Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,294 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
(* ========================================================================= *)
(* Syntax and semantics of modal logic. *)
(* *)
(* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *)
(* *)
(* Part of this code is copied or adapted from *)
(* John Harrison (2017) The HOL Light Tutorial. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Syntax of formulae. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(15,"right"));;
parse_as_infix("-->",(14,"right"));;
parse_as_infix("<->",(13,"right"));;
parse_as_prefix "Not";;
parse_as_prefix "Box";;
let form_INDUCT,form_RECURSION = define_type
"form = False
| True
| Atom string
| Not form
| && form form
| || form form
| --> form form
| <-> form form
| Box form";;
let form_CASES = prove_cases_thm form_INDUCT;;
let form_DISTINCT = distinctness "form";;
let form_INJ = injectivity "form";;
(* ------------------------------------------------------------------------- *)
(* Kripke's Semantics of formulae. *)
(* ------------------------------------------------------------------------- *)
let holds =
let pth = prove
(`(!WP. P WP) <=> (!W R. P (W,R))`,
MATCH_ACCEPT_TAC FORALL_PAIR_THM) in
(end_itlist CONJ o map (REWRITE_RULE[pth] o GEN_ALL) o CONJUNCTS o
new_recursive_definition form_RECURSION)
`(holds WR V False (w:W) <=> F) /\
(holds WR V True w <=> T) /\
(holds WR V (Atom s) w <=> V s w) /\
(holds WR V (Not p) w <=> ~(holds WR V p w)) /\
(holds WR V (p && q) w <=> holds WR V p w /\ holds WR V q w) /\
(holds WR V (p || q) w <=> holds WR V p w \/ holds WR V q w) /\
(holds WR V (p --> q) w <=> holds WR V p w ==> holds WR V q w) /\
(holds WR V (p <-> q) w <=> holds WR V p w <=> holds WR V q w) /\
(holds WR V (Box p) w <=>
!w'. w' IN FST WR /\ SND WR w w' ==> holds WR V p w')`;;
let holds_in = new_definition
`holds_in (W,R) p <=> !V w. w IN W ==> holds (W,R) V p w`;;
parse_as_infix("|=",(11,"right"));;
let valid = new_definition
`L: (W->bool)#(W->W->bool)->bool |= p <=> !f. L f ==> holds_in f p`;;
(* ------------------------------------------------------------------------- *)
(* Some model-theoretic lemmas. *)
(* ------------------------------------------------------------------------- *)
let MODAL_TAC =
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds] THEN MESON_TAC[];;
let MODAL_RULE tm = prove(tm,MODAL_TAC);;
let HOLDS_FORALL_LEMMA = prove
(`!W R P. (!p V. P (holds (W,R) V p)) <=> (!p:W->bool. P p)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN
DISCH_TAC THEN GEN_TAC THEN
SUBGOAL_THEN `P (\w:W. holds (W,R) (\a. p) (Atom a) w):bool`
(MP_TAC o REWRITE_RULE[holds]) THEN
ASM_REWRITE_TAC[ETA_AX]);;
let MODAL_SCHEMA_TAC =
REWRITE_TAC[holds_in; holds] THEN MP_TAC HOLDS_FORALL_LEMMA THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]);;
(* ------------------------------------------------------------------------- *)
(* Transitive Noetherian frames. *)
(* ------------------------------------------------------------------------- *)
let MODAL_TRANS = prove
(`!W R.
(!w w' w'':W. w IN W /\ w' IN W /\ w'' IN W /\
R w w' /\ R w' w''
==> R w w'') <=>
(!p. holds_in (W,R) (Box p --> Box Box p))`,
MODAL_SCHEMA_TAC THEN MESON_TAC[]);;
let TRANSNT = new_definition
`TRANSNT (W:W->bool,R:W->W->bool) <=>
~(W = {}) /\
(!x y:W. R x y ==> x IN W /\ y IN W) /\
(!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\
WF(\x y. R y x)`;;
(* ------------------------------------------------------------------------- *)
(* Subformulas. *)
(* ------------------------------------------------------------------------- *)
let IN_MINOR_RULES,IN_MINOR_INDUCT,IN_MINOR_CASES = new_inductive_set
`(!p. p IN MINOR (Not p)) /\
(!p q. p IN MINOR (p && q)) /\
(!p q. q IN MINOR (p && q)) /\
(!p q. p IN MINOR (p || q)) /\
(!p q. q IN MINOR (p || q)) /\
(!p q. p IN MINOR (p --> q)) /\
(!p q. q IN MINOR (p --> q)) /\
(!p q. p IN MINOR (p <-> q)) /\
(!p q. q IN MINOR (p <-> q)) /\
(!p. p IN MINOR (Box p))`;;
let MINOR_CLAUSES = prove
(`MINOR False = {} /\
MINOR True = {} /\
MINOR (Atom s) = {} /\
(!p. MINOR (Not p) = {p}) /\
(!p q. MINOR (p && q) = {p,q}) /\
(!p q. MINOR (p || q) = {p,q}) /\
(!p q. MINOR (p --> q) = {p,q}) /\
(!p q. MINOR (p <-> q) = {p,q}) /\
(!p. MINOR (Box p) = {p})`,
REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY; IN_MINOR_CASES;
distinctness "form"; injectivity "form"] THEN
MESON_TAC[]);;
parse_as_infix("SUBFORMULA",get_infix_status "SUBSET");;
let SUBFORMULA = new_definition
`(SUBFORMULA) = RTC (\p q. p IN MINOR q)`;;
let SUBFORMULA_REFL = prove
(`!p. p SUBFORMULA p`,
REWRITE_TAC[SUBFORMULA; RTC_REFL]);;
let SUBFORMULA_TRANS = prove
(`!p q r. p SUBFORMULA q /\ q SUBFORMULA r ==> p SUBFORMULA r`,
REWRITE_TAC[SUBFORMULA; RTC_TRANS]);;
let SUBFORMULA_CASES_L = prove
(`!p q. p SUBFORMULA q <=> p = q \/ (?r. p SUBFORMULA r /\ r IN MINOR q)`,
REWRITE_TAC[SUBFORMULA] THEN MESON_TAC[RTC_CASES_L]);;
let FINITE_SUBFORMULA = prove
(`!p. FINITE {q | q SUBFORMULA p}`,
MATCH_MP_TAC form_INDUCT THEN
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SUBFORMULA_CASES_L] THEN
ASM_REWRITE_TAC[MINOR_CLAUSES; IN_INSERT; NOT_IN_EMPTY;
SET_RULE `{x | x = a} = {a}`;
SET_RULE `{q | q = a \/ P q} = a INSERT {q | P q}`;
SET_RULE `{q | ?r. q SUBFORMULA r /\ r = a} = {q | q SUBFORMULA a}`;
SET_RULE `{q | ?r. q SUBFORMULA r /\ (r = a0 \/ r = a1)} =
{q | q SUBFORMULA a0} UNION {q | q SUBFORMULA a1}`;
EMPTY_GSPEC; FINITE_UNION; FINITE_INSERT; FINITE_EMPTY]);;
let FINITE_SUBSET_SUBFORMULAS_LEMMA = prove
(`!p. FINITE {A | A SUBSET {q | q SUBFORMULA p} UNION
{Not q | q SUBFORMULA p}}`,
REWRITE_TAC[FINITE_POWERSET_EQ; FINITE_UNION; FINITE_SUBFORMULA] THEN
REWRITE_TAC[SET_RULE `{Not q | q SUBFORMULA p} =
IMAGE (Not) {q | q SUBFORMULA p}`] THEN
GEN_TAC THEN MATCH_MP_TAC FINITE_IMAGE THEN
REWRITE_TAC[FINITE_SUBFORMULA]);;
let SUBFORMULA_INVERSION = prove
(`(!p. p SUBFORMULA False <=> p = False) /\
(!p. p SUBFORMULA True <=> p = True) /\
(!p s. p SUBFORMULA (Atom s) <=> p = Atom s) /\
(!p q. p SUBFORMULA (Not q) <=> p = Not q \/ p SUBFORMULA q) /\
(!p q r. p SUBFORMULA (q && r) <=>
p = q && r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\
(!p q r. p SUBFORMULA (q || r) <=>
p = q || r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\
(!p q r. p SUBFORMULA (q --> r) <=>
p = q --> r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\
(!p q r. p SUBFORMULA (q <-> r) <=>
p = q <-> r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\
(!p q. p SUBFORMULA (Box q) <=> p = Box q \/ p SUBFORMULA q)`,
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV [SUBFORMULA_CASES_L] THEN
REWRITE_TAC[MINOR_CLAUSES; IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[SUBFORMULA_REFL]);;
let SUBFORMULA_LIST = prove
(`!p. ?X. NOREPETITION X /\ (!q. MEM q X <=> q SUBFORMULA p)`,
GEN_TAC THEN EXISTS_TAC `list_of_set {q | q SUBFORMULA p}` THEN
SIMP_TAC[FINITE_SUBFORMULA; MEM_LIST_OF_SET; IN_ELIM_THM] THEN
SIMP_TAC[NOREPETITION_LIST_OF_SET; FINITE_SUBFORMULA]);;
MATCH_MP_TAC NOREPETITION_LIST_OF_SET
(* ------------------------------------------------------------------------- *)
(* Cardinality of the type of formulae. *)
(* ------------------------------------------------------------------------- *)
let COUNTABLE_FORM = prove
(`COUNTABLE (:form)`,
(DESTRUCT_TAC "@size. size" o prove_general_recursive_function_exists)
`?depth.
depth False = 0 /\
depth True = 0 /\
(!a. depth (Atom a) = 0) /\
(!p. depth (Not p) = depth p + 1) /\
(!p q. depth (p && q) = MAX (depth p) (depth q) + 1) /\
(!p q. depth (p || q) = MAX (depth p) (depth q) + 1) /\
(!p q. depth (p --> q) = MAX (depth p) (depth q) + 1) /\
(!p q. depth (p <-> q) = MAX (depth p) (depth q) + 1) /\
(!p. depth (Box p) = depth p + 1)` THEN
ABBREV_TAC `u n = {p:form | p | size p < n}` THEN
POP_ASSUM (LABEL_TAC "u") THEN
SUBGOAL_THEN `(:form) = UNIONS {u n | n | n IN (:num)}` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_UNIV; IN_UNIONS; IN_ELIM_THM] THEN
X_GEN_TAC `p:form` THEN EXISTS_TAC `u (size (p:form)+1):form->bool` THEN
REMOVE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN
REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `m < m + 1`] THEN MESON_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC COUNTABLE_UNIONS THEN CONJ_TAC THENL
[MATCH_MP_TAC COUNTABLE_SUBSET THEN
EXISTS_TAC `IMAGE u (:num):(form->bool)->bool` THEN
SIMP_TAC[NUM_COUNTABLE; COUNTABLE_IMAGE] THEN
REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_IMAGE; IN_UNIV] THEN
MESON_TAC[];
ALL_TAC] THEN
REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV] THEN
INDUCT_TAC THENL
[REMOVE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN
REWRITE_TAC[ARITH_RULE `!n. ~(n < 0)`; EMPTY_GSPEC; COUNTABLE_EMPTY];
POP_ASSUM (LABEL_TAC "ind")] THEN
MATCH_MP_TAC COUNTABLE_SUBSET THEN
EXISTS_TAC
`u (n:num) UNION
{True, False} UNION
IMAGE Atom (:string) UNION
IMAGE (Not) (u n) UNION
IMAGE (\(op,p,q). op p q)
({(&&),(||),(-->),(<->)} CROSS (u n) CROSS (u n)) UNION
IMAGE (Box) (u n)` THEN
CONJ_TAC THENL
[ASM_REWRITE_TAC[COUNTABLE_UNION; COUNTABLE_INSERT; COUNTABLE_EMPTY] THEN
ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_STRING; COUNTABLE_CROSS;
COUNTABLE_INSERT; COUNTABLE_EMPTY];
ALL_TAC] THEN
USE_THEN "u" (SUBST1_TAC o GSYM o SPEC `SUC n`) THEN
REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN
CLAIM_TAC "u_alt" `!p:form n:num. size p < n <=> p IN u n` THENL
[USE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN SET_TAC[]; ALL_TAC] THEN
CLAIM_TAC "max"
`!p q:form n:num. MAX (size p) (size q) < n <=> p IN u n /\ q IN u n` THENL
[USE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN
SET_TAC[ARITH_RULE `!p q n. MAX p q < n <=> p < n /\ q < n`];
ALL_TAC] THEN
GEN_TAC THEN STRUCT_CASES_TAC (SPEC `p:form` (cases "form")) THEN
HYP REWRITE_TAC "size" [LT_0; IN_UNION; IN_INSERT; NOT_IN_EMPTY;
distinctness "form"; GSYM ADD1; LT_SUC] THEN
HYP REWRITE_TAC "u_alt max" [] THEN
ASM_SIMP_TAC[FUN_IN_IMAGE; IN_UNIV] THEN
REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; IN_CROSS; IN_INSERT; NOT_IN_EMPTY;
distinctness "form"; injectivity "form"] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Bisimulation. *)
(* ------------------------------------------------------------------------- *)
let BISIMIMULATION = new_definition
`BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z <=>
(!w1:A w2:B.
Z w1 w2
==> w1 IN W1 /\ w2 IN W2 /\
(!a:string. V1 a w1 <=> V2 a w2) /\
(!w1'. R1 w1 w1' ==> ?w2'. w2' IN W2 /\ Z w1' w2' /\ R2 w2 w2') /\
(!w2'. R2 w2 w2' ==> ?w1'. w1' IN W1 /\ Z w1' w2' /\ R1 w1 w1'))`;;
let BISIMIMULATION_HOLDS = prove
(`!W1 R1 V1 W2 R2 V2 Z p w1:A w2:B.
BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\
Z w1 w2
==> (holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)`,
SUBGOAL_THEN
`!W1 R1 V1 W2 R2 V2 Z.
BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z
==> !p w1:A w2:B.
Z w1 w2
==> (holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)`
(fun th -> MESON_TAC[th]) THEN
REPEAT GEN_TAC THEN REWRITE_TAC[BISIMIMULATION] THEN DISCH_TAC THEN
MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[holds] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Bisimilarity. *)
(* ------------------------------------------------------------------------- *)
let BISIMILAR = new_definition
`BISIMILAR (W1,R1,V1) (W2,R2,V2) (w1:A) (w2:B) <=>
?Z. BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\ Z w1 w2`;;
let BISIMILAR_IN = prove
(`!W1 R1 V1 W2 R2 V2 w1:A w2:B.
BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2 ==> w1 IN W1 /\ w2 IN W2`,
REWRITE_TAC[BISIMILAR; BISIMIMULATION] THEN MESON_TAC[]);;
let BISIMILAR_HOLDS = prove
(`!W1 R1 V1 W2 R2 V2 w1:A w2:B.
BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2
==> (!p. holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)`,
REWRITE_TAC[BISIMILAR] THEN MESON_TAC[BISIMIMULATION_HOLDS]);;
let BISIMILAR_HOLDS_IN = prove
(`!W1 R1 W2 R2.
(!V1 w1:A. ?V2 w2:B. BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2)
==> (!p. holds_in (W2,R2) p ==> holds_in (W1,R1) p)`,
REWRITE_TAC[holds_in] THEN MESON_TAC[BISIMILAR_HOLDS; BISIMILAR_IN]);;
let BISIMILAR_VALID = prove
(`!L1 L2 .
(!W1 R1 V1 w1:A.
L1 (W1,R1) /\ w1 IN W1
==> ?W2 R2 V2 w2:B.
L2 (W2,R2) /\
BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2)
==> (!p. L2 |= p ==> L1 |= p)`,
REWRITE_TAC[valid; holds_in; FORALL_PAIR_THM] THEN
MESON_TAC[BISIMILAR_HOLDS; BISIMILAR_IN]);;
(* ----------------------------------------------------------------------- *)
(* Further operators. *)
(* ----------------------------------------------------------------------- *)
parse_as_prefix "Diam";;
parse_as_prefix "Dotbox";;
let diam_DEF = new_definition
`Diam p = Not Box Not p`;;
let dotbox_DEF = new_definition
`Dotbox p = (Box p && p)`;;
|