Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 13,197 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
(* ========================================================================= *)
(* Zolotarev-Frobenius characterization of the Jacobi symbol (a/n) for odd *)
(* n as the sign of the permutation "multiplication by a modulo n". *)
(* ========================================================================= *)
needs "Library/jacobi.ml";;
needs "Library/permutations.ml";;
(* ------------------------------------------------------------------------- *)
(* The Zolotarev permutation and its most basic properties. *)
(* ------------------------------------------------------------------------- *)
let zolotarev = new_definition
`zolotarev(a,n) = \m. if m < n then (a * m) MOD n else m`;;
let PERMUTES_ZOLOTAREV = prove
(`!a n. coprime(a,n) ==> (zolotarev(a,n)) permutes {m | m < n}`,
SIMP_TAC[PERMUTES_FINITE_INJECTIVE; FINITE_NUMSEG_LT] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
SIMP_TAC[zolotarev; IN_ELIM_THM; MOD_LT_EQ_LT; GSYM CONG] THEN
REPEAT STRIP_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `n:num` THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[NUMBER_RULE
`coprime(a:num,n) /\ (a * x == a * y) (mod n) ==> (x == y) (mod n)`]);;
let PERMUTES_ZOLOTAREV_ALT = prove
(`!a n. coprime(a,n) ==> (zolotarev(a,n)) permutes {m | 0 < m /\ m < n}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC PERMUTES_SUPERSET THEN
EXISTS_TAC `{m:num | m < n}` THEN ASM_SIMP_TAC[PERMUTES_ZOLOTAREV] THEN
X_GEN_TAC `m:num` THEN REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN
SIMP_TAC[IMP_CONJ; ARITH_RULE `~(0 < m) <=> m = 0`] THEN
REWRITE_TAC[zolotarev] THEN ARITH_TAC);;
let PERMUTATION_ZOLOTAREV = prove
(`!a n. coprime(a,n) ==> permutation (zolotarev(a,n))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[PERMUTATION_PERMUTES] THEN
EXISTS_TAC `{m:num | m < n}` THEN
ASM_SIMP_TAC[PERMUTES_ZOLOTAREV; FINITE_NUMSEG_LT]);;
let ZOLATAREV_MOD = prove
(`!a n. zolotarev(a MOD n,n) = zolotarev(a,n)`,
REWRITE_TAC[FUN_EQ_THM; zolotarev] THEN
MESON_TAC[MOD_MULT_MOD2; MOD_MOD_REFL]);;
let ZOLOTAREV_CONG = prove
(`!a b n. (a == b) (mod n) ==> zolotarev(a,n) = zolotarev(b,n)`,
MESON_TAC[CONG; ZOLATAREV_MOD]);;
(* ------------------------------------------------------------------------- *)
(* A variant of the Zolotarev permutation, just permuting the units. *)
(* This is an independently interesting building-block, because for any *)
(* modulus >= 3 with a primitive root, the sign of this modified version *)
(* exactly characterizes quadratic residuosity. *)
(* ------------------------------------------------------------------------- *)
let zolotarevu = new_definition
`zolotarevu(a,n) = \m. if coprime(m,n) /\ m < n then (a * m) MOD n else m`;;
let PERMUTES_ZOLOTAREVU = prove
(`!a n. coprime(a,n)
==> (zolotarevu(a,n)) permutes {m | coprime(m,n) /\ m < n}`,
ONCE_REWRITE_TAC[SET_RULE
`{x | P x /\ Q x} = {x | x IN {y | Q y} /\ P x}`] THEN
SIMP_TAC[PERMUTES_FINITE_INJECTIVE; FINITE_RESTRICT; FINITE_NUMSEG_LT] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
SIMP_TAC[zolotarevu; IN_ELIM_THM; MOD_LT_EQ_LT; GSYM CONG] THEN
SIMP_TAC[COPRIME_LMOD; COPRIME_LMUL] THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[]; ASM_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `n:num` THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[NUMBER_RULE
`coprime(a:num,n) /\ (a * x == a * y) (mod n) ==> (x == y) (mod n)`]);;
let PERMUTATION_ZOLOTAREVU = prove
(`!a n. coprime(a,n) ==> permutation (zolotarevu(a,n))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[PERMUTATION_PERMUTES] THEN
EXISTS_TAC `{m:num | m IN {m | m < n} /\ coprime(m,n)}` THEN
SIMP_TAC[FINITE_NUMSEG_LT; FINITE_RESTRICT] THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN
ASM_SIMP_TAC[PERMUTES_ZOLOTAREVU; IN_ELIM_THM]);;
let ZOLATAREVU_MOD = prove
(`!a n. zolotarevu(a MOD n,n) = zolotarevu(a,n)`,
REWRITE_TAC[FUN_EQ_THM; zolotarevu] THEN
MESON_TAC[MOD_MULT_MOD2; MOD_MOD_REFL]);;
let ZOLOTAREVU_PRIMITIVE = prove
(`!a n. 3 <= n /\ coprime(a,n) /\ (?g. order n g = phi n)
==> (evenperm(zolotarevu(a,n)) <=> ?x. (x EXP 2 == a) (mod n))`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[ARITH] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`n:num`; `g:num`; `a:num`]
PRIMITIVE_ROOT_SURJECTIVE_ALT) THEN
ASM_REWRITE_TAC[CONG; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `k:num` THEN ONCE_REWRITE_TAC[GSYM ZOLATAREVU_MOD] THEN
DISCH_THEN SUBST_ALL_TAC THEN
REWRITE_TAC[GSYM CONG; ZOLATAREVU_MOD] THEN
ASM_CASES_TAC `coprime(n:num,g)` THENL
[ALL_TAC; ASM_MESON_TAC[ORDER_EQ_0; COPRIME_SYM; PHI_EQ_0]] THEN
ASM_SIMP_TAC[QUADRATIC_RESIDUE_MODULO_PRIMITIVE_POWER] THEN
TRANS_TAC EQ_TRANS
`evenperm(\i. if i < phi n then (i + k) MOD phi n else i)` THEN
CONJ_TAC THENL
[ALL_TAC;
ASM_REWRITE_TAC[EVENPERM_CYCLIC_N] THEN
ASM_SIMP_TAC[GSYM NOT_EVEN; EVEN_PHI; PHI_EQ_0]] THEN
MATCH_MP_TAC EVENPERM_TRANSFER THEN
MAP_EVERY EXISTS_TAC [`\i. (g EXP i) MOD n`; `{i | i < phi n}`] THEN
SIMP_TAC[FINITE_NUMSEG_LT; PERMUTES_FINITE_INJECTIVE] THEN
REWRITE_TAC[IN_ELIM_THM; IMP_CONJ] THEN
ASM_SIMP_TAC[zolotarevu; MOD_LT_EQ] THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[GSYM CONG] THEN
ASM_SIMP_TAC[ORDER_DIVIDES_EXPDIFF] THEN MESON_TAC[CONG_IMP_EQ];
ARITH_TAC;
REWRITE_TAC[GSYM CONG; CONG_ADD_RCANCEL_EQ] THEN MESON_TAC[CONG_IMP_EQ];
ONCE_REWRITE_TAC[COPRIME_SYM] THEN
ASM_REWRITE_TAC[COPRIME_RMOD; COPRIME_REXP] THEN
ONCE_REWRITE_TAC[GSYM MOD_MULT_MOD2] THEN
REWRITE_TAC[MOD_MOD_REFL] THEN REWRITE_TAC[MOD_MULT_MOD2] THEN
REWRITE_TAC[GSYM EXP_ADD; GSYM CONG] THEN
ASM_SIMP_TAC[ORDER_DIVIDES_EXPDIFF; CONG_RMOD; CONG_REFL] THEN
REWRITE_TAC[CONG; ADD_SYM];
ASM_SIMP_TAC[PRIMITIVE_ROOT_IMAGE] THEN SET_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Hence characterize zolotarev for odd prime powers p^k by induction, *)
(* splitting the case of p^{k+1} into the units (covered by zolotarevu) *)
(* and the non-units, which are just the p^k cases multiplied by p. *)
(* ------------------------------------------------------------------------- *)
let ZOLATAREV_EQ_ZOLATAREVU = prove
(`!a p. prime p ==> zolotarev(a,p) = zolotarevu(a,p)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[zolotarev; zolotarevu; FUN_EQ_THM] THEN
X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n:num < p` THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_SIMP_TAC[PRIME_COPRIME_EQ] THEN
REWRITE_TAC[COND_SWAP] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN
STRIP_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[MULT_CLAUSES; MOD_0]);;
let ZOLOTAREV_1 = prove
(`!a. zolotarev(a,1) = I`,
REWRITE_TAC[FUN_EQ_THM; I_DEF] THEN REPEAT GEN_TAC THEN
SIMP_TAC[zolotarev; ARITH_RULE `m < 1 <=> m = 0`; MULT_CLAUSES; MOD_0] THEN
MESON_TAC[]);;
let JACOBI_EQ_ZOLOTAREV_PRIMEPOW = prove
(`!a p k.
prime p /\ ODD p /\ coprime(a,p)
==> real_of_int(jacobi(a,p EXP k)) = sign(zolotarev(a,p EXP k))`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
REWRITE_TAC[JACOBI_REXP; int_pow_th] THEN
MATCH_MP_TAC num_INDUCTION THEN
REWRITE_TAC[EXP; ZOLOTAREV_1; real_pow; SIGN_I] THEN
X_GEN_TAC `k:num` THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
SUBGOAL_THEN
`zolotarev (a,p EXP SUC k) =
zolotarevu(a,p EXP SUC k) o
(\i. if p divides i then zolotarev(a,p EXP SUC k) i else i)`
SUBST1_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; o_THM; zolotarev; zolotarevu] THEN
X_GEN_TAC `i:num` THEN ASM_CASES_TAC `(p:num) divides i` THEN
ASM_CASES_TAC `i < p EXP (SUC k)` THEN
ASM_REWRITE_TAC[COPRIME_LMOD; MOD_LT_EQ; EXP_EQ_0] THEN
ASM_REWRITE_TAC[COPRIME_REXP; NOT_SUC; COPRIME_LMUL] THEN
ASM_SIMP_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] PRIME_COPRIME_EQ];
ALL_TAC] THEN
W(MP_TAC o PART_MATCH (lhand o rand) SIGN_COMPOSE o lhand o snd) THEN
ASM_SIMP_TAC[PERMUTATION_ZOLOTAREVU; COPRIME_REXP] THEN ANTS_TAC THENL
[MATCH_MP_TAC PERMUTATION_RESTRICT THEN
ASM_SIMP_TAC[ETA_AX; PERMUTATION_ZOLOTAREV; COPRIME_REXP] THEN
X_GEN_TAC `m:num` THEN REWRITE_TAC[zolotarev] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC I [TAUT `(p <=> q) <=> (~p <=> ~q)`] THEN
ASM_SIMP_TAC[ONCE_REWRITE_RULE[COPRIME_SYM]
(GSYM PRIME_COPRIME_EQ)] THEN
ASM_MESON_TAC[COPRIME_REXP; COPRIME_LMOD; NOT_SUC; COPRIME_LMUL];
DISCH_THEN SUBST1_TAC] THEN
BINOP_TAC THENL
[ASM_SIMP_TAC[JACOBI_PRIME] THEN ONCE_REWRITE_TAC[GSYM COND_SWAP] THEN
ASM_SIMP_TAC[ONCE_REWRITE_RULE[COPRIME_SYM]
(GSYM PRIME_COPRIME_EQ)] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN
REWRITE_TAC[sign; int_neg_th; int_of_num_th] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
MP_TAC(ISPECL [`p:num`; `a:num`; `SUC k`]
QUADRATIC_RESIDUE_MODULO_ODD_POWER) THEN
ASM_REWRITE_TAC[NOT_SUC] THEN ANTS_TAC THENL
[ASM_MESON_TAC[COPRIME_SYM]; DISCH_THEN(SUBST1_TAC o SYM)] THEN
MATCH_MP_TAC ZOLOTAREVU_PRIMITIVE THEN
ASM_REWRITE_TAC[COPRIME_REXP] THEN CONJ_TAC THENL
[TRANS_TAC LE_TRANS `p EXP 1` THEN CONJ_TAC THENL
[ASM_MESON_TAC[ODD_PRIME; EXP_1]; ALL_TAC] THEN
REWRITE_TAC[LE_EXP; NOT_SUC; ARITH_RULE `1 <= SUC k`] THEN
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[COND_ID];
REWRITE_TAC[PRIMITIVE_ROOT_EXISTS] THEN ASM_MESON_TAC[ODD_PRIME]];
MATCH_MP_TAC SIGN_TRANSFER THEN
EXISTS_TAC `\x:num. p * x` THEN
EXISTS_TAC `{i | i < p EXP k}` THEN
ASM_SIMP_TAC[FINITE_NUMSEG_LT; PERMUTES_ZOLOTAREV; COPRIME_REXP] THEN
ASM_SIMP_TAC[EQ_MULT_LCANCEL] THEN
SIMP_TAC[DIVIDES_RMUL; DIVIDES_REFL; zolotarev; IN_ELIM_THM] THEN
CONJ_TAC THENL
[X_GEN_TAC `i:num` THEN DISCH_TAC THEN
ASM_REWRITE_TAC[LT_MULT_LCANCEL; EXP] THEN
MESON_TAC[MOD_MULT2; MULT_AC];
X_GEN_TAC `j:num` THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [divides]) THEN
REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN
ASM_MESON_TAC[LT_MULT_LCANCEL; EXP]]]);;
(* ------------------------------------------------------------------------- *)
(* Now extend to all odd moduli via the Chinese Remainder Theorem. *)
(* ------------------------------------------------------------------------- *)
let JACOBI_EQ_ZOLOTAREV = prove
(`!a n. ODD n /\ coprime(a,n)
==> real_of_int(jacobi(a,n)) = sign(zolotarev(a,n))`,
GEN_TAC THEN MATCH_MP_TAC INDUCT_COPRIME_ALT THEN
REWRITE_TAC[ARITH] THEN CONJ_TAC THENL
[ALL_TAC;
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN
ASM_CASES_TAC `k = 0` THEN ASM_SIMP_TAC[ODD_EXP; COPRIME_REXP] THEN
REWRITE_TAC[JACOBI_1; ZOLOTAREV_1; EXP; int_of_num_th; SIGN_I] THEN
ASM_SIMP_TAC[JACOBI_EQ_ZOLOTAREV_PRIMEPOW]] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[ARITH] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH] THEN
REWRITE_TAC[ODD_MULT; COPRIME_RMUL] THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
REWRITE_TAC[JACOBI_RMUL; int_mul_th] THEN
REPEAT(FIRST_X_ASSUM SUBST1_TAC) THEN
TRANS_TAC EQ_TRANS
`sign(\(i,j). if i IN {i | i < m} /\ j IN {j | j < n}
then zolotarev(a,m) i,zolotarev(a,n) j else i,j)` THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[SIGN_CARTESIAN_PRODUCT; PERMUTES_ZOLOTAREV;
FINITE_NUMSEG_LT; ETA_AX] THEN
BINOP_TAC THEN REWRITE_TAC[sign] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_POW_ONE; REAL_POW_NEG] THEN
ASM_REWRITE_TAC[CARD_NUMSEG_LT; GSYM NOT_ODD];
ALL_TAC] THEN
MATCH_MP_TAC SIGN_TRANSFER THEN
EXISTS_TAC `\i. i MOD m,i MOD n` THEN
EXISTS_TAC `{i:num | i < m * n}` THEN
ASM_SIMP_TAC[FINITE_NUMSEG_LT; PERMUTES_ZOLOTAREV; COPRIME_RMUL] THEN
ASM_REWRITE_TAC[o_THM; MOD_LT_EQ; IN_ELIM_THM; PAIR_EQ; ] THEN
REPEAT CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN
REWRITE_TAC[PAIR_EQ; GSYM CONG] THEN STRIP_TAC THEN
MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `m * n:num` THEN
ASM_SIMP_TAC[CONG_CHINESE];
X_GEN_TAC `i:num` THEN DISCH_TAC THEN
ASM_REWRITE_TAC[zolotarev; MOD_LT_EQ; PAIR_EQ] THEN
REWRITE_TAC[MOD_MOD; ONCE_REWRITE_RULE[MULT_SYM] MOD_MOD] THEN
MESON_TAC[MOD_MULT_MOD2; MOD_MOD_REFL];
REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN
ASM_CASES_TAC `i:num < m /\ j:num < n` THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[zolotarev; MOD_LT_EQ; PAIR_EQ] THEN
MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN
MP_TAC(ISPECL [`m:num`; `n:num`; `i:num`; `j:num`]
CHINESE_REMAINDER_UNIQUE) THEN
ASM_REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN
DISCH_THEN(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[IN_IMAGE; PAIR_EQ; IN_ELIM_THM] THEN
ASM_SIMP_TAC[CONG; MOD_LT] THEN MESON_TAC[]]);;
|