Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,868 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
(* ========================================================================= *)
(* Tooling for the generation of the ProofTrace dataset. *)
(* ========================================================================= *)
#load "unix.cma";;
#load "str.cma";;
(* ------------------------------------------------------------------------- *)
(* Marshalling of term to AST-like. *)
(* ------------------------------------------------------------------------- *)
let type_string ty =
let rec args_str args =
match args with
[] -> ""
| ty::tail -> Printf.sprintf "[%s]%s"
(type_str ty) (args_str tail)
and type_str ty =
match ty with
Tyvar(v) -> Printf.sprintf "v[%s]"
(String.escaped v)
| Tyapp(c,args) -> Printf.sprintf "c[%s][%s]"
(String.escaped c) (args_str args)
in (type_str ty)
let rec term_string tm =
match tm with
Var(v,ty) -> Printf.sprintf "v(%s)(%s)"
(String.escaped v) (type_string ty)
| Const(c,ty) -> Printf.sprintf "c(%s)(%s)"
(String.escaped c) (type_string ty)
| Comb(t1,t2) -> Printf.sprintf "C(%s)(%s)"
(term_string t1) (term_string t2)
| Abs(t1,t2) -> Printf.sprintf "A(%s)(%s)"
(term_string t1) (term_string t2)
(* ------------------------------------------------------------------------- *)
(* Marshalling of proof to JSON parts. *)
(* ------------------------------------------------------------------------- *)
let rec inst_string insts =
match insts with
[] -> ""
| (t1,t2)::[] -> Printf.sprintf "[\"%s\", \"%s\"]"
(term_string t2)
(term_string t1)
| (t1,t2)::tail -> Printf.sprintf "[\"%s\", \"%s\"], %s"
(term_string t2)
(term_string t1)
(inst_string tail)
let rec instt_string insts =
match insts with
[] -> ""
| (t1,t2)::[] -> Printf.sprintf "[\"%s\", \"%s\"]"
(type_string t2)
(type_string t1)
| (t1,t2)::tail -> Printf.sprintf "[\"%s\", \"%s\"], %s"
(type_string t2)
(type_string t1)
(instt_string tail)
let proof_index proof =
let Proof(idx,_,_) = proof in idx
let proof_content_string content =
match content with
Prefl(tm) -> Printf.sprintf "[\"REFL\", \"%s\"]"
(term_string tm)
| Ptrans(p1,p2) -> Printf.sprintf "[\"TRANS\", %d, %d]"
(proof_index p1)
(proof_index p2)
| Pmkcomb(p1,p2) -> Printf.sprintf "[\"MK_COMB\", %d, %d]"
(proof_index p1)
(proof_index p2)
| Pabs(p1,tm) -> Printf.sprintf "[\"ABS\", %d, \"%s\"]"
(proof_index p1)
(term_string tm)
| Pbeta(tm) -> Printf.sprintf "[\"BETA\", \"%s\"]"
(term_string tm)
| Passume(tm) -> Printf.sprintf "[\"ASSUME\", \"%s\"]"
(term_string tm)
| Peqmp(p1,p2) -> Printf.sprintf "[\"EQ_MP\", %d, %d]"
(proof_index p1)
(proof_index p2)
| Pdeduct(p1,p2) -> Printf.sprintf "[\"DEDUCT_ANTISYM_RULE\", %d, %d]"
(proof_index p1)
(proof_index p2)
| Pinst(p1,insts) -> Printf.sprintf "[\"INST\", %d, [%s]]"
(proof_index p1)
(inst_string insts)
| Pinstt(p1,insts) -> Printf.sprintf "[\"INST_TYPE\", %d, [%s]]"
(proof_index p1)
(instt_string insts)
| Paxiom(tm) -> Printf.sprintf "[\"AXIOM\", \"%s\"]"
(term_string tm)
| Pdef(tm,name,ty) -> Printf.sprintf "[\"DEFINITION\", \"%s\", \"%s\"]"
(term_string tm)
(String.escaped name)
| Pdeft(p1,tm,name,ty) -> Printf.sprintf
"[\"TYPE_DEFINITION\", %d, \"%s\", \"%s\"]"
(proof_index p1)
(term_string tm)
(String.escaped name)
let proof_string proof =
let Proof(idx,thm,content) = proof in
Printf.sprintf "{\"id\": %d, \"pr\": %s}"
idx
(proof_content_string content);;
(* ------------------------------------------------------------------------- *)
(* Marshalling of thm to JSON. *)
(* ------------------------------------------------------------------------- *)
let thm_string th =
let asl,tm = dest_thm th in
let rec asl_string asl =
match asl with
[] -> ""
| tm::[] -> Printf.sprintf "\"%s\"" (term_string tm)
| tm::tail -> Printf.sprintf "\"%s\", %s"
(term_string tm)
(asl_string tail)
in Printf.sprintf "{\"hy\": [%s], \"cc\": \"%s\"}"
(asl_string asl)
(term_string tm)
let theorem_string proof =
let Proof(idx,thm,content) = proof in
Printf.sprintf "{\"id\": %d, \"th\": %s}"
idx
(thm_string thm);;
(* ------------------------------------------------------------------------- *)
(* Proofs and Theorems trace dumping. *)
(* ------------------------------------------------------------------------- *)
let dump_proofs filename =
let foutc = open_out filename in
(do_list (fun p -> Printf.fprintf foutc
"%s\n"
(proof_string p)) (proofs());
flush foutc;
close_out foutc)
;;
let dump_theorems filename =
let foutc = open_out filename in
(do_list (fun p -> Printf.fprintf foutc
"%s\n"
(theorem_string p)) (proofs());
flush foutc;
close_out foutc)
;;
(* ------------------------------------------------------------------------- *)
(* Theorem names extraction (inspired by HolStep, but non-destructive). *)
(* ------------------------------------------------------------------------- *)
let PROVE_1_RE = Str.regexp (String.concat "" (
"\\(let\\|and\\)[ \n\t]*"::
"\\([a-zA-Z0-9_-]+\\)[ \n\t]*"::
"=[ \n\t]*"::
"\\(prove\\|"::
"prove_by_refinement\\|"::
"new_definition\\|"::
"new_basic_definition\\|"::
"new_axiom\\|"::
"new_infix_definition\\|"::
"INT_OF_REAL_THM\\|"::
"define_finite_type\\|"::
"TAUT\\|"::
"INT_ARITH\\|"::
"new_recursive_definition\\)"::
[]
))
let PROVE_2_RE = Str.regexp (String.concat "" (
"\\(let\\|and\\)[ \n\t]*"::
"\\([a-zA-Z0-9_-]+\\)[ \n\t]*,[ \n\t]*"::
"\\([a-zA-Z0-9_-]+\\)[ \n\t]*"::
"=[ \n\t]*"::
"\\(define_type\\|"::
"(CONJ_PAIR o prove)\\)"::
[]
))
let PROVE_3_RE = Str.regexp (String.concat "" (
"\\(let\\|and\\)[ \n\t]*"::
"\\([a-zA-Z0-9_-]+\\)[ \n\t]*,[ \n\t]*"::
"\\([a-zA-Z0-9_-]+\\)[ \n\t]*,[ \n\t]*"::
"\\([a-zA-Z0-9_-]+\\)[ \n\t]*"::
"=[ \n\t]*"::
"\\(new_inductive_definition\\)"::
[]
))
let source_files() =
let select str = Str.string_match (Str.regexp ".*\\.[hm]l$") str 0 in
let rec walk acc = function
| [] -> (acc)
| dir::tail ->
let contents = Array.to_list (Sys.readdir dir) in
let contents = List.rev_map (Filename.concat dir) contents in
let dirs, files =
List.fold_left (fun (dirs,files) f ->
match Sys.is_directory f with
| false -> (dirs, f::files) (* Regular file *)
| true -> (f::dirs, files) (* Directory *)
) ([],[]) contents in
let matched = List.filter (select) files in
walk (matched @ acc) (dirs @ tail)
in walk [] [Sys.getcwd()]
;;
let load_file f =
let ic = open_in f in
let n = in_channel_length ic in
let s = Bytes.create n in
really_input ic s 0 n;
close_in ic;
(s)
let extract_prove_1 f =
let content = Bytes.to_string(load_file f) in
let rec search acc start =
try
let _ = Str.search_forward PROVE_1_RE content start in
let matches = (Str.matched_group 2 content)::[] in
search (matches @ acc) (Str.match_end())
with e -> (acc)
in search [] 0
;;
let extract_prove_2 f =
let content = Bytes.to_string(load_file f) in
let rec search acc start =
try
let _ = Str.search_forward PROVE_2_RE content start in
let matches = (Str.matched_group 2 content)::
(Str.matched_group 3 content)::
[] in
search (matches @ acc) (Str.match_end())
with e -> (acc)
in search [] 0
;;
let extract_prove_3 f =
let content = Bytes.to_string(load_file f) in
let rec search acc start =
try
let _ = Str.search_forward PROVE_3_RE content start in
let matches = (Str.matched_group 2 content)::
(Str.matched_group 3 content)::
(Str.matched_group 4 content)::
[] in
search (matches @ acc) (Str.match_end())
with e -> (acc)
in search [] 0
;;
(* ------------------------------------------------------------------------- *)
(* Names trace dumping (:see_no_evil) *)
(* ------------------------------------------------------------------------- *)
let eval code =
let as_buf = Lexing.from_string code in
let parsed = !Toploop.parse_toplevel_phrase as_buf in
ignore (Toploop.execute_phrase true Format.std_formatter parsed)
let _CODE_GEN name = Printf.sprintf
"_IDX := proof_index (proof_of %s);;"
name
let _IDX = ref (0)
let dump_names filename =
let foutc = open_out filename in
let acc = ref ([]) in
(do_list (fun f -> acc := !acc @
(extract_prove_1 f) @
(extract_prove_2 f) @
(extract_prove_3 f)) (source_files());
acc := List.sort_uniq compare !acc;
do_list (fun name ->
try
eval (_CODE_GEN name);
Printf.fprintf foutc
"{\"id\": %d, \"nm\": \"%s\"}\n"
!_IDX name;
with _ -> ()
) (!acc);
flush foutc;
close_out foutc)
;;
|