Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 42,060 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 |
(* ========================================================================= *)
(* Naive quantifier elimination for complex numbers. *)
(* ========================================================================= *)
needs "Complex/fundamental.ml";;
let NULLSTELLENSATZ_LEMMA = prove
(`!n p q. (!x. (poly p x = Cx(&0)) ==> (poly q x = Cx(&0))) /\
(degree p = n) /\ ~(n = 0)
==> p divides (q exp n)`,
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`p:complex list`; `q:complex list`] THEN
ASM_CASES_TAC `?a. poly p a = Cx(&0)` THENL
[ALL_TAC;
DISCH_THEN(K ALL_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
(ONCE_REWRITE_RULE[TAUT `a ==> b <=> ~b ==> ~a`]
FUNDAMENTAL_THEOREM_OF_ALGEBRA_ALT)) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`k:complex`; `zeros:complex list`] THEN
STRIP_TAC THEN REWRITE_TAC[divides] THEN
EXISTS_TAC `[inv(k)] ** q exp n` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN X_GEN_TAC `z:complex` THEN
ASM_SIMP_TAC[COMPLEX_MUL_ASSOC; COMPLEX_MUL_RINV; COMPLEX_MUL_LID;
poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; POLY_0]] THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `a:complex` MP_TAC) THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
GEN_REWRITE_TAC LAND_CONV [ORDER_ROOT] THEN
ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[] THENL
[ASM_SIMP_TAC[DEGREE_ZERO] THEN MESON_TAC[]; ALL_TAC] THEN
STRIP_TAC THEN STRIP_TAC THEN
MP_TAC(SPECL [`p:complex list`; `a:complex`; `order a p`] ORDER) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP ORDER_DEGREE) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `a:complex`) THEN
REWRITE_TAC[ASSUME `poly p a = Cx(&0)`] THEN
REWRITE_TAC[POLY_LINEAR_DIVIDES] THEN
ASM_CASES_TAC `q:complex list = []` THENL
[DISCH_TAC THEN MATCH_MP_TAC POLY_DIVIDES_ZERO THEN
UNDISCH_TAC `~(n = 0)` THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[poly_exp] THEN DISCH_TAC THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_LZERO; poly];
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `r:complex list` SUBST_ALL_TAC) THEN
UNDISCH_TAC `[--a; Cx (&1)] exp (order a p) divides p` THEN
GEN_REWRITE_TAC LAND_CONV [divides] THEN
DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN
SUBGOAL_THEN `~(poly s = poly [])` ASSUME_TAC THENL
[DISCH_TAC THEN UNDISCH_TAC `~(poly p = poly [])` THEN
ASM_REWRITE_TAC[POLY_ENTIRE]; ALL_TAC] THEN
ASM_CASES_TAC `degree s = 0` THENL
[SUBGOAL_THEN `?k. ~(k = Cx(&0)) /\ (poly s = poly [k])` MP_TAC THENL
[EXISTS_TAC `LAST(normalize s)` THEN
ASM_SIMP_TAC[NORMAL_NORMALIZE; GSYM POLY_NORMALIZE_ZERO] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM POLY_NORMALIZE] THEN
UNDISCH_TAC `degree s = 0` THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV
[POLY_NORMALIZE_ZERO]) THEN
REWRITE_TAC[degree] THEN
SPEC_TAC(`normalize s`,`s:complex list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL] THEN
REWRITE_TAC[LENGTH; PRE; poly; LAST] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[LENGTH_EQ_NIL]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `k:complex` STRIP_ASSUME_TAC) THEN
REWRITE_TAC[divides] THEN
EXISTS_TAC `[inv(k)] ** [--a; Cx (&1)] exp (n - order a p) ** r exp n` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_EXP; COMPLEX_POW_MUL] THEN
X_GEN_TAC `z:complex` THEN
ONCE_REWRITE_TAC[AC COMPLEX_MUL_AC
`(a * b) * c * d * e = ((d * a) * (c * b)) * e`] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM COMPLEX_POW_ADD] THEN ASM_SIMP_TAC[SUB_ADD] THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; COMPLEX_MUL_RID] THEN
ASM_SIMP_TAC[COMPLEX_MUL_LINV; COMPLEX_MUL_RID]; ALL_TAC] THEN
SUBGOAL_THEN `degree s < n` ASSUME_TAC THENL
[EXPAND_TAC "n" THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP DEGREE_WELLDEF) THEN
REWRITE_TAC[LINEAR_POW_MUL_DEGREE] THEN
ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(order a p = 0)` THEN ARITH_TAC;
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `degree s`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPECL [`s:complex list`; `r:complex list`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
UNDISCH_TAC
`!x. (poly p x = Cx(&0)) ==> (poly([--a; Cx (&1)] ** r) x = Cx(&0))` THEN
DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[POLY_MUL; COMPLEX_MUL_RID] THEN
REWRITE_TAC[COMPLEX_ENTIRE] THEN
MATCH_MP_TAC(TAUT `~a ==> (a \/ b ==> b)`) THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
REWRITE_TAC[SIMPLE_COMPLEX_ARITH
`(--a + z * Cx(&1) = Cx(&0)) <=> (z = a)`] THEN
DISCH_THEN SUBST_ALL_TAC THEN
UNDISCH_TAC `poly s a = Cx (&0)` THEN
ASM_REWRITE_TAC[POLY_LINEAR_DIVIDES; DE_MORGAN_THM] THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `u:complex list` SUBST_ALL_TAC) THEN
UNDISCH_TAC `~([--a; Cx (&1)] exp SUC (order a p) divides p)` THEN
REWRITE_TAC[divides] THEN
EXISTS_TAC `u:complex list` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[POLY_MUL; poly_exp; COMPLEX_MUL_AC; FUN_EQ_THM];
ALL_TAC] THEN
REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `u:complex list` ASSUME_TAC) THEN
EXISTS_TAC
`u ** [--a; Cx(&1)] exp (n - order a p) ** r exp (n - degree s)` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_EXP; COMPLEX_POW_MUL] THEN
X_GEN_TAC `z:complex` THEN
ONCE_REWRITE_TAC[AC COMPLEX_MUL_AC
`(ap * s) * u * anp * rns = (anp * ap) * rns * s * u`] THEN
REWRITE_TAC[GSYM COMPLEX_POW_ADD] THEN
ASM_SIMP_TAC[SUB_ADD] THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM POLY_MUL] THEN
SUBST1_TAC(SYM(ASSUME `poly (r exp degree s) = poly (s ** u)`)) THEN
REWRITE_TAC[POLY_EXP; GSYM COMPLEX_POW_ADD] THEN
ASM_SIMP_TAC[SUB_ADD; LT_IMP_LE]);;
let NULLSTELLENSATZ_UNIVARIATE = prove
(`!p q. (!x. (poly p x = Cx(&0)) ==> (poly q x = Cx(&0))) <=>
p divides (q exp (degree p)) \/
((poly p = poly []) /\ (poly q = poly []))`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THENL
[ASM_REWRITE_TAC[poly] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP DEGREE_WELLDEF) THEN
REWRITE_TAC[degree; normalize; LENGTH; ARITH; poly_exp] THEN
ASM_REWRITE_TAC[divides; FUN_EQ_THM; POLY_MUL; poly;
COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
REWRITE_TAC[CX_INJ; REAL_OF_NUM_EQ; ARITH]; ALL_TAC] THEN
ASM_CASES_TAC `degree p = 0` THENL
[ALL_TAC;
MP_TAC(SPECL [`degree p`; `p:complex list`; `q:complex list`]
NULLSTELLENSATZ_LEMMA) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN EQ_TAC THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(fun th ->
X_GEN_TAC `z:complex` THEN DISCH_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[divides; FUN_EQ_THM; POLY_MUL] THEN
DISCH_THEN(CHOOSE_THEN (MP_TAC o SPEC `z:complex`)) THEN
ASM_REWRITE_TAC[POLY_EXP; COMPLEX_MUL_LZERO; COMPLEX_POW_EQ_0]] THEN
ASM_REWRITE_TAC[poly_exp] THEN
SUBGOAL_THEN `?k. ~(k = Cx(&0)) /\ (poly p = poly [k])` MP_TAC THENL
[SUBST1_TAC(SYM(SPEC `p:complex list` POLY_NORMALIZE)) THEN
EXISTS_TAC `LAST(normalize p)` THEN
ASM_SIMP_TAC[NORMAL_NORMALIZE; GSYM POLY_NORMALIZE_ZERO] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM POLY_NORMALIZE] THEN
UNDISCH_TAC `degree p = 0` THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV
[POLY_NORMALIZE_ZERO]) THEN
REWRITE_TAC[degree] THEN
SPEC_TAC(`normalize p`,`p:complex list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL] THEN
REWRITE_TAC[LENGTH; PRE; poly; LAST] THEN
SIMP_TAC[LENGTH_EQ_NIL; POLY_NORMALIZE]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `k:complex` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[divides; poly; FUN_EQ_THM; POLY_MUL] THEN
ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
EXISTS_TAC `[inv(k)]` THEN
ASM_REWRITE_TAC[divides; poly; FUN_EQ_THM; POLY_MUL] THEN
ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
ASM_SIMP_TAC[COMPLEX_MUL_RINV]);;
(* ------------------------------------------------------------------------- *)
(* Useful lemma I should have proved ages ago. *)
(* ------------------------------------------------------------------------- *)
let CONSTANT_DEGREE = prove
(`!p. constant(poly p) <=> (degree p = 0)`,
GEN_TAC THEN REWRITE_TAC[constant] THEN EQ_TAC THENL
[DISCH_THEN(ASSUME_TAC o GSYM o SPEC `Cx(&0)`) THEN
SUBGOAL_THEN `degree [poly p (Cx(&0))] = 0` MP_TAC THENL
[REWRITE_TAC[degree; normalize] THEN
COND_CASES_TAC THEN REWRITE_TAC[LENGTH] THEN CONV_TAC NUM_REDUCE_CONV;
ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `(x = y) ==> (x = 0) ==> (y = 0)`) THEN
MATCH_MP_TAC DEGREE_WELLDEF THEN
REWRITE_TAC[FUN_EQ_THM; poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
FIRST_ASSUM(ACCEPT_TAC o GSYM);
ONCE_REWRITE_TAC[GSYM POLY_NORMALIZE] THEN REWRITE_TAC[degree] THEN
SPEC_TAC(`normalize p`,`l:complex list`) THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[poly] THEN
SIMP_TAC[LENGTH; PRE; LENGTH_EQ_NIL; poly; COMPLEX_MUL_RZERO]]);;
(* ------------------------------------------------------------------------- *)
(* It would be nicer to prove this without using algebraic closure... *)
(* ------------------------------------------------------------------------- *)
let DIVIDES_DEGREE_LEMMA = prove
(`!n p q. (degree(p) = n)
==> n <= degree(p ** q) \/ (poly(p ** q) = poly [])`,
INDUCT_TAC THEN REWRITE_TAC[LE_0] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPEC `p:complex list` FUNDAMENTAL_THEOREM_OF_ALGEBRA) THEN
ASM_REWRITE_TAC[CONSTANT_DEGREE; NOT_SUC] THEN
DISCH_THEN(X_CHOOSE_THEN `a:complex` MP_TAC) THEN
GEN_REWRITE_TAC LAND_CONV [POLY_LINEAR_DIVIDES] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
[REWRITE_TAC[POLY_MUL; poly; COMPLEX_MUL_LZERO; FUN_EQ_THM];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `r:complex list` SUBST_ALL_TAC) THEN
SUBGOAL_THEN `poly (([--a; Cx (&1)] ** r) ** q) =
poly ([--a; Cx (&1)] ** (r ** q))`
ASSUME_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_ASSOC]; ALL_TAC] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP DEGREE_WELLDEF) THEN
ASM_REWRITE_TAC[] THEN
MP_TAC(SPECL [`r ** q`; `--a`] LINEAR_MUL_DEGREE) THEN
ASM_CASES_TAC `poly (r ** q) = poly []` THENL
[REWRITE_TAC[FUN_EQ_THM] THEN
ONCE_REWRITE_TAC[POLY_MUL] THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `n <= degree(r ** q) \/ (poly(r ** q) = poly [])` MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[ARITH_RULE `SUC n <= m + 1 <=> n <= m`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[FUN_EQ_THM] THEN
ONCE_REWRITE_TAC[POLY_MUL] THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO]] THEN
MP_TAC(SPECL [`r:complex list`; `--a`] LINEAR_MUL_DEGREE) THEN ANTS_TAC THENL
[UNDISCH_TAC `~(poly (r ** q) = poly [])` THEN
REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`] THEN
SIMP_TAC[poly; FUN_EQ_THM; POLY_MUL; COMPLEX_ENTIRE]; ALL_TAC] THEN
DISCH_THEN SUBST_ALL_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `degree r + 1 = SUC n` THEN ARITH_TAC);;
let DIVIDES_DEGREE = prove
(`!p q. p divides q ==> degree(p) <= degree(q) \/ (poly q = poly [])`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `r:complex list` THEN DISCH_TAC THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP DEGREE_WELLDEF) THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[DIVIDES_DEGREE_LEMMA]);;
(* ------------------------------------------------------------------------- *)
(* Arithmetic operations on multivariate polynomials. *)
(* ------------------------------------------------------------------------- *)
let MPOLY_BASE_CONV =
let pth_0 = prove
(`Cx(&0) = poly [] x`,
REWRITE_TAC[poly])
and pth_1 = prove
(`c = poly [c] x`,
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID])
and pth_var = prove
(`x = poly [Cx(&0); Cx(&1)] x`,
REWRITE_TAC[poly; COMPLEX_ADD_LID; COMPLEX_MUL_RZERO] THEN
REWRITE_TAC[COMPLEX_ADD_RID; COMPLEX_MUL_RID])
and zero_tm = `Cx(&0)`
and c_tm = `c:complex`
and x_tm = `x:complex` in
let rec MPOLY_BASE_CONV avs tm =
if avs = [] then REFL tm
else if tm = zero_tm then INST [hd avs,x_tm] pth_0
else if tm = hd avs then
let th1 = INST [tm,x_tm] pth_var in
let th2 =
(LAND_CONV
(COMB2_CONV (RAND_CONV (MPOLY_BASE_CONV (tl avs)))
(LAND_CONV (MPOLY_BASE_CONV (tl avs)))))
(rand(concl th1)) in
TRANS th1 th2
else
let th1 = MPOLY_BASE_CONV (tl avs) tm in
let th2 = INST [hd avs,x_tm; rand(concl th1),c_tm] pth_1 in
TRANS th1 th2 in
MPOLY_BASE_CONV;;
let MPOLY_NORM_CONV =
let pth_0 = prove
(`poly [Cx(&0)] x = poly [] x`,
REWRITE_TAC[poly; COMPLEX_ADD_RID; COMPLEX_MUL_RZERO])
and pth_1 = prove
(`poly [poly [] y] x = poly [] x`,
REWRITE_TAC[poly; COMPLEX_ADD_RID; COMPLEX_MUL_RZERO]) in
let conv_fwd = REWR_CONV(CONJUNCT2 poly)
and conv_bck = REWR_CONV(GSYM(CONJUNCT2 poly))
and conv_0 = GEN_REWRITE_CONV I [pth_0]
and conv_1 = GEN_REWRITE_CONV I [pth_1] in
let rec NORM0_CONV tm =
(conv_0 ORELSEC
(conv_fwd THENC RAND_CONV(RAND_CONV NORM0_CONV) THENC conv_bck THENC
TRY_CONV NORM0_CONV)) tm
and NORM1_CONV tm =
(conv_1 ORELSEC
(conv_fwd THENC RAND_CONV(RAND_CONV NORM1_CONV) THENC conv_bck THENC
TRY_CONV NORM1_CONV)) tm in
fun avs -> TRY_CONV(if avs = [] then NORM0_CONV else NORM1_CONV);;
let MPOLY_ADD_CONV,MPOLY_TADD_CONV =
let add_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_ADD_CLAUSES))
and add_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_ADD_CLAUSES)]
and add_conv = REWR_CONV(GSYM POLY_ADD) in
let rec MPOLY_ADD_CONV avs tm =
if avs = [] then COMPLEX_RAT_ADD_CONV tm else
(add_conv THENC LAND_CONV(MPOLY_TADD_CONV avs) THENC
MPOLY_NORM_CONV (tl avs)) tm
and MPOLY_TADD_CONV avs tm =
(add_conv0 ORELSEC
(add_conv1 THENC
LAND_CONV (MPOLY_ADD_CONV (tl avs)) THENC
RAND_CONV (MPOLY_TADD_CONV avs))) tm in
MPOLY_ADD_CONV,MPOLY_TADD_CONV;;
let MPOLY_CMUL_CONV,MPOLY_TCMUL_CONV,MPOLY_MUL_CONV,MPOLY_TMUL_CONV =
let cmul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_cmul]
and cmul_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_cmul]
and cmul_conv = REWR_CONV(GSYM POLY_CMUL)
and mul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 POLY_MUL_CLAUSES]
and mul_conv1 = GEN_REWRITE_CONV I [CONJUNCT1(CONJUNCT2 POLY_MUL_CLAUSES)]
and mul_conv2 = GEN_REWRITE_CONV I [CONJUNCT2(CONJUNCT2 POLY_MUL_CLAUSES)]
and mul_conv = REWR_CONV(GSYM POLY_MUL) in
let rec MPOLY_CMUL_CONV avs tm =
(cmul_conv THENC LAND_CONV(MPOLY_TCMUL_CONV avs)) tm
and MPOLY_TCMUL_CONV avs tm =
(cmul_conv0 ORELSEC
(cmul_conv1 THENC
LAND_CONV (MPOLY_MUL_CONV (tl avs)) THENC
RAND_CONV (MPOLY_TCMUL_CONV avs))) tm
and MPOLY_MUL_CONV avs tm =
if avs = [] then COMPLEX_RAT_MUL_CONV tm else
(mul_conv THENC LAND_CONV(MPOLY_TMUL_CONV avs)) tm
and MPOLY_TMUL_CONV avs tm =
(mul_conv0 ORELSEC
(mul_conv1 THENC MPOLY_TCMUL_CONV avs) ORELSEC
(mul_conv2 THENC
COMB2_CONV (RAND_CONV(MPOLY_TCMUL_CONV avs))
(COMB2_CONV (RAND_CONV(MPOLY_BASE_CONV (tl avs)))
(MPOLY_TMUL_CONV avs)) THENC
MPOLY_TADD_CONV avs)) tm in
MPOLY_CMUL_CONV,MPOLY_TCMUL_CONV,MPOLY_MUL_CONV,MPOLY_TMUL_CONV;;
let MPOLY_SUB_CONV =
let pth = prove
(`(poly p x - poly q x) = (poly p x + Cx(--(&1)) * poly q x)`,
SIMPLE_COMPLEX_ARITH_TAC) in
let APPLY_PTH_CONV = REWR_CONV pth in
fun avs ->
APPLY_PTH_CONV THENC
RAND_CONV(LAND_CONV (MPOLY_BASE_CONV (tl avs)) THENC
MPOLY_CMUL_CONV avs) THENC
MPOLY_ADD_CONV avs;;
let MPOLY_POW_CONV =
let cnv_0 = GEN_REWRITE_CONV I [CONJUNCT1 complex_pow]
and cnv_1 = GEN_REWRITE_CONV I [CONJUNCT2 complex_pow] in
let rec MPOLY_POW_CONV avs tm =
try (cnv_0 THENC MPOLY_BASE_CONV avs) tm with Failure _ ->
(RAND_CONV num_CONV THENC
cnv_1 THENC (RAND_CONV (MPOLY_POW_CONV avs)) THENC
MPOLY_MUL_CONV avs) tm in
MPOLY_POW_CONV;;
(* ------------------------------------------------------------------------- *)
(* Recursive conversion to polynomial form. *)
(* ------------------------------------------------------------------------- *)
let POLYNATE_CONV =
let ELIM_SUB_CONV = REWR_CONV
(SIMPLE_COMPLEX_ARITH `x - y = x + Cx(--(&1)) * y`)
and ELIM_NEG_CONV = REWR_CONV
(SIMPLE_COMPLEX_ARITH `--x = Cx(--(&1)) * x`)
and ELIM_POW_0_CONV = GEN_REWRITE_CONV I [CONJUNCT1 complex_pow]
and ELIM_POW_1_CONV =
RAND_CONV num_CONV THENC GEN_REWRITE_CONV I [CONJUNCT2 complex_pow] in
let rec ELIM_POW_CONV tm =
(ELIM_POW_0_CONV ORELSEC (ELIM_POW_1_CONV THENC RAND_CONV ELIM_POW_CONV))
tm in
let polynet = itlist (uncurry net_of_conv)
[`x pow n`,(fun cnv avs -> LAND_CONV (cnv avs) THENC MPOLY_POW_CONV avs);
`x * y`,(fun cnv avs -> BINOP_CONV (cnv avs) THENC MPOLY_MUL_CONV avs);
`x + y`,(fun cnv avs -> BINOP_CONV (cnv avs) THENC MPOLY_ADD_CONV avs);
`x - y`,(fun cnv avs -> BINOP_CONV (cnv avs) THENC MPOLY_SUB_CONV avs);
`--x`,(fun cnv avs -> ELIM_NEG_CONV THENC (cnv avs))]
empty_net in
let rec POLYNATE_CONV avs tm =
try snd(hd(lookup tm polynet)) POLYNATE_CONV avs tm
with Failure _ -> MPOLY_BASE_CONV avs tm in
POLYNATE_CONV;;
(* ------------------------------------------------------------------------- *)
(* Cancellation conversion. *)
(* ------------------------------------------------------------------------- *)
let POLY_PAD_RULE =
let pth = prove
(`(poly p x = Cx(&0)) ==> (poly (CONS (Cx(&0)) p) x = Cx(&0))`,
SIMP_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_LID]) in
let MATCH_pth = MATCH_MP pth in
fun avs th ->
let th1 = MATCH_pth th in
CONV_RULE(funpow 3 LAND_CONV (MPOLY_BASE_CONV (tl avs))) th1;;
let POLY_CANCEL_EQ_CONV =
let pth_1 = prove
(`(p = Cx(&0)) /\ ~(a = Cx(&0))
==> !q b. (q = Cx(&0)) <=> (a * q - b * p = Cx(&0))`,
SIMP_TAC[COMPLEX_MUL_RZERO; COMPLEX_SUB_RZERO; COMPLEX_ENTIRE]) in
let MATCH_CANCEL_THM = MATCH_MP pth_1 in
let rec POLY_CANCEL_EQ_CONV avs n ath eth tm =
let m = length(dest_list(lhand(lhand tm))) in
if m < n then REFL tm else
let th1 = funpow (m - n) (POLY_PAD_RULE avs) eth in
let th2 = MATCH_CANCEL_THM (CONJ th1 ath) in
let th3 = SPECL [lhs tm; last(dest_list(lhand(lhs tm)))] th2 in
let th4 = CONV_RULE(RAND_CONV(LAND_CONV
(BINOP_CONV(MPOLY_CMUL_CONV avs)))) th3 in
let th5 = CONV_RULE(RAND_CONV(LAND_CONV (MPOLY_SUB_CONV avs))) th4 in
TRANS th5 (POLY_CANCEL_EQ_CONV avs n ath eth (rand(concl th5))) in
POLY_CANCEL_EQ_CONV;;
let RESOLVE_EQ_RAW =
let pth = prove
(`(poly [] x = Cx(&0)) /\
(poly [c] x = c)`,
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID]) in
let REWRITE_pth = GEN_REWRITE_CONV LAND_CONV [pth] in
let rec RESOLVE_EQ asm tm =
try EQT_INTRO(find (fun th -> concl th = tm) asm) with Failure _ ->
let tm' = mk_neg tm in
try EQF_INTRO(find (fun th -> concl th = tm') asm) with Failure _ ->
try let th1 = REWRITE_pth tm in
TRANS th1 (RESOLVE_EQ asm (rand(concl th1)))
with Failure _ -> COMPLEX_RAT_EQ_CONV tm in
RESOLVE_EQ;;
let RESOLVE_EQ asm tm =
let th = RESOLVE_EQ_RAW asm tm in
try EQF_ELIM th with Failure _ -> EQT_ELIM th;;
let RESOLVE_EQ_THEN =
let MATCH_pth = MATCH_MP
(TAUT `(p ==> (q <=> q1)) /\ (~p ==> (q <=> q2))
==> (q <=> (p /\ q1 \/ ~p /\ q2))`) in
fun asm tm yfn nfn ->
try let th = RESOLVE_EQ asm tm in
if is_neg(concl th) then nfn (th::asm) th else yfn (th::asm) th
with Failure _ ->
let tm' = mk_neg tm in
let yth = DISCH tm (yfn (ASSUME tm :: asm) (ASSUME tm))
and nth = DISCH tm' (nfn (ASSUME tm' :: asm) (ASSUME tm')) in
MATCH_pth (CONJ yth nth);;
let POLY_CANCEL_ENE_CONV avs n ath eth tm =
if is_neg tm then RAND_CONV(POLY_CANCEL_EQ_CONV avs n ath eth) tm
else POLY_CANCEL_EQ_CONV avs n ath eth tm;;
let RESOLVE_NE =
let NEGATE_NEGATE_RULE = GEN_REWRITE_RULE I [TAUT `p <=> (~p <=> F)`] in
fun asm tm ->
try let th = RESOLVE_EQ asm (rand tm) in
if is_neg(concl th) then EQT_INTRO th
else NEGATE_NEGATE_RULE th
with Failure _ -> REFL tm;;
(* ------------------------------------------------------------------------- *)
(* Conversion for division of polynomials. *)
(* ------------------------------------------------------------------------- *)
let LAST_CONV = GEN_REWRITE_CONV REPEATC [LAST_CLAUSES];;
let LENGTH_CONV =
let cnv_0 = GEN_REWRITE_CONV I [CONJUNCT1 LENGTH]
and cnv_1 = GEN_REWRITE_CONV I [CONJUNCT2 LENGTH] in
let rec LENGTH_CONV tm =
try cnv_0 tm with Failure _ ->
(cnv_1 THENC RAND_CONV LENGTH_CONV THENC NUM_SUC_CONV) tm in
LENGTH_CONV;;
let EXPAND_EX_BETA_CONV =
let pth = prove(`EX P [c] = P c`,REWRITE_TAC[EX]) in
let cnv_0 = GEN_REWRITE_CONV I [CONJUNCT1 EX]
and cnv_1 = GEN_REWRITE_CONV I [pth]
and cnv_2 = GEN_REWRITE_CONV I [CONJUNCT2 EX] in
let rec EXPAND_EX_BETA_CONV tm =
try (cnv_1 THENC BETA_CONV) tm with Failure _ -> try
(cnv_2 THENC COMB2_CONV (RAND_CONV BETA_CONV)
EXPAND_EX_BETA_CONV) tm
with Failure _ -> cnv_0 tm in
EXPAND_EX_BETA_CONV;;
let POLY_DIVIDES_PAD_RULE =
let pth = prove
(`p divides q ==> p divides (CONS (Cx(&0)) q)`,
REWRITE_TAC[divides; FUN_EQ_THM; POLY_MUL; poly; COMPLEX_ADD_LID] THEN
DISCH_THEN(X_CHOOSE_THEN `r:complex list` ASSUME_TAC) THEN
EXISTS_TAC `[Cx(&0); Cx(&1)] ** r` THEN
ASM_REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_LID; COMPLEX_ADD_RID;
COMPLEX_MUL_RID; POLY_MUL] THEN
REWRITE_TAC[COMPLEX_MUL_AC]) in
let APPLY_pth = MATCH_MP pth in
fun avs n tm ->
funpow n
(CONV_RULE(RAND_CONV(LAND_CONV(MPOLY_BASE_CONV (tl avs)))) o APPLY_pth)
(SPEC tm POLY_DIVIDES_REFL);;
let POLY_DIVIDES_PAD_CONST_RULE =
let pth = prove
(`p divides q ==> !a. p divides (a ## q)`,
REWRITE_TAC[FUN_EQ_THM; divides; POLY_CMUL; POLY_MUL] THEN
DISCH_THEN(X_CHOOSE_THEN `r:complex list` ASSUME_TAC) THEN
X_GEN_TAC `a:complex` THEN EXISTS_TAC `[a] ** r` THEN
ASM_REWRITE_TAC[POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC) in
let APPLY_pth = MATCH_MP pth in
fun avs n a tm ->
let th1 = POLY_DIVIDES_PAD_RULE avs n tm in
let th2 = SPEC a (APPLY_pth th1) in
CONV_RULE(RAND_CONV(MPOLY_TCMUL_CONV avs)) th2;;
let EXPAND_EX_BETA_RESOLVE_CONV asm tm =
let th1 = EXPAND_EX_BETA_CONV tm in
let djs = disjuncts(rand(concl th1)) in
let th2 = end_itlist MK_DISJ (map (RESOLVE_NE asm) djs) in
TRANS th1 th2;;
let POLY_DIVIDES_CONV =
let pth_0 = prove
(`LENGTH q < LENGTH p
==> ~(LAST p = Cx(&0))
==> (p divides q <=> ~(EX (\c. ~(c = Cx(&0))) q))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[NOT_EX; GSYM POLY_ZERO] THEN EQ_TAC THENL
[ALL_TAC;
SIMP_TAC[divides; POLY_MUL; FUN_EQ_THM] THEN
DISCH_TAC THEN EXISTS_TAC `[]:complex list` THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO]] THEN
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_DEGREE) THEN
MATCH_MP_TAC(TAUT `(~b ==> ~a) ==> (a \/ b ==> b)`) THEN
DISCH_TAC THEN REWRITE_TAC[NOT_LE] THEN ASM_SIMP_TAC[NORMAL_DEGREE] THEN
REWRITE_TAC[degree] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE
`lq < lp ==> ~(lq = 0) /\ dq <= lq - 1 ==> dq < lp - 1`)) THEN
CONJ_TAC THENL [ASM_MESON_TAC[LENGTH_EQ_NIL]; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `m <= n ==> PRE m <= n - 1`) THEN
REWRITE_TAC[LENGTH_NORMALIZE_LE]) in
let APPLY_pth0 = PART_MATCH (lhand o rand o rand) pth_0 in
let pth_1 = prove
(`~(a = Cx(&0))
==> p divides p'
==> (!x. a * poly q x - poly p' x = poly r x)
==> (p divides q <=> p divides r)`,
DISCH_TAC THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `t:complex list` THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN
DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN EQ_TAC THEN
DISCH_THEN(X_CHOOSE_THEN `s:complex list` MP_TAC) THENL
[DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
EXISTS_TAC `a ## s ++ --(Cx(&1)) ## t` THEN
REWRITE_TAC[POLY_MUL; POLY_ADD; POLY_CMUL] THEN
REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC;
REWRITE_TAC[POLY_MUL] THEN DISCH_TAC THEN
EXISTS_TAC `[inv(a)] ** (t ++ s)` THEN
X_GEN_TAC `z:complex` THEN
ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN
REWRITE_TAC[POLY_MUL; POLY_ADD; GSYM COMPLEX_MUL_ASSOC] THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
SUBGOAL_THEN `a * poly q z = (poly t z + poly s z) * poly p z`
MP_TAC THENL
[FIRST_ASSUM(MP_TAC o SPEC `z:complex`) THEN SIMPLE_COMPLEX_ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN(MP_TAC o AP_TERM `( * ) (inv a)`) THEN
ASM_SIMP_TAC[COMPLEX_MUL_ASSOC; COMPLEX_MUL_LINV; COMPLEX_MUL_LID]]) in
let MATCH_pth1 = MATCH_MP pth_1 in
let rec DIVIDE_STEP_CONV avs sfn n tm =
let m = length(dest_list(rand tm)) in
if m < n then REFL tm else
let th1 = POLY_DIVIDES_PAD_CONST_RULE avs (m - n)
(last(dest_list(rand tm))) (lhand tm) in
let th2 = MATCH_MP (sfn tm) th1 in
let av,bod = dest_forall(lhand(concl th2)) in
let tm1 = vsubst [hd avs,av] (lhand bod) in
let th3 = (LAND_CONV (MPOLY_CMUL_CONV avs) THENC MPOLY_SUB_CONV avs) tm1 in
let th4 = MATCH_MP th2 (GEN (hd avs) th3) in
TRANS th4 (DIVIDE_STEP_CONV avs sfn n (rand(concl th4))) in
let zero_tm = `Cx(&0)` in
fun asm avs tm ->
let ath = RESOLVE_EQ asm (mk_eq(last(dest_list(lhand tm)),zero_tm)) in
let sfn = PART_MATCH (lhand o rand o rand) (MATCH_pth1 ath)
and n = length(dest_list(lhand tm)) in
let th1 = DIVIDE_STEP_CONV avs sfn n tm in
let th2 = APPLY_pth0 (rand(concl th1)) in
let th3 = (BINOP_CONV LENGTH_CONV THENC NUM_LT_CONV) (lhand(concl th2)) in
let th4 = MP th2 (EQT_ELIM th3) in
let th5 = CONV_RULE(LAND_CONV(RAND_CONV(LAND_CONV LAST_CONV))) th4 in
let th6 = TRANS th1 (MP th5 ath) in
CONV_RULE(RAND_CONV(RAND_CONV(EXPAND_EX_BETA_RESOLVE_CONV asm))) th6;;
(* ------------------------------------------------------------------------- *)
(* Apply basic Nullstellensatz principle. *)
(* ------------------------------------------------------------------------- *)
let BASIC_QUELIM_CONV =
let pth_1 = prove
(`((?x. (poly p x = Cx(&0)) /\ ~(poly [] x = Cx(&0))) <=> F) /\
((?x. ~(poly [] x = Cx(&0))) <=> F) /\
((?x. ~(poly [c] x = Cx(&0))) <=> ~(c = Cx(&0))) /\
((?x. (poly [] x = Cx(&0))) <=> T) /\
((?x. (poly [c] x = Cx(&0))) <=> (c = Cx(&0)))`,
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID]) in
let APPLY_pth1 = GEN_REWRITE_CONV I [pth_1] in
let pth_2 = prove
(`~(LAST(CONS a (CONS b p)) = Cx(&0))
==> ((?x. poly (CONS a (CONS b p)) x = Cx(&0)) <=> T)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `CONS (a:complex) (CONS b p)`
FUNDAMENTAL_THEOREM_OF_ALGEBRA_ALT) THEN
REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[NOT_EXISTS_THM; CONS_11] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `~(ALL (\c. c = Cx(&0)) (CONS b p))`
(fun th -> MP_TAC th THEN ASM_REWRITE_TAC[]) THEN
UNDISCH_TAC `~(LAST (CONS a (CONS b p)) = Cx (&0))` THEN
ONCE_REWRITE_TAC[LAST] THEN REWRITE_TAC[NOT_CONS_NIL] THEN
REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN
SPEC_TAC(`p:complex list`,`p:complex list`) THEN
LIST_INDUCT_TAC THEN ONCE_REWRITE_TAC[LAST] THEN
REWRITE_TAC[ALL; NOT_CONS_NIL] THEN
STRIP_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_imp o concl) THEN
REWRITE_TAC[LAST] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ALL]) in
let APPLY_pth2 = PART_MATCH (lhand o rand) pth_2 in
let pth_2b = prove
(`(?x. ~(poly p x = Cx(&0))) <=> EX (\c. ~(c = Cx(&0))) p`,
REWRITE_TAC[GSYM NOT_FORALL_THM] THEN
ONCE_REWRITE_TAC[TAUT `(~a <=> b) <=> (a <=> ~b)`] THEN
REWRITE_TAC[NOT_EX; GSYM POLY_ZERO; poly; FUN_EQ_THM]) in
let APPLY_pth2b = GEN_REWRITE_CONV I [pth_2b] in
let pth_3 = prove
(`~(LAST(CONS a p) = Cx(&0))
==> ((?x. (poly (CONS a p) x = Cx(&0)) /\ ~(poly q x = Cx(&0))) <=>
~((CONS a p) divides (q exp (LENGTH p))))`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`CONS (a:complex) p`; `q:complex list`]
NULLSTELLENSATZ_UNIVARIATE) THEN
ASM_SIMP_TAC[degree; NORMALIZE_EQ; LENGTH; PRE] THEN
SUBGOAL_THEN `~(poly (CONS a p) = poly [])`
(fun th -> REWRITE_TAC[th] THEN MESON_TAC[]) THEN
REWRITE_TAC[POLY_ZERO] THEN POP_ASSUM MP_TAC THEN
SPEC_TAC(`p:complex list`,`p:complex list`) THEN
REWRITE_TAC[LAST] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LAST; ALL; NOT_CONS_NIL] THEN
POP_ASSUM MP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[ALL] THEN
CONV_TAC TAUT) in
let APPLY_pth3 = PART_MATCH (lhand o rand) pth_3 in
let POLY_EXP_DIVIDES_CONV =
let pth_4 = prove
(`(!x. (poly (q exp n) x = poly r x))
==> (p divides (q exp n) <=> p divides r)`,
SIMP_TAC[divides; POLY_EXP; FUN_EQ_THM]) in
let APPLY_pth4 = MATCH_MP pth_4
and poly_tm = `poly`
and REWR_POLY_EXP_CONV = REWR_CONV POLY_EXP in
let POLY_EXP_DIVIDES_CONV avs tm =
let tm1 = mk_comb(mk_comb(poly_tm,rand tm),hd avs) in
let th1 = REWR_POLY_EXP_CONV tm1 in
let th2 = TRANS th1 (MPOLY_POW_CONV avs (rand(concl th1))) in
PART_MATCH lhand (APPLY_pth4 (GEN (hd avs) th2)) tm in
POLY_EXP_DIVIDES_CONV in
fun asm avs tm ->
try APPLY_pth1 tm with Failure _ ->
try let th1 = APPLY_pth2 tm in
let th2 = CONV_RULE(LAND_CONV(RAND_CONV(LAND_CONV LAST_CONV))) th1 in
let th3 = try MATCH_MP th2 (RESOLVE_EQ asm (rand(lhand(concl th2))))
with Failure _ -> failwith "Sanity failure (2a)" in
th3
with Failure _ -> try
let th1 = APPLY_pth2b tm in
TRANS th1 (EXPAND_EX_BETA_RESOLVE_CONV asm (rand(concl th1)))
with Failure _ ->
let th1 = APPLY_pth3 tm in
let th2 = CONV_RULE(LAND_CONV(RAND_CONV(LAND_CONV LAST_CONV))) th1 in
let th3 = try MATCH_MP th2 (RESOLVE_EQ asm (rand(lhand(concl th2))))
with Failure _ -> failwith "Sanity failure (2b)" in
let th4 = CONV_RULE (funpow 4 RAND_CONV LENGTH_CONV) th3 in
let th5 =
CONV_RULE(RAND_CONV(RAND_CONV(POLY_EXP_DIVIDES_CONV avs))) th4 in
CONV_RULE(RAND_CONV(RAND_CONV(POLY_DIVIDES_CONV asm avs))) th5;;
(* ------------------------------------------------------------------------- *)
(* Put into canonical form by multiplying inequalities. *)
(* ------------------------------------------------------------------------- *)
let POLY_NE_MULT_CONV =
let pth = prove
(`~(poly p x = Cx(&0)) /\ ~(poly q x = Cx(&0)) <=>
~(poly p x * poly q x = Cx(&0))`,
REWRITE_TAC[COMPLEX_ENTIRE; DE_MORGAN_THM]) in
let APPLY_pth = REWR_CONV pth in
let rec POLY_NE_MULT_CONV avs tm =
if not(is_conj tm) then REFL tm else
let l,r = dest_conj tm in
let th1 = MK_COMB(AP_TERM (rator(rator tm)) (POLY_NE_MULT_CONV avs l),
POLY_NE_MULT_CONV avs r) in
let th2 = TRANS th1 (APPLY_pth (rand(concl th1))) in
CONV_RULE(RAND_CONV(RAND_CONV(LAND_CONV(MPOLY_MUL_CONV avs)))) th2 in
POLY_NE_MULT_CONV;;
let CORE_QUELIM_CONV =
let CONJ_AC_RULE = AC CONJ_ACI in
let CORE_QUELIM_CONV asm avs tm =
let ev,bod = dest_exists tm in
let cjs = conjuncts bod in
let eqs,neqs = partition is_eq cjs in
if eqs = [] then
let th1 = MK_EXISTS ev (POLY_NE_MULT_CONV avs bod) in
TRANS th1 (BASIC_QUELIM_CONV asm avs (rand(concl th1)))
else if length eqs > 1 then failwith "CORE_QUELIM_CONV: Sanity failure"
else if neqs = [] then BASIC_QUELIM_CONV asm avs tm else
let tm1 = mk_conj(hd eqs,list_mk_conj neqs) in
let th1 = CONJ_AC_RULE(mk_eq(bod,tm1)) in
let th2 = CONV_RULE(funpow 2 RAND_CONV(POLY_NE_MULT_CONV avs)) th1 in
let th3 = MK_EXISTS ev th2 in
TRANS th3 (BASIC_QUELIM_CONV asm avs (rand(concl th3))) in
CORE_QUELIM_CONV;;
(* ------------------------------------------------------------------------- *)
(* Main elimination coversion (for a single quantifier). *)
(* ------------------------------------------------------------------------- *)
let RESOLVE_EQ_NE =
let DNE_RULE = GEN_REWRITE_RULE I
[TAUT `((p <=> T) <=> (~p <=> F)) /\ ((p <=> F) <=> (~p <=> T))`] in
fun asm tm ->
if is_neg tm then DNE_RULE(RESOLVE_EQ_RAW asm (rand tm))
else RESOLVE_EQ_RAW asm tm;;
let COMPLEX_QUELIM_CONV =
let pth_0 = prove
(`((poly [] x = Cx(&0)) <=> T) /\
((poly [] x = Cx(&0)) /\ p <=> p)`,
REWRITE_TAC[poly])
and pth_1 = prove
(`(~(poly [] x = Cx(&0)) <=> F) /\
(~(poly [] x = Cx(&0)) /\ p <=> F)`,
REWRITE_TAC[poly])
and pth_2 = prove
(`(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`,
CONV_TAC TAUT)
and zero_tm = `Cx(&0)`
and true_tm = `T` in
let ELIM_ZERO_RULE = GEN_REWRITE_RULE RAND_CONV [pth_0]
and ELIM_NONZERO_RULE = GEN_REWRITE_RULE RAND_CONV [pth_1]
and INCORP_ASSUM_THM = MATCH_MP pth_2
and CONJ_AC_RULE = AC CONJ_ACI in
let POLY_CONST_CONV =
let pth = prove
(`((poly [c] x = y) <=> (c = y)) /\
(~(poly [c] x = y) <=> ~(c = y))`,
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID]) in
TRY_CONV(GEN_REWRITE_CONV I [pth]) in
let EXISTS_TRIV_CONV = REWR_CONV EXISTS_SIMP
and EXISTS_PUSH_CONV = REWR_CONV RIGHT_EXISTS_AND_THM
and AND_SIMP_CONV = GEN_REWRITE_CONV DEPTH_CONV
[TAUT `(p /\ F <=> F) /\ (p /\ T <=> p) /\
(F /\ p <=> F) /\ (T /\ p <=> p)`]
and RESOLVE_OR_CONST_CONV asm tm =
try RESOLVE_EQ_NE asm tm with Failure _ -> POLY_CONST_CONV tm
and false_tm = `F` in
let rec COMPLEX_QUELIM_CONV asm avs tm =
let ev,bod = dest_exists tm in
let cjs = conjuncts bod in
let cjs_set = setify cjs in
if length cjs_set < length cjs then
let th1 = CONJ_AC_RULE(mk_eq(bod,list_mk_conj cjs_set)) in
let th2 = MK_EXISTS ev th1 in
TRANS th2 (COMPLEX_QUELIM_CONV asm avs (rand(concl th2)))
else
let eqs,neqs = partition is_eq cjs in
let lens = map (length o dest_list o lhand o lhs) eqs
and nens = map (length o dest_list o lhand o lhs o rand) neqs in
try let zeq = el (index 0 lens) eqs in
if cjs = [zeq] then BASIC_QUELIM_CONV asm avs tm else
let cjs' = zeq::(subtract cjs [zeq]) in
let th1 = ELIM_ZERO_RULE(CONJ_AC_RULE(mk_eq(bod,list_mk_conj cjs'))) in
let th2 = MK_EXISTS ev th1 in
TRANS th2 (COMPLEX_QUELIM_CONV asm avs (rand(concl th2)))
with Failure _ -> try
let zne = el (index 0 nens) neqs in
if cjs = [zne] then BASIC_QUELIM_CONV asm avs tm else
let cjs' = zne::(subtract cjs [zne]) in
let th1 = ELIM_NONZERO_RULE
(CONJ_AC_RULE(mk_eq(bod,list_mk_conj cjs'))) in
CONV_RULE (RAND_CONV EXISTS_TRIV_CONV) (MK_EXISTS ev th1)
with Failure _ -> try
let ones = map snd (filter (fun (n,_) -> n = 1)
(zip lens eqs @ zip nens neqs)) in
if ones = [] then failwith "" else
let cjs' = subtract cjs ones in
if cjs' = [] then
let th1 = MK_EXISTS ev (SUBS_CONV(map POLY_CONST_CONV cjs) bod) in
TRANS th1 (EXISTS_TRIV_CONV (rand(concl th1)))
else
let tha = SUBS_CONV (map (RESOLVE_OR_CONST_CONV asm) ones)
(list_mk_conj ones) in
let thb = CONV_RULE (RAND_CONV AND_SIMP_CONV) tha in
if rand(concl thb) = false_tm then
let thc = MK_CONJ thb (REFL(list_mk_conj cjs')) in
let thd = CONV_RULE(RAND_CONV AND_SIMP_CONV) thc in
let the = CONJ_AC_RULE(mk_eq(bod,lhand(concl thd))) in
let thf = MK_EXISTS ev (TRANS the thd) in
CONV_RULE(RAND_CONV EXISTS_TRIV_CONV) thf
else
let thc = MK_CONJ thb (REFL(list_mk_conj cjs')) in
let thd = CONJ_AC_RULE(mk_eq(bod,lhand(concl thc))) in
let the = MK_EXISTS ev (TRANS thd thc) in
let th4 = TRANS the(EXISTS_PUSH_CONV(rand(concl the))) in
let tm4 = rand(concl th4) in
let th5 = COMPLEX_QUELIM_CONV asm avs (rand tm4) in
TRANS th4 (AP_TERM (rator tm4) th5)
with Failure _ ->
if eqs = [] ||
(length eqs = 1 &&
(let ceq = mk_eq(last(dest_list(lhand(lhs(hd eqs)))),zero_tm) in
try concl(RESOLVE_EQ asm ceq) = mk_neg ceq with Failure _ -> false) &&
(let h = hd lens in forall (fun n -> n < h) nens))
then
CORE_QUELIM_CONV asm avs tm
else
let n = end_itlist min lens in
let eq = el (index n lens) eqs in
let pol = lhand(lhand eq) in
let atm = last(dest_list pol) in
let zeq = mk_eq(atm,zero_tm) in
RESOLVE_EQ_THEN asm zeq
(fun asm' yth ->
let th0 = TRANS yth (MPOLY_BASE_CONV (tl avs) zero_tm) in
let th1 =
GEN_REWRITE_CONV
(LAND_CONV o LAND_CONV o funpow (n - 1) RAND_CONV o LAND_CONV)
[th0] eq in
let th2 = LAND_CONV(MPOLY_NORM_CONV avs) (rand(concl th1)) in
let th3 = MK_EXISTS ev (SUBS_CONV[TRANS th1 th2] bod) in
TRANS th3 (COMPLEX_QUELIM_CONV asm' avs (rand(concl th3))))
(fun asm' nth ->
let oth = subtract cjs [eq] in
if oth = [] then COMPLEX_QUELIM_CONV asm' avs tm else
let eth = ASSUME eq in
let ths = map (POLY_CANCEL_ENE_CONV avs n nth eth) oth in
let th1 = DISCH eq (end_itlist MK_CONJ ths) in
let th2 = INCORP_ASSUM_THM th1 in
let th3 = TRANS (CONJ_AC_RULE(mk_eq(bod,lhand(concl th2)))) th2 in
let th4 = MK_EXISTS ev th3 in
TRANS th4 (COMPLEX_QUELIM_CONV asm' avs (rand(concl th4)))) in
fun asm avs -> time(COMPLEX_QUELIM_CONV asm avs);;
(* ------------------------------------------------------------------------- *)
(* NNF conversion doing "conditionals" ~(p /\ q \/ ~p /\ r) intelligently. *)
(* ------------------------------------------------------------------------- *)
let NNF_COND_CONV =
let NOT_EXISTS_UNIQUE_THM = prove
(`~(?!x. P x) <=> (!x. ~P x) \/ ?x x'. P x /\ P x' /\ ~(x = x')`,
REWRITE_TAC[EXISTS_UNIQUE_THM; DE_MORGAN_THM; NOT_EXISTS_THM] THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; CONJ_ASSOC]) in
let tauts =
[TAUT `~(~p) <=> p`;
TAUT `~(p /\ q) <=> ~p \/ ~q`;
TAUT `~(p \/ q) <=> ~p /\ ~q`;
TAUT `~(p ==> q) <=> p /\ ~q`;
TAUT `p ==> q <=> ~p \/ q`;
NOT_FORALL_THM;
NOT_EXISTS_THM;
EXISTS_UNIQUE_THM;
NOT_EXISTS_UNIQUE_THM;
TAUT `~(p <=> q) <=> (p /\ ~q) \/ (~p /\ q)`;
TAUT `(p <=> q) <=> (p /\ q) \/ (~p /\ ~q)`;
TAUT `~(p /\ q \/ ~p /\ r) <=> p /\ ~q \/ ~p /\ ~r`] in
GEN_REWRITE_CONV TOP_SWEEP_CONV tauts;;
(* ------------------------------------------------------------------------- *)
(* Overall procedure for multiple quantifiers in any first order formula. *)
(* ------------------------------------------------------------------------- *)
let FULL_COMPLEX_QUELIM_CONV =
let ELIM_FORALL_CONV =
let pth = prove(`(!x. P x) <=> ~(?x. ~(P x))`,MESON_TAC[]) in
REWR_CONV pth in
let ELIM_EQ_CONV =
let pth = SIMPLE_COMPLEX_ARITH `(x = y) <=> (x - y = Cx(&0))`
and zero_tm = `Cx(&0)` in
let REWR_pth = REWR_CONV pth in
fun avs tm ->
if rand tm = zero_tm then LAND_CONV(POLYNATE_CONV avs) tm
else (REWR_pth THENC LAND_CONV(POLYNATE_CONV avs)) tm in
let SIMP_DNF_CONV =
GEN_REWRITE_CONV TOP_DEPTH_CONV (basic_rewrites()) THENC
NNF_COND_CONV THENC DNF_CONV in
let DISTRIB_EXISTS_CONV = GEN_REWRITE_CONV I [EXISTS_OR_THM] in
let TRIV_EXISTS_CONV = GEN_REWRITE_CONV I [EXISTS_SIMP] in
let complex_ty = `:complex` in
let FINAL_SIMP_CONV =
GEN_REWRITE_CONV DEPTH_CONV [CX_INJ] THENC
REAL_RAT_REDUCE_CONV THENC
GEN_REWRITE_CONV TOP_DEPTH_CONV (basic_rewrites()) in
let rec FULL_COMPLEX_QUELIM_CONV avs tm =
if is_forall tm then
let th1 = ELIM_FORALL_CONV tm in
let th2 = FULL_COMPLEX_QUELIM_CONV avs (rand(concl th1)) in
TRANS th1 th2
else if is_neg tm then
AP_TERM (rator tm) (FULL_COMPLEX_QUELIM_CONV avs (rand tm))
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then
let lop,r = dest_comb tm in
let op,l = dest_comb lop in
let thl = FULL_COMPLEX_QUELIM_CONV avs l
and thr = FULL_COMPLEX_QUELIM_CONV avs r in
MK_COMB(AP_TERM(rator(rator tm)) thl,thr)
else if is_exists tm then
let ev,bod = dest_exists tm in
let th0 = FULL_COMPLEX_QUELIM_CONV (ev::avs) bod in
let th1 = MK_EXISTS ev (CONV_RULE(RAND_CONV SIMP_DNF_CONV) th0) in
TRANS th1 (DISTRIB_AND_COMPLEX_QUELIM_CONV (ev::avs) (rand(concl th1)))
else if is_eq tm then
ELIM_EQ_CONV avs tm
else failwith "unexpected type of formula"
and DISTRIB_AND_COMPLEX_QUELIM_CONV avs tm =
try TRIV_EXISTS_CONV tm
with Failure _ -> try
(DISTRIB_EXISTS_CONV THENC
BINOP_CONV (DISTRIB_AND_COMPLEX_QUELIM_CONV avs)) tm
with Failure _ -> COMPLEX_QUELIM_CONV [] avs tm in
fun tm ->
let avs = filter (fun t -> type_of t = complex_ty) (frees tm) in
(FULL_COMPLEX_QUELIM_CONV avs THENC FINAL_SIMP_CONV) tm;;
|