Transpositions are permutations. *)
(* ------------------------------------------------------------------------- *)
let PERMUTES_SWAP = prove
(`swap(a,b) permutes {a,b}`,
REL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Clausal theorems for cases on first set. *)
(* ------------------------------------------------------------------------- *)
let PAIRSUP_EMPTY = prove
(`p pairsup ({},{}) <=> (p = {})`,
REL_TAC);;
let PAIRSUP_INSERT = prove
(`!x:A s t:B->bool p.
p pairsup (x INSERT s,t) <=>
if x IN s then p pairsup (s,t)
else ?y q. y IN t /\ p = (x,y) INSERT q /\ q pairsup (s,t DELETE y)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[SET_RULE `x IN s ==> x INSERT s = s`] THEN EQ_TAC THENL
[ALL_TAC;
REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC] THEN
DISCH_TAC THEN SUBGOAL_THEN `?y. y IN t /\ p(x:A,y:B)` MP_TAC THENL
[POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REL_TAC; ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:B` THEN STRIP_TAC THEN
EXISTS_TAC `p DELETE (x:A,y:B)` THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Number of pairings and permutations. *)
(* ------------------------------------------------------------------------- *)
let NUMBER_OF_PAIRINGS = prove
(`!n s:A->bool t:B->bool.
s HAS_SIZE n /\ t HAS_SIZE n
==> {p | p pairsup (s,t)} HAS_SIZE (FACT n)`,
let lemma = prove
(`{p | ?y. y IN t /\ A y p} = UNIONS {{p | A y p} | y IN t} /\
{p | ?q. p = (a,y) INSERT q /\ A y q} =
IMAGE (\q. (a,y) INSERT q) {q | A y q}`,
CONJ_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_ELIM_THM; IN_UNIONS; IN_IMAGE] THEN SET_TAC[]) in
INDUCT_TAC THEN REPEAT GEN_TAC THENL
[REWRITE_TAC[HAS_SIZE_CLAUSES] THEN
SIMP_TAC[PAIRSUP_EMPTY; SET_RULE `{x | x = a} = {a}`] THEN
SIMP_TAC[HAS_SIZE; CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; ARITH; FACT];
ALL_TAC] THEN
GEN_REWRITE_TAC (funpow 2 LAND_CONV) [HAS_SIZE_CLAUSES] THEN
REWRITE_TAC[HAS_SIZE_SUC] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_REWRITE_TAC[PAIRSUP_INSERT; RIGHT_EXISTS_AND_THM; lemma; FACT] THEN
MATCH_MP_TAC HAS_SIZE_UNIONS THEN REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[HAS_SIZE_SUC];
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
ASM_SIMP_TAC[] THEN REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
REPEAT STRIP_TAC THEN REWRITE_TAC[DISJOINT] THEN
GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_INTER; IN_IMAGE; NOT_IN_EMPTY] THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC]);;
let NUMBER_OF_PERMUTATIONS = prove
(`!s n. s HAS_SIZE n ==> {p | p permutes s} HAS_SIZE (FACT n)`,
SIMP_TAC[permutes; NUMBER_OF_PAIRINGS]);;
(* ------------------------------------------------------------------------- *)
(* Number of derangements (we need to justify this later). *)
(* ------------------------------------------------------------------------- *)
let derangements = define
`(derangements 0 = 1) /\
(derangements 1 = 0) /\
(derangements(n + 2) = (n + 1) * (derangements n + derangements(n + 1)))`;;
let DERANGEMENT_INDUCT = prove
(`!P. P 0 /\ P 1 /\ (!n. P n /\ P(n + 1) ==> P(n + 2)) ==> !n. P n`,
GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!n. P n /\ P(n + 1)` (fun th -> MESON_TAC[th]) THEN
INDUCT_TAC THEN ASM_SIMP_TAC[ADD1; GSYM ADD_ASSOC] THEN
ASM_SIMP_TAC[ARITH]);;
(* ------------------------------------------------------------------------- *)
(* Expanding a derangement. *)
(* ------------------------------------------------------------------------- *)
let DERANGEMENT_ADD2 = prove
(`!p s x y.
p deranges s /\ ~(x IN s) /\ ~(y IN s) /\ ~(x = y)
==> ((x,y) INSERT (y,x) INSERT p) deranges (x INSERT y INSERT s)`,
REL_TAC);;
let DERANGEMENT_ADD1 = prove
(`!p s y x. p deranges s /\ ~(y IN s) /\ p(x,z)
==> ((x,y) INSERT (y,z) INSERT (p DELETE (x,z)))
deranges (y INSERT s)`,
REL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Number of derangements. *)
(* ------------------------------------------------------------------------- *)
let DERANGEMENT_EMPTY = prove
(`!p. p deranges {} <=> p = {}`,
REL_TAC);;
let DERANGEMENT_SING = prove
(`!x p. ~(p deranges {x})`,
REL_TAC);;
let NUMBER_OF_DERANGEMENTS = prove
(`!n s:A->bool. s HAS_SIZE n ==> {p | p deranges s} HAS_SIZE (derangements n)`,
MATCH_MP_TAC DERANGEMENT_INDUCT THEN REWRITE_TAC[derangements] THEN
REPEAT CONJ_TAC THENL
[CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN REPEAT STRIP_TAC THEN
EXISTS_TAC `{}:A#A->bool` THEN
ASM_REWRITE_TAC[DERANGEMENT_EMPTY; EXTENSION; IN_ELIM_THM] THEN
REWRITE_TAC[NOT_IN_EMPTY; IN_SING] THEN MESON_TAC[MEMBER_NOT_EMPTY];
CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[DERANGEMENT_SING] THEN SET_TAC[];
ALL_TAC] THEN
X_GEN_TAC `n:num` THEN STRIP_TAC THEN X_GEN_TAC `t:A->bool` THEN
REWRITE_TAC[ARITH_RULE `n + 2 = SUC(n + 1)`; HAS_SIZE_CLAUSES] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`x:A`; `s:A->bool`] THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
SUBGOAL_THEN
`{p | p deranges (x:A INSERT s)} =
(IMAGE (\(y,p). (x,y) INSERT (y,x) INSERT p)
{(y,p) | y IN s /\ p IN {p | p deranges (s DELETE y)}}) UNION
(IMAGE (\(y,p). let z = @z. p(x,z) in
(x,y) INSERT (y,z) INSERT (p DELETE (x,z)))
{(y,p) | y IN s /\
p IN {p | p deranges (x INSERT (s DELETE y))}})`
SUBST1_TAC THENL
[GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[TAUT `(a <=> b) <=> (b ==> a) /\ (a ==> b)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN CONJ_TAC THENL
[REWRITE_TAC[IN_UNION; TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`;
FORALL_AND_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[FORALL_PAIR_THM; PAIR_BETA_THM; IN_ELIM_THM; PAIR_EQ] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`y:A`; `p:A#A->bool`] THEN
STRIP_TAC THENL
[FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE
`y IN s ==> s = y INSERT (s DELETE y)`)) THEN
MATCH_MP_TAC DERANGEMENT_ADD2 THEN ASM_REWRITE_TAC[IN_DELETE] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
ABBREV_TAC `z = @z. p(x:A,z:A)` THEN
SUBGOAL_THEN `(p:A#A->bool)(x:A,z:A)` STRIP_ASSUME_TAC THENL
[REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN
CONV_TAC SELECT_CONV THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `z:A IN s` STRIP_ASSUME_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
SUBGOAL_THEN `(x:A) INSERT s = y INSERT (x INSERT (s DELETE y))`
SUBST1_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN SET_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC DERANGEMENT_ADD1 THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[IN_DELETE; IN_INSERT] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
X_GEN_TAC `p:A#A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
SUBGOAL_THEN `?y. y IN s /\ p(x:A,y:A)` STRIP_ASSUME_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
REWRITE_TAC[IN_UNION] THEN ASM_CASES_TAC `(p:A#A->bool)(y,x)` THENL
[DISJ1_TAC THEN REWRITE_TAC[IN_IMAGE] THEN
EXISTS_TAC `y:A,(p DELETE (y,x)) DELETE (x:A,y:A)` THEN
CONJ_TAC THENL
[REWRITE_TAC[PAIR_BETA_THM] THEN MAP_EVERY UNDISCH_TAC
[`(p:A#A->bool)(x,y)`; `(p:A#A->bool)(y,x)`] THEN SET_TAC[];
ALL_TAC] THEN
REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `?z. p(y:A,z:A)` STRIP_ASSUME_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
SUBGOAL_THEN `z:A IN s` ASSUME_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
DISJ2_TAC THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; PAIR_BETA_THM] THEN
EXISTS_TAC `y:A` THEN
EXISTS_TAC `(x:A,z:A) INSERT ((p DELETE (x,y)) DELETE (y,z))` THEN
SUBGOAL_THEN
`(@w:A. ((x,z) INSERT (p DELETE (x,y) DELETE (y,z))) (x,w)) = z`
SUBST1_TAC THENL
[MATCH_MP_TAC SELECT_UNIQUE THEN REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
ALL_TAC] THEN
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN CONJ_TAC THENL
[REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; PAIR_BETA_THM] THEN
REWRITE_TAC[IN; INSERT; DELETE; PAIR_BETA_THM; IN_ELIM_THM; PAIR_EQ] THEN
MAP_EVERY X_GEN_TAC [`u:A`; `v:A`] THEN
ASM_CASES_TAC `u:A = x` THEN ASM_REWRITE_TAC[] THENL
[ALL_TAC; REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC] THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
ALL_TAC] THEN
REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
ALL_TAC] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB] THEN MATCH_MP_TAC HAS_SIZE_UNION THEN
REPEAT CONJ_TAC THENL
[MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
[REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM; PAIR_BETA_THM; PAIR_EQ] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REWRITE_TAC[FUN_EQ_THM; INSERT; IN_ELIM_THM; FORALL_PAIR_THM;
PAIR_EQ] THEN
UNDISCH_TAC `~(x:A IN s)` THEN REL_TAC;
ALL_TAC] THEN
MATCH_MP_TAC HAS_SIZE_PRODUCT_DEPENDENT THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `(s:A->bool) HAS_SIZE (n + 1)` THEN
SIMP_TAC[HAS_SIZE; FINITE_DELETE; CARD_DELETE] THEN
ASM_REWRITE_TAC[ADD_SUB];
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
[REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM; PAIR_BETA_THM; PAIR_EQ] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN MAP_EVERY X_GEN_TAC
[`y:A`; `p:(A#A)->bool`; `y':A`; `p':(A#A->bool)`] THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
MAP_EVERY ABBREV_TAC [`z = @z. p(x:A,z:A)`; `z' = @z. p'(x:A,z:A)`] THEN
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
SUBGOAL_THEN `p(x:A,z:A) /\ p'(x:A,z':A)` STRIP_ASSUME_TAC THENL
[REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN
CONJ_TAC THEN CONV_TAC SELECT_CONV THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
ALL_TAC] THEN
REPEAT(FIRST_X_ASSUM(K ALL_TAC o SYM)) THEN
SUBGOAL_THEN `z:A IN s /\ z':A IN s` STRIP_ASSUME_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
DISCH_THEN(fun th -> MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN
CONJ_TAC THEN MP_TAC th)
THENL
[DISCH_THEN(MP_TAC o C AP_THM `(x:A,y:A)`) THEN
REWRITE_TAC[INSERT; DELETE; IN_ELIM_THM; PAIR_BETA_THM; PAIR_EQ] THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
ALL_TAC] THEN
ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b ==> a ==> c`] THEN
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
ASM_CASES_TAC `z':A = z` THEN ASM_REWRITE_TAC[] THENL
[FIRST_X_ASSUM SUBST_ALL_TAC;
DISCH_THEN(MP_TAC o C AP_THM `(y:A,z:A)`) THEN
REWRITE_TAC[INSERT; DELETE; IN_ELIM_THM; PAIR_BETA_THM; PAIR_EQ] THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE
`a INSERT b INSERT s = a INSERT b INSERT t
==> ~(a IN s) /\ ~(a IN t) /\ ~(b IN s) /\ ~(b IN t) ==> s = t`)) THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
ALL_TAC] THEN
MATCH_MP_TAC HAS_SIZE_PRODUCT_DEPENDENT THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(s:A->bool) HAS_SIZE n + 1` THEN
ASM_SIMP_TAC[HAS_SIZE; FINITE_INSERT; FINITE_DELETE] THEN
ASM_SIMP_TAC[CARD_DELETE; CARD_CLAUSES; FINITE_DELETE] THEN
ASM_REWRITE_TAC[IN_DELETE] THEN ARITH_TAC;
REWRITE_TAC[DISJOINT] THEN
GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[NOT_IN_EMPTY; IN_INTER; TAUT `~(a /\ b) <=> a ==> ~b`] THEN
REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`y:A`; `p:A#A->bool`] THEN
REWRITE_TAC[IN_ELIM_THM; PAIR_BETA_THM; PAIR_EQ] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
STRIP_TAC THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; NOT_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`z:A`; `q:A#A->bool`] THEN
REWRITE_TAC[PAIR_BETA_THM; IN_ELIM_THM; PAIR_EQ] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
ABBREV_TAC `w = @w. q(x:A,w:A)` THEN
SUBGOAL_THEN `(q:A#A->bool)(x:A,w:A)` STRIP_ASSUME_TAC THENL
[REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN
CONV_TAC SELECT_CONV THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `w:A IN s` STRIP_ASSUME_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN FIRST_X_ASSUM(K ALL_TAC o SYM) THEN
ASM_CASES_TAC `w:A = z` THEN ASM_REWRITE_TAC[] THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
ASM_CASES_TAC `w:A = y` THEN ASM_REWRITE_TAC[] THENL
[FIRST_X_ASSUM SUBST_ALL_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
ALL_TAC] THEN
ASM_CASES_TAC `y:A = z` THENL
[FIRST_X_ASSUM SUBST_ALL_TAC; ALL_TAC] THEN
REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Trivia. *)
(* ------------------------------------------------------------------------- *)
let SUM_1 = prove
(`sum(0..1) f = f 0 + f 1`,
REWRITE_TAC[num_CONV `1`; SUM_CLAUSES_NUMSEG; LE_0]);;
let SUM_2 = prove
(`sum(0..2) f = f 0 + f 1 + f 2`,
SIMP_TAC[num_CONV `2`; num_CONV `1`; SUM_CLAUSES_NUMSEG; LE_0;
REAL_ADD_AC]);;
(* ------------------------------------------------------------------------- *)
(* The key result. *)
(* ------------------------------------------------------------------------- *)
let DERANGEMENTS = prove
(`!n. ~(n = 0)
==> &(derangements n) =
&(FACT n) * sum(0..n) (\k. --(&1) pow k / &(FACT k))`,
MATCH_MP_TAC DERANGEMENT_INDUCT THEN REWRITE_TAC[ADD_EQ_0; ARITH_EQ] THEN
REWRITE_TAC[derangements; SUM_1] THEN
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THENL
[ASM_REWRITE_TAC[derangements; ARITH; SUM_2; SUM_1] THEN
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV;
ALL_TAC] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD] THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
REWRITE_TAC[ARITH_RULE `n + 2 = (n + 1) + 1`] THEN
SIMP_TAC[SUM_ADD_SPLIT; LE_0; SUM_SING_NUMSEG] THEN
REWRITE_TAC[GSYM ADD1; FACT; GSYM REAL_OF_NUM_MUL] THEN
REWRITE_TAC[real_pow] THEN REWRITE_TAC[ARITH_RULE `SUC(SUC n) = n + 2`] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_ADD] THEN
MP_TAC(SPEC `n:num` FACT_LT) THEN UNDISCH_TAC `~(n = 0)` THEN
REWRITE_TAC[GSYM LT_NZ; REAL_POW_NEG; GSYM REAL_OF_NUM_LT; REAL_POW_ONE] THEN
CONV_TAC REAL_FIELD);;
(* ------------------------------------------------------------------------- *)
(* A more "explicit" formula. We could sharpen 1/2 to 0.3678794+epsilon *)
(* ------------------------------------------------------------------------- *)
let DERANGEMENTS_EXP = prove
(`!n. ~(n = 0)
==> let e = exp(&1) in
abs(&(derangements n) - &(FACT n) / e) < &1 / &2`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[DERANGEMENTS; LET_DEF; LET_END_DEF] THEN
REWRITE_TAC[real_div; GSYM REAL_EXP_NEG] THEN ASM_CASES_TAC `n < 5` THENL
[FIRST_X_ASSUM(REPEAT_TCL DISJ_CASES_THEN SUBST_ALL_TAC o MATCH_MP
(ARITH_RULE `n < 5 ==> n = 0 \/ n = 1 \/ n = 2 \/ n = 3 \/ n = 4`)) THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[ARITH] THEN
REWRITE_TAC(map (num_CONV o mk_small_numeral) (1--5)) THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN CONV_TAC NUM_REDUCE_CONV THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_ARITH `abs x < a <=> --a < x /\ x < a`] THEN
REWRITE_TAC[real_sub] THEN CONJ_TAC THEN CONV_TAC REALCALC_REL_CONV;
ALL_TAC] THEN
MP_TAC(SPECL [`-- &1`; `n + 1`] MCLAURIN_EXP_LE) THEN
SIMP_TAC[PSUM_SUM_NUMSEG; ADD_EQ_0; ARITH_EQ] THEN
REWRITE_TAC[ARITH_RULE `(0 + n + 1) - 1 = n`; GSYM real_div] THEN
DISCH_THEN(X_CHOOSE_THEN `u:real` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[REAL_ARITH `abs(a * b - a * (b + c)) = abs(a * c)`] THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NEG] THEN
REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; REAL_MUL_RID] THEN
REWRITE_TAC[GSYM ADD1; FACT; GSYM REAL_OF_NUM_MUL] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN
SIMP_TAC[REAL_OF_NUM_LT; FACT_LT; REAL_FIELD
`&0 < a ==> a * b / ((&n + &1) * a) = b / (&n + &1)`] THEN
SIMP_TAC[REAL_LT_LDIV_EQ; REAL_ARITH `&0 < &n + &1`] THEN
REWRITE_TAC[real_abs; REAL_EXP_POS_LE] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `exp(&1)` THEN CONJ_TAC THENL
[REWRITE_TAC[REAL_EXP_MONO_LE] THEN
UNDISCH_TAC `abs(u) <= abs(-- &1)` THEN REAL_ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&3` THEN CONJ_TAC THENL
[CONV_TAC REALCALC_REL_CONV; ALL_TAC] THEN
UNDISCH_TAC `~(n < 5)` THEN REWRITE_TAC[NOT_LT; GSYM REAL_OF_NUM_LE] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Hence the critical "rounding" property. *)
(* ------------------------------------------------------------------------- *)
let round = new_definition
`round x = @n. integer(n) /\ n - &1 / &2 <= x /\ x < n + &1 / &2`;;
let ROUND_WORKS = prove
(`!x. integer(round x) /\ round x - &1 / &2 <= x /\ x < round x + &1 / &2`,
GEN_TAC THEN REWRITE_TAC[round] THEN CONV_TAC SELECT_CONV THEN
EXISTS_TAC `floor(x + &1 / &2)` THEN MP_TAC(SPEC `x + &1 / &2` FLOOR) THEN
SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;
let DERANGEMENTS_EXP = prove
(`!n. ~(n = 0)
==> let e = exp(&1) in &(derangements n) = round(&(FACT n) / e)`,
REPEAT STRIP_TAC THEN LET_TAC THEN
MATCH_MP_TAC REAL_EQ_INTEGERS_IMP THEN
REWRITE_TAC[INTEGER_CLOSED; ROUND_WORKS] THEN
MP_TAC(SPEC `&(FACT n) / e` ROUND_WORKS) THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP DERANGEMENTS_EXP) THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Put them together. *)
(* ------------------------------------------------------------------------- *)
let THE_DERANGEMENTS_FORMULA = prove
(`!n s. s HAS_SIZE n /\ ~(n = 0)
==> FINITE {p | p deranges s} /\
let e = exp(&1) in
&(CARD {p | p deranges s}) = round(&(FACT n) / e)`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP NUMBER_OF_DERANGEMENTS) THEN
ASM_SIMP_TAC[HAS_SIZE; DERANGEMENTS_EXP]);;
|