Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 21,808 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
:: Input and Output of Instructions
::  by Artur Korni{\l}owicz

environ

 vocabularies XBOOLE_0, AMI_1, FSM_1, CAT_1, FUNCT_1, RELAT_1, STRUCT_0,
      SUBSET_1, FUNCT_4, FUNCOP_1, GOBOARD5, FRECHET, AMISTD_1, ZFMISC_1,
      NUMBERS, CARD_1, GLIB_000, AMISTD_2, NET_1, TARSKI, AMISTD_4, QUANTAL1,
      GOBRD13, MEMSTR_0, COMPOS_1, ARYTM_3;
 notations TARSKI, XBOOLE_0, SUBSET_1, SETFAM_1, RELAT_1, FUNCT_1, ZFMISC_1,
      XTUPLE_0, MCART_1, ORDINAL1, NUMBERS, FUNCOP_1, FUNCT_4, XCMPLX_0, NAT_1,
      STRUCT_0, MEMSTR_0, COMPOS_0, COMPOS_1, EXTPRO_1, FUNCT_7, MEASURE6,
      AMISTD_1, AMISTD_2;
 constructors ZFMISC_1, AMISTD_2, NAT_1, PRE_POLY, EXTPRO_1, AMISTD_1,
      DOMAIN_1, FUNCT_7, FUNCT_4, MEMSTR_0, RELSET_1, MEASURE6, PBOOLE,
      XTUPLE_0;
 registrations FUNCOP_1, STRUCT_0, AMISTD_1, AMISTD_2, ORDINAL1, EXTPRO_1,
      ORDINAL6, FUNCT_4, MEMSTR_0, MEASURE6;
 requirements SUBSET, BOOLE, NUMERALS;
 definitions EXTPRO_1, AMISTD_1, XBOOLE_0;
 equalities XBOOLE_0, FUNCOP_1, MEMSTR_0;
 expansions XBOOLE_0;
 theorems FUNCT_7, TARSKI, AMISTD_1, SUBSET_1, FUNCOP_1, ZFMISC_1, FUNCT_1,
      XBOOLE_0, XBOOLE_1, PARTFUN1, STRUCT_0, MEMSTR_0, MEASURE6, XTUPLE_0,
      NAT_1;
 schemes SUBSET_1;

begin :: Preliminaries

reserve N for with_zero set;

definition
  let N be with_zero set,
  A be IC-Ins-separated non
empty with_non-empty_values AMI-Struct over N, s be State of A,
o be Object of A,
  a be Element of Values o;
  redefine func s+*(o,a) -> State of A;
  coherence
  proof
    dom s = the carrier of A by PARTFUN1:def 2;
    then s+*(o,a) = s+*(o .--> a) by FUNCT_7:def 3;
    hence thesis;
  end;
end;

theorem Th1:
  for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A,
s being State
of A, o being Object of A, w being Element of Values o st I is sequential &
  o <> IC A holds IC Exec(I,s) = IC Exec(I,s+*(o,w))
proof
  let A be standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A,
s be State of A, o be Object of
  A, w be Element of Values o such that
A1: for s being State of A holds Exec(I,s).IC A = IC s + 1 and
A2: o <> IC A;
  thus IC Exec(I,s) = IC s + 1 by A1
    .= IC (s+*(o,w)) + 1 by A2,FUNCT_7:32
    .= IC Exec(I,s+*(o,w)) by A1;
end;

theorem
  for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A,
s being State
of A, o being Object of A, w being Element of Values o st I is sequential &
  o <> IC A holds IC Exec(I,s+*(o,w)) = IC (Exec(I,s) +* (o,w))
proof
  let A be standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A,
s be State of A, o be Object of
  A, w be Element of Values o such that
A1: I is sequential and
A2: o <> IC A;
  thus IC Exec(I,s+*(o,w)) = IC Exec(I,s) by A1,A2,Th1
    .= IC (Exec(I,s) +* (o,w)) by A2,FUNCT_7:32;
end;

begin :: Input and Output of Instructions

definition
  let A be COM-Struct;
  attr A is with_non_trivial_Instructions means
  :Def1:
  the InstructionsF of A is non trivial;
end;

definition
  let N be with_zero set, A be non empty with_non-empty_values
  AMI-Struct over N;
  attr A is with_non_trivial_ObjectKinds means
  :Def2:
  for o being Object of A
  holds Values o is non trivial;
end;

registration
  let N be with_zero set;
  cluster STC N -> with_non_trivial_ObjectKinds;
  coherence
  proof
    let o be Object of STC N;
A1: the carrier of STC N = {0} by AMISTD_1:def 7;
A2: the Object-Kind of STC N = 0 .--> 0
    by AMISTD_1:def 7;
    per cases by A1;
    suppose
A3:   o in {0};
A4:  the ValuesF of STC N = N --> NAT by AMISTD_1:def 7;
      0 in N by MEASURE6:def 2;
      then the_Values_of STC N = 0 .--> NAT by A2,A4,FUNCOP_1:89;
      then Values o = (0 .--> NAT).o
        .= NAT by A3,FUNCOP_1:7;
      hence thesis;
    end;
  end;
end;

registration
  let N be with_zero set;
  cluster with_explicit_jumps
    IC-relocable with_non_trivial_ObjectKinds with_non_trivial_Instructions
 for standard halting
  IC-Ins-separated non empty with_non-empty_values AMI-Struct over N;
  existence
  proof
    take STC N;
A1: [1,0,0] in {[1,0,0],[0,0,0]} & [0,0,0] in {[1,0,0],[0,0,0]}
       by TARSKI:def 2;
    the InstructionsF of STC N = {[0,0,0],[1,0,0]} & [1,0,0] <> [0,0,0] by
AMISTD_1:def 7,XTUPLE_0:3;
    then the InstructionsF of STC N is non trivial by A1,ZFMISC_1:def 10;
    hence thesis;
  end;
end;

registration
  let N be with_zero set;
  cluster STC N -> with_non_trivial_Instructions;
  coherence
  proof
A1:  [0,0,0] <> [1,0,0] by XTUPLE_0:3;
     the InstructionsF of STC N = {[0,0,0],[1,0,0]} by AMISTD_1:def 7;
     then [0,0,0] in the InstructionsF of STC N
        & [1,0,0] in the InstructionsF of STC N by TARSKI:def 2;
    hence the InstructionsF of STC N is non trivial by A1,ZFMISC_1:def 10;
  end;
end;

registration
  let N be with_zero set;
  cluster with_non_trivial_ObjectKinds with_non_trivial_Instructions
    IC-Ins-separated for non empty with_non-empty_values AMI-Struct over N;
  existence
  proof
    take STC N;
    thus thesis;
  end;
end;

registration
  let N be with_zero set,
   A be with_non_trivial_ObjectKinds non
  empty with_non-empty_values AMI-Struct over N, o be Object of A;
  cluster Values o -> non trivial;
  coherence by Def2;
end;

registration
  let N be with_zero set,
  A be with_non_trivial_Instructions
  with_non-empty_values AMI-Struct over N;
  cluster the InstructionsF of A -> non trivial;
  coherence by Def1;
end;

registration
  let N be with_zero set,
  A be IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N;
  cluster Values IC A -> non trivial;
  coherence by MEMSTR_0:def 6;
end;

definition

  let N be with_zero set, A be non empty
  with_non-empty_values AMI-Struct over N, I be Instruction of A;
  func Output I -> Subset of A means
  :Def3:
  for o being Object of A holds o in
  it iff ex s being State of A st s.o <> Exec(I,s).o;
  existence
  proof
    defpred P[set] means ex s being State of A st s.$1 <> Exec(I,s).$1;
    consider X being Subset of A such that
A1: for x being set holds x in X iff x in the carrier of A & P[x] from
    SUBSET_1:sch 1;
    take X;
    thus thesis by A1;
  end;
  uniqueness
  proof
    defpred P[set] means ex s being State of A st s.$1 <> Exec(I,s).$1;
    let a, b be Subset of A such that
A2: for o being Object of A holds o in a iff P[o] and
A3: for o being Object of A holds o in b iff P[o];
    thus a = b from SUBSET_1:sch 2(A2,A3);
  end;
end;

definition

  let N be with_zero set,
  A be IC-Ins-separated non
  empty with_non-empty_values AMI-Struct over N, I be Instruction of A;
  func Out_\_Inp I -> Subset of A means
  :Def4:
  for o being Object of A holds o
in it iff for s being State of A, a being Element of Values o holds Exec(I,
  s) = Exec(I,s+*(o,a));
  existence
  proof
    defpred P[set] means ex l being Object of A st l = $1 & for s being State
    of A, a being Element of Values l holds Exec(I,s) = Exec(I,s+*(l,a));
    consider X being Subset of A such that
A1: for x being set holds x in X iff x in the carrier of A & P[x] from
    SUBSET_1:sch 1;
    take X;
    let l be Object of A;
    hereby
      assume l in X;
      then P[l] by A1;
      hence
      for s being State of A, a being Element of Values l holds Exec(
      I,s) = Exec(I,s+*(l,a));
    end;
    thus thesis by A1;
  end;
  uniqueness
  proof
    defpred P[Object of A] means for s being State of A, a being Element of
    Values $1 holds Exec(I,s) = Exec(I,s+*($1,a));
    let a, b be Subset of A such that
A2: for o being Object of A holds o in a iff P[o] and
A3: for o being Object of A holds o in b iff P[o];
    thus a = b from SUBSET_1:sch 2(A2,A3);
  end;
  func Out_U_Inp I -> Subset of A means
  :Def5:
  for o being Object of A holds o
in it iff ex s being State of A, a being Element of Values o st Exec(I,s+*(
  o,a)) <> Exec(I,s) +* (o,a);
  existence
  proof
    defpred P[set] means ex l being Object of A st l = $1 & ex s being State
of A, a being Element of Values l st Exec(I,s+*(l,a)) <> Exec(I,s) +* (l,a);
    consider X being Subset of A such that
A4: for x being set holds x in X iff x in the carrier of A & P[x] from
    SUBSET_1:sch 1;
    take X;
    let l be Object of A;
    hereby
      assume l in X;
      then P[l] by A4;
      hence ex s being State of A, a being Element of Values l st Exec(I,s
      +*(l,a)) <> Exec(I,s) +* (l,a);
    end;
    thus thesis by A4;
  end;
  uniqueness
  proof
    defpred P[Object of A] means ex s being State of A, a being Element of
    Values $1 st Exec(I,s+*($1,a)) <> Exec(I,s) +* ($1,a);
    let a, b be Subset of A such that
A5: for o being Object of A holds o in a iff P[o] and
A6: for o being Object of A holds o in b iff P[o];
    thus a = b from SUBSET_1:sch 2(A5,A6);
  end;
end;

definition

  let N be with_zero set,
  A be IC-Ins-separated non
  empty with_non-empty_values AMI-Struct over N, I be Instruction of A;
  func Input I -> Subset of A equals
  Out_U_Inp I \ Out_\_Inp I;
  coherence;
end;

theorem Th3:
  for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction
  of A holds Out_\_Inp I c= Output I
proof
  let A be with_non_trivial_ObjectKinds IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I be Instruction of A;
  for o being Object of A holds o in Out_\_Inp I implies o in Output I
  proof
    let o be Object of A;
    set s = the State of A,a = the Element of Values o;
    consider w being object such that
A1: w in Values o and
A2: w <> a by SUBSET_1:48;
    reconsider w as Element of Values o by A1;
    set t = s +* (o,w);
A3: dom t = the carrier of A by PARTFUN1:def 2;
A4: dom s = the carrier of A by PARTFUN1:def 2;
    assume
A5: not thesis;
    then
A6: Exec(I,t+*(o,a)).o = (t+*(o,a)).o by Def3
      .= a by A3,FUNCT_7:31;
    Exec(I,t).o = t.o by A5,Def3
      .= w by A4,FUNCT_7:31;
    hence contradiction by A5,A2,A6,Def4;
  end;
  hence thesis by SUBSET_1:2;
end;

theorem Th4:
  for A being IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N,
  I being Instruction of A holds Output I c= Out_U_Inp I
proof
  let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
  N, I be Instruction of A;
  for o being Object of A holds o in Output I implies o in Out_U_Inp I
  proof
    let o be Object of A;
    assume
A1: not thesis;
    for s being State of A holds s.o = Exec(I,s).o
    proof
      let s be State of A;
      reconsider so = s.o as Element of Values o by MEMSTR_0:77;
A2:   Exec(I,s+*(o,so)) = Exec(I,s) +* (o,so) by A1,Def5;
      dom Exec(I,s) = the carrier of A by PARTFUN1:def 2;
      hence s.o = (Exec(I,s) +* (o,so)).o by FUNCT_7:31
        .= Exec(I,s).o by A2,FUNCT_7:35;
    end;
    hence contradiction by A1,Def3;
  end;
  hence thesis by SUBSET_1:2;
end;

theorem
  for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction of A
 holds
  Out_\_Inp I = Output I \ Input I
proof
  let A be with_non_trivial_ObjectKinds IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I be Instruction of A;
  for o being Object of A holds o in Out_\_Inp I iff o in Output I \ Input
  I
  proof
    let o be Object of A;
    hereby
A1:   Out_\_Inp I c= Output I by Th3;
      assume
A2:   o in Out_\_Inp I;
      Out_\_Inp I misses Input I by XBOOLE_1:85;
      then not o in Input I by A2,XBOOLE_0:3;
      hence o in Output I \ Input I by A2,A1,XBOOLE_0:def 5;
    end;
    assume
A3: o in Output I \ Input I;
    then
A4: not o in Input I by XBOOLE_0:def 5;
    per cases by A4,XBOOLE_0:def 5;
    suppose
A5:   not o in Out_U_Inp I;
      Output I c= Out_U_Inp I by Th4;
      then not o in Output I by A5;
      hence thesis by A3,XBOOLE_0:def 5;
    end;
    suppose
      o in Out_\_Inp I;
      hence thesis;
    end;
  end;
  hence thesis by SUBSET_1:3;
end;

theorem
  for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction of A
 holds
  Out_U_Inp I = Output I \/ Input I
proof
  let A be with_non_trivial_ObjectKinds IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I be Instruction of A;
  for o being Object of A st o in Out_U_Inp I holds o in Output I \/ Input
  I
  proof
    let o be Object of A such that
A1: o in Out_U_Inp I;
    o in Input I or o in Output I
    proof
      assume
A2:   not o in Input I;
      per cases by A2,XBOOLE_0:def 5;
      suppose
        not o in Out_U_Inp I;
        hence thesis by A1;
      end;
      suppose
A3:     o in Out_\_Inp I;
        Out_\_Inp I c= Output I by Th3;
        hence thesis by A3;
      end;
    end;
    hence thesis by XBOOLE_0:def 3;
  end;
  hence Out_U_Inp I c= Output I \/ Input I by SUBSET_1:2;
  Output I c= Out_U_Inp I & Input I c= Out_U_Inp I by Th4,XBOOLE_1:36;
  hence thesis by XBOOLE_1:8;
end;

theorem Th7:
  for A being IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I being Instruction of A,
  o being Object of A st
  Values o is trivial holds not o in Out_U_Inp I
proof
  let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
  N, I be Instruction of A, o be Object of A such that
A1: Values o is trivial;
  assume o in Out_U_Inp I;
  then consider s being State of A, a being Element of Values o such that
A2: Exec(I,s+*(o,a)) <> Exec(I,s) +* (o,a) by Def5;
  s.o is Element of Values o by MEMSTR_0:77;
  then s.o = a by A1,ZFMISC_1:def 10;
  then
A3: Exec(I,s+*(o,a)) = Exec(I,s) by FUNCT_7:35;
A4: dom Exec(I,s) = the carrier of A by PARTFUN1:def 2;
A5: for x being object st x in the carrier of A
  holds (Exec(I,s) +* (o,a)).x = Exec(I,s).x
  proof
    let x be object such that
    x in the carrier of A;
    per cases;
    suppose
A6:   x = o;
A7:   Exec(I,s).o is Element of Values o by MEMSTR_0:77;
      thus (Exec(I,s) +* (o,a)).x = a by A4,A6,FUNCT_7:31
        .= Exec(I,s).x by A1,A6,A7,ZFMISC_1:def 10;
    end;
    suppose
      x <> o;
      hence thesis by FUNCT_7:32;
    end;
  end;
  dom (Exec(I,s) +* (o,a)) = the carrier of A by PARTFUN1:def 2;
  hence contradiction by A2,A3,A4,A5,FUNCT_1:2;
end;

theorem
  for A being IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N , I being Instruction of A,
  o being Object of A st
  Values o is trivial holds not o in Input I
proof
  let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
  N, I be Instruction of A, o be Object of A;
A1: Input I c= Out_U_Inp I by XBOOLE_1:36;
  assume Values o is trivial;
  hence thesis by A1,Th7;
end;

theorem
  for A being IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N , I being Instruction of A,
  o being Object of A st
  Values o is trivial holds not o in Output I
proof
  let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
  N, I be Instruction of A, o be Object of A;
  assume
A1: Values o is trivial;
  Output I c= Out_U_Inp I by Th4;
  hence thesis by A1,Th7;
end;

theorem Th10:
  for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A
 holds I is halting iff Output I
  is empty
proof
  let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
  N, I be Instruction of A;
  thus I is halting implies Output I is empty
  proof
    assume
A1: for s being State of A holds Exec(I,s) = s;
    assume not thesis;
    then consider o being Object of A such that
A2: o in Output I;
    ex s being State of A st s.o <> Exec(I,s).o by A2,Def3;
    hence thesis by A1;
  end;
  assume
A3: Output I is empty;
  let s be State of A;
  assume
A4: Exec(I,s) <> s;
  dom s = the carrier of A & dom Exec(I,s) = the carrier of A
  by PARTFUN1:def 2;
  then ex x being object st x in the carrier of A & Exec(I,s).x <> s.x by A4,
FUNCT_1:2;
  hence contradiction by A3,Def3;
end;

theorem Th11:
  for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction
  of A st I is halting holds Out_\_Inp I is empty
proof
  let A be with_non_trivial_ObjectKinds IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I be Instruction of A such that
A1: I is halting;
  Out_\_Inp I c= Output I by Th3;
  then Out_\_Inp I c= {} by A1,Th10;
  hence thesis;
end;

theorem Th12:
  for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A
 st I is halting holds Out_U_Inp
  I is empty
proof
  let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
  N, I be Instruction of A such that
A1: for s being State of A holds Exec(I,s) = s;
  assume not thesis;
  then consider o being Object of A such that
A2: o in Out_U_Inp I;
  consider s being State of A, a being Element of Values o such that
A3: Exec(I,s+*(o,a)) <> Exec(I,s) +* (o,a) by A2,Def5;
  Exec(I,s+*(o,a)) = s+*(o,a) by A1
    .= Exec(I,s) +* (o,a) by A1;
  hence thesis by A3;
end;

theorem Th13:
  for A being IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I being Instruction of A
   st I is halting holds Input I
  is empty
proof
  let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
  N, I be Instruction of A;
  assume I is halting;
  then Input I = {} \ Out_\_Inp I by Th12
    .= {};
  hence thesis;
end;

registration

  let N be with_zero set,
  A be halting IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N,
I be halting Instruction of A;
  cluster Input I -> empty;
  coherence by Th13;
  cluster Output I -> empty;
  coherence by Th10;
  cluster Out_U_Inp I -> empty;
  coherence by Th12;
end;

registration
  let N be with_zero set;
  cluster halting with_non_trivial_ObjectKinds IC-Ins-separated for non
    empty with_non-empty_values AMI-Struct over N;
  existence
  proof
    take STC N;
    thus thesis;
  end;
end;

registration
  let N be with_zero set,
  A be halting
  with_non_trivial_ObjectKinds IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I be halting Instruction of A;
  cluster Out_\_Inp I -> empty;
  coherence by Th11;
end;

registration
  let N;
  cluster with_non_trivial_Instructions
  IC-Ins-separated
    for non empty with_non-empty_values AMI-Struct over N;
  existence
  proof
    take STC N;
    thus thesis;
  end;
end;

theorem
  for A being standard IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I being Instruction of A st I is
  sequential holds not IC A in Out_\_Inp I
proof
  let A be standard IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I be Instruction of A;
  set t = the State of A;
  set l = IC A;
   reconsider sICt = IC t + 1 as Element of NAT;
   reconsider w = sICt as Element of Values l by MEMSTR_0:def 6;
  set s = t +* (l,w);
  assume for s being State of A holds Exec(I,s).IC A = IC s + 1;
  then
A1: Exec(I,t).l = IC t + 1 & Exec(I,s).l = IC s + 1;
  dom t = the carrier of A by PARTFUN1:def 2;
  then s.l = w by FUNCT_7:31;
  then Exec(I,t) <> Exec(I,s) by A1,NAT_1:16;
  hence thesis by Def4;
end;

theorem
  for A being IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I being Instruction of A st
   ex s being State of A st
  Exec(I,s).IC A <> IC s holds IC A in Output I by Def3;

registration
  let N;
  cluster standard for IC-Ins-separated non empty
    with_non-empty_values AMI-Struct over N;
  existence
  proof
    take STC N;
    thus thesis;
  end;
end;

theorem
  for A being standard IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I being Instruction of A st I is
  sequential holds IC A in Output I
proof
  let A be standard IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I be Instruction of A such that
A1: for s being State of A holds Exec(I, s).IC A = IC s + 1;
  set s = the State of A;
  Exec(I,s).IC A = IC s + 1 by A1;
  then Exec(I,s).IC A <> IC s by NAT_1:16;
  hence thesis by Def3;
end;

theorem Th17:
  for A being IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I being Instruction of A st
   ex s being State of A st
  Exec(I,s).IC A <> IC s holds IC A in Out_U_Inp I
proof
  let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
  N, I be Instruction of A;
  assume ex s being State of A st Exec(I,s).IC A <> IC s;
  then
A1: IC A in Output I by Def3;
  Output I c= Out_U_Inp I by Th4;
  hence thesis by A1;
end;

theorem
  for A being standard IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I being Instruction of A st I is
  sequential holds IC A in Out_U_Inp I
proof
  let A be standard IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I be Instruction of A;
  set s = the State of A;
  assume for s being State of A holds Exec(I,s).IC A = IC s + 1;
  then Exec(I,s).IC A = IC s + 1;
  then Exec(I,s).IC A <> IC s by NAT_1:16;
  hence thesis by Th17;
end;

theorem
  for A being IC-Ins-separated non empty
   with_non-empty_values AMI-Struct over N, I being Instruction of A,
   o being Object
  of A st I is jump-only holds o in Output I implies o = IC A
proof
  let A be IC-Ins-separated non empty
  with_non-empty_values AMI-Struct over N, I be Instruction of A,
  o be Object of A;
  assume
A1: for s being State of A, o being Object of A, J being Instruction of
  A st InsCode I = InsCode J & o in Data-Locations A holds Exec(J,s).o = s.o;
  assume o in Output I;
  then ex s being State of A st s.o <> Exec(I,s).o by Def3;
  then
A2:  not o in Data-Locations A by A1;
   o in the carrier of A;
   then o in {IC A} \/ Data-Locations A by STRUCT_0:4;
   then o in {IC A} by A2,XBOOLE_0:def 3;
  hence thesis by TARSKI:def 1;
end;