File size: 13,197 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
(* ========================================================================= *)
(* Zolotarev-Frobenius characterization of the Jacobi symbol (a/n) for odd   *)
(* n as the sign of the permutation "multiplication by a modulo n".          *)
(* ========================================================================= *)

needs "Library/jacobi.ml";;
needs "Library/permutations.ml";;

(* ------------------------------------------------------------------------- *)
(* The Zolotarev permutation and its most basic properties.                  *)
(* ------------------------------------------------------------------------- *)

let zolotarev = new_definition
 `zolotarev(a,n) = \m. if m < n then (a * m) MOD n else m`;;

let PERMUTES_ZOLOTAREV = prove
 (`!a n. coprime(a,n) ==> (zolotarev(a,n)) permutes {m | m < n}`,
  SIMP_TAC[PERMUTES_FINITE_INJECTIVE; FINITE_NUMSEG_LT] THEN
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
  SIMP_TAC[zolotarev; IN_ELIM_THM; MOD_LT_EQ_LT; GSYM CONG] THEN
  REPEAT STRIP_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
  MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `n:num` THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[NUMBER_RULE
   `coprime(a:num,n) /\ (a * x == a * y) (mod n) ==> (x == y) (mod n)`]);;

let PERMUTES_ZOLOTAREV_ALT = prove
 (`!a n. coprime(a,n) ==> (zolotarev(a,n)) permutes {m | 0 < m /\ m < n}`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC PERMUTES_SUPERSET THEN
  EXISTS_TAC `{m:num | m < n}` THEN ASM_SIMP_TAC[PERMUTES_ZOLOTAREV] THEN
  X_GEN_TAC `m:num` THEN REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN
  SIMP_TAC[IMP_CONJ; ARITH_RULE `~(0 < m) <=> m = 0`] THEN
  REWRITE_TAC[zolotarev] THEN ARITH_TAC);;

let PERMUTATION_ZOLOTAREV = prove
 (`!a n. coprime(a,n) ==> permutation (zolotarev(a,n))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[PERMUTATION_PERMUTES] THEN
  EXISTS_TAC `{m:num | m < n}` THEN
  ASM_SIMP_TAC[PERMUTES_ZOLOTAREV; FINITE_NUMSEG_LT]);;

let ZOLATAREV_MOD = prove
 (`!a n. zolotarev(a MOD n,n) = zolotarev(a,n)`,
  REWRITE_TAC[FUN_EQ_THM; zolotarev] THEN
  MESON_TAC[MOD_MULT_MOD2; MOD_MOD_REFL]);;

let ZOLOTAREV_CONG = prove
 (`!a b n. (a == b) (mod n) ==> zolotarev(a,n) = zolotarev(b,n)`,
  MESON_TAC[CONG; ZOLATAREV_MOD]);;

(* ------------------------------------------------------------------------- *)
(* A variant of the Zolotarev permutation, just permuting the units.         *)
(* This is an independently interesting building-block, because for any      *)
(* modulus >= 3 with a primitive root, the sign of this modified version     *)
(* exactly characterizes quadratic residuosity.                              *)
(* ------------------------------------------------------------------------- *)

let zolotarevu = new_definition
 `zolotarevu(a,n) = \m. if coprime(m,n) /\ m < n then (a * m) MOD n else m`;;

let PERMUTES_ZOLOTAREVU = prove
 (`!a n. coprime(a,n)
         ==> (zolotarevu(a,n)) permutes {m | coprime(m,n) /\ m < n}`,
  ONCE_REWRITE_TAC[SET_RULE
   `{x | P x /\ Q x} = {x | x IN {y | Q y} /\ P x}`] THEN
  SIMP_TAC[PERMUTES_FINITE_INJECTIVE; FINITE_RESTRICT; FINITE_NUMSEG_LT] THEN
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
  SIMP_TAC[zolotarevu; IN_ELIM_THM; MOD_LT_EQ_LT; GSYM CONG] THEN
  SIMP_TAC[COPRIME_LMOD; COPRIME_LMUL] THEN REPEAT STRIP_TAC THENL
   [ASM_MESON_TAC[]; ASM_ARITH_TAC; ALL_TAC] THEN
  MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `n:num` THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[NUMBER_RULE
   `coprime(a:num,n) /\ (a * x == a * y) (mod n) ==> (x == y) (mod n)`]);;

let PERMUTATION_ZOLOTAREVU = prove
 (`!a n. coprime(a,n) ==> permutation (zolotarevu(a,n))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[PERMUTATION_PERMUTES] THEN
  EXISTS_TAC `{m:num | m IN {m | m < n} /\ coprime(m,n)}` THEN
  SIMP_TAC[FINITE_NUMSEG_LT; FINITE_RESTRICT] THEN
  ONCE_REWRITE_TAC[CONJ_SYM] THEN
  ASM_SIMP_TAC[PERMUTES_ZOLOTAREVU; IN_ELIM_THM]);;

let ZOLATAREVU_MOD = prove
 (`!a n. zolotarevu(a MOD n,n) = zolotarevu(a,n)`,
  REWRITE_TAC[FUN_EQ_THM; zolotarevu] THEN
  MESON_TAC[MOD_MULT_MOD2; MOD_MOD_REFL]);;

let ZOLOTAREVU_PRIMITIVE = prove
 (`!a n. 3 <= n /\ coprime(a,n) /\ (?g. order n g = phi n)
         ==> (evenperm(zolotarevu(a,n)) <=> ?x. (x EXP 2 == a) (mod n))`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[ARITH] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`n:num`; `g:num`; `a:num`]
        PRIMITIVE_ROOT_SURJECTIVE_ALT) THEN
  ASM_REWRITE_TAC[CONG; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `k:num` THEN ONCE_REWRITE_TAC[GSYM ZOLATAREVU_MOD] THEN
  DISCH_THEN SUBST_ALL_TAC THEN
  REWRITE_TAC[GSYM CONG; ZOLATAREVU_MOD] THEN
  ASM_CASES_TAC `coprime(n:num,g)` THENL
   [ALL_TAC; ASM_MESON_TAC[ORDER_EQ_0; COPRIME_SYM; PHI_EQ_0]] THEN
  ASM_SIMP_TAC[QUADRATIC_RESIDUE_MODULO_PRIMITIVE_POWER] THEN
  TRANS_TAC EQ_TRANS
   `evenperm(\i. if i < phi n then (i + k) MOD phi n else i)` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    ASM_REWRITE_TAC[EVENPERM_CYCLIC_N] THEN
    ASM_SIMP_TAC[GSYM NOT_EVEN; EVEN_PHI; PHI_EQ_0]] THEN
  MATCH_MP_TAC EVENPERM_TRANSFER THEN
  MAP_EVERY EXISTS_TAC [`\i. (g EXP i) MOD n`; `{i | i < phi n}`] THEN
  SIMP_TAC[FINITE_NUMSEG_LT; PERMUTES_FINITE_INJECTIVE] THEN
  REWRITE_TAC[IN_ELIM_THM; IMP_CONJ] THEN
  ASM_SIMP_TAC[zolotarevu; MOD_LT_EQ] THEN REPEAT CONJ_TAC THENL
   [REWRITE_TAC[GSYM CONG] THEN
    ASM_SIMP_TAC[ORDER_DIVIDES_EXPDIFF] THEN MESON_TAC[CONG_IMP_EQ];
    ARITH_TAC;
    REWRITE_TAC[GSYM CONG; CONG_ADD_RCANCEL_EQ] THEN MESON_TAC[CONG_IMP_EQ];
    ONCE_REWRITE_TAC[COPRIME_SYM] THEN
    ASM_REWRITE_TAC[COPRIME_RMOD; COPRIME_REXP] THEN
    ONCE_REWRITE_TAC[GSYM MOD_MULT_MOD2] THEN
    REWRITE_TAC[MOD_MOD_REFL] THEN REWRITE_TAC[MOD_MULT_MOD2] THEN
    REWRITE_TAC[GSYM EXP_ADD; GSYM CONG] THEN
    ASM_SIMP_TAC[ORDER_DIVIDES_EXPDIFF; CONG_RMOD; CONG_REFL] THEN
    REWRITE_TAC[CONG; ADD_SYM];
    ASM_SIMP_TAC[PRIMITIVE_ROOT_IMAGE] THEN SET_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Hence characterize zolotarev for odd prime powers p^k by induction,       *)
(* splitting the case of p^{k+1} into the units (covered by zolotarevu)      *)
(* and the non-units, which are just the p^k cases multiplied by p.          *)
(* ------------------------------------------------------------------------- *)

let ZOLATAREV_EQ_ZOLATAREVU = prove
 (`!a p. prime p ==> zolotarev(a,p) = zolotarevu(a,p)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[zolotarev; zolotarevu; FUN_EQ_THM] THEN
  X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n:num < p` THEN ASM_REWRITE_TAC[] THEN
  ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_SIMP_TAC[PRIME_COPRIME_EQ] THEN
  REWRITE_TAC[COND_SWAP] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN
  STRIP_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; MOD_0]);;

let ZOLOTAREV_1 = prove
 (`!a. zolotarev(a,1) = I`,
  REWRITE_TAC[FUN_EQ_THM; I_DEF] THEN REPEAT GEN_TAC THEN
  SIMP_TAC[zolotarev; ARITH_RULE `m < 1 <=> m = 0`; MULT_CLAUSES; MOD_0] THEN
  MESON_TAC[]);;

let JACOBI_EQ_ZOLOTAREV_PRIMEPOW = prove
 (`!a p k.
        prime p /\ ODD p /\ coprime(a,p)
        ==> real_of_int(jacobi(a,p EXP k)) = sign(zolotarev(a,p EXP k))`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN
  ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
  REWRITE_TAC[JACOBI_REXP; int_pow_th] THEN
  MATCH_MP_TAC num_INDUCTION THEN
  REWRITE_TAC[EXP; ZOLOTAREV_1; real_pow; SIGN_I] THEN
  X_GEN_TAC `k:num` THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
  REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
  SUBGOAL_THEN
   `zolotarev (a,p EXP SUC k) =
    zolotarevu(a,p EXP SUC k) o
    (\i. if p divides i then zolotarev(a,p EXP SUC k) i else i)`
  SUBST1_TAC THENL
   [REWRITE_TAC[FUN_EQ_THM; o_THM; zolotarev; zolotarevu] THEN
    X_GEN_TAC `i:num` THEN ASM_CASES_TAC `(p:num) divides i` THEN
    ASM_CASES_TAC `i < p EXP (SUC k)` THEN
    ASM_REWRITE_TAC[COPRIME_LMOD; MOD_LT_EQ; EXP_EQ_0] THEN
    ASM_REWRITE_TAC[COPRIME_REXP; NOT_SUC; COPRIME_LMUL] THEN
    ASM_SIMP_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] PRIME_COPRIME_EQ];
    ALL_TAC] THEN
  W(MP_TAC o PART_MATCH (lhand o rand) SIGN_COMPOSE o lhand o snd) THEN
  ASM_SIMP_TAC[PERMUTATION_ZOLOTAREVU; COPRIME_REXP] THEN ANTS_TAC THENL
   [MATCH_MP_TAC PERMUTATION_RESTRICT THEN
    ASM_SIMP_TAC[ETA_AX; PERMUTATION_ZOLOTAREV; COPRIME_REXP] THEN
    X_GEN_TAC `m:num` THEN REWRITE_TAC[zolotarev] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    GEN_REWRITE_TAC I [TAUT `(p <=> q) <=> (~p <=> ~q)`] THEN
    ASM_SIMP_TAC[ONCE_REWRITE_RULE[COPRIME_SYM]
     (GSYM PRIME_COPRIME_EQ)] THEN
    ASM_MESON_TAC[COPRIME_REXP; COPRIME_LMOD; NOT_SUC; COPRIME_LMUL];
    DISCH_THEN SUBST1_TAC] THEN
  BINOP_TAC THENL
   [ASM_SIMP_TAC[JACOBI_PRIME] THEN ONCE_REWRITE_TAC[GSYM COND_SWAP] THEN
    ASM_SIMP_TAC[ONCE_REWRITE_RULE[COPRIME_SYM]
     (GSYM PRIME_COPRIME_EQ)] THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN
    REWRITE_TAC[sign; int_neg_th; int_of_num_th] THEN
    AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    MP_TAC(ISPECL [`p:num`; `a:num`; `SUC k`]
       QUADRATIC_RESIDUE_MODULO_ODD_POWER) THEN
    ASM_REWRITE_TAC[NOT_SUC] THEN ANTS_TAC THENL
     [ASM_MESON_TAC[COPRIME_SYM]; DISCH_THEN(SUBST1_TAC o SYM)] THEN
    MATCH_MP_TAC ZOLOTAREVU_PRIMITIVE THEN
    ASM_REWRITE_TAC[COPRIME_REXP] THEN CONJ_TAC THENL
     [TRANS_TAC LE_TRANS `p EXP 1` THEN CONJ_TAC THENL
       [ASM_MESON_TAC[ODD_PRIME; EXP_1]; ALL_TAC] THEN
      REWRITE_TAC[LE_EXP; NOT_SUC; ARITH_RULE `1 <= SUC k`] THEN
      CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[COND_ID];
      REWRITE_TAC[PRIMITIVE_ROOT_EXISTS] THEN ASM_MESON_TAC[ODD_PRIME]];
    MATCH_MP_TAC SIGN_TRANSFER THEN
    EXISTS_TAC `\x:num. p * x` THEN
    EXISTS_TAC `{i | i < p EXP k}` THEN
    ASM_SIMP_TAC[FINITE_NUMSEG_LT; PERMUTES_ZOLOTAREV; COPRIME_REXP] THEN
    ASM_SIMP_TAC[EQ_MULT_LCANCEL] THEN
    SIMP_TAC[DIVIDES_RMUL; DIVIDES_REFL; zolotarev; IN_ELIM_THM] THEN
    CONJ_TAC THENL
     [X_GEN_TAC `i:num` THEN DISCH_TAC THEN
      ASM_REWRITE_TAC[LT_MULT_LCANCEL; EXP] THEN
      MESON_TAC[MOD_MULT2; MULT_AC];
      X_GEN_TAC `j:num` THEN
      REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
      MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [divides]) THEN
      REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN
      ASM_MESON_TAC[LT_MULT_LCANCEL; EXP]]]);;

(* ------------------------------------------------------------------------- *)
(* Now extend to all odd moduli via the Chinese Remainder Theorem.           *)
(* ------------------------------------------------------------------------- *)

let JACOBI_EQ_ZOLOTAREV = prove
 (`!a n. ODD n /\ coprime(a,n)
         ==> real_of_int(jacobi(a,n)) = sign(zolotarev(a,n))`,
  GEN_TAC THEN MATCH_MP_TAC INDUCT_COPRIME_ALT THEN
  REWRITE_TAC[ARITH] THEN CONJ_TAC THENL
   [ALL_TAC;
    MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN
    ASM_CASES_TAC `k = 0` THEN ASM_SIMP_TAC[ODD_EXP; COPRIME_REXP] THEN
    REWRITE_TAC[JACOBI_1; ZOLOTAREV_1; EXP; int_of_num_th; SIGN_I] THEN
    ASM_SIMP_TAC[JACOBI_EQ_ZOLOTAREV_PRIMEPOW]] THEN
  MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
  ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[ARITH] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH] THEN
  REWRITE_TAC[ODD_MULT; COPRIME_RMUL] THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
  REWRITE_TAC[JACOBI_RMUL; int_mul_th] THEN
  REPEAT(FIRST_X_ASSUM SUBST1_TAC) THEN
  TRANS_TAC EQ_TRANS
   `sign(\(i,j). if i IN {i | i < m} /\ j IN {j | j < n}
                 then zolotarev(a,m) i,zolotarev(a,n) j else i,j)` THEN
  CONJ_TAC THENL
   [ASM_SIMP_TAC[SIGN_CARTESIAN_PRODUCT; PERMUTES_ZOLOTAREV;
                 FINITE_NUMSEG_LT; ETA_AX] THEN
    BINOP_TAC THEN REWRITE_TAC[sign] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_POW_ONE; REAL_POW_NEG] THEN
    ASM_REWRITE_TAC[CARD_NUMSEG_LT; GSYM NOT_ODD];
    ALL_TAC] THEN
  MATCH_MP_TAC SIGN_TRANSFER THEN
  EXISTS_TAC `\i. i MOD m,i MOD n` THEN
  EXISTS_TAC `{i:num | i < m * n}` THEN
  ASM_SIMP_TAC[FINITE_NUMSEG_LT; PERMUTES_ZOLOTAREV; COPRIME_RMUL] THEN
  ASM_REWRITE_TAC[o_THM; MOD_LT_EQ; IN_ELIM_THM; PAIR_EQ; ] THEN
  REPEAT CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN
    REWRITE_TAC[PAIR_EQ; GSYM CONG] THEN STRIP_TAC THEN
    MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `m * n:num` THEN
    ASM_SIMP_TAC[CONG_CHINESE];
    X_GEN_TAC `i:num` THEN DISCH_TAC THEN
    ASM_REWRITE_TAC[zolotarev; MOD_LT_EQ; PAIR_EQ] THEN
    REWRITE_TAC[MOD_MOD; ONCE_REWRITE_RULE[MULT_SYM] MOD_MOD] THEN
    MESON_TAC[MOD_MULT_MOD2; MOD_MOD_REFL];
    REWRITE_TAC[FORALL_PAIR_THM] THEN
    MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN
    ASM_CASES_TAC `i:num < m /\ j:num < n` THEN ASM_REWRITE_TAC[] THEN
    ASM_REWRITE_TAC[zolotarev; MOD_LT_EQ; PAIR_EQ] THEN
    MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN
    MP_TAC(ISPECL [`m:num`; `n:num`; `i:num`; `j:num`]
      CHINESE_REMAINDER_UNIQUE) THEN
    ASM_REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN
    DISCH_THEN(MP_TAC o CONJUNCT1) THEN
    REWRITE_TAC[IN_IMAGE; PAIR_EQ; IN_ELIM_THM] THEN
    ASM_SIMP_TAC[CONG; MOD_LT] THEN MESON_TAC[]]);;