Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,808 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
:: Input and Output of Instructions
:: by Artur Korni{\l}owicz
environ
vocabularies XBOOLE_0, AMI_1, FSM_1, CAT_1, FUNCT_1, RELAT_1, STRUCT_0,
SUBSET_1, FUNCT_4, FUNCOP_1, GOBOARD5, FRECHET, AMISTD_1, ZFMISC_1,
NUMBERS, CARD_1, GLIB_000, AMISTD_2, NET_1, TARSKI, AMISTD_4, QUANTAL1,
GOBRD13, MEMSTR_0, COMPOS_1, ARYTM_3;
notations TARSKI, XBOOLE_0, SUBSET_1, SETFAM_1, RELAT_1, FUNCT_1, ZFMISC_1,
XTUPLE_0, MCART_1, ORDINAL1, NUMBERS, FUNCOP_1, FUNCT_4, XCMPLX_0, NAT_1,
STRUCT_0, MEMSTR_0, COMPOS_0, COMPOS_1, EXTPRO_1, FUNCT_7, MEASURE6,
AMISTD_1, AMISTD_2;
constructors ZFMISC_1, AMISTD_2, NAT_1, PRE_POLY, EXTPRO_1, AMISTD_1,
DOMAIN_1, FUNCT_7, FUNCT_4, MEMSTR_0, RELSET_1, MEASURE6, PBOOLE,
XTUPLE_0;
registrations FUNCOP_1, STRUCT_0, AMISTD_1, AMISTD_2, ORDINAL1, EXTPRO_1,
ORDINAL6, FUNCT_4, MEMSTR_0, MEASURE6;
requirements SUBSET, BOOLE, NUMERALS;
definitions EXTPRO_1, AMISTD_1, XBOOLE_0;
equalities XBOOLE_0, FUNCOP_1, MEMSTR_0;
expansions XBOOLE_0;
theorems FUNCT_7, TARSKI, AMISTD_1, SUBSET_1, FUNCOP_1, ZFMISC_1, FUNCT_1,
XBOOLE_0, XBOOLE_1, PARTFUN1, STRUCT_0, MEMSTR_0, MEASURE6, XTUPLE_0,
NAT_1;
schemes SUBSET_1;
begin :: Preliminaries
reserve N for with_zero set;
definition
let N be with_zero set,
A be IC-Ins-separated non
empty with_non-empty_values AMI-Struct over N, s be State of A,
o be Object of A,
a be Element of Values o;
redefine func s+*(o,a) -> State of A;
coherence
proof
dom s = the carrier of A by PARTFUN1:def 2;
then s+*(o,a) = s+*(o .--> a) by FUNCT_7:def 3;
hence thesis;
end;
end;
theorem Th1:
for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A,
s being State
of A, o being Object of A, w being Element of Values o st I is sequential &
o <> IC A holds IC Exec(I,s) = IC Exec(I,s+*(o,w))
proof
let A be standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A,
s be State of A, o be Object of
A, w be Element of Values o such that
A1: for s being State of A holds Exec(I,s).IC A = IC s + 1 and
A2: o <> IC A;
thus IC Exec(I,s) = IC s + 1 by A1
.= IC (s+*(o,w)) + 1 by A2,FUNCT_7:32
.= IC Exec(I,s+*(o,w)) by A1;
end;
theorem
for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A,
s being State
of A, o being Object of A, w being Element of Values o st I is sequential &
o <> IC A holds IC Exec(I,s+*(o,w)) = IC (Exec(I,s) +* (o,w))
proof
let A be standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A,
s be State of A, o be Object of
A, w be Element of Values o such that
A1: I is sequential and
A2: o <> IC A;
thus IC Exec(I,s+*(o,w)) = IC Exec(I,s) by A1,A2,Th1
.= IC (Exec(I,s) +* (o,w)) by A2,FUNCT_7:32;
end;
begin :: Input and Output of Instructions
definition
let A be COM-Struct;
attr A is with_non_trivial_Instructions means
:Def1:
the InstructionsF of A is non trivial;
end;
definition
let N be with_zero set, A be non empty with_non-empty_values
AMI-Struct over N;
attr A is with_non_trivial_ObjectKinds means
:Def2:
for o being Object of A
holds Values o is non trivial;
end;
registration
let N be with_zero set;
cluster STC N -> with_non_trivial_ObjectKinds;
coherence
proof
let o be Object of STC N;
A1: the carrier of STC N = {0} by AMISTD_1:def 7;
A2: the Object-Kind of STC N = 0 .--> 0
by AMISTD_1:def 7;
per cases by A1;
suppose
A3: o in {0};
A4: the ValuesF of STC N = N --> NAT by AMISTD_1:def 7;
0 in N by MEASURE6:def 2;
then the_Values_of STC N = 0 .--> NAT by A2,A4,FUNCOP_1:89;
then Values o = (0 .--> NAT).o
.= NAT by A3,FUNCOP_1:7;
hence thesis;
end;
end;
end;
registration
let N be with_zero set;
cluster with_explicit_jumps
IC-relocable with_non_trivial_ObjectKinds with_non_trivial_Instructions
for standard halting
IC-Ins-separated non empty with_non-empty_values AMI-Struct over N;
existence
proof
take STC N;
A1: [1,0,0] in {[1,0,0],[0,0,0]} & [0,0,0] in {[1,0,0],[0,0,0]}
by TARSKI:def 2;
the InstructionsF of STC N = {[0,0,0],[1,0,0]} & [1,0,0] <> [0,0,0] by
AMISTD_1:def 7,XTUPLE_0:3;
then the InstructionsF of STC N is non trivial by A1,ZFMISC_1:def 10;
hence thesis;
end;
end;
registration
let N be with_zero set;
cluster STC N -> with_non_trivial_Instructions;
coherence
proof
A1: [0,0,0] <> [1,0,0] by XTUPLE_0:3;
the InstructionsF of STC N = {[0,0,0],[1,0,0]} by AMISTD_1:def 7;
then [0,0,0] in the InstructionsF of STC N
& [1,0,0] in the InstructionsF of STC N by TARSKI:def 2;
hence the InstructionsF of STC N is non trivial by A1,ZFMISC_1:def 10;
end;
end;
registration
let N be with_zero set;
cluster with_non_trivial_ObjectKinds with_non_trivial_Instructions
IC-Ins-separated for non empty with_non-empty_values AMI-Struct over N;
existence
proof
take STC N;
thus thesis;
end;
end;
registration
let N be with_zero set,
A be with_non_trivial_ObjectKinds non
empty with_non-empty_values AMI-Struct over N, o be Object of A;
cluster Values o -> non trivial;
coherence by Def2;
end;
registration
let N be with_zero set,
A be with_non_trivial_Instructions
with_non-empty_values AMI-Struct over N;
cluster the InstructionsF of A -> non trivial;
coherence by Def1;
end;
registration
let N be with_zero set,
A be IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N;
cluster Values IC A -> non trivial;
coherence by MEMSTR_0:def 6;
end;
definition
let N be with_zero set, A be non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A;
func Output I -> Subset of A means
:Def3:
for o being Object of A holds o in
it iff ex s being State of A st s.o <> Exec(I,s).o;
existence
proof
defpred P[set] means ex s being State of A st s.$1 <> Exec(I,s).$1;
consider X being Subset of A such that
A1: for x being set holds x in X iff x in the carrier of A & P[x] from
SUBSET_1:sch 1;
take X;
thus thesis by A1;
end;
uniqueness
proof
defpred P[set] means ex s being State of A st s.$1 <> Exec(I,s).$1;
let a, b be Subset of A such that
A2: for o being Object of A holds o in a iff P[o] and
A3: for o being Object of A holds o in b iff P[o];
thus a = b from SUBSET_1:sch 2(A2,A3);
end;
end;
definition
let N be with_zero set,
A be IC-Ins-separated non
empty with_non-empty_values AMI-Struct over N, I be Instruction of A;
func Out_\_Inp I -> Subset of A means
:Def4:
for o being Object of A holds o
in it iff for s being State of A, a being Element of Values o holds Exec(I,
s) = Exec(I,s+*(o,a));
existence
proof
defpred P[set] means ex l being Object of A st l = $1 & for s being State
of A, a being Element of Values l holds Exec(I,s) = Exec(I,s+*(l,a));
consider X being Subset of A such that
A1: for x being set holds x in X iff x in the carrier of A & P[x] from
SUBSET_1:sch 1;
take X;
let l be Object of A;
hereby
assume l in X;
then P[l] by A1;
hence
for s being State of A, a being Element of Values l holds Exec(
I,s) = Exec(I,s+*(l,a));
end;
thus thesis by A1;
end;
uniqueness
proof
defpred P[Object of A] means for s being State of A, a being Element of
Values $1 holds Exec(I,s) = Exec(I,s+*($1,a));
let a, b be Subset of A such that
A2: for o being Object of A holds o in a iff P[o] and
A3: for o being Object of A holds o in b iff P[o];
thus a = b from SUBSET_1:sch 2(A2,A3);
end;
func Out_U_Inp I -> Subset of A means
:Def5:
for o being Object of A holds o
in it iff ex s being State of A, a being Element of Values o st Exec(I,s+*(
o,a)) <> Exec(I,s) +* (o,a);
existence
proof
defpred P[set] means ex l being Object of A st l = $1 & ex s being State
of A, a being Element of Values l st Exec(I,s+*(l,a)) <> Exec(I,s) +* (l,a);
consider X being Subset of A such that
A4: for x being set holds x in X iff x in the carrier of A & P[x] from
SUBSET_1:sch 1;
take X;
let l be Object of A;
hereby
assume l in X;
then P[l] by A4;
hence ex s being State of A, a being Element of Values l st Exec(I,s
+*(l,a)) <> Exec(I,s) +* (l,a);
end;
thus thesis by A4;
end;
uniqueness
proof
defpred P[Object of A] means ex s being State of A, a being Element of
Values $1 st Exec(I,s+*($1,a)) <> Exec(I,s) +* ($1,a);
let a, b be Subset of A such that
A5: for o being Object of A holds o in a iff P[o] and
A6: for o being Object of A holds o in b iff P[o];
thus a = b from SUBSET_1:sch 2(A5,A6);
end;
end;
definition
let N be with_zero set,
A be IC-Ins-separated non
empty with_non-empty_values AMI-Struct over N, I be Instruction of A;
func Input I -> Subset of A equals
Out_U_Inp I \ Out_\_Inp I;
coherence;
end;
theorem Th3:
for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction
of A holds Out_\_Inp I c= Output I
proof
let A be with_non_trivial_ObjectKinds IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A;
for o being Object of A holds o in Out_\_Inp I implies o in Output I
proof
let o be Object of A;
set s = the State of A,a = the Element of Values o;
consider w being object such that
A1: w in Values o and
A2: w <> a by SUBSET_1:48;
reconsider w as Element of Values o by A1;
set t = s +* (o,w);
A3: dom t = the carrier of A by PARTFUN1:def 2;
A4: dom s = the carrier of A by PARTFUN1:def 2;
assume
A5: not thesis;
then
A6: Exec(I,t+*(o,a)).o = (t+*(o,a)).o by Def3
.= a by A3,FUNCT_7:31;
Exec(I,t).o = t.o by A5,Def3
.= w by A4,FUNCT_7:31;
hence contradiction by A5,A2,A6,Def4;
end;
hence thesis by SUBSET_1:2;
end;
theorem Th4:
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N,
I being Instruction of A holds Output I c= Out_U_Inp I
proof
let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
N, I be Instruction of A;
for o being Object of A holds o in Output I implies o in Out_U_Inp I
proof
let o be Object of A;
assume
A1: not thesis;
for s being State of A holds s.o = Exec(I,s).o
proof
let s be State of A;
reconsider so = s.o as Element of Values o by MEMSTR_0:77;
A2: Exec(I,s+*(o,so)) = Exec(I,s) +* (o,so) by A1,Def5;
dom Exec(I,s) = the carrier of A by PARTFUN1:def 2;
hence s.o = (Exec(I,s) +* (o,so)).o by FUNCT_7:31
.= Exec(I,s).o by A2,FUNCT_7:35;
end;
hence contradiction by A1,Def3;
end;
hence thesis by SUBSET_1:2;
end;
theorem
for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction of A
holds
Out_\_Inp I = Output I \ Input I
proof
let A be with_non_trivial_ObjectKinds IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A;
for o being Object of A holds o in Out_\_Inp I iff o in Output I \ Input
I
proof
let o be Object of A;
hereby
A1: Out_\_Inp I c= Output I by Th3;
assume
A2: o in Out_\_Inp I;
Out_\_Inp I misses Input I by XBOOLE_1:85;
then not o in Input I by A2,XBOOLE_0:3;
hence o in Output I \ Input I by A2,A1,XBOOLE_0:def 5;
end;
assume
A3: o in Output I \ Input I;
then
A4: not o in Input I by XBOOLE_0:def 5;
per cases by A4,XBOOLE_0:def 5;
suppose
A5: not o in Out_U_Inp I;
Output I c= Out_U_Inp I by Th4;
then not o in Output I by A5;
hence thesis by A3,XBOOLE_0:def 5;
end;
suppose
o in Out_\_Inp I;
hence thesis;
end;
end;
hence thesis by SUBSET_1:3;
end;
theorem
for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction of A
holds
Out_U_Inp I = Output I \/ Input I
proof
let A be with_non_trivial_ObjectKinds IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A;
for o being Object of A st o in Out_U_Inp I holds o in Output I \/ Input
I
proof
let o be Object of A such that
A1: o in Out_U_Inp I;
o in Input I or o in Output I
proof
assume
A2: not o in Input I;
per cases by A2,XBOOLE_0:def 5;
suppose
not o in Out_U_Inp I;
hence thesis by A1;
end;
suppose
A3: o in Out_\_Inp I;
Out_\_Inp I c= Output I by Th3;
hence thesis by A3;
end;
end;
hence thesis by XBOOLE_0:def 3;
end;
hence Out_U_Inp I c= Output I \/ Input I by SUBSET_1:2;
Output I c= Out_U_Inp I & Input I c= Out_U_Inp I by Th4,XBOOLE_1:36;
hence thesis by XBOOLE_1:8;
end;
theorem Th7:
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A,
o being Object of A st
Values o is trivial holds not o in Out_U_Inp I
proof
let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
N, I be Instruction of A, o be Object of A such that
A1: Values o is trivial;
assume o in Out_U_Inp I;
then consider s being State of A, a being Element of Values o such that
A2: Exec(I,s+*(o,a)) <> Exec(I,s) +* (o,a) by Def5;
s.o is Element of Values o by MEMSTR_0:77;
then s.o = a by A1,ZFMISC_1:def 10;
then
A3: Exec(I,s+*(o,a)) = Exec(I,s) by FUNCT_7:35;
A4: dom Exec(I,s) = the carrier of A by PARTFUN1:def 2;
A5: for x being object st x in the carrier of A
holds (Exec(I,s) +* (o,a)).x = Exec(I,s).x
proof
let x be object such that
x in the carrier of A;
per cases;
suppose
A6: x = o;
A7: Exec(I,s).o is Element of Values o by MEMSTR_0:77;
thus (Exec(I,s) +* (o,a)).x = a by A4,A6,FUNCT_7:31
.= Exec(I,s).x by A1,A6,A7,ZFMISC_1:def 10;
end;
suppose
x <> o;
hence thesis by FUNCT_7:32;
end;
end;
dom (Exec(I,s) +* (o,a)) = the carrier of A by PARTFUN1:def 2;
hence contradiction by A2,A3,A4,A5,FUNCT_1:2;
end;
theorem
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N , I being Instruction of A,
o being Object of A st
Values o is trivial holds not o in Input I
proof
let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
N, I be Instruction of A, o be Object of A;
A1: Input I c= Out_U_Inp I by XBOOLE_1:36;
assume Values o is trivial;
hence thesis by A1,Th7;
end;
theorem
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N , I being Instruction of A,
o being Object of A st
Values o is trivial holds not o in Output I
proof
let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
N, I be Instruction of A, o be Object of A;
assume
A1: Values o is trivial;
Output I c= Out_U_Inp I by Th4;
hence thesis by A1,Th7;
end;
theorem Th10:
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A
holds I is halting iff Output I
is empty
proof
let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
N, I be Instruction of A;
thus I is halting implies Output I is empty
proof
assume
A1: for s being State of A holds Exec(I,s) = s;
assume not thesis;
then consider o being Object of A such that
A2: o in Output I;
ex s being State of A st s.o <> Exec(I,s).o by A2,Def3;
hence thesis by A1;
end;
assume
A3: Output I is empty;
let s be State of A;
assume
A4: Exec(I,s) <> s;
dom s = the carrier of A & dom Exec(I,s) = the carrier of A
by PARTFUN1:def 2;
then ex x being object st x in the carrier of A & Exec(I,s).x <> s.x by A4,
FUNCT_1:2;
hence contradiction by A3,Def3;
end;
theorem Th11:
for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction
of A st I is halting holds Out_\_Inp I is empty
proof
let A be with_non_trivial_ObjectKinds IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A such that
A1: I is halting;
Out_\_Inp I c= Output I by Th3;
then Out_\_Inp I c= {} by A1,Th10;
hence thesis;
end;
theorem Th12:
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A
st I is halting holds Out_U_Inp
I is empty
proof
let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
N, I be Instruction of A such that
A1: for s being State of A holds Exec(I,s) = s;
assume not thesis;
then consider o being Object of A such that
A2: o in Out_U_Inp I;
consider s being State of A, a being Element of Values o such that
A3: Exec(I,s+*(o,a)) <> Exec(I,s) +* (o,a) by A2,Def5;
Exec(I,s+*(o,a)) = s+*(o,a) by A1
.= Exec(I,s) +* (o,a) by A1;
hence thesis by A3;
end;
theorem Th13:
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A
st I is halting holds Input I
is empty
proof
let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
N, I be Instruction of A;
assume I is halting;
then Input I = {} \ Out_\_Inp I by Th12
.= {};
hence thesis;
end;
registration
let N be with_zero set,
A be halting IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N,
I be halting Instruction of A;
cluster Input I -> empty;
coherence by Th13;
cluster Output I -> empty;
coherence by Th10;
cluster Out_U_Inp I -> empty;
coherence by Th12;
end;
registration
let N be with_zero set;
cluster halting with_non_trivial_ObjectKinds IC-Ins-separated for non
empty with_non-empty_values AMI-Struct over N;
existence
proof
take STC N;
thus thesis;
end;
end;
registration
let N be with_zero set,
A be halting
with_non_trivial_ObjectKinds IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be halting Instruction of A;
cluster Out_\_Inp I -> empty;
coherence by Th11;
end;
registration
let N;
cluster with_non_trivial_Instructions
IC-Ins-separated
for non empty with_non-empty_values AMI-Struct over N;
existence
proof
take STC N;
thus thesis;
end;
end;
theorem
for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A st I is
sequential holds not IC A in Out_\_Inp I
proof
let A be standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A;
set t = the State of A;
set l = IC A;
reconsider sICt = IC t + 1 as Element of NAT;
reconsider w = sICt as Element of Values l by MEMSTR_0:def 6;
set s = t +* (l,w);
assume for s being State of A holds Exec(I,s).IC A = IC s + 1;
then
A1: Exec(I,t).l = IC t + 1 & Exec(I,s).l = IC s + 1;
dom t = the carrier of A by PARTFUN1:def 2;
then s.l = w by FUNCT_7:31;
then Exec(I,t) <> Exec(I,s) by A1,NAT_1:16;
hence thesis by Def4;
end;
theorem
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A st
ex s being State of A st
Exec(I,s).IC A <> IC s holds IC A in Output I by Def3;
registration
let N;
cluster standard for IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N;
existence
proof
take STC N;
thus thesis;
end;
end;
theorem
for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A st I is
sequential holds IC A in Output I
proof
let A be standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A such that
A1: for s being State of A holds Exec(I, s).IC A = IC s + 1;
set s = the State of A;
Exec(I,s).IC A = IC s + 1 by A1;
then Exec(I,s).IC A <> IC s by NAT_1:16;
hence thesis by Def3;
end;
theorem Th17:
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A st
ex s being State of A st
Exec(I,s).IC A <> IC s holds IC A in Out_U_Inp I
proof
let A be IC-Ins-separated non empty with_non-empty_values AMI-Struct over
N, I be Instruction of A;
assume ex s being State of A st Exec(I,s).IC A <> IC s;
then
A1: IC A in Output I by Def3;
Output I c= Out_U_Inp I by Th4;
hence thesis by A1;
end;
theorem
for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A st I is
sequential holds IC A in Out_U_Inp I
proof
let A be standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A;
set s = the State of A;
assume for s being State of A holds Exec(I,s).IC A = IC s + 1;
then Exec(I,s).IC A = IC s + 1;
then Exec(I,s).IC A <> IC s by NAT_1:16;
hence thesis by Th17;
end;
theorem
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A,
o being Object
of A st I is jump-only holds o in Output I implies o = IC A
proof
let A be IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A,
o be Object of A;
assume
A1: for s being State of A, o being Object of A, J being Instruction of
A st InsCode I = InsCode J & o in Data-Locations A holds Exec(J,s).o = s.o;
assume o in Output I;
then ex s being State of A st s.o <> Exec(I,s).o by Def3;
then
A2: not o in Data-Locations A by A1;
o in the carrier of A;
then o in {IC A} \/ Data-Locations A by STRUCT_0:4;
then o in {IC A} by A2,XBOOLE_0:def 3;
hence thesis by TARSKI:def 1;
end;
|