Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 27,229 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
(* ========================================================================= *)
(* #88: Formula for the number of derangements: round[n!/e]                  *)
(* ========================================================================= *)

needs "Library/transc.ml";;
needs "Library/calc_real.ml";;
needs "Library/floor.ml";;

let PAIR_BETA_THM = GEN_BETA_CONV `(\(x,y). P x y) (a,b)`;;

(* ------------------------------------------------------------------------- *)
(* Domain and range of a relation.                                           *)
(* ------------------------------------------------------------------------- *)

let domain = new_definition
 `domain r = {x | ?y. r(x,y)}`;;

let range = new_definition
 `range r = {y | ?x. r(x,y)}`;;

(* ------------------------------------------------------------------------- *)
(* Relational composition.                                                   *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("%",(26, "right"));;

let compose = new_definition
 `(r % s) (x,y) <=> ?z. r(x,z) /\ s(z,y)`;;

(* ------------------------------------------------------------------------- *)
(* Identity relation on a domain.                                            *)
(* ------------------------------------------------------------------------- *)

let id = new_definition
 `id(s) (x,y) <=> x IN s /\ x = y`;;

(* ------------------------------------------------------------------------- *)
(* Converse relation.                                                        *)
(* ------------------------------------------------------------------------- *)

let converse = new_definition
 `converse(r) (x,y) = r(y,x)`;;

(* ------------------------------------------------------------------------- *)
(* Transposition.                                                            *)
(* ------------------------------------------------------------------------- *)

let swap = new_definition
 `swap(a,b) (x,y) <=> x = a /\ y = b \/ x = b /\ y = a`;;

(* ------------------------------------------------------------------------- *)
(* When a relation "pairs up" two sets bijectively.                          *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("pairsup",(12,"right"));;

let pairsup = new_definition
 `r pairsup (s,t) <=> (r % converse(r) = id(s)) /\ (converse(r) % r = id(t))`;;

(* ------------------------------------------------------------------------- *)
(* Special case of a permutation.                                            *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("permutes",(12,"right"));;

let permutes = new_definition
 `r permutes s <=> r pairsup (s,s)`;;

(* ------------------------------------------------------------------------- *)
(* Even more special case of derangement.                                    *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("deranges",(12,"right"));;

let deranges = new_definition
 `r deranges s <=> r permutes s /\ !x. ~(r(x,x))`;;

(* ------------------------------------------------------------------------- *)
(* Trivial tactic for properties of relations.                               *)
(* ------------------------------------------------------------------------- *)

let REL_TAC =
  POP_ASSUM_LIST(K ALL_TAC) THEN
  REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; EXISTS_PAIR_THM; PAIR_BETA_THM;
              permutes; pairsup; domain; range; compose; id; converse; swap;
              deranges; IN_INSERT; IN_DELETE; NOT_IN_EMPTY; IN_ELIM_THM] THEN
  REWRITE_TAC[IN; EMPTY; INSERT; DELETE; UNION; IN_ELIM_THM; PAIR_EQ;
              id; converse; swap] THEN
  REPEAT(STRIP_TAC ORELSE EQ_TAC) THEN
  REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o check (is_var o lhs o concl))) THEN
  REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o check (is_var o rhs o concl))) THEN
  ASM_MESON_TAC[];;

let REL_RULE tm = prove(tm,REL_TAC);;

(* ------------------------------------------------------------------------- *)
(* Some general properties of relations.                                     *)
(* ------------------------------------------------------------------------- *)

let CONVERSE_COMPOSE = prove
 (`!r s. converse(r % s) = converse(s) % converse(r)`,
  REL_TAC);;

let CONVERSE_CONVERSE = prove
 (`!r. converse(converse r) = r`,
  REL_TAC);;

(* ------------------------------------------------------------------------- *)
(* More "explicit" definition of pairing and permutation.                    *)
(* ------------------------------------------------------------------------- *)

let PAIRSUP_EXPLICIT = prove
 (`!p s t.
        p pairsup (s,t) <=>
        (!x y. p(x,y) ==> x IN s /\ y IN t) /\
        (!x. x IN s ==> ?!y. y IN t /\ p(x,y)) /\
        (!y. y IN t ==> ?!x. x IN s /\ p(x,y))`,
  REL_TAC);;

let PERMUTES_EXPLICIT = prove
 (`!p s. p permutes s <=>
         (!x y. p(x,y) ==> x IN s /\ y IN s) /\
         (!x. x IN s ==> ?!y. y IN s /\ p(x,y)) /\
         (!y. y IN s ==> ?!x. x IN s /\ p(x,y))`,
  REL_TAC);;

(* ------------------------------------------------------------------------- *)
(* Other low-level properties.                                               *)
(* ------------------------------------------------------------------------- *)

let PAIRSUP_DOMRAN = prove
 (`!p s t. p pairsup (s,t) ==> domain p = s /\ range p = t`,
  REL_TAC);;

let PERMUTES_DOMRAN = prove
 (`!p s. p permutes s ==> domain p = s /\ range p = s`,
  REL_TAC);;

let PAIRSUP_FUNCTIONAL = prove
 (`!p s t. p pairsup (s,t) ==> !x y y'. p(x,y) /\ p(x,y') ==> y = y'`,
  REL_TAC);;

let PERMUTES_FUNCTIONAL = prove
 (`!p s. p permutes s ==> !x y y'. p(x,y) /\ p(x,y') ==> y = y'`,
  REL_TAC);;

let PAIRSUP_COFUNCTIONAL = prove
 (`!p s t. p pairsup (s,t) ==> !x x' y. p(x,y) /\ p(x',y) ==> x = x'`,
  REL_TAC);;

let PERMUTES_COFUNCTIONAL = prove
 (`!p s. p permutes s ==> !x x' y. p(x,y) /\ p(x',y) ==> x = x'`,
  REL_TAC);;

(* ------------------------------------------------------------------------- *)
(* Some more abstract properties.                                            *)
(* ------------------------------------------------------------------------- *)

let PAIRSUP_ID = prove
 (`!s. id(s) pairsup (s,s)`,
  REL_TAC);;

let PERMUTES_ID = prove
 (`!s. id(s) permutes s`,
  REL_TAC);;

let PAIRSUP_CONVERSE = prove
 (`!p s t. p pairsup (s,t) ==> converse(p) pairsup (t,s)`,
  REL_TAC);;

let PERMUTES_CONVERSE = prove
 (`!p s. p permutes s ==> converse(p) permutes s`,
  REL_TAC);;

let PAIRSUP_COMPOSE = prove
 (`!p p' s t u. p pairsup (s,t) /\ p' pairsup (t,u) ==> (p % p') pairsup (s,u)`,
  REL_TAC);;

let PERMUTES_COMPOSE = prove
 (`!p p' s. p permutes s /\ p' permutes s ==> (p % p') permutes s`,
  REL_TAC);;

(* ------------------------------------------------------------------------- *)
(* Transpositions are permutations.                                          *)
(* ------------------------------------------------------------------------- *)

let PERMUTES_SWAP = prove
 (`swap(a,b) permutes {a,b}`,
  REL_TAC);;

(* ------------------------------------------------------------------------- *)
(* Clausal theorems for cases on first set.                                  *)
(* ------------------------------------------------------------------------- *)

let PAIRSUP_EMPTY = prove
 (`p pairsup ({},{}) <=> (p = {})`,
  REL_TAC);;

let PAIRSUP_INSERT = prove
 (`!x:A s t:B->bool p.
        p pairsup (x INSERT s,t) <=>
          if x IN s then p pairsup (s,t)
          else ?y q. y IN t /\ p = (x,y) INSERT q /\ q pairsup (s,t DELETE y)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[SET_RULE `x IN s ==> x INSERT s = s`] THEN EQ_TAC THENL
   [ALL_TAC;
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
    REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC] THEN
  DISCH_TAC THEN SUBGOAL_THEN `?y. y IN t /\ p(x:A,y:B)` MP_TAC THENL
   [POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REL_TAC; ALL_TAC] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:B` THEN STRIP_TAC THEN
  EXISTS_TAC `p DELETE (x:A,y:B)` THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REL_TAC);;

(* ------------------------------------------------------------------------- *)
(* Number of pairings and permutations.                                      *)
(* ------------------------------------------------------------------------- *)

let NUMBER_OF_PAIRINGS = prove
 (`!n s:A->bool t:B->bool.
        s HAS_SIZE n /\ t HAS_SIZE n
        ==> {p | p pairsup (s,t)} HAS_SIZE (FACT n)`,
  let lemma = prove
   (`{p | ?y. y IN t /\ A y p} = UNIONS {{p | A y p} | y IN t} /\
     {p | ?q. p = (a,y) INSERT q /\ A y q} =
           IMAGE (\q. (a,y) INSERT q) {q | A y q}`,
    CONJ_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
    REWRITE_TAC[IN_ELIM_THM; IN_UNIONS; IN_IMAGE] THEN SET_TAC[]) in
  INDUCT_TAC THEN REPEAT GEN_TAC THENL
   [REWRITE_TAC[HAS_SIZE_CLAUSES] THEN
    SIMP_TAC[PAIRSUP_EMPTY; SET_RULE `{x | x = a} = {a}`] THEN
    SIMP_TAC[HAS_SIZE; CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; ARITH; FACT];
    ALL_TAC] THEN
  GEN_REWRITE_TAC (funpow 2 LAND_CONV) [HAS_SIZE_CLAUSES] THEN
  REWRITE_TAC[HAS_SIZE_SUC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
  ASM_REWRITE_TAC[PAIRSUP_INSERT; RIGHT_EXISTS_AND_THM; lemma; FACT] THEN
  MATCH_MP_TAC HAS_SIZE_UNIONS THEN REPEAT CONJ_TAC THENL
   [ASM_REWRITE_TAC[HAS_SIZE_SUC];
    REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
    ASM_SIMP_TAC[] THEN REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
    REPEAT STRIP_TAC THEN REWRITE_TAC[DISJOINT] THEN
    GEN_REWRITE_TAC I [EXTENSION] THEN
    REWRITE_TAC[IN_INTER; IN_IMAGE; NOT_IN_EMPTY] THEN
    REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC]);;

let NUMBER_OF_PERMUTATIONS = prove
 (`!s n. s HAS_SIZE n ==> {p | p permutes s} HAS_SIZE (FACT n)`,
  SIMP_TAC[permutes; NUMBER_OF_PAIRINGS]);;

(* ------------------------------------------------------------------------- *)
(* Number of derangements (we need to justify this later).                   *)
(* ------------------------------------------------------------------------- *)

let derangements = define
 `(derangements 0 = 1) /\
  (derangements 1 = 0) /\
  (derangements(n + 2) = (n + 1) * (derangements n + derangements(n + 1)))`;;

let DERANGEMENT_INDUCT = prove
 (`!P. P 0 /\ P 1 /\ (!n. P n /\ P(n + 1) ==> P(n + 2)) ==> !n. P n`,
  GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `!n. P n /\ P(n + 1)` (fun th -> MESON_TAC[th]) THEN
  INDUCT_TAC THEN ASM_SIMP_TAC[ADD1; GSYM ADD_ASSOC] THEN
  ASM_SIMP_TAC[ARITH]);;

(* ------------------------------------------------------------------------- *)
(* Expanding a derangement.                                                  *)
(* ------------------------------------------------------------------------- *)

let DERANGEMENT_ADD2 = prove
 (`!p s x y.
        p deranges s /\ ~(x IN s) /\ ~(y IN s) /\ ~(x = y)
        ==> ((x,y) INSERT (y,x) INSERT p) deranges (x INSERT y INSERT s)`,
  REL_TAC);;

let DERANGEMENT_ADD1 = prove
 (`!p s y x. p deranges s /\ ~(y IN s) /\ p(x,z)
             ==> ((x,y) INSERT (y,z) INSERT (p DELETE (x,z)))
                 deranges (y INSERT s)`,
  REL_TAC);;

(* ------------------------------------------------------------------------- *)
(* Number of derangements.                                                   *)
(* ------------------------------------------------------------------------- *)

let DERANGEMENT_EMPTY = prove
 (`!p. p deranges {} <=> p = {}`,
  REL_TAC);;

let DERANGEMENT_SING = prove
 (`!x p. ~(p deranges {x})`,
  REL_TAC);;

let NUMBER_OF_DERANGEMENTS = prove
 (`!n s:A->bool. s HAS_SIZE n ==> {p | p deranges s} HAS_SIZE (derangements n)`,
  MATCH_MP_TAC DERANGEMENT_INDUCT THEN REWRITE_TAC[derangements] THEN
  REPEAT CONJ_TAC THENL
   [CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN REPEAT STRIP_TAC THEN
    EXISTS_TAC `{}:A#A->bool` THEN
    ASM_REWRITE_TAC[DERANGEMENT_EMPTY; EXTENSION; IN_ELIM_THM] THEN
    REWRITE_TAC[NOT_IN_EMPTY; IN_SING] THEN MESON_TAC[MEMBER_NOT_EMPTY];
    CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN REPEAT STRIP_TAC THEN
    ASM_REWRITE_TAC[DERANGEMENT_SING] THEN SET_TAC[];
    ALL_TAC] THEN
  X_GEN_TAC `n:num` THEN STRIP_TAC THEN X_GEN_TAC `t:A->bool` THEN
  REWRITE_TAC[ARITH_RULE `n + 2 = SUC(n + 1)`; HAS_SIZE_CLAUSES] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`x:A`; `s:A->bool`] THEN
  STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
  SUBGOAL_THEN
   `{p | p deranges (x:A INSERT s)} =
        (IMAGE (\(y,p). (x,y) INSERT (y,x) INSERT p)
               {(y,p) | y IN s /\ p IN {p | p deranges (s DELETE y)}}) UNION
        (IMAGE (\(y,p). let z = @z. p(x,z) in
                        (x,y) INSERT (y,z) INSERT (p DELETE (x,z)))
               {(y,p) | y IN s /\
                        p IN {p | p deranges (x INSERT (s DELETE y))}})`
  SUBST1_TAC THENL
   [GEN_REWRITE_TAC I [EXTENSION] THEN
    REWRITE_TAC[TAUT `(a <=> b) <=> (b ==> a) /\ (a ==> b)`] THEN
    REWRITE_TAC[FORALL_AND_THM] THEN CONJ_TAC THENL
     [REWRITE_TAC[IN_UNION; TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`;
                  FORALL_AND_THM; FORALL_IN_IMAGE] THEN
      REWRITE_TAC[FORALL_PAIR_THM; PAIR_BETA_THM; IN_ELIM_THM; PAIR_EQ] THEN
      ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
      REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
      CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`y:A`; `p:A#A->bool`] THEN
      STRIP_TAC THENL
       [FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE
         `y IN s ==> s = y INSERT (s DELETE y)`)) THEN
        MATCH_MP_TAC DERANGEMENT_ADD2 THEN ASM_REWRITE_TAC[IN_DELETE] THEN
        ASM_MESON_TAC[];
        ALL_TAC] THEN
      ABBREV_TAC `z = @z. p(x:A,z:A)` THEN
      SUBGOAL_THEN `(p:A#A->bool)(x:A,z:A)` STRIP_ASSUME_TAC THENL
       [REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN
        CONV_TAC SELECT_CONV THEN
        REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
        ALL_TAC] THEN
      SUBGOAL_THEN `z:A IN s` STRIP_ASSUME_TAC THENL
       [REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
      REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
      SUBGOAL_THEN `(x:A) INSERT s = y INSERT (x INSERT (s DELETE y))`
      SUBST1_TAC THENL
       [REPEAT(POP_ASSUM MP_TAC) THEN SET_TAC[]; ALL_TAC] THEN
      MATCH_MP_TAC DERANGEMENT_ADD1 THEN ASM_REWRITE_TAC[] THEN
      ASM_REWRITE_TAC[IN_DELETE; IN_INSERT] THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    X_GEN_TAC `p:A#A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
    SUBGOAL_THEN `?y. y IN s /\ p(x:A,y:A)` STRIP_ASSUME_TAC THENL
     [REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
    REWRITE_TAC[IN_UNION] THEN ASM_CASES_TAC `(p:A#A->bool)(y,x)` THENL
     [DISJ1_TAC THEN REWRITE_TAC[IN_IMAGE] THEN
      EXISTS_TAC `y:A,(p DELETE (y,x)) DELETE (x:A,y:A)` THEN
      CONJ_TAC THENL
       [REWRITE_TAC[PAIR_BETA_THM] THEN MAP_EVERY UNDISCH_TAC
         [`(p:A#A->bool)(x,y)`; `(p:A#A->bool)(y,x)`] THEN SET_TAC[];
        ALL_TAC] THEN
      REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN
      ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
      ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
      REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN `?z. p(y:A,z:A)` STRIP_ASSUME_TAC THENL
     [REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
    SUBGOAL_THEN `z:A IN s` ASSUME_TAC THENL
     [REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
    DISJ2_TAC THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; PAIR_BETA_THM] THEN
    EXISTS_TAC `y:A` THEN
    EXISTS_TAC `(x:A,z:A) INSERT ((p DELETE (x,y)) DELETE (y,z))` THEN
    SUBGOAL_THEN
     `(@w:A. ((x,z) INSERT (p DELETE (x,y) DELETE (y,z))) (x,w)) = z`
    SUBST1_TAC THENL
     [MATCH_MP_TAC SELECT_UNIQUE THEN REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
      ALL_TAC] THEN
    REWRITE_TAC[LET_DEF; LET_END_DEF] THEN CONJ_TAC THENL
     [REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; PAIR_BETA_THM] THEN
      REWRITE_TAC[IN; INSERT; DELETE; PAIR_BETA_THM; IN_ELIM_THM; PAIR_EQ] THEN
      MAP_EVERY X_GEN_TAC [`u:A`; `v:A`] THEN
      ASM_CASES_TAC `u:A = x` THEN ASM_REWRITE_TAC[] THENL
       [ALL_TAC; REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC] THEN
      FIRST_X_ASSUM SUBST_ALL_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
      ALL_TAC] THEN
    REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
    ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
    REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB] THEN MATCH_MP_TAC HAS_SIZE_UNION THEN
  REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
     [REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM; PAIR_BETA_THM; PAIR_EQ] THEN
      ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
      REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
      REWRITE_TAC[FUN_EQ_THM; INSERT; IN_ELIM_THM; FORALL_PAIR_THM;
                  PAIR_EQ] THEN
      UNDISCH_TAC `~(x:A IN s)` THEN REL_TAC;
      ALL_TAC] THEN
    MATCH_MP_TAC HAS_SIZE_PRODUCT_DEPENDENT THEN ASM_REWRITE_TAC[] THEN
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    UNDISCH_TAC `(s:A->bool) HAS_SIZE (n + 1)` THEN
    SIMP_TAC[HAS_SIZE; FINITE_DELETE; CARD_DELETE] THEN
    ASM_REWRITE_TAC[ADD_SUB];

    MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
     [REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM; PAIR_BETA_THM; PAIR_EQ] THEN
      ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
      REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN MAP_EVERY X_GEN_TAC
       [`y:A`; `p:(A#A)->bool`; `y':A`; `p':(A#A->bool)`] THEN
      DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
      DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
      MAP_EVERY ABBREV_TAC [`z = @z. p(x:A,z:A)`; `z' = @z. p'(x:A,z:A)`] THEN
      REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
      SUBGOAL_THEN `p(x:A,z:A) /\ p'(x:A,z':A)` STRIP_ASSUME_TAC THENL
       [REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN
        CONJ_TAC THEN CONV_TAC SELECT_CONV THEN
        REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
        ALL_TAC] THEN
      REPEAT(FIRST_X_ASSUM(K ALL_TAC o SYM)) THEN
      SUBGOAL_THEN `z:A IN s /\ z':A IN s` STRIP_ASSUME_TAC THENL
       [REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
      DISCH_THEN(fun th -> MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN
                           CONJ_TAC THEN MP_TAC th)
      THENL
       [DISCH_THEN(MP_TAC o C AP_THM `(x:A,y:A)`) THEN
        REWRITE_TAC[INSERT; DELETE; IN_ELIM_THM; PAIR_BETA_THM; PAIR_EQ] THEN
        REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
        ALL_TAC] THEN
      ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b ==> a ==> c`] THEN
      DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
      ASM_CASES_TAC `z':A = z` THEN ASM_REWRITE_TAC[] THENL
       [FIRST_X_ASSUM SUBST_ALL_TAC;
        DISCH_THEN(MP_TAC o C AP_THM `(y:A,z:A)`) THEN
        REWRITE_TAC[INSERT; DELETE; IN_ELIM_THM; PAIR_BETA_THM; PAIR_EQ] THEN
        REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC] THEN
      DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE
       `a INSERT b INSERT s = a INSERT b INSERT t
        ==> ~(a IN s) /\ ~(a IN t) /\ ~(b IN s) /\ ~(b IN t) ==> s = t`)) THEN
      REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
      ALL_TAC] THEN
    MATCH_MP_TAC HAS_SIZE_PRODUCT_DEPENDENT THEN ASM_REWRITE_TAC[] THEN
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(s:A->bool) HAS_SIZE n + 1` THEN
    ASM_SIMP_TAC[HAS_SIZE; FINITE_INSERT; FINITE_DELETE] THEN
    ASM_SIMP_TAC[CARD_DELETE; CARD_CLAUSES; FINITE_DELETE] THEN
    ASM_REWRITE_TAC[IN_DELETE] THEN ARITH_TAC;

    REWRITE_TAC[DISJOINT] THEN
    GEN_REWRITE_TAC I [EXTENSION] THEN
    REWRITE_TAC[NOT_IN_EMPTY; IN_INTER; TAUT `~(a /\ b) <=> a ==> ~b`] THEN
    REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[FORALL_PAIR_THM] THEN
    MAP_EVERY X_GEN_TAC [`y:A`; `p:A#A->bool`] THEN
    REWRITE_TAC[IN_ELIM_THM; PAIR_BETA_THM; PAIR_EQ] THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
    STRIP_TAC THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; NOT_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`z:A`; `q:A#A->bool`] THEN
    REWRITE_TAC[PAIR_BETA_THM; IN_ELIM_THM; PAIR_EQ] THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
    DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
    ABBREV_TAC `w = @w. q(x:A,w:A)` THEN
    SUBGOAL_THEN `(q:A#A->bool)(x:A,w:A)` STRIP_ASSUME_TAC THENL
     [REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN
      CONV_TAC SELECT_CONV THEN
      REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN `w:A IN s` STRIP_ASSUME_TAC THENL
     [REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
    REWRITE_TAC[LET_DEF; LET_END_DEF] THEN FIRST_X_ASSUM(K ALL_TAC o SYM) THEN
    ASM_CASES_TAC `w:A = z` THEN ASM_REWRITE_TAC[] THENL
     [REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC; ALL_TAC] THEN
    ASM_CASES_TAC `w:A = y` THEN ASM_REWRITE_TAC[] THENL
     [FIRST_X_ASSUM SUBST_ALL_TAC THEN
      REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC;
      ALL_TAC] THEN
    ASM_CASES_TAC `y:A = z` THENL
     [FIRST_X_ASSUM SUBST_ALL_TAC; ALL_TAC] THEN
    REPEAT(POP_ASSUM MP_TAC) THEN REL_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Trivia.                                                                   *)
(* ------------------------------------------------------------------------- *)

let SUM_1 = prove
 (`sum(0..1) f = f 0 + f 1`,
  REWRITE_TAC[num_CONV `1`; SUM_CLAUSES_NUMSEG; LE_0]);;

let SUM_2 = prove
 (`sum(0..2) f = f 0 + f 1 + f 2`,
  SIMP_TAC[num_CONV `2`; num_CONV `1`; SUM_CLAUSES_NUMSEG; LE_0;
           REAL_ADD_AC]);;

(* ------------------------------------------------------------------------- *)
(* The key result.                                                           *)
(* ------------------------------------------------------------------------- *)

let DERANGEMENTS = prove
 (`!n. ~(n = 0)
       ==> &(derangements n) =
           &(FACT n) * sum(0..n) (\k. --(&1) pow k / &(FACT k))`,
  MATCH_MP_TAC DERANGEMENT_INDUCT THEN REWRITE_TAC[ADD_EQ_0; ARITH_EQ] THEN
  REWRITE_TAC[derangements; SUM_1] THEN
  CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
  X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THENL
   [ASM_REWRITE_TAC[derangements; ARITH; SUM_2; SUM_1] THEN
    CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV;
    ALL_TAC] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD] THEN
  DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
  REWRITE_TAC[ARITH_RULE `n + 2 = (n + 1) + 1`] THEN
  SIMP_TAC[SUM_ADD_SPLIT; LE_0; SUM_SING_NUMSEG] THEN
  REWRITE_TAC[GSYM ADD1; FACT; GSYM REAL_OF_NUM_MUL] THEN
  REWRITE_TAC[real_pow] THEN REWRITE_TAC[ARITH_RULE `SUC(SUC n) = n + 2`] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_ADD] THEN
  MP_TAC(SPEC `n:num` FACT_LT) THEN UNDISCH_TAC `~(n = 0)` THEN
  REWRITE_TAC[GSYM LT_NZ; REAL_POW_NEG; GSYM REAL_OF_NUM_LT; REAL_POW_ONE] THEN
  CONV_TAC REAL_FIELD);;

(* ------------------------------------------------------------------------- *)
(* A more "explicit" formula. We could sharpen 1/2 to 0.3678794+epsilon      *)
(* ------------------------------------------------------------------------- *)

let DERANGEMENTS_EXP = prove
 (`!n. ~(n = 0)
       ==> let e = exp(&1) in
           abs(&(derangements n) - &(FACT n) / e) < &1 / &2`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[DERANGEMENTS; LET_DEF; LET_END_DEF] THEN
  REWRITE_TAC[real_div; GSYM REAL_EXP_NEG] THEN ASM_CASES_TAC `n < 5` THENL
   [FIRST_X_ASSUM(REPEAT_TCL DISJ_CASES_THEN SUBST_ALL_TAC o MATCH_MP
     (ARITH_RULE `n < 5 ==> n = 0 \/ n = 1 \/ n = 2 \/ n = 3 \/ n = 4`)) THEN
    POP_ASSUM MP_TAC THEN REWRITE_TAC[ARITH] THEN
    REWRITE_TAC(map (num_CONV o mk_small_numeral) (1--5)) THEN
    REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN CONV_TAC NUM_REDUCE_CONV THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[REAL_ARITH `abs x < a <=> --a < x /\ x < a`] THEN
    REWRITE_TAC[real_sub] THEN CONJ_TAC THEN CONV_TAC REALCALC_REL_CONV;
    ALL_TAC] THEN
  MP_TAC(SPECL [`-- &1`; `n + 1`] MCLAURIN_EXP_LE) THEN
  SIMP_TAC[PSUM_SUM_NUMSEG; ADD_EQ_0; ARITH_EQ] THEN
  REWRITE_TAC[ARITH_RULE `(0 + n + 1) - 1 = n`; GSYM real_div] THEN
  DISCH_THEN(X_CHOOSE_THEN `u:real` STRIP_ASSUME_TAC) THEN
  ASM_REWRITE_TAC[REAL_ARITH `abs(a * b - a * (b + c)) = abs(a * c)`] THEN
  REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NEG] THEN
  REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; REAL_MUL_RID] THEN
  REWRITE_TAC[GSYM ADD1; FACT; GSYM REAL_OF_NUM_MUL] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN
  SIMP_TAC[REAL_OF_NUM_LT; FACT_LT; REAL_FIELD
   `&0 < a ==> a * b / ((&n + &1) * a) = b / (&n + &1)`] THEN
  SIMP_TAC[REAL_LT_LDIV_EQ; REAL_ARITH `&0 < &n + &1`] THEN
  REWRITE_TAC[real_abs; REAL_EXP_POS_LE] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `exp(&1)` THEN CONJ_TAC THENL
   [REWRITE_TAC[REAL_EXP_MONO_LE] THEN
    UNDISCH_TAC `abs(u) <= abs(-- &1)` THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&3` THEN CONJ_TAC THENL
   [CONV_TAC REALCALC_REL_CONV; ALL_TAC] THEN
  UNDISCH_TAC `~(n < 5)` THEN REWRITE_TAC[NOT_LT; GSYM REAL_OF_NUM_LE] THEN
  REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Hence the critical "rounding" property.                                   *)
(* ------------------------------------------------------------------------- *)

let round = new_definition
 `round x = @n. integer(n) /\ n - &1 / &2 <= x /\ x < n + &1 / &2`;;

let ROUND_WORKS = prove
 (`!x. integer(round x) /\ round x - &1 / &2 <= x /\ x < round x + &1 / &2`,
  GEN_TAC THEN REWRITE_TAC[round] THEN CONV_TAC SELECT_CONV THEN
  EXISTS_TAC `floor(x + &1 / &2)` THEN MP_TAC(SPEC `x + &1 / &2` FLOOR) THEN
  SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;

let DERANGEMENTS_EXP = prove
 (`!n. ~(n = 0)
       ==> let e = exp(&1) in &(derangements n) = round(&(FACT n) / e)`,
  REPEAT STRIP_TAC THEN LET_TAC THEN
  MATCH_MP_TAC REAL_EQ_INTEGERS_IMP THEN
  REWRITE_TAC[INTEGER_CLOSED; ROUND_WORKS] THEN
  MP_TAC(SPEC `&(FACT n) / e` ROUND_WORKS) THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP DERANGEMENTS_EXP) THEN
  ASM_REWRITE_TAC[LET_DEF; LET_END_DEF] THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Put them together.                                                        *)
(* ------------------------------------------------------------------------- *)

let THE_DERANGEMENTS_FORMULA = prove
 (`!n s. s HAS_SIZE n /\ ~(n = 0)
         ==> FINITE {p | p deranges s} /\
             let e = exp(&1) in
             &(CARD {p | p deranges s}) = round(&(FACT n) / e)`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP NUMBER_OF_DERANGEMENTS) THEN
  ASM_SIMP_TAC[HAS_SIZE; DERANGEMENTS_EXP]);;