Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 55,923 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
(* ========================================================================= *)
(* Birkhoff's theorem and canonical version for congruence closure.          *)
(* ========================================================================= *)

let ALL2_SYM = prove
 (`!l1 l2. ALL2 P l1 l2 <=> ALL2 (\x y. P y x) l2 l1`,
  LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2]);;

let MAP_EQ_ALL2 = prove
 (`!f l1 l2. ALL2 (\x y. f x = f y) l1 l2 ==> (MAP f l1 = MAP f l2)`,
  GEN_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
  ASM_SIMP_TAC[ALL2; MAP; CONS_11] THEN STRIP_TAC THEN
  FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;

let FORMSUBST_EQ = prove
 (`!i s t. formsubst i (s === t) = (termsubst i s === termsubst i t)`,
  REWRITE_TAC[Equal_DEF; formsubst; MAP]);;

(* ------------------------------------------------------------------------- *)
(* Avoid tedious language details, for sake of simplicity.                   *)
(* ------------------------------------------------------------------------- *)

let TERMS_UNIV = prove
 (`terms UNIV = UNIV`,
  REWRITE_TAC[IN_UNIV; EXTENSION] THEN REWRITE_TAC[IN] THEN
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[terms_RULES] THEN
  CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN
  ASM_REWRITE_TAC[IN_UNIV]);;

let FUNCTIONS_UNIV = prove
 (`functions UNIV = UNIV`,
  REWRITE_TAC[IN_UNIV; EXTENSION] THEN
  REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN
  ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
  MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
  EXISTS_TAC `functions_form(Atom p [Fn f (REPLICATE n (V x))])` THEN
  REWRITE_TAC[functions_form; MAP; LIST_UNION; UNION_EMPTY] THEN
  REWRITE_TAC[functions_term; IN_INSERT; LENGTH_REPLICATE] THEN
  EXISTS_TAC `Atom p [Fn f (REPLICATE n (V x))]` THEN
  REWRITE_TAC[functions_form; MAP; LIST_UNION; UNION_EMPTY] THEN
  REWRITE_TAC[functions_term; IN_INSERT; LENGTH_REPLICATE]);;

let PREDICATES_UNIV = prove
 (`predicates UNIV = UNIV`,
  REWRITE_TAC[IN_UNIV; EXTENSION] THEN
  REWRITE_TAC[predicates; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN
  ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
  MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
  EXISTS_TAC `predicates_form(Atom p (REPLICATE n (V x)))` THEN
  REWRITE_TAC[predicates_form; LENGTH_REPLICATE; IN_INSERT] THEN
  EXISTS_TAC `Atom p (REPLICATE n (V x))` THEN
  REWRITE_TAC[predicates_form; LENGTH_REPLICATE; IN_INSERT]);;

let LANGUAGE_UNIV = prove
 (`language UNIV = UNIV,UNIV`,
  REWRITE_TAC[language; FUNCTIONS_UNIV; PREDICATES_UNIV]);;

(* ------------------------------------------------------------------------- *)
(* Trivial properties of object equality.                                    *)
(* ------------------------------------------------------------------------- *)

let EQUAL_INJ = prove
 (`!s t u v. ((s === t) = (u === v)) <=> (s = u) /\ (t = v)`,
  REWRITE_TAC[Equal_DEF; form_INJ; CONS_11]);;

let EQUAL_INJ_ALT = prove
 (`!s t u v. ((s === t) = (u === v)) <=> (u = s) /\ (v = t)`,
  REWRITE_TAC[EQUAL_INJ; EQ_SYM_EQ]);;

(* ------------------------------------------------------------------------- *)
(* Provability.                                                              *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("|-",(11,"right"));;

let provable_RULES,provable_INDUCT,provable_CASES = new_inductive_definition
  `(!s t. s === t IN E ==> E |- s === t) /\
   (!t. E |- t === t) /\
   (!s t. E |- s === t ==> E |- t === s) /\
   (!s t u. E |- s === t /\ E |- t === u ==> E |- s === u) /\
   (!f a b. ALL2 (\l r. E |- l === r) a b ==> E |- Fn f a === Fn f b) /\
   (!s t i. E |- s === t ==> E |- formsubst i (s === t))`;;

(* ------------------------------------------------------------------------- *)
(* Weakly canonical provability: instantiation and symmetry at leaves.       *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("|--",(11,"right"));;

let wcprovable_RULES,wcprovable_INDUCT,wcprovable_CASES =
  new_inductive_definition
   `(!s t i. s === t IN E ==> E |-- formsubst i (s === t)) /\
    (!s t i. s === t IN E ==> E |-- formsubst i (t === s)) /\
    (!t. E |-- t === t) /\
    (!s t u. E |-- s === t /\ E |-- t === u ==> E |-- s === u) /\
    (!f a b. ALL2 (\l r. E |-- l === r) a b ==> E |-- Fn f a === Fn f b)`;;

(* ------------------------------------------------------------------------- *)
(* Equivalence (fairly easy).                                                *)
(* ------------------------------------------------------------------------- *)

let WCPROVABLE_SYM = prove
 (`!E a. E |-- a ==> !s t. (a = (s === t)) ==> E |-- t === s`,
  GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN
  SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
           RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  REWRITE_TAC[wcprovable_RULES] THEN REPEAT CONJ_TAC THENL
   [ALL_TAC;
    ALL_TAC;
    MESON_TAC[wcprovable_RULES];
    ONCE_REWRITE_TAC[GSYM ALL2_SYM] THEN REWRITE_TAC[wcprovable_RULES]] THEN
  REWRITE_TAC[FORMSUBST_EQ] THEN
  SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
           RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  REWRITE_TAC[GSYM FORMSUBST_EQ] THEN REWRITE_TAC[wcprovable_RULES]);;

let WCPROVABLE_INST = prove
 (`!E a. E |-- a
         ==> !i s t. (a = (s === t)) ==> (E |-- formsubst i (s === t))`,
  GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN
  SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; FORMSUBST_EQ;
           RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  REWRITE_TAC[TERMSUBST_TERMSUBST] THEN REPEAT CONJ_TAC THENL
   [SIMP_TAC[GSYM FORMSUBST_EQ; wcprovable_RULES];
    SIMP_TAC[GSYM FORMSUBST_EQ; wcprovable_RULES];
    REWRITE_TAC[wcprovable_RULES];
    MESON_TAC[wcprovable_RULES];
    ALL_TAC] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[termsubst] THEN
  MATCH_MP_TAC(last(CONJUNCTS(SPEC_ALL wcprovable_RULES))) THEN
  REWRITE_TAC[ALL2_MAP2] THEN
  POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_ALL2 THEN SIMP_TAC[]);;

let WCPROVABLE_PROVABLE = prove
 (`!E s t. (E |-- s === t) <=> (E |- s === t)`,
  GEN_TAC THEN
  SUBGOAL_THEN
   `(!a. E |- a ==> !s t. (a = (s === t)) ==> E |-- s === t) /\
    (!a. E |-- a ==> !s t. (a = (s === t)) ==> E |- s === t)`
   (fun th -> MESON_TAC[th]) THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC provable_INDUCT;
    MATCH_MP_TAC wcprovable_INDUCT] THEN
  SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
           RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  REWRITE_TAC[provable_RULES; wcprovable_RULES] THENL
   [MESON_TAC[FORMSUBST_TRIV; wcprovable_RULES; Equal_DEF; WCPROVABLE_SYM;
              WCPROVABLE_INST];
    MESON_TAC[FORMSUBST_TRIV; provable_RULES; Equal_DEF]]);;

(* ------------------------------------------------------------------------- *)
(* R-assoc transitivity chains and congruences maximally pushed down.        *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("|---",(11,"right"));;
parse_as_infix("|--_axiom",(11,"right"));;
parse_as_infix("|--_cong",(11,"right"));;
parse_as_infix("|--_achain",(11,"right"));;
parse_as_infix("|--_cchain",(11,"right"));;

let aprovable_RULES,aprovable_INDUCT,aprovable_CASES =
  new_inductive_definition
   `(!s t i. s === t IN E ==> E |--_axiom formsubst i (s === t)) /\
    (!s t i. s === t IN E ==> E |--_axiom formsubst i (t === s))`;;

let cprovable_RULES,cprovable_INDUCT,cprovable_CASES =
  new_inductive_definition
   `(!s t. E |--_axiom s === t ==> E |--_achain s === t) /\
    (!s t. E |--_cong s === t ==> E |--_cchain s === t) /\
    (!s t u. E |--_axiom s === t /\ E |--- t === u ==> E |--_achain s === u) /\
    (!s t u. E |--_cong s === t /\ E |--_achain t === u
             ==> E |--_cchain s === u) /\
    (!f a b. ALL2 (\l r. E |--- l === r) a b
             ==> E |--_cong Fn f a === Fn f b) /\
    (!s t. (s = t) \/ E |--_achain s === t \/ E |--_cchain s === t
           ==> E |--- s === t)`;;

let CPROVABLE_PROVABLE_LEMMA = prove
 (`!E a. E |-- a
         ==> E |-- a /\
             E |--- a /\
             !u s t. (a = (s === t))
                     ==> E |--- t === u ==> E |--- s === u`,
  GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN
  SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
           RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  REWRITE_TAC[wcprovable_RULES] THEN
  REPEAT(CONJ_TAC THENL
   [MESON_TAC[FORMSUBST_EQ; wcprovable_RULES;
              cprovable_RULES; aprovable_RULES]; ALL_TAC]) THEN
  REWRITE_TAC[GSYM AND_ALL2] THEN SIMP_TAC[wcprovable_RULES] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  ASM_SIMP_TAC[cprovable_RULES] THEN X_GEN_TAC `u:term` THEN
  GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN
  REWRITE_TAC[EQUAL_INJ_ALT] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN
  SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; LEFT_EXISTS_AND_THM] THEN
  REWRITE_TAC[LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
  DISCH_THEN (DISJ_CASES_THEN MP_TAC) THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN
    MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
    DISJ2_TAC THEN DISJ2_TAC THEN
    MATCH_MP_TAC(el 1 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
    MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
    ASM_REWRITE_TAC[]; ALL_TAC] THEN
  DISCH_THEN DISJ_CASES_TAC THENL
   [MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
    DISJ2_TAC THEN DISJ2_TAC THEN
    MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
    EXISTS_TAC `Fn f b` THEN ASM_SIMP_TAC[cprovable_RULES]; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cprovable_CASES]) THEN
  REWRITE_TAC[EQUAL_INJ_ALT] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN
  SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; LEFT_EXISTS_AND_THM] THEN
  REWRITE_TAC[LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
   [GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN
    REWRITE_TAC[EQUAL_INJ_ALT; term_INJ; LEFT_IMP_EXISTS_THM] THEN
    GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `c:term list` THEN
    REWRITE_TAC[GSYM CONJ_ASSOC] THEN
    SIMP_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b ==> c ==> d`] THEN
    DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN
    MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
    DISJ2_TAC THEN DISJ2_TAC THEN
    MATCH_MP_TAC(el 1 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
    MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
    MAP_EVERY UNDISCH_TAC
     [`ALL2 (\l r. !u. E |--- r === u ==> E |--- l === u) a b`;
      `ALL2 (\l r. E |--- l === r) b c`] THEN
    REWRITE_TAC[IMP_IMP] THEN
    MAP_EVERY (fun t -> SPEC_TAC(t,t))
     [`c:term list`; `b:term list`; `a:term list`] THEN
    LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
    REWRITE_TAC[ALL2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN
    FIRST_ASSUM(fun th ->
      EXISTS_TAC (rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC);
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `s:term` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
  GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN
  REWRITE_TAC[EQUAL_INJ_ALT; term_INJ; LEFT_IMP_EXISTS_THM] THEN
  GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `c:term list` THEN
  REWRITE_TAC[GSYM CONJ_ASSOC] THEN
  SIMP_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b ==> c ==> d`] THEN
  DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THEN
  MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN DISJ2_TAC THEN
  DISJ2_TAC THEN MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
  EXISTS_TAC `Fn f c` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
  MAP_EVERY UNDISCH_TAC
   [`ALL2 (\l r. !u. E |--- r === u ==> E |--- l === u) a b`;
    `ALL2 (\l r. E |--- l === r) b c`] THEN
  REWRITE_TAC[IMP_IMP] THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t))
   [`c:term list`; `b:term list`; `a:term list`] THEN
  LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
  REWRITE_TAC[ALL2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN
  FIRST_ASSUM MATCH_MP_TAC THEN
  FIRST_ASSUM(fun th ->
    EXISTS_TAC (rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC));;

let CPROVABLE_PROVABLE = prove
 (`!E s t. (E |--- s === t) <=> (E |- s === t)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [ALL_TAC; MESON_TAC[CPROVABLE_PROVABLE_LEMMA; WCPROVABLE_PROVABLE]] THEN
  SUBGOAL_THEN
   `(!a. E |--_achain a ==> !s t. (a = (s === t)) ==> E |- s === t) /\
    (!a. E |--_cchain a ==> !s t. (a = (s === t)) ==> E |- s === t) /\
    (!a. E |--_cong a ==> !s t. (a = (s === t)) ==> E |- s === t) /\
    (!a. E |--- a ==> !s t. (a = (s === t)) ==> E |- s === t)`
   (fun th -> MESON_TAC[th]) THEN
  MATCH_MP_TAC cprovable_INDUCT THEN
  SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
           RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  REWRITE_TAC[provable_RULES] THEN
  SUBGOAL_THEN `!a. E |--_axiom a ==> !s t. (a = (s === t)) ==> E |- s === t`
   (fun th -> MESON_TAC[th; provable_RULES]) THEN
  MATCH_MP_TAC aprovable_INDUCT THEN
  REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN
  SIMP_TAC[] THEN MESON_TAC[provable_RULES; FORMSUBST_EQ]);;

(* ------------------------------------------------------------------------- *)
(* Auxiliary notion of set of subterms in equations.                         *)
(* ------------------------------------------------------------------------- *)

let subterms = new_recursive_definition term_RECURSION
  `(subterms (V x) = {(V x)}) /\
   (subterms (Fn f args) =
        (Fn f args) INSERT (LIST_UNION (MAP subterms args)))`;;

let subtermsa = new_recursive_definition form_RECURSION
  `subtermsa (Atom P args) = LIST_UNION (MAP subterms args)`;;

let subtermss = new_definition
  `subtermss E = UNIONS {subtermsa p | p IN E}`;;

let SUBTERMS_REFL = prove
 (`!t. t IN subterms t`,
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[subterms; IN_INSERT]);;

(* ------------------------------------------------------------------------- *)
(* Show that this maintains the subterm property for congruence closure.     *)
(* ------------------------------------------------------------------------- *)

let esubterms = new_definition
  `esubterms E s t =
        subtermss ((s === t) INSERT {formsubst i p |i,p| p IN E})`;;

parse_as_infix("|----",(11,"right"));;
parse_as_infix("|--_scong",(11,"right"));;
parse_as_infix("|--_sachain",(11,"right"));;
parse_as_infix("|--_scchain",(11,"right"));;

let scprovable_RULES,scprovable_INDUCT,scprovable_CASES =
  new_inductive_definition
   `(!s t. E |--_axiom s === t ==> E |--_sachain s === t) /\
    (!s t. E |--_scong s === t ==> E |--_scchain s === t) /\
    (!s t u. E |--_axiom s === t /\ E |---- t === u /\ t IN esubterms E s u
             ==> E |--_sachain s === u) /\
    (!s t u. E |--_scong s === t /\ E |--_sachain t === u /\ t IN esubterms E s u
             ==> E |--_scchain s === u) /\
    (!f a b. ALL2 (\l r. E |---- l === r) a b
             ==> E |--_scong Fn f a === Fn f b) /\
    (!s t. (s = t) \/ E |--_sachain s === t \/ E |--_scchain s === t
           ==> E |---- s === t)`;;

let ESUBTERMS_TRIVIAL_L = prove
 (`!u. u IN subterms s ==> u IN esubterms E s t`,
  REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_INSERT; IN_ELIM_THM] THEN
  REPEAT STRIP_TAC THEN EXISTS_TAC `subterms s UNION subterms t` THEN
  ASM_REWRITE_TAC[IN_UNION] THEN
  EXISTS_TAC `s === t` THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION] THEN
  REWRITE_TAC[UNION_EMPTY]);;

let ESUBTERMS_TRIVIAL_R = prove
 (`!u. u IN subterms t ==> u IN esubterms E s t`,
  REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_INSERT; IN_ELIM_THM] THEN
  REPEAT STRIP_TAC THEN EXISTS_TAC `subterms s UNION subterms t` THEN
  ASM_REWRITE_TAC[IN_UNION] THEN
  EXISTS_TAC `s === t` THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION] THEN
  REWRITE_TAC[UNION_EMPTY]);;

let SCPROVABLE_SUBTERMS = prove
 (`!a. E |--_sachain a
       ==> !s t. (a = (s === t))
                 ==> !u v. s IN esubterms E u v`,
  GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [scprovable_CASES] THEN
  SUBGOAL_THEN
   `!a. E |--_axiom a
       ==> !s t. (a = (s === t))
                 ==> !u v. s IN esubterms E u v`
   (fun th -> STRIP_TAC THEN ASM_REWRITE_TAC[EQUAL_INJ_ALT] THEN
              ASM_MESON_TAC[th]) THEN
  GEN_TAC THEN ONCE_REWRITE_TAC[aprovable_CASES] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  (REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_ELIM_THM; IN_INSERT] THEN
   EXISTS_TAC `subtermsa (formsubst i (s === t))` THEN CONJ_TAC THENL
    [ASM_MESON_TAC[]; ALL_TAC] THEN
   REWRITE_TAC[subtermsa; FORMSUBST_EQ] THEN
   REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION; UNION_EMPTY] THEN
   MESON_TAC[IN_UNION; SUBTERMS_REFL]));;

let SCPROVABLE_CPROVABLE_LEMMA = prove
 (`(!a. E |--_achain a ==> !s t. (a = (s === t)) ==> E |--_sachain s === t) /\
   (!a. E |--_cchain a ==> !s t. (a = (s === t)) ==> E |--_scchain s === t) /\
   (!a. E |--_cong a ==> !s t. (a = (s === t)) ==> E |--_scong s === t) /\
   (!a. E |--- a ==> !s t. (a = (s === t)) ==> E |---- s === t)`,
  MATCH_MP_TAC cprovable_INDUCT THEN
  SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
           RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  REWRITE_TAC[scprovable_RULES] THEN REPEAT STRIP_TAC THENL
   [MATCH_MP_TAC(el 2 (CONJUNCTS(SPEC_ALL scprovable_RULES))) THEN
    EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [aprovable_CASES]) THEN
    REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN
    DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN MP_TAC) THEN
    (REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`v:term`; `w:term`; `i:num->term`] THEN
    DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_ELIM_THM; IN_INSERT] THEN
    EXISTS_TAC `subtermsa (formsubst i (v === w))` THEN CONJ_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    REWRITE_TAC[subtermsa; FORMSUBST_EQ] THEN
    REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION; UNION_EMPTY] THEN
    MESON_TAC[IN_UNION; SUBTERMS_REFL]);
    ALL_TAC] THEN
  MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL scprovable_RULES))) THEN
  EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[SCPROVABLE_SUBTERMS]);;

let SCPROVABLE_CPROVABLE = prove
 (`!E s t. (E |--- s === t) <=> (E |---- s === t)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [ASM_MESON_TAC[SCPROVABLE_CPROVABLE_LEMMA]; ALL_TAC] THEN
  SUBGOAL_THEN
   `(!a. E |--_sachain a ==> !s t. (a = (s === t)) ==> E |--_achain s === t) /\
    (!a. E |--_scchain a ==> !s t. (a = (s === t)) ==> E |--_cchain s === t) /\
    (!a. E |--_scong a ==> !s t. (a = (s === t)) ==> E |--_cong s === t) /\
    (!a. E |---- a ==> !s t. (a = (s === t)) ==> E |--- s === t)`
   (fun th -> MESON_TAC[th]) THEN
  MATCH_MP_TAC scprovable_INDUCT THEN
  SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
           RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  REWRITE_TAC[cprovable_RULES] THEN MESON_TAC[cprovable_RULES]);;

let SCPROVABLE_PROVABLE = prove
 (`!E s t. (E |--- s === t) <=> (E |- s === t)`,
  MESON_TAC[SCPROVABLE_CPROVABLE; CPROVABLE_PROVABLE]);;

(* ------------------------------------------------------------------------- *)
(* Clausal version of equality properties.                                   *)
(* ------------------------------------------------------------------------- *)

let Eqclause_Func = new_definition
  `Eqclause_Func (f,n) =
      set_of_list
        (CONS (Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))
              (MAP (\(s,t). Not(s === t)) (Varpairs n)))`;;

let Eqclause_Pred = new_definition
  `Eqclause_Pred (p,n) =
       set_of_list
        (CONS (Atom p (MAP SND (Varpairs n)))
              (CONS (Not(Atom p (MAP FST (Varpairs n))))
                    (MAP (\(s,t). Not(s === t)) (Varpairs n))))`;;

let Eqclauses_DEF = new_definition
  `Eqclauses L =
     {(V 0 === V 0)} INSERT
     {(Not(V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} INSERT
     ({Eqclause_Func fa | fa IN FST L} UNION
      {Eqclause_Pred pa | pa IN SND L})`;;

let EQCLAUSE_EQAXIOM_FUNC = prove
 (`!M f n. ~(Dom M :A->bool = {})
           ==> (M satisfies {(interp(Eqclause_Func (f,n)))} <=>
                M satisfies {(Eqaxiom_Func (f,n))})`,
  REPEAT GEN_TAC THEN REWRITE_TAC[Eqclause_Func; Eqaxiom_Func] THEN
  SIMP_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN
  REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM] THEN
  REWRITE_TAC[EXISTS_REFL] THEN
  SIMP_TAC[HOLDS_UCLOSE_ALL_EQ] THEN
  SIMP_TAC[HOLDS_INTERP; FINITE_SET_OF_LIST] THEN
  REWRITE_TAC[set_of_list; IN_INSERT; HOLDS] THEN
  REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN
  REWRITE_TAC[UNWIND_THM2] THEN DISCH_TAC THEN
  AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
  X_GEN_TAC `v:num->A` THEN REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN
  DISCH_TAC THEN
  MATCH_MP_TAC(TAUT `(~a <=> b) ==> (c \/ a <=> b ==> c)`) THEN
  SPEC_TAC(`Varpairs n`,`l:(term#term)list`) THEN
  ONCE_REWRITE_TAC[CONJ_SYM] THEN
  REWRITE_TAC[EX_MEM; IN_SET_OF_LIST] THEN
  REWRITE_TAC[NOT_EX; ALL_MAP; o_THM] THEN
  MATCH_MP_TAC list_INDUCT THEN
  REWRITE_TAC[ALL; ITLIST; HOLDS; MAP] THEN SIMP_TAC[] THEN
  GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[HOLDS]);;

let Eqaxiom_Pred_imp = new_definition
  `Eqaxiom_Pred_imp (p,n) =
        uclose
         (ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True
          --> Atom p (MAP FST (Varpairs n))
              --> Atom p (MAP SND (Varpairs n)))`;;

let lemma = prove(`a INSERT s = {a} UNION s`,SET_TAC[]);;

let EQCLAUSES_EQAXIOMS = prove
 (`!M L. ~(Dom M :A->bool = {})
         ==> (M satisfies (IMAGE interp (Eqclauses L)) <=>
              M satisfies (Eqaxioms L))`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[Eqclauses_DEF; Eqaxioms_DEF; IMAGE_CLAUSES; IMAGE_UNION] THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [lemma] THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [lemma] THEN
  REWRITE_TAC[SATISFIES_UNION] THEN
  MATCH_MP_TAC(TAUT
   `(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[SATISFIES_1] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN
    SIMP_TAC[HOLDS_INTERP; FINITE_RULES] THEN
    REWRITE_TAC[IN_SING] THEN MESON_TAC[];
    ALL_TAC] THEN
  DISCH_TAC THEN
  MATCH_MP_TAC(TAUT
   `(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[SATISFIES_1] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN
    SIMP_TAC[HOLDS_INTERP; FINITE_INSERT; FINITE_EMPTY] THEN
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; HOLDS] THEN
    REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
    REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN
    REWRITE_TAC[HOLDS] THEN AP_TERM_TAC THEN ABS_TAC THEN
    CONV_TAC TAUT; ALL_TAC] THEN
  DISCH_TAC THEN
  MATCH_MP_TAC(TAUT
   `(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[SATISFIES_IMAGE] THEN
    REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
    SIMP_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP EQCLAUSE_EQAXIOM_FUNC) THEN
    REWRITE_TAC[SATISFIES_1] THEN
    ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN MESON_TAC[]; ALL_TAC] THEN
  DISCH_TAC THEN
  REWRITE_TAC[SATISFIES_IMAGE]  THEN
  REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
  ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN
  SUBGOAL_THEN
   `!p n. (!v:num->A. valuation M v
                      ==> holds M v (interp(Eqclause_Pred(p,n)))) <=>
          (!v:num->A. valuation M v
                      ==> holds M v (Eqaxiom_Pred(p,n)))`
   (fun th -> MESON_TAC[th]) THEN
  GEN_TAC THEN GEN_TAC THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC
   `!v:num->A. valuation M v ==> holds M v (Eqaxiom_Pred_imp(p,n))` THEN
  CONJ_TAC THENL
   [REWRITE_TAC[Eqclause_Pred; Eqaxiom_Pred_imp] THEN
    ASM_SIMP_TAC[HOLDS_UCLOSE_ALL_EQ] THEN
    SIMP_TAC[HOLDS_INTERP; FINITE_SET_OF_LIST] THEN
    REWRITE_TAC[set_of_list; IN_INSERT; HOLDS] THEN
    REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN
    REWRITE_TAC[UNWIND_THM2] THEN
    AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
    X_GEN_TAC `v:num->A` THEN REWRITE_TAC[] THEN
    MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN
    DISCH_TAC THEN REWRITE_TAC[HOLDS] THEN
    MATCH_MP_TAC(TAUT
     `(~c <=> d) ==> (a \/ ~b \/ c <=> d ==> b ==> a)`) THEN
    SPEC_TAC(`Varpairs n`,`l:(term#term)list`) THEN
    ONCE_REWRITE_TAC[CONJ_SYM] THEN
    REWRITE_TAC[EX_MEM; IN_SET_OF_LIST] THEN
    REWRITE_TAC[NOT_EX; ALL_MAP; o_THM] THEN
    MATCH_MP_TAC list_INDUCT THEN
    REWRITE_TAC[ALL; ITLIST; HOLDS; MAP] THEN SIMP_TAC[] THEN
    GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
    REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[HOLDS];
    ALL_TAC] THEN
  REWRITE_TAC[Eqaxiom_Pred_imp; Eqaxiom_Pred; HOLDS] THEN
  ASM_SIMP_TAC[HOLDS_UCLOSE_ALL_EQ; HOLDS] THEN
  EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `v:num->A` THEN
  DISCH_TAC THEN DISCH_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN
  DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC
   `\x. if EVEN(x) then v(x + 1):A else v(x - 1)`) THEN
  REWRITE_TAC[GSYM MAP_o] THEN
  MAP_EVERY UNDISCH_TAC
   [`Pred M p (MAP (termval M (v:num->A)) (MAP SND (Varpairs n)))`;
    `holds M (v:num->A)
             (ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True)`] THEN
  MATCH_MP_TAC(TAUT
   `a /\ (x <=> b) /\ (y <=> c) /\ (d <=> e)
    ==> x ==> y ==> (a ==> b ==> c ==> d) ==> e`) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[valuation] THEN GEN_TAC THEN COND_CASES_TAC THEN
    ASM_MESON_TAC[valuation]; ALL_TAC] THEN
  SUBGOAL_THEN
   `!v:num->A x y. valuation M v
                   ==> (holds M v (V x === V y) <=> holds M v (V y === V x))`
  ASSUME_TAC THENL
   [X_GEN_TAC `w:num->A` THEN REPEAT STRIP_TAC THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SATISFIES_1])) THEN
    ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN
    REWRITE_TAC[IMP_IMP] THEN
    REWRITE_TAC[AND_FORALL_THM] THEN
    DISCH_THEN(fun th ->
     MP_TAC(SPEC `\n. if n = 2 then (w:num->A)(y) else w(x)` th) THEN
     MP_TAC(SPEC `\n. if n = 2 then (w:num->A)(x) else w(y)` th)) THEN
    REWRITE_TAC[HOLDS; Equal_DEF; MAP; termval; ARITH_EQ; valuation] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
    ASM_REWRITE_TAC[COND_ID] THEN CONV_TAC TAUT; ALL_TAC] THEN
  CONJ_TAC THENL
   [SPEC_TAC(`n:num`,`n:num`) THEN
    INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; MAP; ITLIST; HOLDS] THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `holds M (v:num->A) (V(2 * n + 1) === V(2 * n))` THEN
    CONJ_TAC THENL [ASM_SIMP_TAC[]; ALL_TAC] THEN
    REWRITE_TAC[HOLDS; Equal_DEF; MAP; termval; ARITH_EQ] THEN
    REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH] THEN REWRITE_TAC[ADD_SUB];
    ALL_TAC] THEN
  CONJ_TAC THEN
  (AP_TERM_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN
   INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; MAP] THEN
   REWRITE_TAC[CONS_11] THEN
   REWRITE_TAC[ADD_SUB; o_THM; termval; EVEN_ADD; EVEN_MULT; ARITH]));;

let FUNCTIONS_VAREQLIST = prove
 (`!n. functions(set_of_list (MAP (\(s,t). Not(s === t)) (Varpairs n))) = {}`,
  INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; set_of_list] THENL
   [REWRITE_TAC[functions; NOT_IN_EMPTY; IN_ELIM_THM; EXTENSION; IN_UNIONS];
    ASM_REWRITE_TAC[FUNCTIONS_INSERT; UNION_EMPTY] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[Equal_DEF; functions_form; Not_DEF; MAP; functions_term] THEN
    REWRITE_TAC[LIST_UNION; UNION_EMPTY]]);;

let FUNCTIONS_TERM_FN_VARPAIRS = prove
 (`(!f n. functions_term(Fn f (MAP FST (Varpairs n))) = {(f,n)}) /\
   (!f n. functions_term(Fn f (MAP SND (Varpairs n))) = {(f,n)})`,
  REWRITE_TAC[functions_term; LENGTH_VARPAIRS; LENGTH_MAP] THEN
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `(LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = {}) /\
    (LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = {})`
   (fun th -> REWRITE_TAC[th]) THEN
  SPEC_TAC(`n:num`,`n:num`) THEN
  INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; LIST_UNION; functions_term] THEN
  ASM_REWRITE_TAC[UNION_EMPTY]);;

let FUNCTIONS_FORM_PRED_VARPAIRS = prove
 (`(!p n. functions_form(Atom p (MAP FST (Varpairs n))) = {}) /\
   (!p n. functions_form(Atom p (MAP SND (Varpairs n))) = {})`,
  REWRITE_TAC[functions_form; LENGTH_VARPAIRS; LENGTH_MAP] THEN
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `(LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = {}) /\
    (LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = {})`
   (fun th -> REWRITE_TAC[th]) THEN
  SPEC_TAC(`n:num`,`n:num`) THEN
  INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; LIST_UNION; functions_term] THEN
  ASM_REWRITE_TAC[UNION_EMPTY]);;

let FUNCTIONS_FORM_EQCLAUSE_FUNC = prove
 (`!fn. functions_form(interp(Eqclause_Func fn)) = {fn}`,
  GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
  MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
  REWRITE_TAC[Eqclause_Func] THEN
  SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_SET_OF_LIST] THEN
  REWRITE_TAC[set_of_list; FUNCTIONS_INSERT; FUNCTIONS_UNION] THEN
  REWRITE_TAC[functions_form; Equal_DEF; MAP; FUNCTIONS_TERM_FN_VARPAIRS] THEN
  REWRITE_TAC[GSYM Equal_DEF; FUNCTIONS_VAREQLIST] THEN
  REWRITE_TAC[LIST_UNION; UNION_EMPTY; UNION_ACI]);;

let FUNCTIONS_FORM_EQCLAUSE_PRED = prove
 (`!pn. functions_form(interp(Eqclause_Pred pn)) = {}`,
  GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
  MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
  REWRITE_TAC[Eqclause_Pred] THEN
  SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_SET_OF_LIST] THEN
  REWRITE_TAC[set_of_list; FUNCTIONS_INSERT; FUNCTIONS_UNION] THEN
  REWRITE_TAC[FUNCTIONS_VAREQLIST; UNION_EMPTY] THEN
  REWRITE_TAC[Not_DEF; FUNCTIONS_FORM_PRED_VARPAIRS] THEN
  ONCE_REWRITE_TAC[functions_form] THEN
  REWRITE_TAC[FUNCTIONS_FORM_PRED_VARPAIRS] THEN
  REWRITE_TAC[functions_form; UNION_EMPTY]);;

let FUNCTIONS_EQCLAUSES = prove
 (`functions(IMAGE interp (Eqclauses(language s))) = functions s`,
  REWRITE_TAC[functions; Eqclauses_DEF] THEN
  GEN_REWRITE_TAC I [EXTENSION] THEN
  REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; IN_UNIONS] THEN
  GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
  MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
  GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC] THEN REWRITE_TAC[UNWIND_THM2] THEN
  REWRITE_TAC[IN_INSERT; IN_UNION; NOT_IN_EMPTY; IN_ELIM_THM] THEN
  REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
  REWRITE_TAC[EXISTS_OR_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN
  SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_INSERT; FINITE_EMPTY] THEN
  REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
  REWRITE_TAC[UNWIND_THM2] THEN
  REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
  REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN
  REWRITE_TAC[functions_form; Not_DEF; Equal_DEF; MAP; functions_term] THEN
  REWRITE_TAC[LIST_UNION; UNION_EMPTY] THEN
  REWRITE_TAC[UNWIND_THM2; NOT_IN_EMPTY] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN SIMP_TAC[] THEN
  REWRITE_TAC[NOT_IMP] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
  GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> b /\ a /\ c /\ d`] THEN
  REWRITE_TAC[UNWIND_THM2] THEN
  ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN
  REWRITE_TAC[Eqclause_Func; Eqclause_Pred; FINITE_SET_OF_LIST;
              FUNCTIONS_FORM_INTERP] THEN
  REWRITE_TAC[GSYM Eqclause_Func; GSYM Eqclause_Pred] THEN
  REWRITE_TAC[FUNCTIONS_FORM_EQCLAUSE_PRED; FUNCTIONS_FORM_EQCLAUSE_FUNC] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> a /\ ~(b ==> ~c)`] THEN
  SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[language] THEN
  REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN
  REWRITE_TAC[PAIR_EQ; NOT_IMP] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Completeness.                                                             *)
(* ------------------------------------------------------------------------- *)

let FUNCTIONS_FORM_NOT_UCLOSE = prove
 (`functions_form(Not(uclose p)) = functions_form p`,
  REWRITE_TAC[Not_DEF; functions_form; FUNCTIONS_FORM_UCLOSE; UNION_EMPTY]);;

let PREDICATES_FORM_NOT_UCLOSE = prove
 (`predicates_form(Not(uclose p)) = predicates_form p`,
  REWRITE_TAC[Not_DEF; predicates_form; PREDICATES_FORM_UCLOSE; UNION_EMPTY]);;

let FUNCTIONS_INSERT_NOT_UCLOSE = prove
 (`functions(p INSERT s) = functions(Not(uclose p) INSERT s)`,
  ONCE_REWRITE_TAC[EXTENSION] THEN
  REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN
  REWRITE_TAC[IN_INSERT] THEN MESON_TAC[FUNCTIONS_FORM_NOT_UCLOSE]);;

let PREDICATES_INSERT_NOT_UCLOSE = prove
 (`predicates(p INSERT s) = predicates(Not(uclose p) INSERT s)`,
  ONCE_REWRITE_TAC[EXTENSION] THEN
  REWRITE_TAC[predicates; IN_UNIONS; IN_ELIM_THM] THEN
  REWRITE_TAC[IN_INSERT] THEN MESON_TAC[PREDICATES_FORM_NOT_UCLOSE]);;

let LANGUAGE_INSERT_NOT_UCLOSE = prove
 (`language(p INSERT s) = language (Not(uclose p) INSERT s)`,
  REWRITE_TAC[language; GSYM FUNCTIONS_INSERT_NOT_UCLOSE;
              GSYM PREDICATES_INSERT_NOT_UCLOSE]);;

let lemma1 = prove
 (`(!m. p m /\ q m /\ r m /\ s m ==> t m) <=>
  ~(?m. p m /\ q m /\ r m /\ s m /\ ~(t m))`,
  MESON_TAC[]);;

let lemma2 = prove
 (`(x INSERT s) UNION t = x INSERT (s UNION t)`,
  SET_TAC[]);;

let EQCLAUSES_DEFINITE = prove
 (`!L cl. cl IN Eqclauses L ==> definite cl`,
  REPEAT GEN_TAC THEN REWRITE_TAC[Eqclauses_DEF] THEN
  REWRITE_TAC[IN_INSERT; IN_UNION; IN_ELIM_THM] THEN
  ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN
  DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL
   [REWRITE_TAC[definite; IN_SING] THEN
    SUBGOAL_THEN `{p | (p = V 0 === V 0) /\ positive p} = {(V 0 === V 0)}`
    SUBST1_TAC THENL
     [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING;
                  positive; negative; Equal_DEF; Not_DEF] THEN
      MESON_TAC[form_DISTINCT]; ALL_TAC] THEN
    SIMP_TAC[clause; FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY] THEN
    REWRITE_TAC[NOT_IN_EMPTY; ARITH; IN_SING] THEN
    SIMP_TAC[Equal_DEF] THEN MESON_TAC[LITERAL];
    ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL
   [REWRITE_TAC[definite; IN_SING] THEN
    SUBGOAL_THEN
     `{p | p IN {(Not (V 0 === V 1)), (Not (V 2 === V 1)), (V 0 === V 2)} /\
           positive p} = {(V 0 === V 2)}`
    SUBST1_TAC THENL
     [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
      REWRITE_TAC[Equal_DEF; positive; negative] THEN
      MESON_TAC[Not_DEF; form_DISTINCT]; ALL_TAC] THEN
    SIMP_TAC[clause; FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY] THEN
    REWRITE_TAC[NOT_IN_EMPTY; ARITH; IN_INSERT] THEN
    SIMP_TAC[Equal_DEF] THEN MESON_TAC[LITERAL];
    ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[Eqclause_Pred; Eqclause_Func; definite; set_of_list] THENL
   [SUBGOAL_THEN
     `{p | p IN
       (Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n))) INSERT
       set_of_list (MAP (\(s,t). Not (s === t)) (Varpairs n)) /\
       positive p} =
      {(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))}`
    SUBST1_TAC THENL
     [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN GEN_TAC THEN
      REWRITE_TAC[NOT_IN_EMPTY] THEN
      MATCH_MP_TAC(TAUT `(a ==> c) /\ (b ==> ~c) ==> ((a \/ b) /\ c <=> a)`) THEN
      CONJ_TAC THEN SIMP_TAC[] THENL
       [DISCH_THEN(K ALL_TAC) THEN
        REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF; form_DISTINCT];
        ALL_TAC] THEN
      REWRITE_TAC[IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
      STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
      CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
      REWRITE_TAC[positive; negative] THEN MESON_TAC[];
      ALL_TAC] THEN
    SIMP_TAC[clause; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY;
             NOT_IN_EMPTY; ARITH; FINITE_SET_OF_LIST] THEN
    REWRITE_TAC[IN_INSERT; IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    ASM_REWRITE_TAC[LITERAL; Equal_DEF]; ALL_TAC] THEN
  SUBGOAL_THEN
   `{p | p IN
     Atom f (MAP SND (Varpairs n)) INSERT
       Not (Atom f (MAP FST (Varpairs n))) INSERT
       set_of_list (MAP (\(s,t). Not (s === t)) (Varpairs n)) /\
       positive p} =
    {(Atom f (MAP SND (Varpairs n)))}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN GEN_TAC THEN
    REWRITE_TAC[NOT_IN_EMPTY] THEN
    MATCH_MP_TAC(TAUT
     `(a ==> c) /\ (b ==> ~c) /\ (d ==> ~c)
      ==> ((a \/ b \/ d) /\ c <=> a)`) THEN
    CONJ_TAC THEN SIMP_TAC[] THENL
     [DISCH_THEN(K ALL_TAC) THEN
      REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF; form_DISTINCT];
      ALL_TAC] THEN
    CONJ_TAC THENL [MESON_TAC[positive; negative]; ALL_TAC] THEN
    REWRITE_TAC[IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[positive; negative] THEN MESON_TAC[];
    ALL_TAC] THEN
  SIMP_TAC[clause; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY;
           NOT_IN_EMPTY; ARITH; FINITE_SET_OF_LIST] THEN
  REWRITE_TAC[IN_INSERT; IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  ASM_REWRITE_TAC[LITERAL; Equal_DEF]);;

let EQLOGIC_COMPLETE = prove
 (`!E s t. (!e. e IN E ==> ?s t. e = (s === t)) /\
           (!M. interpretation (language((s === t) INSERT E)) M /\
                ~(Dom M :term->bool = {}) /\
                normal (functions ((s === t) INSERT E)) M /\
                M satisfies E
                ==> M satisfies {(s === t)})
           ==> E |- s === t`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ONCE_REWRITE_TAC[lemma1] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> a /\ b /\ c /\ (b ==> d)`] THEN
  SIMP_TAC[SATISFIES_NOT] THEN
  REWRITE_TAC[TAUT `a /\ b /\ c /\ (b ==> d) <=> a /\ b /\ c /\ d`] THEN
  ONCE_REWRITE_TAC[FUNCTIONS_INSERT_NOT_UCLOSE; LANGUAGE_INSERT_NOT_UCLOSE] THEN
  REWRITE_TAC[NORMAL_THM] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> a /\ b /\ (b ==> c)`] THEN
  REWRITE_TAC[lemma2] THEN SIMP_TAC[GSYM SATISFIES_NOT] THEN
  REWRITE_TAC[TAUT `a /\ b /\ (b ==> c) <=> a /\ b /\ c`] THEN
  REWRITE_TAC[SATISFIES_UNION; GSYM CONJ_ASSOC; GSYM lemma1] THEN
  REWRITE_TAC[GSYM FUNCTIONS_INSERT_NOT_UCLOSE;
              GSYM LANGUAGE_INSERT_NOT_UCLOSE] THEN
  DISCH_TAC THEN
  SUBGOAL_THEN
   `?n. ibackchain ({{e} | e IN E} UNION
                    Eqclauses(language ((s === t) INSERT E)))
                   n (s === t)`
  MP_TAC THENL
   [MP_TAC(SPECL
     [`{{e} | e IN E} UNION
       Eqclauses(language ((s === t) INSERT E))`;
      `s === t`] IBACKCHAIN_MINIMAL) THEN
    MATCH_MP_TAC(TAUT `b /\ c /\ a ==> (a /\ b ==> (c <=> d)) ==> d`) THEN
    CONJ_TAC THENL [REWRITE_TAC[Equal_DEF; atom]; ALL_TAC] THEN
    SUBGOAL_THEN `functions (IMAGE interp {{e} | e IN E}) = functions E`
    ASSUME_TAC THENL
     [MATCH_MP_TAC EQ_TRANS THEN
      EXISTS_TAC `UNIONS {functions p | p IN {{e} | e IN E}}` THEN
      CONJ_TAC THENL
       [MATCH_MP_TAC FUNCTIONS_IMAGE_INTERP THEN
        SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; FINITE_RULES];
        ALL_TAC] THEN
      GEN_REWRITE_TAC RAND_CONV [functions] THEN
      GEN_REWRITE_TAC I [EXTENSION] THEN
      REWRITE_TAC[IN_UNIONS; functions; IN_ELIM_THM] THEN
      GEN_TAC THEN ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
      GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN
      ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
      REWRITE_TAC[UNWIND_THM2] THEN
      ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
      GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN
      ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
      REWRITE_TAC[UNWIND_THM2] THEN
      REWRITE_TAC[IN_UNIONS; IN_SING; IN_ELIM_THM] THEN MESON_TAC[];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `functions(IMAGE interp
           ({{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E)))) =
      functions((s === t) INSERT E)`
    ASSUME_TAC THENL
     [REWRITE_TAC[IMAGE_UNION; FUNCTIONS_UNION; FUNCTIONS_EQCLAUSES] THEN
      REWRITE_TAC[FUNCTIONS_INSERT] THEN
      ASM_REWRITE_TAC[FUNCTIONS_INSERT; UNION_ACI]; ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
     [X_GEN_TAC `v:num->term` THEN DISCH_TAC THEN
      SUBGOAL_THEN `atom(s === t)` MP_TAC THENL
       [REWRITE_TAC[atom; Equal_DEF]; ALL_TAC] THEN
      DISCH_THEN(fun th ->
         ONCE_REWRITE_TAC[MATCH_MP IMINMODEL_MINIMAL th]) THEN
      FIRST_X_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC MONO_FORALL) THEN
      X_GEN_TAC
        `C:(term->bool)#
           ((num->((term)list->term))#(num->((term)list->bool)))` THEN
      ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC
       (TAUT `(w /\ x ==> a1) /\ (w ==> b1) /\
              (w ==> b1 ==> y ==> c1 /\ d1) /\ (w ==> e1 ==> z)
              ==> (a1 /\ b1 /\ c1 /\ d1 ==> e1) ==> w /\ x /\ y ==> z`) THEN
      CONJ_TAC THENL
       [SIMP_TAC[interpretation; language; Dom_DEF] THEN
        DISCH_THEN(K ALL_TAC) THEN
        REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
        REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
        STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN
        ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM language] THEN
        REWRITE_TAC[FUNCTIONS_UNION; FUNCTIONS_EQAXIOM] THEN
        ASM_REWRITE_TAC[IN_UNION]; ALL_TAC] THEN
      CONJ_TAC THENL
       [DISCH_THEN SUBST1_TAC THEN
        REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN
        EXISTS_TAC `V 0` THEN REWRITE_TAC[IN; terms_RULES]; ALL_TAC] THEN
      CONJ_TAC THENL
       [DISCH_TAC THEN SIMP_TAC[IMAGE_UNION; GSYM EQCLAUSES_EQAXIOMS] THEN
        DISCH_TAC THEN ASM_REWRITE_TAC[satisfies; valuation] THEN
        REWRITE_TAC[IN_UNION; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
        REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
        REWRITE_TAC[FORALL_AND_THM] THEN SIMP_TAC[] THEN
        DISCH_THEN(MP_TAC o CONJUNCT1) THEN
        REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; IN_SING] THEN
        SIMP_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM;
                 RIGHT_AND_EXISTS_THM] THEN
        SIMP_TAC[HOLDS_INTERP; FINITE_RULES] THEN
        REWRITE_TAC[IN_SING; UNWIND_THM2] THEN MESON_TAC[];
        ALL_TAC] THEN
      SIMP_TAC[satisfies; valuation; IN_SING] THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[IN_UNION; TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
    REWRITE_TAC[EQCLAUSES_DEFINITE] THEN
    SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
    GEN_TAC THEN X_GEN_TAC `e:form` THEN
    DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP (CONJUNCT1 th))) THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`u:term`; `v:term`] THEN DISCH_THEN SUBST1_TAC THEN
    SIMP_TAC[FINITE_RULES; definite; clause; IN_SING; LITERAL; Equal_DEF] THEN
    REWRITE_TAC[GSYM Equal_DEF] THEN
    SUBGOAL_THEN `{p | (p = u === v) /\ positive p} = {(u === v)}` SUBST1_TAC
    THENL
     [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN
      MESON_TAC[Equal_DEF; positive; negative; Not_DEF; form_DISTINCT];
      ALL_TAC] THEN
    SIMP_TAC[CARD_CLAUSES; FINITE_RULES; ARITH; NOT_IN_EMPTY];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!n p. ibackchain
                ({{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E)))
                n p
          ==> !s t. (p = (s === t)) ==> E |- s === t`
  MP_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
    GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `s === t`) THEN
    DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN
    MESON_TAC[]] THEN
  MATCH_MP_TAC ibackchain_INDUCT THEN
  MAP_EVERY X_GEN_TAC
   [`cl:form->bool`; `i:num->term`; `ns:num list`] THEN
  MATCH_MP_TAC(TAUT `(a /\ c ==> d) ==> a /\ b /\ c ==> d`) THEN
  STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`si:term`; `ti:term`] THEN
  DISCH_TAC THEN
  UNDISCH_TAC
   `cl IN {{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E))` THEN
  REWRITE_TAC[IN_UNION; IN_INSERT; GSYM DISJ_ASSOC] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
   [SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `e:form` THEN STRIP_TAC THEN
    UNDISCH_TAC `formsubst i (conclusion cl) = si === ti` THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `e:form`) THEN
    ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`s0:term`; `t0:term`] THEN
    DISCH_THEN SUBST_ALL_TAC THEN
    SUBGOAL_THEN `conclusion {(s0 === t0)} = (s0 === t0)` SUBST1_TAC THENL
     [MATCH_MP_TAC CONCLUSION_DEFINITE THEN
      REWRITE_TAC[definite; IN_SING] THEN
      MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL
       [REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF] THEN
        MESON_TAC[form_DISTINCT];
        ALL_TAC] THEN
      DISCH_TAC THEN REWRITE_TAC[clause] THEN
      SIMP_TAC[FINITE_INSERT; FINITE_EMPTY; IN_SING] THEN
      SUBGOAL_THEN
       `{p | (p = s0 === t0) /\ positive p} = {(s0 === t0)}`
      SUBST1_TAC THENL
       [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN ASM_MESON_TAC[];
        ALL_TAC] THEN
      SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
      REWRITE_TAC[Equal_DEF; NOT_IN_EMPTY; ARITH; LITERAL];
      ALL_TAC] THEN
    DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
    ASM_MESON_TAC[provable_RULES];
    ALL_TAC] THEN
  DISCH_THEN(fun th -> ASSUME_TAC(MATCH_MP EQCLAUSES_DEFINITE th) THEN
                       MP_TAC th) THEN
  REWRITE_TAC[Eqclauses_DEF; IN_UNION; IN_INSERT; GSYM DISJ_ASSOC] THEN
  DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
   [SUBGOAL_THEN `conclusion {(V 0 === V 0)} = (V 0 === V 0)`
    SUBST_ALL_TAC THENL
     [MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[IN_SING] THEN
      REWRITE_TAC[positive; Equal_DEF; negative; Not_DEF; form_DISTINCT];
      ALL_TAC] THEN
    FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN
    ASM_MESON_TAC[provable_RULES];
    ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
   [SUBGOAL_THEN
     `conclusion {(Not (V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} =
        (V 0 === V 2)`
    (fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL
     [MATCH_MP_TAC CONCLUSION_DEFINITE_ALT THEN
      ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
      REWRITE_TAC[clause; FINITE_INSERT; FINITE_RULES] THEN
      SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
      REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
      REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
      SIMP_TAC[Equal_DEF; LITERAL] THEN
      REWRITE_TAC[positive; negative] THEN
      MESON_TAC[Not_DEF; form_DISTINCT];
      ALL_TAC] THEN
    FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN
    DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN
    REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN
    ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN
    SUBGOAL_THEN
      `IMAGE ~~
         ({(Not(V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)}
          DELETE (V 0 === V 2)) =
        {(V 0 === V 1), (V 2 === V 1)}`
    SUBST1_TAC THENL
     [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN
      REWRITE_TAC[Equal_DEF] THEN
      MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal;
                Not_DEF; form_DISTINCT];
      ALL_TAC] THEN
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
    REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
    SIMP_TAC[o_THM] THEN
    REWRITE_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
    ASM_MESON_TAC[provable_RULES; FORMSUBST_EQ];
    ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
   [ALL_TAC;
    REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; Eqclause_Pred] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
    DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
    SUBGOAL_THEN `conclusion cl = Atom p (MAP SND (Varpairs n))`
    (fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL
     [MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[positive; negative; form_DISTINCT; Not_DEF] THEN
      EXPAND_TAC "cl" THEN REWRITE_TAC[IN_SET_OF_LIST; MEM];
      ALL_TAC] THEN
    MP_TAC(ASSUME
     `formsubst i (Atom p (MAP SND (Varpairs n))) = si === ti`) THEN
    REWRITE_TAC[Equal_DEF; formsubst; form_INJ] THEN
    ASM_CASES_TAC `n = 2` THENL
     [ALL_TAC;
      DISCH_THEN(MP_TAC o AP_TERM `LENGTH:(term)list->num` o CONJUNCT2) THEN
      ASM_REWRITE_TAC[LENGTH; LENGTH_MAP; LENGTH_VARPAIRS; ARITH]] THEN
    UNDISCH_THEN `n = 2` SUBST_ALL_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN
    ASM_REWRITE_TAC[Varpairs_DEF; num_CONV `2`; num_CONV `1`] THEN
    REWRITE_TAC[ARITH; MAP; CONS_11] THEN
    DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN
    DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN
    REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN
    ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN
    SUBGOAL_THEN
      `IMAGE (~~) (cl DELETE (Atom 0 (MAP SND (Varpairs 2)))) =
       {(V 2 === V 0), (V 2 === V 3), (V 0 === V 1)}`
    SUBST1_TAC THENL
     [EXPAND_TAC "cl" THEN
      REWRITE_TAC[EXTENSION; set_of_list; IN_SET_OF_LIST; MAP; MEM_MAP;
                  IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN
      REWRITE_TAC[num_CONV `2`; num_CONV `1`; Varpairs_DEF] THEN
      CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[MAP; GSYM Equal_DEF] THEN
      REWRITE_TAC[MEM; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
      REWRITE_TAC[EXISTS_PAIR_THM] THEN
      CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
      REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC] THEN
      ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
      REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2; TAUT `~(p /\ ~p)`] THEN
      REWRITE_TAC[Equal_DEF] THEN
      MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal;
                Not_DEF; form_DISTINCT];
      ALL_TAC] THEN
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
    REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
    SIMP_TAC[o_THM] THEN
    REWRITE_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
    REWRITE_TAC[GSYM Equal_DEF] THEN REWRITE_TAC[FORMSUBST_EQ] THEN
    ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
    SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN
    ASM_MESON_TAC[provable_RULES; FORMSUBST_EQ]] THEN
  REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; Eqclause_Func] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
  DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
  SUBGOAL_THEN
   `conclusion cl = (Fn f (MAP FST (Varpairs n)) ===
                     Fn f (MAP SND (Varpairs n)))`
  (fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL
   [MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[positive; negative; form_DISTINCT; Not_DEF] THEN
    EXPAND_TAC "cl" THEN REWRITE_TAC[IN_SET_OF_LIST; MEM] THEN
    REWRITE_TAC[Equal_DEF; form_DISTINCT];
    ALL_TAC] THEN
  FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN
  DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN
  REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN
  ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN
  SUBGOAL_THEN
    `IMAGE (~~) (cl DELETE
        (Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))) =
     {(s === t) | MEM (s,t) (Varpairs n)}`
  SUBST1_TAC THENL
   [EXPAND_TAC "cl" THEN
    REWRITE_TAC[EXTENSION; set_of_list; IN_SET_OF_LIST; MAP; MEM_MAP;
                IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN
    REWRITE_TAC[MEM; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
    REWRITE_TAC[TAUT `~(p /\ ~p)`; IN_ELIM_THM] THEN
    REWRITE_TAC[MEM_MAP; EXISTS_PAIR_THM] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[Equal_DEF] THEN
    MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal;
              Not_DEF; form_DISTINCT];
    ALL_TAC] THEN
  SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[o_THM; FORMSUBST_EQ] THEN
  REWRITE_TAC[Equal_DEF; form_INJ; CONS_11] THEN
  REWRITE_TAC[GSYM Equal_DEF] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
  SIMP_TAC[LEFT_FORALL_IMP_THM; LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM] THEN
  REWRITE_TAC[EXISTS_REFL] THEN
  REWRITE_TAC[termsubst; GSYM MAP_o] THEN
  ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
  ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN
  GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN
  GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_FORALL_THM] THEN
  REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
  DISCH_TAC THEN
  MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL provable_RULES))) THEN
  REWRITE_TAC[ALL2_MAP2] THEN REWRITE_TAC[ALL2_ALL] THEN
  ASM_REWRITE_TAC[GSYM ALL_MEM; FORALL_PAIR_THM; o_THM]);;

let EQLOGIC_SOUND = prove
 (`!E s t. E |- s === t
           ==> !M:(A->bool)#(num->((A)list->A))#(num->((A)list->bool)).
                        normal UNIV (M) /\ interpretation (UNIV,UNIV) (M) /\
                        M satisfies E
                        ==> M satisfies {(s === t)}`,
  GEN_TAC THEN REWRITE_TAC[satisfies] THEN
  SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
  REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
  SUBGOAL_THEN
   `!M:(A->bool)#(num->((A)list->A))#(num->((A)list->bool)).
        normal UNIV (M) /\ interpretation (UNIV,UNIV) (M) /\
        (!v p. valuation M v /\ p IN E ==> holds M v p)
        ==> !a. E |- a
                ==> !s t. (a = (s === t))
                          ==> !v. valuation M v ==> holds M v (s === t)`
   (fun th -> MESON_TAC[th]) THEN
  GEN_TAC THEN REWRITE_TAC[normal; satisfies; TERMS_UNIV; IN_UNIV] THEN
  STRIP_TAC THEN
  MATCH_MP_TAC provable_INDUCT THEN
  SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
           RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  ASM_SIMP_TAC[] THEN REPEAT CONJ_TAC THENL
   [ASM_MESON_TAC[];
    REPEAT STRIP_TAC THEN REWRITE_TAC[termval] THEN
    AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_ALL2 THEN
    UNDISCH_TAC
     `ALL2 (\l r. !v:num->A. valuation M v
                             ==> (termval M v l = termval M v r)) a b` THEN
    MATCH_MP_TAC MONO_ALL2 THEN ASM_SIMP_TAC[];
    REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[FORMSUBST_EQ] THEN
    REWRITE_TAC[Equal_DEF; form_INJ; CONS_11] THEN
    REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN
    REWRITE_TAC[TERMVAL_TERMSUBST] THEN REPEAT GEN_TAC THEN
    DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    REWRITE_TAC[o_THM; valuation] THEN
    GEN_TAC THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN
    EXISTS_TAC `UNIV:(num#num)->bool` THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM(fun th -> MP_TAC th THEN
                          MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN
    REWRITE_TAC[SUBSET_UNIV]]);;