Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 55,923 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 |
(* ========================================================================= *)
(* Birkhoff's theorem and canonical version for congruence closure. *)
(* ========================================================================= *)
let ALL2_SYM = prove
(`!l1 l2. ALL2 P l1 l2 <=> ALL2 (\x y. P y x) l2 l1`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2]);;
let MAP_EQ_ALL2 = prove
(`!f l1 l2. ALL2 (\x y. f x = f y) l1 l2 ==> (MAP f l1 = MAP f l2)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[ALL2; MAP; CONS_11] THEN STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
let FORMSUBST_EQ = prove
(`!i s t. formsubst i (s === t) = (termsubst i s === termsubst i t)`,
REWRITE_TAC[Equal_DEF; formsubst; MAP]);;
(* ------------------------------------------------------------------------- *)
(* Avoid tedious language details, for sake of simplicity. *)
(* ------------------------------------------------------------------------- *)
let TERMS_UNIV = prove
(`terms UNIV = UNIV`,
REWRITE_TAC[IN_UNIV; EXTENSION] THEN REWRITE_TAC[IN] THEN
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[terms_RULES] THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN
ASM_REWRITE_TAC[IN_UNIV]);;
let FUNCTIONS_UNIV = prove
(`functions UNIV = UNIV`,
REWRITE_TAC[IN_UNIV; EXTENSION] THEN
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
EXISTS_TAC `functions_form(Atom p [Fn f (REPLICATE n (V x))])` THEN
REWRITE_TAC[functions_form; MAP; LIST_UNION; UNION_EMPTY] THEN
REWRITE_TAC[functions_term; IN_INSERT; LENGTH_REPLICATE] THEN
EXISTS_TAC `Atom p [Fn f (REPLICATE n (V x))]` THEN
REWRITE_TAC[functions_form; MAP; LIST_UNION; UNION_EMPTY] THEN
REWRITE_TAC[functions_term; IN_INSERT; LENGTH_REPLICATE]);;
let PREDICATES_UNIV = prove
(`predicates UNIV = UNIV`,
REWRITE_TAC[IN_UNIV; EXTENSION] THEN
REWRITE_TAC[predicates; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
EXISTS_TAC `predicates_form(Atom p (REPLICATE n (V x)))` THEN
REWRITE_TAC[predicates_form; LENGTH_REPLICATE; IN_INSERT] THEN
EXISTS_TAC `Atom p (REPLICATE n (V x))` THEN
REWRITE_TAC[predicates_form; LENGTH_REPLICATE; IN_INSERT]);;
let LANGUAGE_UNIV = prove
(`language UNIV = UNIV,UNIV`,
REWRITE_TAC[language; FUNCTIONS_UNIV; PREDICATES_UNIV]);;
(* ------------------------------------------------------------------------- *)
(* Trivial properties of object equality. *)
(* ------------------------------------------------------------------------- *)
let EQUAL_INJ = prove
(`!s t u v. ((s === t) = (u === v)) <=> (s = u) /\ (t = v)`,
REWRITE_TAC[Equal_DEF; form_INJ; CONS_11]);;
let EQUAL_INJ_ALT = prove
(`!s t u v. ((s === t) = (u === v)) <=> (u = s) /\ (v = t)`,
REWRITE_TAC[EQUAL_INJ; EQ_SYM_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Provability. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|-",(11,"right"));;
let provable_RULES,provable_INDUCT,provable_CASES = new_inductive_definition
`(!s t. s === t IN E ==> E |- s === t) /\
(!t. E |- t === t) /\
(!s t. E |- s === t ==> E |- t === s) /\
(!s t u. E |- s === t /\ E |- t === u ==> E |- s === u) /\
(!f a b. ALL2 (\l r. E |- l === r) a b ==> E |- Fn f a === Fn f b) /\
(!s t i. E |- s === t ==> E |- formsubst i (s === t))`;;
(* ------------------------------------------------------------------------- *)
(* Weakly canonical provability: instantiation and symmetry at leaves. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|--",(11,"right"));;
let wcprovable_RULES,wcprovable_INDUCT,wcprovable_CASES =
new_inductive_definition
`(!s t i. s === t IN E ==> E |-- formsubst i (s === t)) /\
(!s t i. s === t IN E ==> E |-- formsubst i (t === s)) /\
(!t. E |-- t === t) /\
(!s t u. E |-- s === t /\ E |-- t === u ==> E |-- s === u) /\
(!f a b. ALL2 (\l r. E |-- l === r) a b ==> E |-- Fn f a === Fn f b)`;;
(* ------------------------------------------------------------------------- *)
(* Equivalence (fairly easy). *)
(* ------------------------------------------------------------------------- *)
let WCPROVABLE_SYM = prove
(`!E a. E |-- a ==> !s t. (a = (s === t)) ==> E |-- t === s`,
GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[wcprovable_RULES] THEN REPEAT CONJ_TAC THENL
[ALL_TAC;
ALL_TAC;
MESON_TAC[wcprovable_RULES];
ONCE_REWRITE_TAC[GSYM ALL2_SYM] THEN REWRITE_TAC[wcprovable_RULES]] THEN
REWRITE_TAC[FORMSUBST_EQ] THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[GSYM FORMSUBST_EQ] THEN REWRITE_TAC[wcprovable_RULES]);;
let WCPROVABLE_INST = prove
(`!E a. E |-- a
==> !i s t. (a = (s === t)) ==> (E |-- formsubst i (s === t))`,
GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; FORMSUBST_EQ;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[TERMSUBST_TERMSUBST] THEN REPEAT CONJ_TAC THENL
[SIMP_TAC[GSYM FORMSUBST_EQ; wcprovable_RULES];
SIMP_TAC[GSYM FORMSUBST_EQ; wcprovable_RULES];
REWRITE_TAC[wcprovable_RULES];
MESON_TAC[wcprovable_RULES];
ALL_TAC] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[termsubst] THEN
MATCH_MP_TAC(last(CONJUNCTS(SPEC_ALL wcprovable_RULES))) THEN
REWRITE_TAC[ALL2_MAP2] THEN
POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_ALL2 THEN SIMP_TAC[]);;
let WCPROVABLE_PROVABLE = prove
(`!E s t. (E |-- s === t) <=> (E |- s === t)`,
GEN_TAC THEN
SUBGOAL_THEN
`(!a. E |- a ==> !s t. (a = (s === t)) ==> E |-- s === t) /\
(!a. E |-- a ==> !s t. (a = (s === t)) ==> E |- s === t)`
(fun th -> MESON_TAC[th]) THEN
CONJ_TAC THENL
[MATCH_MP_TAC provable_INDUCT;
MATCH_MP_TAC wcprovable_INDUCT] THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[provable_RULES; wcprovable_RULES] THENL
[MESON_TAC[FORMSUBST_TRIV; wcprovable_RULES; Equal_DEF; WCPROVABLE_SYM;
WCPROVABLE_INST];
MESON_TAC[FORMSUBST_TRIV; provable_RULES; Equal_DEF]]);;
(* ------------------------------------------------------------------------- *)
(* R-assoc transitivity chains and congruences maximally pushed down. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|---",(11,"right"));;
parse_as_infix("|--_axiom",(11,"right"));;
parse_as_infix("|--_cong",(11,"right"));;
parse_as_infix("|--_achain",(11,"right"));;
parse_as_infix("|--_cchain",(11,"right"));;
let aprovable_RULES,aprovable_INDUCT,aprovable_CASES =
new_inductive_definition
`(!s t i. s === t IN E ==> E |--_axiom formsubst i (s === t)) /\
(!s t i. s === t IN E ==> E |--_axiom formsubst i (t === s))`;;
let cprovable_RULES,cprovable_INDUCT,cprovable_CASES =
new_inductive_definition
`(!s t. E |--_axiom s === t ==> E |--_achain s === t) /\
(!s t. E |--_cong s === t ==> E |--_cchain s === t) /\
(!s t u. E |--_axiom s === t /\ E |--- t === u ==> E |--_achain s === u) /\
(!s t u. E |--_cong s === t /\ E |--_achain t === u
==> E |--_cchain s === u) /\
(!f a b. ALL2 (\l r. E |--- l === r) a b
==> E |--_cong Fn f a === Fn f b) /\
(!s t. (s = t) \/ E |--_achain s === t \/ E |--_cchain s === t
==> E |--- s === t)`;;
let CPROVABLE_PROVABLE_LEMMA = prove
(`!E a. E |-- a
==> E |-- a /\
E |--- a /\
!u s t. (a = (s === t))
==> E |--- t === u ==> E |--- s === u`,
GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[wcprovable_RULES] THEN
REPEAT(CONJ_TAC THENL
[MESON_TAC[FORMSUBST_EQ; wcprovable_RULES;
cprovable_RULES; aprovable_RULES]; ALL_TAC]) THEN
REWRITE_TAC[GSYM AND_ALL2] THEN SIMP_TAC[wcprovable_RULES] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
ASM_SIMP_TAC[cprovable_RULES] THEN X_GEN_TAC `u:term` THEN
GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN
REWRITE_TAC[EQUAL_INJ_ALT] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN
SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; LEFT_EXISTS_AND_THM] THEN
REWRITE_TAC[LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
DISCH_THEN (DISJ_CASES_THEN MP_TAC) THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN
MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
DISJ2_TAC THEN DISJ2_TAC THEN
MATCH_MP_TAC(el 1 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN DISJ_CASES_TAC THENL
[MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
DISJ2_TAC THEN DISJ2_TAC THEN
MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
EXISTS_TAC `Fn f b` THEN ASM_SIMP_TAC[cprovable_RULES]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cprovable_CASES]) THEN
REWRITE_TAC[EQUAL_INJ_ALT] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN
SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; LEFT_EXISTS_AND_THM] THEN
REWRITE_TAC[LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN
REWRITE_TAC[EQUAL_INJ_ALT; term_INJ; LEFT_IMP_EXISTS_THM] THEN
GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `c:term list` THEN
REWRITE_TAC[GSYM CONJ_ASSOC] THEN
SIMP_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b ==> c ==> d`] THEN
DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN
MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
DISJ2_TAC THEN DISJ2_TAC THEN
MATCH_MP_TAC(el 1 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
MAP_EVERY UNDISCH_TAC
[`ALL2 (\l r. !u. E |--- r === u ==> E |--- l === u) a b`;
`ALL2 (\l r. E |--- l === r) b c`] THEN
REWRITE_TAC[IMP_IMP] THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t))
[`c:term list`; `b:term list`; `a:term list`] THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ALL2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM(fun th ->
EXISTS_TAC (rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC);
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `s:term` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN
REWRITE_TAC[EQUAL_INJ_ALT; term_INJ; LEFT_IMP_EXISTS_THM] THEN
GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `c:term list` THEN
REWRITE_TAC[GSYM CONJ_ASSOC] THEN
SIMP_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b ==> c ==> d`] THEN
DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THEN
MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN DISJ2_TAC THEN
DISJ2_TAC THEN MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
EXISTS_TAC `Fn f c` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
MAP_EVERY UNDISCH_TAC
[`ALL2 (\l r. !u. E |--- r === u ==> E |--- l === u) a b`;
`ALL2 (\l r. E |--- l === r) b c`] THEN
REWRITE_TAC[IMP_IMP] THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t))
[`c:term list`; `b:term list`; `a:term list`] THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ALL2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM(fun th ->
EXISTS_TAC (rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC));;
let CPROVABLE_PROVABLE = prove
(`!E s t. (E |--- s === t) <=> (E |- s === t)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[CPROVABLE_PROVABLE_LEMMA; WCPROVABLE_PROVABLE]] THEN
SUBGOAL_THEN
`(!a. E |--_achain a ==> !s t. (a = (s === t)) ==> E |- s === t) /\
(!a. E |--_cchain a ==> !s t. (a = (s === t)) ==> E |- s === t) /\
(!a. E |--_cong a ==> !s t. (a = (s === t)) ==> E |- s === t) /\
(!a. E |--- a ==> !s t. (a = (s === t)) ==> E |- s === t)`
(fun th -> MESON_TAC[th]) THEN
MATCH_MP_TAC cprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[provable_RULES] THEN
SUBGOAL_THEN `!a. E |--_axiom a ==> !s t. (a = (s === t)) ==> E |- s === t`
(fun th -> MESON_TAC[th; provable_RULES]) THEN
MATCH_MP_TAC aprovable_INDUCT THEN
REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN
SIMP_TAC[] THEN MESON_TAC[provable_RULES; FORMSUBST_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Auxiliary notion of set of subterms in equations. *)
(* ------------------------------------------------------------------------- *)
let subterms = new_recursive_definition term_RECURSION
`(subterms (V x) = {(V x)}) /\
(subterms (Fn f args) =
(Fn f args) INSERT (LIST_UNION (MAP subterms args)))`;;
let subtermsa = new_recursive_definition form_RECURSION
`subtermsa (Atom P args) = LIST_UNION (MAP subterms args)`;;
let subtermss = new_definition
`subtermss E = UNIONS {subtermsa p | p IN E}`;;
let SUBTERMS_REFL = prove
(`!t. t IN subterms t`,
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[subterms; IN_INSERT]);;
(* ------------------------------------------------------------------------- *)
(* Show that this maintains the subterm property for congruence closure. *)
(* ------------------------------------------------------------------------- *)
let esubterms = new_definition
`esubterms E s t =
subtermss ((s === t) INSERT {formsubst i p |i,p| p IN E})`;;
parse_as_infix("|----",(11,"right"));;
parse_as_infix("|--_scong",(11,"right"));;
parse_as_infix("|--_sachain",(11,"right"));;
parse_as_infix("|--_scchain",(11,"right"));;
let scprovable_RULES,scprovable_INDUCT,scprovable_CASES =
new_inductive_definition
`(!s t. E |--_axiom s === t ==> E |--_sachain s === t) /\
(!s t. E |--_scong s === t ==> E |--_scchain s === t) /\
(!s t u. E |--_axiom s === t /\ E |---- t === u /\ t IN esubterms E s u
==> E |--_sachain s === u) /\
(!s t u. E |--_scong s === t /\ E |--_sachain t === u /\ t IN esubterms E s u
==> E |--_scchain s === u) /\
(!f a b. ALL2 (\l r. E |---- l === r) a b
==> E |--_scong Fn f a === Fn f b) /\
(!s t. (s = t) \/ E |--_sachain s === t \/ E |--_scchain s === t
==> E |---- s === t)`;;
let ESUBTERMS_TRIVIAL_L = prove
(`!u. u IN subterms s ==> u IN esubterms E s t`,
REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_INSERT; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `subterms s UNION subterms t` THEN
ASM_REWRITE_TAC[IN_UNION] THEN
EXISTS_TAC `s === t` THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION] THEN
REWRITE_TAC[UNION_EMPTY]);;
let ESUBTERMS_TRIVIAL_R = prove
(`!u. u IN subterms t ==> u IN esubterms E s t`,
REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_INSERT; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `subterms s UNION subterms t` THEN
ASM_REWRITE_TAC[IN_UNION] THEN
EXISTS_TAC `s === t` THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION] THEN
REWRITE_TAC[UNION_EMPTY]);;
let SCPROVABLE_SUBTERMS = prove
(`!a. E |--_sachain a
==> !s t. (a = (s === t))
==> !u v. s IN esubterms E u v`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [scprovable_CASES] THEN
SUBGOAL_THEN
`!a. E |--_axiom a
==> !s t. (a = (s === t))
==> !u v. s IN esubterms E u v`
(fun th -> STRIP_TAC THEN ASM_REWRITE_TAC[EQUAL_INJ_ALT] THEN
ASM_MESON_TAC[th]) THEN
GEN_TAC THEN ONCE_REWRITE_TAC[aprovable_CASES] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
(REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_ELIM_THM; IN_INSERT] THEN
EXISTS_TAC `subtermsa (formsubst i (s === t))` THEN CONJ_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[subtermsa; FORMSUBST_EQ] THEN
REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION; UNION_EMPTY] THEN
MESON_TAC[IN_UNION; SUBTERMS_REFL]));;
let SCPROVABLE_CPROVABLE_LEMMA = prove
(`(!a. E |--_achain a ==> !s t. (a = (s === t)) ==> E |--_sachain s === t) /\
(!a. E |--_cchain a ==> !s t. (a = (s === t)) ==> E |--_scchain s === t) /\
(!a. E |--_cong a ==> !s t. (a = (s === t)) ==> E |--_scong s === t) /\
(!a. E |--- a ==> !s t. (a = (s === t)) ==> E |---- s === t)`,
MATCH_MP_TAC cprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[scprovable_RULES] THEN REPEAT STRIP_TAC THENL
[MATCH_MP_TAC(el 2 (CONJUNCTS(SPEC_ALL scprovable_RULES))) THEN
EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [aprovable_CASES]) THEN
REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN MP_TAC) THEN
(REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`v:term`; `w:term`; `i:num->term`] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_ELIM_THM; IN_INSERT] THEN
EXISTS_TAC `subtermsa (formsubst i (v === w))` THEN CONJ_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[subtermsa; FORMSUBST_EQ] THEN
REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION; UNION_EMPTY] THEN
MESON_TAC[IN_UNION; SUBTERMS_REFL]);
ALL_TAC] THEN
MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL scprovable_RULES))) THEN
EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[SCPROVABLE_SUBTERMS]);;
let SCPROVABLE_CPROVABLE = prove
(`!E s t. (E |--- s === t) <=> (E |---- s === t)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[ASM_MESON_TAC[SCPROVABLE_CPROVABLE_LEMMA]; ALL_TAC] THEN
SUBGOAL_THEN
`(!a. E |--_sachain a ==> !s t. (a = (s === t)) ==> E |--_achain s === t) /\
(!a. E |--_scchain a ==> !s t. (a = (s === t)) ==> E |--_cchain s === t) /\
(!a. E |--_scong a ==> !s t. (a = (s === t)) ==> E |--_cong s === t) /\
(!a. E |---- a ==> !s t. (a = (s === t)) ==> E |--- s === t)`
(fun th -> MESON_TAC[th]) THEN
MATCH_MP_TAC scprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[cprovable_RULES] THEN MESON_TAC[cprovable_RULES]);;
let SCPROVABLE_PROVABLE = prove
(`!E s t. (E |--- s === t) <=> (E |- s === t)`,
MESON_TAC[SCPROVABLE_CPROVABLE; CPROVABLE_PROVABLE]);;
(* ------------------------------------------------------------------------- *)
(* Clausal version of equality properties. *)
(* ------------------------------------------------------------------------- *)
let Eqclause_Func = new_definition
`Eqclause_Func (f,n) =
set_of_list
(CONS (Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))
(MAP (\(s,t). Not(s === t)) (Varpairs n)))`;;
let Eqclause_Pred = new_definition
`Eqclause_Pred (p,n) =
set_of_list
(CONS (Atom p (MAP SND (Varpairs n)))
(CONS (Not(Atom p (MAP FST (Varpairs n))))
(MAP (\(s,t). Not(s === t)) (Varpairs n))))`;;
let Eqclauses_DEF = new_definition
`Eqclauses L =
{(V 0 === V 0)} INSERT
{(Not(V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} INSERT
({Eqclause_Func fa | fa IN FST L} UNION
{Eqclause_Pred pa | pa IN SND L})`;;
let EQCLAUSE_EQAXIOM_FUNC = prove
(`!M f n. ~(Dom M :A->bool = {})
==> (M satisfies {(interp(Eqclause_Func (f,n)))} <=>
M satisfies {(Eqaxiom_Func (f,n))})`,
REPEAT GEN_TAC THEN REWRITE_TAC[Eqclause_Func; Eqaxiom_Func] THEN
SIMP_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM] THEN
REWRITE_TAC[EXISTS_REFL] THEN
SIMP_TAC[HOLDS_UCLOSE_ALL_EQ] THEN
SIMP_TAC[HOLDS_INTERP; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[set_of_list; IN_INSERT; HOLDS] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN
REWRITE_TAC[UNWIND_THM2] THEN DISCH_TAC THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `v:num->A` THEN REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN
DISCH_TAC THEN
MATCH_MP_TAC(TAUT `(~a <=> b) ==> (c \/ a <=> b ==> c)`) THEN
SPEC_TAC(`Varpairs n`,`l:(term#term)list`) THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[EX_MEM; IN_SET_OF_LIST] THEN
REWRITE_TAC[NOT_EX; ALL_MAP; o_THM] THEN
MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[ALL; ITLIST; HOLDS; MAP] THEN SIMP_TAC[] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[HOLDS]);;
let Eqaxiom_Pred_imp = new_definition
`Eqaxiom_Pred_imp (p,n) =
uclose
(ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True
--> Atom p (MAP FST (Varpairs n))
--> Atom p (MAP SND (Varpairs n)))`;;
let lemma = prove(`a INSERT s = {a} UNION s`,SET_TAC[]);;
let EQCLAUSES_EQAXIOMS = prove
(`!M L. ~(Dom M :A->bool = {})
==> (M satisfies (IMAGE interp (Eqclauses L)) <=>
M satisfies (Eqaxioms L))`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[Eqclauses_DEF; Eqaxioms_DEF; IMAGE_CLAUSES; IMAGE_UNION] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [lemma] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [lemma] THEN
REWRITE_TAC[SATISFIES_UNION] THEN
MATCH_MP_TAC(TAUT
`(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN
CONJ_TAC THENL
[REWRITE_TAC[SATISFIES_1] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN
SIMP_TAC[HOLDS_INTERP; FINITE_RULES] THEN
REWRITE_TAC[IN_SING] THEN MESON_TAC[];
ALL_TAC] THEN
DISCH_TAC THEN
MATCH_MP_TAC(TAUT
`(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN
CONJ_TAC THENL
[REWRITE_TAC[SATISFIES_1] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN
SIMP_TAC[HOLDS_INTERP; FINITE_INSERT; FINITE_EMPTY] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; HOLDS] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN
REWRITE_TAC[HOLDS] THEN AP_TERM_TAC THEN ABS_TAC THEN
CONV_TAC TAUT; ALL_TAC] THEN
DISCH_TAC THEN
MATCH_MP_TAC(TAUT
`(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN
CONJ_TAC THENL
[REWRITE_TAC[SATISFIES_IMAGE] THEN
REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
SIMP_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP EQCLAUSE_EQAXIOM_FUNC) THEN
REWRITE_TAC[SATISFIES_1] THEN
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN MESON_TAC[]; ALL_TAC] THEN
DISCH_TAC THEN
REWRITE_TAC[SATISFIES_IMAGE] THEN
REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN
SUBGOAL_THEN
`!p n. (!v:num->A. valuation M v
==> holds M v (interp(Eqclause_Pred(p,n)))) <=>
(!v:num->A. valuation M v
==> holds M v (Eqaxiom_Pred(p,n)))`
(fun th -> MESON_TAC[th]) THEN
GEN_TAC THEN GEN_TAC THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC
`!v:num->A. valuation M v ==> holds M v (Eqaxiom_Pred_imp(p,n))` THEN
CONJ_TAC THENL
[REWRITE_TAC[Eqclause_Pred; Eqaxiom_Pred_imp] THEN
ASM_SIMP_TAC[HOLDS_UCLOSE_ALL_EQ] THEN
SIMP_TAC[HOLDS_INTERP; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[set_of_list; IN_INSERT; HOLDS] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN
REWRITE_TAC[UNWIND_THM2] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `v:num->A` THEN REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN
DISCH_TAC THEN REWRITE_TAC[HOLDS] THEN
MATCH_MP_TAC(TAUT
`(~c <=> d) ==> (a \/ ~b \/ c <=> d ==> b ==> a)`) THEN
SPEC_TAC(`Varpairs n`,`l:(term#term)list`) THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[EX_MEM; IN_SET_OF_LIST] THEN
REWRITE_TAC[NOT_EX; ALL_MAP; o_THM] THEN
MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[ALL; ITLIST; HOLDS; MAP] THEN SIMP_TAC[] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[HOLDS];
ALL_TAC] THEN
REWRITE_TAC[Eqaxiom_Pred_imp; Eqaxiom_Pred; HOLDS] THEN
ASM_SIMP_TAC[HOLDS_UCLOSE_ALL_EQ; HOLDS] THEN
EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `v:num->A` THEN
DISCH_TAC THEN DISCH_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN
DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC
`\x. if EVEN(x) then v(x + 1):A else v(x - 1)`) THEN
REWRITE_TAC[GSYM MAP_o] THEN
MAP_EVERY UNDISCH_TAC
[`Pred M p (MAP (termval M (v:num->A)) (MAP SND (Varpairs n)))`;
`holds M (v:num->A)
(ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True)`] THEN
MATCH_MP_TAC(TAUT
`a /\ (x <=> b) /\ (y <=> c) /\ (d <=> e)
==> x ==> y ==> (a ==> b ==> c ==> d) ==> e`) THEN
CONJ_TAC THENL
[REWRITE_TAC[valuation] THEN GEN_TAC THEN COND_CASES_TAC THEN
ASM_MESON_TAC[valuation]; ALL_TAC] THEN
SUBGOAL_THEN
`!v:num->A x y. valuation M v
==> (holds M v (V x === V y) <=> holds M v (V y === V x))`
ASSUME_TAC THENL
[X_GEN_TAC `w:num->A` THEN REPEAT STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SATISFIES_1])) THEN
ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN
REWRITE_TAC[IMP_IMP] THEN
REWRITE_TAC[AND_FORALL_THM] THEN
DISCH_THEN(fun th ->
MP_TAC(SPEC `\n. if n = 2 then (w:num->A)(y) else w(x)` th) THEN
MP_TAC(SPEC `\n. if n = 2 then (w:num->A)(x) else w(y)` th)) THEN
REWRITE_TAC[HOLDS; Equal_DEF; MAP; termval; ARITH_EQ; valuation] THEN
RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN
ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
ASM_REWRITE_TAC[COND_ID] THEN CONV_TAC TAUT; ALL_TAC] THEN
CONJ_TAC THENL
[SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; MAP; ITLIST; HOLDS] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `holds M (v:num->A) (V(2 * n + 1) === V(2 * n))` THEN
CONJ_TAC THENL [ASM_SIMP_TAC[]; ALL_TAC] THEN
REWRITE_TAC[HOLDS; Equal_DEF; MAP; termval; ARITH_EQ] THEN
REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH] THEN REWRITE_TAC[ADD_SUB];
ALL_TAC] THEN
CONJ_TAC THEN
(AP_TERM_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; MAP] THEN
REWRITE_TAC[CONS_11] THEN
REWRITE_TAC[ADD_SUB; o_THM; termval; EVEN_ADD; EVEN_MULT; ARITH]));;
let FUNCTIONS_VAREQLIST = prove
(`!n. functions(set_of_list (MAP (\(s,t). Not(s === t)) (Varpairs n))) = {}`,
INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; set_of_list] THENL
[REWRITE_TAC[functions; NOT_IN_EMPTY; IN_ELIM_THM; EXTENSION; IN_UNIONS];
ASM_REWRITE_TAC[FUNCTIONS_INSERT; UNION_EMPTY] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[Equal_DEF; functions_form; Not_DEF; MAP; functions_term] THEN
REWRITE_TAC[LIST_UNION; UNION_EMPTY]]);;
let FUNCTIONS_TERM_FN_VARPAIRS = prove
(`(!f n. functions_term(Fn f (MAP FST (Varpairs n))) = {(f,n)}) /\
(!f n. functions_term(Fn f (MAP SND (Varpairs n))) = {(f,n)})`,
REWRITE_TAC[functions_term; LENGTH_VARPAIRS; LENGTH_MAP] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = {}) /\
(LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = {})`
(fun th -> REWRITE_TAC[th]) THEN
SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; LIST_UNION; functions_term] THEN
ASM_REWRITE_TAC[UNION_EMPTY]);;
let FUNCTIONS_FORM_PRED_VARPAIRS = prove
(`(!p n. functions_form(Atom p (MAP FST (Varpairs n))) = {}) /\
(!p n. functions_form(Atom p (MAP SND (Varpairs n))) = {})`,
REWRITE_TAC[functions_form; LENGTH_VARPAIRS; LENGTH_MAP] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = {}) /\
(LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = {})`
(fun th -> REWRITE_TAC[th]) THEN
SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; LIST_UNION; functions_term] THEN
ASM_REWRITE_TAC[UNION_EMPTY]);;
let FUNCTIONS_FORM_EQCLAUSE_FUNC = prove
(`!fn. functions_form(interp(Eqclause_Func fn)) = {fn}`,
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
REWRITE_TAC[Eqclause_Func] THEN
SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[set_of_list; FUNCTIONS_INSERT; FUNCTIONS_UNION] THEN
REWRITE_TAC[functions_form; Equal_DEF; MAP; FUNCTIONS_TERM_FN_VARPAIRS] THEN
REWRITE_TAC[GSYM Equal_DEF; FUNCTIONS_VAREQLIST] THEN
REWRITE_TAC[LIST_UNION; UNION_EMPTY; UNION_ACI]);;
let FUNCTIONS_FORM_EQCLAUSE_PRED = prove
(`!pn. functions_form(interp(Eqclause_Pred pn)) = {}`,
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
REWRITE_TAC[Eqclause_Pred] THEN
SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[set_of_list; FUNCTIONS_INSERT; FUNCTIONS_UNION] THEN
REWRITE_TAC[FUNCTIONS_VAREQLIST; UNION_EMPTY] THEN
REWRITE_TAC[Not_DEF; FUNCTIONS_FORM_PRED_VARPAIRS] THEN
ONCE_REWRITE_TAC[functions_form] THEN
REWRITE_TAC[FUNCTIONS_FORM_PRED_VARPAIRS] THEN
REWRITE_TAC[functions_form; UNION_EMPTY]);;
let FUNCTIONS_EQCLAUSES = prove
(`functions(IMAGE interp (Eqclauses(language s))) = functions s`,
REWRITE_TAC[functions; Eqclauses_DEF] THEN
GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; IN_UNIONS] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
REWRITE_TAC[GSYM CONJ_ASSOC] THEN REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[IN_INSERT; IN_UNION; NOT_IN_EMPTY; IN_ELIM_THM] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN
SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_INSERT; FINITE_EMPTY] THEN
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN
REWRITE_TAC[functions_form; Not_DEF; Equal_DEF; MAP; functions_term] THEN
REWRITE_TAC[LIST_UNION; UNION_EMPTY] THEN
REWRITE_TAC[UNWIND_THM2; NOT_IN_EMPTY] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN SIMP_TAC[] THEN
REWRITE_TAC[NOT_IMP] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> b /\ a /\ c /\ d`] THEN
REWRITE_TAC[UNWIND_THM2] THEN
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN
REWRITE_TAC[Eqclause_Func; Eqclause_Pred; FINITE_SET_OF_LIST;
FUNCTIONS_FORM_INTERP] THEN
REWRITE_TAC[GSYM Eqclause_Func; GSYM Eqclause_Pred] THEN
REWRITE_TAC[FUNCTIONS_FORM_EQCLAUSE_PRED; FUNCTIONS_FORM_EQCLAUSE_FUNC] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> a /\ ~(b ==> ~c)`] THEN
SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[language] THEN
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[PAIR_EQ; NOT_IMP] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Completeness. *)
(* ------------------------------------------------------------------------- *)
let FUNCTIONS_FORM_NOT_UCLOSE = prove
(`functions_form(Not(uclose p)) = functions_form p`,
REWRITE_TAC[Not_DEF; functions_form; FUNCTIONS_FORM_UCLOSE; UNION_EMPTY]);;
let PREDICATES_FORM_NOT_UCLOSE = prove
(`predicates_form(Not(uclose p)) = predicates_form p`,
REWRITE_TAC[Not_DEF; predicates_form; PREDICATES_FORM_UCLOSE; UNION_EMPTY]);;
let FUNCTIONS_INSERT_NOT_UCLOSE = prove
(`functions(p INSERT s) = functions(Not(uclose p) INSERT s)`,
ONCE_REWRITE_TAC[EXTENSION] THEN
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[IN_INSERT] THEN MESON_TAC[FUNCTIONS_FORM_NOT_UCLOSE]);;
let PREDICATES_INSERT_NOT_UCLOSE = prove
(`predicates(p INSERT s) = predicates(Not(uclose p) INSERT s)`,
ONCE_REWRITE_TAC[EXTENSION] THEN
REWRITE_TAC[predicates; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[IN_INSERT] THEN MESON_TAC[PREDICATES_FORM_NOT_UCLOSE]);;
let LANGUAGE_INSERT_NOT_UCLOSE = prove
(`language(p INSERT s) = language (Not(uclose p) INSERT s)`,
REWRITE_TAC[language; GSYM FUNCTIONS_INSERT_NOT_UCLOSE;
GSYM PREDICATES_INSERT_NOT_UCLOSE]);;
let lemma1 = prove
(`(!m. p m /\ q m /\ r m /\ s m ==> t m) <=>
~(?m. p m /\ q m /\ r m /\ s m /\ ~(t m))`,
MESON_TAC[]);;
let lemma2 = prove
(`(x INSERT s) UNION t = x INSERT (s UNION t)`,
SET_TAC[]);;
let EQCLAUSES_DEFINITE = prove
(`!L cl. cl IN Eqclauses L ==> definite cl`,
REPEAT GEN_TAC THEN REWRITE_TAC[Eqclauses_DEF] THEN
REWRITE_TAC[IN_INSERT; IN_UNION; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL
[REWRITE_TAC[definite; IN_SING] THEN
SUBGOAL_THEN `{p | (p = V 0 === V 0) /\ positive p} = {(V 0 === V 0)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING;
positive; negative; Equal_DEF; Not_DEF] THEN
MESON_TAC[form_DISTINCT]; ALL_TAC] THEN
SIMP_TAC[clause; FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY] THEN
REWRITE_TAC[NOT_IN_EMPTY; ARITH; IN_SING] THEN
SIMP_TAC[Equal_DEF] THEN MESON_TAC[LITERAL];
ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL
[REWRITE_TAC[definite; IN_SING] THEN
SUBGOAL_THEN
`{p | p IN {(Not (V 0 === V 1)), (Not (V 2 === V 1)), (V 0 === V 2)} /\
positive p} = {(V 0 === V 2)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[Equal_DEF; positive; negative] THEN
MESON_TAC[Not_DEF; form_DISTINCT]; ALL_TAC] THEN
SIMP_TAC[clause; FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY] THEN
REWRITE_TAC[NOT_IN_EMPTY; ARITH; IN_INSERT] THEN
SIMP_TAC[Equal_DEF] THEN MESON_TAC[LITERAL];
ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[Eqclause_Pred; Eqclause_Func; definite; set_of_list] THENL
[SUBGOAL_THEN
`{p | p IN
(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n))) INSERT
set_of_list (MAP (\(s,t). Not (s === t)) (Varpairs n)) /\
positive p} =
{(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN GEN_TAC THEN
REWRITE_TAC[NOT_IN_EMPTY] THEN
MATCH_MP_TAC(TAUT `(a ==> c) /\ (b ==> ~c) ==> ((a \/ b) /\ c <=> a)`) THEN
CONJ_TAC THEN SIMP_TAC[] THENL
[DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF; form_DISTINCT];
ALL_TAC] THEN
REWRITE_TAC[IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[positive; negative] THEN MESON_TAC[];
ALL_TAC] THEN
SIMP_TAC[clause; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY;
NOT_IN_EMPTY; ARITH; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[IN_INSERT; IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_REWRITE_TAC[LITERAL; Equal_DEF]; ALL_TAC] THEN
SUBGOAL_THEN
`{p | p IN
Atom f (MAP SND (Varpairs n)) INSERT
Not (Atom f (MAP FST (Varpairs n))) INSERT
set_of_list (MAP (\(s,t). Not (s === t)) (Varpairs n)) /\
positive p} =
{(Atom f (MAP SND (Varpairs n)))}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN GEN_TAC THEN
REWRITE_TAC[NOT_IN_EMPTY] THEN
MATCH_MP_TAC(TAUT
`(a ==> c) /\ (b ==> ~c) /\ (d ==> ~c)
==> ((a \/ b \/ d) /\ c <=> a)`) THEN
CONJ_TAC THEN SIMP_TAC[] THENL
[DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF; form_DISTINCT];
ALL_TAC] THEN
CONJ_TAC THENL [MESON_TAC[positive; negative]; ALL_TAC] THEN
REWRITE_TAC[IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[positive; negative] THEN MESON_TAC[];
ALL_TAC] THEN
SIMP_TAC[clause; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY;
NOT_IN_EMPTY; ARITH; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[IN_INSERT; IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_REWRITE_TAC[LITERAL; Equal_DEF]);;
let EQLOGIC_COMPLETE = prove
(`!E s t. (!e. e IN E ==> ?s t. e = (s === t)) /\
(!M. interpretation (language((s === t) INSERT E)) M /\
~(Dom M :term->bool = {}) /\
normal (functions ((s === t) INSERT E)) M /\
M satisfies E
==> M satisfies {(s === t)})
==> E |- s === t`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ONCE_REWRITE_TAC[lemma1] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> a /\ b /\ c /\ (b ==> d)`] THEN
SIMP_TAC[SATISFIES_NOT] THEN
REWRITE_TAC[TAUT `a /\ b /\ c /\ (b ==> d) <=> a /\ b /\ c /\ d`] THEN
ONCE_REWRITE_TAC[FUNCTIONS_INSERT_NOT_UCLOSE; LANGUAGE_INSERT_NOT_UCLOSE] THEN
REWRITE_TAC[NORMAL_THM] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> a /\ b /\ (b ==> c)`] THEN
REWRITE_TAC[lemma2] THEN SIMP_TAC[GSYM SATISFIES_NOT] THEN
REWRITE_TAC[TAUT `a /\ b /\ (b ==> c) <=> a /\ b /\ c`] THEN
REWRITE_TAC[SATISFIES_UNION; GSYM CONJ_ASSOC; GSYM lemma1] THEN
REWRITE_TAC[GSYM FUNCTIONS_INSERT_NOT_UCLOSE;
GSYM LANGUAGE_INSERT_NOT_UCLOSE] THEN
DISCH_TAC THEN
SUBGOAL_THEN
`?n. ibackchain ({{e} | e IN E} UNION
Eqclauses(language ((s === t) INSERT E)))
n (s === t)`
MP_TAC THENL
[MP_TAC(SPECL
[`{{e} | e IN E} UNION
Eqclauses(language ((s === t) INSERT E))`;
`s === t`] IBACKCHAIN_MINIMAL) THEN
MATCH_MP_TAC(TAUT `b /\ c /\ a ==> (a /\ b ==> (c <=> d)) ==> d`) THEN
CONJ_TAC THENL [REWRITE_TAC[Equal_DEF; atom]; ALL_TAC] THEN
SUBGOAL_THEN `functions (IMAGE interp {{e} | e IN E}) = functions E`
ASSUME_TAC THENL
[MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `UNIONS {functions p | p IN {{e} | e IN E}}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC FUNCTIONS_IMAGE_INTERP THEN
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; FINITE_RULES];
ALL_TAC] THEN
GEN_REWRITE_TAC RAND_CONV [functions] THEN
GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_UNIONS; functions; IN_ELIM_THM] THEN
GEN_TAC THEN ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
REWRITE_TAC[UNWIND_THM2] THEN
ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[IN_UNIONS; IN_SING; IN_ELIM_THM] THEN MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`functions(IMAGE interp
({{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E)))) =
functions((s === t) INSERT E)`
ASSUME_TAC THENL
[REWRITE_TAC[IMAGE_UNION; FUNCTIONS_UNION; FUNCTIONS_EQCLAUSES] THEN
REWRITE_TAC[FUNCTIONS_INSERT] THEN
ASM_REWRITE_TAC[FUNCTIONS_INSERT; UNION_ACI]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[X_GEN_TAC `v:num->term` THEN DISCH_TAC THEN
SUBGOAL_THEN `atom(s === t)` MP_TAC THENL
[REWRITE_TAC[atom; Equal_DEF]; ALL_TAC] THEN
DISCH_THEN(fun th ->
ONCE_REWRITE_TAC[MATCH_MP IMINMODEL_MINIMAL th]) THEN
FIRST_X_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC MONO_FORALL) THEN
X_GEN_TAC
`C:(term->bool)#
((num->((term)list->term))#(num->((term)list->bool)))` THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
(TAUT `(w /\ x ==> a1) /\ (w ==> b1) /\
(w ==> b1 ==> y ==> c1 /\ d1) /\ (w ==> e1 ==> z)
==> (a1 /\ b1 /\ c1 /\ d1 ==> e1) ==> w /\ x /\ y ==> z`) THEN
CONJ_TAC THENL
[SIMP_TAC[interpretation; language; Dom_DEF] THEN
DISCH_THEN(K ALL_TAC) THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM language] THEN
REWRITE_TAC[FUNCTIONS_UNION; FUNCTIONS_EQAXIOM] THEN
ASM_REWRITE_TAC[IN_UNION]; ALL_TAC] THEN
CONJ_TAC THENL
[DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN
EXISTS_TAC `V 0` THEN REWRITE_TAC[IN; terms_RULES]; ALL_TAC] THEN
CONJ_TAC THENL
[DISCH_TAC THEN SIMP_TAC[IMAGE_UNION; GSYM EQCLAUSES_EQAXIOMS] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[satisfies; valuation] THEN
REWRITE_TAC[IN_UNION; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN SIMP_TAC[] THEN
DISCH_THEN(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; IN_SING] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM;
RIGHT_AND_EXISTS_THM] THEN
SIMP_TAC[HOLDS_INTERP; FINITE_RULES] THEN
REWRITE_TAC[IN_SING; UNWIND_THM2] THEN MESON_TAC[];
ALL_TAC] THEN
SIMP_TAC[satisfies; valuation; IN_SING] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
REWRITE_TAC[IN_UNION; TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
REWRITE_TAC[EQCLAUSES_DEFINITE] THEN
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
GEN_TAC THEN X_GEN_TAC `e:form` THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP (CONJUNCT1 th))) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`u:term`; `v:term`] THEN DISCH_THEN SUBST1_TAC THEN
SIMP_TAC[FINITE_RULES; definite; clause; IN_SING; LITERAL; Equal_DEF] THEN
REWRITE_TAC[GSYM Equal_DEF] THEN
SUBGOAL_THEN `{p | (p = u === v) /\ positive p} = {(u === v)}` SUBST1_TAC
THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN
MESON_TAC[Equal_DEF; positive; negative; Not_DEF; form_DISTINCT];
ALL_TAC] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_RULES; ARITH; NOT_IN_EMPTY];
ALL_TAC] THEN
SUBGOAL_THEN
`!n p. ibackchain
({{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E)))
n p
==> !s t. (p = (s === t)) ==> E |- s === t`
MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `s === t`) THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN
MESON_TAC[]] THEN
MATCH_MP_TAC ibackchain_INDUCT THEN
MAP_EVERY X_GEN_TAC
[`cl:form->bool`; `i:num->term`; `ns:num list`] THEN
MATCH_MP_TAC(TAUT `(a /\ c ==> d) ==> a /\ b /\ c ==> d`) THEN
STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`si:term`; `ti:term`] THEN
DISCH_TAC THEN
UNDISCH_TAC
`cl IN {{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E))` THEN
REWRITE_TAC[IN_UNION; IN_INSERT; GSYM DISJ_ASSOC] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `e:form` THEN STRIP_TAC THEN
UNDISCH_TAC `formsubst i (conclusion cl) = si === ti` THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:form`) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`s0:term`; `t0:term`] THEN
DISCH_THEN SUBST_ALL_TAC THEN
SUBGOAL_THEN `conclusion {(s0 === t0)} = (s0 === t0)` SUBST1_TAC THENL
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN
REWRITE_TAC[definite; IN_SING] THEN
MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL
[REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF] THEN
MESON_TAC[form_DISTINCT];
ALL_TAC] THEN
DISCH_TAC THEN REWRITE_TAC[clause] THEN
SIMP_TAC[FINITE_INSERT; FINITE_EMPTY; IN_SING] THEN
SUBGOAL_THEN
`{p | (p = s0 === t0) /\ positive p} = {(s0 === t0)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
REWRITE_TAC[Equal_DEF; NOT_IN_EMPTY; ARITH; LITERAL];
ALL_TAC] THEN
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
ASM_MESON_TAC[provable_RULES];
ALL_TAC] THEN
DISCH_THEN(fun th -> ASSUME_TAC(MATCH_MP EQCLAUSES_DEFINITE th) THEN
MP_TAC th) THEN
REWRITE_TAC[Eqclauses_DEF; IN_UNION; IN_INSERT; GSYM DISJ_ASSOC] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
[SUBGOAL_THEN `conclusion {(V 0 === V 0)} = (V 0 === V 0)`
SUBST_ALL_TAC THENL
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[IN_SING] THEN
REWRITE_TAC[positive; Equal_DEF; negative; Not_DEF; form_DISTINCT];
ALL_TAC] THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN
ASM_MESON_TAC[provable_RULES];
ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
[SUBGOAL_THEN
`conclusion {(Not (V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} =
(V 0 === V 2)`
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL
[MATCH_MP_TAC CONCLUSION_DEFINITE_ALT THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[clause; FINITE_INSERT; FINITE_RULES] THEN
SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[Equal_DEF; LITERAL] THEN
REWRITE_TAC[positive; negative] THEN
MESON_TAC[Not_DEF; form_DISTINCT];
ALL_TAC] THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN
DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN
REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN
ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN
SUBGOAL_THEN
`IMAGE ~~
({(Not(V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)}
DELETE (V 0 === V 2)) =
{(V 0 === V 1), (V 2 === V 1)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[Equal_DEF] THEN
MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal;
Not_DEF; form_DISTINCT];
ALL_TAC] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[o_THM] THEN
REWRITE_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
ASM_MESON_TAC[provable_RULES; FORMSUBST_EQ];
ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC;
REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; Eqclause_Pred] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
SUBGOAL_THEN `conclusion cl = Atom p (MAP SND (Varpairs n))`
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[positive; negative; form_DISTINCT; Not_DEF] THEN
EXPAND_TAC "cl" THEN REWRITE_TAC[IN_SET_OF_LIST; MEM];
ALL_TAC] THEN
MP_TAC(ASSUME
`formsubst i (Atom p (MAP SND (Varpairs n))) = si === ti`) THEN
REWRITE_TAC[Equal_DEF; formsubst; form_INJ] THEN
ASM_CASES_TAC `n = 2` THENL
[ALL_TAC;
DISCH_THEN(MP_TAC o AP_TERM `LENGTH:(term)list->num` o CONJUNCT2) THEN
ASM_REWRITE_TAC[LENGTH; LENGTH_MAP; LENGTH_VARPAIRS; ARITH]] THEN
UNDISCH_THEN `n = 2` SUBST_ALL_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN
ASM_REWRITE_TAC[Varpairs_DEF; num_CONV `2`; num_CONV `1`] THEN
REWRITE_TAC[ARITH; MAP; CONS_11] THEN
DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN
DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN
REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN
ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN
SUBGOAL_THEN
`IMAGE (~~) (cl DELETE (Atom 0 (MAP SND (Varpairs 2)))) =
{(V 2 === V 0), (V 2 === V 3), (V 0 === V 1)}`
SUBST1_TAC THENL
[EXPAND_TAC "cl" THEN
REWRITE_TAC[EXTENSION; set_of_list; IN_SET_OF_LIST; MAP; MEM_MAP;
IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[num_CONV `2`; num_CONV `1`; Varpairs_DEF] THEN
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[MAP; GSYM Equal_DEF] THEN
REWRITE_TAC[MEM; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2; TAUT `~(p /\ ~p)`] THEN
REWRITE_TAC[Equal_DEF] THEN
MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal;
Not_DEF; form_DISTINCT];
ALL_TAC] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[o_THM] THEN
REWRITE_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
REWRITE_TAC[GSYM Equal_DEF] THEN REWRITE_TAC[FORMSUBST_EQ] THEN
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN
ASM_MESON_TAC[provable_RULES; FORMSUBST_EQ]] THEN
REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; Eqclause_Func] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
SUBGOAL_THEN
`conclusion cl = (Fn f (MAP FST (Varpairs n)) ===
Fn f (MAP SND (Varpairs n)))`
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[positive; negative; form_DISTINCT; Not_DEF] THEN
EXPAND_TAC "cl" THEN REWRITE_TAC[IN_SET_OF_LIST; MEM] THEN
REWRITE_TAC[Equal_DEF; form_DISTINCT];
ALL_TAC] THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN
DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN
REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN
ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN
SUBGOAL_THEN
`IMAGE (~~) (cl DELETE
(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))) =
{(s === t) | MEM (s,t) (Varpairs n)}`
SUBST1_TAC THENL
[EXPAND_TAC "cl" THEN
REWRITE_TAC[EXTENSION; set_of_list; IN_SET_OF_LIST; MAP; MEM_MAP;
IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[MEM; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[TAUT `~(p /\ ~p)`; IN_ELIM_THM] THEN
REWRITE_TAC[MEM_MAP; EXISTS_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[Equal_DEF] THEN
MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal;
Not_DEF; form_DISTINCT];
ALL_TAC] THEN
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
REWRITE_TAC[o_THM; FORMSUBST_EQ] THEN
REWRITE_TAC[Equal_DEF; form_INJ; CONS_11] THEN
REWRITE_TAC[GSYM Equal_DEF] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
SIMP_TAC[LEFT_FORALL_IMP_THM; LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM] THEN
REWRITE_TAC[EXISTS_REFL] THEN
REWRITE_TAC[termsubst; GSYM MAP_o] THEN
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN
GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_FORALL_THM] THEN
REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
DISCH_TAC THEN
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL provable_RULES))) THEN
REWRITE_TAC[ALL2_MAP2] THEN REWRITE_TAC[ALL2_ALL] THEN
ASM_REWRITE_TAC[GSYM ALL_MEM; FORALL_PAIR_THM; o_THM]);;
let EQLOGIC_SOUND = prove
(`!E s t. E |- s === t
==> !M:(A->bool)#(num->((A)list->A))#(num->((A)list->bool)).
normal UNIV (M) /\ interpretation (UNIV,UNIV) (M) /\
M satisfies E
==> M satisfies {(s === t)}`,
GEN_TAC THEN REWRITE_TAC[satisfies] THEN
SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
SUBGOAL_THEN
`!M:(A->bool)#(num->((A)list->A))#(num->((A)list->bool)).
normal UNIV (M) /\ interpretation (UNIV,UNIV) (M) /\
(!v p. valuation M v /\ p IN E ==> holds M v p)
==> !a. E |- a
==> !s t. (a = (s === t))
==> !v. valuation M v ==> holds M v (s === t)`
(fun th -> MESON_TAC[th]) THEN
GEN_TAC THEN REWRITE_TAC[normal; satisfies; TERMS_UNIV; IN_UNIV] THEN
STRIP_TAC THEN
MATCH_MP_TAC provable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
ASM_SIMP_TAC[] THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[];
REPEAT STRIP_TAC THEN REWRITE_TAC[termval] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_ALL2 THEN
UNDISCH_TAC
`ALL2 (\l r. !v:num->A. valuation M v
==> (termval M v l = termval M v r)) a b` THEN
MATCH_MP_TAC MONO_ALL2 THEN ASM_SIMP_TAC[];
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[FORMSUBST_EQ] THEN
REWRITE_TAC[Equal_DEF; form_INJ; CONS_11] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN
REWRITE_TAC[TERMVAL_TERMSUBST] THEN REPEAT GEN_TAC THEN
DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[o_THM; valuation] THEN
GEN_TAC THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN
EXISTS_TAC `UNIV:(num#num)->bool` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(fun th -> MP_TAC th THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN
REWRITE_TAC[SUBSET_UNIV]]);;
|