Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 65,529 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C.              *)
From mathcomp Require Import all_ssreflect ssralg ssrnum matrix interval.
Require Import boolp reals mathcomp_extra classical_sets signed functions.
Require Import topology prodnormedzmodule normedtype landau forms.

(******************************************************************************)
(* This file provides a theory of differentiation. It includes the standard   *)
(* rules of differentiation (differential of a sum, of a product, of          *)
(* exponentiation, of the inverse, etc.) as well as standard theorems (the    *)
(* Extreme Value Theorem, Rolle's theorem, the Mean Value Theorem).           *)
(*                                                                            *)
(* Parsable notations (in all of the following, f is not supposed to be       *)
(* differentiable):                                                           *)
(*               'd f x == the differential of a function f at a point x      *)
(*   differentiable f x == the function f is differentiable at a point x      *)
(*               'J f x == the Jacobian of f at a point x                     *)
(*               'D_v f == the directional derivative of f along v            *)
(*               f^`()  == the derivative of f of domain R                    *)
(*               f^`(n) == the nth derivative of f of domain R                *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Theory.
Import numFieldNormedType.Exports.

Local Open Scope ring_scope.
Local Open Scope classical_set_scope.

Reserved Notation "''d' f x" (at level 0, f at level 0, x at level 0,
  format "''d'  f  x").
Reserved Notation "'is_diff' F" (at level 0, F at level 0,
  format "'is_diff'  F").
Reserved Notation "''J' f p" (at level 10, p, f at next level,
  format "''J'  f  p").
Reserved Notation "''D_' v f" (at level 10, v, f at next level,
  format "''D_' v  f").
Reserved Notation "''D_' v f c" (at level 10, v, f at next level,
  format "''D_' v  f  c"). (* printing *)
Reserved Notation "f ^` ()" (at level 8, format "f ^` ()").
Reserved Notation "f ^` ( n )" (at level 8, format "f ^` ( n )").

Section Differential.
Context {K : numDomainType} {V W : normedModType K}.

Definition diff (F : filter_on V) (_ : phantom (set (set V)) F) (f : V -> W) :=
  (get (fun (df : {linear V -> W}) => continuous df /\ forall x,
      f x = f (lim F) + df (x - lim F) +o_(x \near F) (x - lim F))).

Local Notation "''d' f x" := (@diff _ (Phantom _ [filter of x]) f).

Fact diff_key : forall T, T -> unit. Proof. by constructor. Qed.
CoInductive differentiable_def (f : V -> W) (x : filter_on V)
  (phF : phantom (set (set V)) x) : Prop := DifferentiableDef of
  (continuous ('d f x) /\
  f = cst (f (lim x)) + 'd f x \o center (lim x) +o_x (center (lim x))).

Local Notation differentiable f F := (@differentiable_def f _ (Phantom _ [filter of F])).

Class is_diff_def (x : filter_on V) (Fph : phantom (set (set V)) x) (f : V -> W)
  (df : V -> W) := DiffDef {
    ex_diff : differentiable f x ;
    diff_val : 'd f x = df :> (V -> W)
  }.
Hint Mode is_diff_def - - ! - : typeclass_instances.

Lemma diffP (F : filter_on V) (f : V -> W) :
  differentiable f F <->
  continuous ('d f F) /\
  (forall x, f x = f (lim F) + 'd f F (x - lim F) +o_(x \near F) (x - lim F)).
Proof. by split=> [[] |]; last constructor; rewrite funeqE. Qed.

Lemma diff_continuous (x : filter_on V) (f : V -> W) :
  differentiable f x -> continuous ('d f x).
Proof. by move=> /diffP []. Qed.
(* We should have a continuous class or structure *)
Hint Extern 0 (continuous _) => exact: diff_continuous : core.

Lemma diffE (F : filter_on V) (f : V -> W) :
  differentiable f F ->
  forall x, f x = f (lim F) + 'd f F (x - lim F) +o_(x \near F) (x - lim F).
Proof. by move=> /diffP []. Qed.

Lemma littleo_center0 (x : V) (f : V -> W) (e : V -> V) :
  [o_x e of f] = [o_ (0 : V) (e \o shift x) of f \o shift x] \o center x.
Proof.
rewrite /the_littleo /insubd /=; have [g /= _ <-{f}|/asboolP Nfe] /= := insubP.
  rewrite insubT //= ?comp_shiftK //; apply/asboolP => _/posnumP[eps].
  rewrite [\forall x \near _, _ <= _](near_shift x) sub0r; near=> y.
  by rewrite /= subrK; near: y; have /eqoP := littleo_eqo g; apply.
rewrite insubF //; apply/asboolP => fe; apply: Nfe => _/posnumP[eps].
by rewrite [\forall x \near _, _ <= _](near_shift 0) subr0; apply: fe.
Unshelve. all: by end_near. Qed.

End Differential.

Section Differential_numFieldType.
Context {K : numFieldType (*TODO: to numDomainType?*)} {V W : normedModType K}.

(* duplicate from Section Differential *)
Local Notation differentiable f F := (@differentiable_def _ _ _ f _ (Phantom _ [filter of F])).
Local Notation "''d' f x" := (@diff _ _ _ _ (Phantom _ [filter of x]) f).
Hint Extern 0 (continuous _) => exact: diff_continuous : core.

Lemma diff_locallyxP (x : V) (f : V -> W) :
  differentiable f x <-> continuous ('d f x) /\
  forall h, f (h + x) = f x + 'd f x h +o_(h \near 0 : V) h.
Proof.
split=> [dxf|[dfc dxf]].
  split => //; apply: eqaddoEx => h; have /diffE -> := dxf.
  rewrite lim_id // addrK; congr (_ + _); rewrite littleo_center0 /= addrK.
  by congr ('o); rewrite funeqE => k /=; rewrite addrK.
apply/diffP; split=> //; apply: eqaddoEx; move=> y.
rewrite lim_id // -[in LHS](subrK x y) dxf; congr (_ + _).
rewrite -(comp_centerK x id) -[X in the_littleo _ _ _ X](comp_centerK x).
by rewrite -[_ (y - x)]/((_ \o (center x)) y) -littleo_center0.
Qed.

Lemma diff_locallyx (x : V) (f : V -> W) : differentiable f x ->
  forall h, f (h + x) = f x + 'd f x h +o_(h \near 0 : V) h.
Proof. by move=> /diff_locallyxP []. Qed.

Lemma diff_locallyxC (x : V) (f : V -> W) : differentiable f x ->
  forall h, f (x + h) = f x + 'd f x h +o_(h \near 0 : V) h.
Proof. by move=> ?; apply/eqaddoEx => h; rewrite [x + h]addrC diff_locallyx. Qed.

Lemma diff_locallyP (x : V) (f : V -> W) :
  differentiable f x <->
  continuous ('d f x) /\ (f \o shift x = cst (f x) + 'd f x +o_ (0 : V) id).
Proof. by apply: iff_trans (diff_locallyxP _ _) _; rewrite funeqE. Qed.

Lemma diff_locally (x : V) (f : V -> W) : differentiable f x ->
  (f \o shift x = cst (f x) + 'd f x +o_ (0 : V) id).
Proof. by move=> /diff_locallyP []. Qed.

End Differential_numFieldType.

Notation "''d' f F" := (@diff _ _ _ _ (Phantom _ [filter of F]) f).
Notation differentiable f F := (@differentiable_def _ _ _ f _ (Phantom _ [filter of F])).

Notation "'is_diff' F" := (is_diff_def (Phantom _ [filter of F])).
#[global] Hint Extern 0 (differentiable _ _) => solve[apply: ex_diff] : core.
#[global] Hint Extern 0 ({for _, continuous _}) => exact: diff_continuous : core.

Lemma differentiableP (R : numDomainType) (V W : normedModType R) (f : V -> W) x :
  differentiable f x -> is_diff x f ('d f x).
Proof. by move=> ?; apply: DiffDef. Qed.

Section jacobian.

Definition jacobian n m (R : numFieldType) (f : 'rV[R]_n.+1 -> 'rV[R]_m.+1) p :=
  lin1_mx ('d f p).

End jacobian.

Notation "''J' f p" := (jacobian f p).

Section DifferentialR.

Context {R : numFieldType} {V W : normedModType R}.

(* split in multiple bits:
- a linear map which is locally bounded is a little o of 1
- the identity is a littleo of 1
*)
Lemma differentiable_continuous (x : V) (f : V -> W) :
  differentiable f x -> {for x, continuous f}.
Proof.
move=> /diff_locallyP [dfc]; rewrite -addrA.
rewrite (littleo_bigO_eqo (cst (1 : R))); last first.
  apply/eqOP; near=> k; rewrite /cst [`|1|]normr1 mulr1.
  near=> y; rewrite ltW //; near: y; apply/nbhs_normP.
  exists k; first by near: k; exists 0.
  by move=> ? /=; rewrite -ball_normE /= sub0r normrN.
rewrite addfo; first by move=> /eqolim; rewrite cvg_comp_shift add0r.
by apply/eqolim0P; apply: (cvg_trans (dfc 0)); rewrite linear0.
Unshelve. all: by end_near. Qed.

Section littleo_lemmas.

Variables (X Y Z : normedModType R).

Lemma normm_littleo x (f : X -> Y) : `| [o_(x \near x) (1 : R) of f x]| = 0.
Proof.
rewrite /cst /=; have [e /(_ (`|e x|/2) _)/nbhs_singleton /=] := littleo.
rewrite pmulr_lgt0 // [`|1|]normr1 mulr1 [leLHS]splitr ger_addr pmulr_lle0 //.
by move=> /implyP; case : real_ltgtP; rewrite ?realE ?normrE //= lexx.
Qed.

Lemma littleo_lim0 (f : X -> Y) (h : _ -> Z) (x : X) :
  f @ x --> (0 : Y) -> [o_x f of h] x = 0.
Proof.
move/eqolim0P => ->; have [k /(_ _ [gt0 of 1 : R])/=] := littleo.
by move=> /nbhs_singleton; rewrite mul1r normm_littleo normr_le0 => /eqP.
Qed.

End littleo_lemmas.

Section diff_locally_converse_tentative.
(* if there exist A and B s.t. f(a + h) = A + B h + o(h) then
   f is differentiable at a, A = f(a) and B = f'(a) *)
(* this is a consequence of diff_continuous and eqolim0 *)
(* indeed the differential being b *: idfun is locally bounded *)
(* and thus a littleo of 1, and so is id *)
(* This can be generalized to any dimension *)
Lemma diff_locally_converse_part1 (f : R -> R) (a b x : R) :
  f \o shift x = cst a + b *: idfun +o_ (0 : R) id -> f x = a.
Proof.
rewrite funeqE => /(_ 0) /=; rewrite add0r => ->.
by rewrite -[LHS]/(_ 0 + _ 0 + _ 0) /cst [X in a + X]scaler0 littleo_lim0 ?addr0.
Qed.

End diff_locally_converse_tentative.

Definition derive (f : V -> W) a v :=
  lim ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ 0^').

Local Notation "''D_' v f" := (derive f ^~ v).
Local Notation "''D_' v f c" := (derive f c v). (* printing *)

Definition derivable (f : V -> W) a v :=
  cvg ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ 0^').

Class is_derive (a v : V) (f : V -> W) (df : W) := DeriveDef {
  ex_derive : derivable f a v;
  derive_val : 'D_v f a = df
}.

Lemma derivable_nbhs (f : V -> W) a v :
  derivable f a v ->
  (fun h => (f \o shift a) (h *: v)) = (cst (f a)) +
    (fun h => h *: ('D_v f a)) +o_ (nbhs (0 :R)) id.
Proof.
move=> df; apply/eqaddoP => _/posnumP[e].
rewrite -nbhs_nearE nbhs_simpl /= dnbhsE; split; last first.
  rewrite /at_point opprD -![(_ + _ : _ -> _) _]/(_ + _) scale0r add0r.
  by rewrite addrA subrr add0r normrN scale0r !normr0 mulr0.
have /eqolimP := df; rewrite -[lim _]/(derive _ _ _).
move=> /eqaddoP /(_ e%:num) /(_ [gt0 of e%:num]).
apply: filter_app; rewrite /= !near_simpl near_withinE; near=> h => hN0.
rewrite /= opprD -![(_ + _ : _ -> _) _]/(_ + _) -![(- _ : _ -> _) _]/(- _).
rewrite /cst /= [`|1|]normr1 mulr1 => dfv.
rewrite addrA -[X in X + _]scale1r -(@mulVf _ h) //.
rewrite mulrC -scalerA -scalerBr normmZ.
rewrite -ler_pdivl_mull; last by rewrite normr_gt0.
by rewrite mulrCA mulVf ?mulr1; last by rewrite normr_eq0.
Unshelve. all: by end_near. Qed.

Lemma derivable_nbhsP (f : V -> W) a v :
  derivable f a v <->
  (fun h => (f \o shift a) (h *: v)) = (cst (f a)) +
    (fun h => h *: ('D_v f a)) +o_ (nbhs (0 : R)) id.
Proof.
split; first exact: derivable_nbhs.
move=> df; apply/cvg_ex; exists ('D_v f a).
apply/(@eqolimP _ _ _ (dnbhs_filter_on _))/eqaddoP => _/posnumP[e].
have /eqaddoP /(_ e%:num) /(_ [gt0 of e%:num]) := df.
rewrite /= !(near_simpl, near_withinE); apply: filter_app; near=> h.
rewrite /= opprD -![(_ + _ : _ -> _) _]/(_ + _) -![(- _ : _ -> _) _]/(- _).
rewrite /cst /= [`|1|]normr1 mulr1 addrA => dfv hN0.
rewrite -[X in _ - X]scale1r -(@mulVf _ h) //.
rewrite -scalerA -scalerBr normmZ normfV ler_pdivr_mull ?normr_gt0 //.
by rewrite mulrC.
Unshelve. all: by end_near. Qed.

Lemma derivable_nbhsx (f : V -> W) a v :
  derivable f a v -> forall h, f (a + h *: v) = f a + h *: 'D_v f a
  +o_(h \near (nbhs (0 : R))) h.
Proof.
move=> /derivable_nbhs; rewrite funeqE => df.
by apply: eqaddoEx => h; have /= := (df h); rewrite addrC => ->.
Qed.

Lemma derivable_nbhsxP (f : V -> W) a v :
  derivable f a v <-> forall h, f (a + h *: v) = f a + h *: 'D_v f a
  +o_(h \near (nbhs (0 :R))) h.
Proof.
split; first exact: derivable_nbhsx.
move=> df; apply/derivable_nbhsP; apply/eqaddoE; rewrite funeqE => h.
by rewrite /= addrC df.
Qed.

End DifferentialR.

Notation "''D_' v f" := (derive f ^~ v).
Notation "''D_' v f c" := (derive f c v). (* printing *)
#[global] Hint Extern 0 (derivable _ _ _) => solve[apply: ex_derive] : core.

Section DifferentialR_numFieldType.
Context {R : numFieldType} {V W : normedModType R}.

Lemma deriveE (f : V -> W) (a v : V) :
  differentiable f a -> 'D_v f a = 'd f a v.
Proof.
rewrite /derive => /diff_locally -> /=; set k := 'o _.
evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first.
  rewrite funeqE=> h; rewrite !scalerDr scalerN /cst /=.
  by rewrite addrC !addrA addNr add0r linearZ /= scalerA /g.
apply: cvg_map_lim => //.
pose g1 : R -> W := fun h => (h^-1 * h) *: 'd f a v.
pose g2 : R -> W := fun h : R => h^-1 *: k (h *: v ).
rewrite (_ : g = g1 + g2) ?funeqE // -(addr0 (_ _ v)); apply: cvgD.
  rewrite -(scale1r (_ _ v)); apply: cvgZl => /= X [e e0].
  rewrite /ball_ /= => eX.
  apply/nbhs_ballP.
  by exists e => //= x _ x0; apply eX; rewrite mulVr // ?unitfE //= subrr normr0.
rewrite /g2.
have [/eqP ->|v0] := boolP (v == 0).
  rewrite (_ : (fun _ => _) = cst 0); first exact: cvg_cst.
  by rewrite funeqE => ?; rewrite scaler0 /k littleo_lim0 // scaler0.
apply/cvg_distP => e e0.
rewrite nearE /=; apply/nbhs_ballP.
have /(littleoP [littleo of k]) /nbhs_ballP[i i0 Hi] : 0 < e / (2 * `|v|).
  by rewrite divr_gt0 // pmulr_rgt0 // normr_gt0.
exists (i / `|v|); first by rewrite /= divr_gt0 // normr_gt0.
move=> /= j; rewrite /ball /= /ball_ add0r normrN.
rewrite ltr_pdivl_mulr ?normr_gt0 // => jvi j0.
rewrite add0r normrN normmZ -ltr_pdivl_mull ?normr_gt0 ?invr_neq0 //.
have /Hi/le_lt_trans -> // : ball 0 i (j *: v).
  by rewrite -ball_normE /ball_/= add0r normrN (le_lt_trans _ jvi) // normmZ.
rewrite -(mulrC e) -mulrA -ltr_pdivl_mull // mulrA mulVr ?unitfE ?gt_eqF //.
rewrite normrV ?unitfE // div1r invrK ltr_pdivr_mull; last first.
  by rewrite pmulr_rgt0 // normr_gt0.
rewrite normmZ mulrC -mulrA.
by rewrite ltr_pmull ?ltr1n // pmulr_rgt0 ?normm_gt0 // normr_gt0.
Qed.

End DifferentialR_numFieldType.

Section DifferentialR2.
Variable R : numFieldType.
Implicit Type (V : normedModType R).

Lemma derivemxE m n (f : 'rV[R]_m.+1 -> 'rV[R]_n.+1) (a v : 'rV[R]_m.+1) :
  differentiable f a -> 'D_ v f a = v *m jacobian f a.
Proof. by move=> /deriveE->; rewrite /jacobian mul_rV_lin1. Qed.

Definition derive1 V (f : R -> V) (a : R) :=
   lim ((fun h => h^-1 *: (f (h + a) - f a)) @ 0^').

Local Notation "f ^` ()" := (derive1 f).

Lemma derive1E V (f : R -> V) a : f^`() a = 'D_1 f a.
Proof.
rewrite /derive1 /derive; set d := (fun _ : R => _); set d' := (fun _ : R => _).
by suff -> : d = d' by []; rewrite funeqE=> h; rewrite /d /d' /= [h%:A](mulr1).
Qed.

(* Is it necessary? *)
Lemma derive1E' V f a : differentiable (f : R -> V) a ->
  f^`() a = 'd f a 1.
Proof. by move=> ?; rewrite derive1E deriveE. Qed.

Definition derive1n V n (f : R -> V) := iter n (@derive1 V) f.

Local Notation "f ^` ( n )" := (derive1n n f).

Lemma derive1n0 V (f : R -> V) : f^`(0) = f.
Proof. by []. Qed.

Lemma derive1n1 V (f : R -> V) : f^`(1) = f^`().
Proof. by []. Qed.

Lemma derive1nS V (f : R -> V) n : f^`(n.+1) = f^`(n)^`().
Proof. by []. Qed.

Lemma derive1Sn V (f : R -> V) n : f^`(n.+1) = f^`()^`(n).
Proof. exact: iterSr. Qed.

End DifferentialR2.

Notation "f ^` ()" := (derive1 f).
Notation "f ^` ( n )" := (derive1n n f).

Section DifferentialR3.
Variable R : numFieldType.

Fact dcst (V W : normedModType R) (a : W) (x : V) : continuous (0 : V -> W) /\
  cst a \o shift x = cst (cst a x) + \0 +o_ (0 : V) id.
Proof.
split; first exact: cst_continuous.
apply/eqaddoE; rewrite addr0 funeqE => ? /=; rewrite -[LHS]addr0; congr (_ + _).
by rewrite littleoE; last exact: littleo0_subproof.
Qed.

Variables (V W : normedModType R).

Fact dadd (f g : V -> W) x :
  differentiable f x -> differentiable g x ->
  continuous ('d f x \+ 'd g x) /\
  (f + g) \o shift x = cst ((f + g) x) + ('d f x \+ 'd g x) +o_ (0 : V) id.
Proof.
move=> df dg; split => [?|]; do ?exact: continuousD.
apply/(@eqaddoE R); rewrite funeqE => y /=; rewrite -[(f + g) _]/(_ + _).
by rewrite ![_ (_ + x)]diff_locallyx// addrACA addox addrACA.
Qed.

Fact dopp (f : V -> W) x :
  differentiable f x -> continuous (- ('d f x : V -> W)) /\
  (- f) \o shift x = cst (- f x) \- 'd f x +o_ (0 : V) id.
Proof.
move=> df; split; first by move=> ?; apply: continuousN.
apply/eqaddoE; rewrite funeqE => y /=.
by rewrite -[(- f) _]/(- (_ _)) diff_locallyx// !opprD oppox.
Qed.

Lemma is_diff_eq (V' W' : normedModType R) (f f' g : V' -> W') (x : V') :
  is_diff x f f' -> f' = g -> is_diff x f g.
Proof. by move=> ? <-. Qed.

Fact dscale (f : V -> W) k x :
  differentiable f x -> continuous (k \*: 'd f x) /\
  (k *: f) \o shift x = cst ((k *: f) x) + k \*: 'd f x +o_ (0 : V) id.
Proof.
move=> df; split; first by move=> ?; apply: continuousZr.
apply/eqaddoE; rewrite funeqE => y /=.
by rewrite -[(k *: f) _]/(_ *: _) diff_locallyx // !scalerDr scaleox.
Qed.

(* NB: could be generalized with K : absRingType instead of R; DONE? *)
Fact dscalel (k : V -> R) (f : W) x :
  differentiable k x ->
  continuous (fun z : V => 'd k x z *: f) /\
  (fun z => k z *: f) \o shift x =
    cst (k x *: f) + (fun z => 'd k x z *: f) +o_ (0 : V) id.
Proof.
move=> df; split.
  move=> ?; exact/continuousZl/diff_continuous.
apply/eqaddoE; rewrite funeqE => y /=.
by rewrite diff_locallyx //= !scalerDl scaleolx.
Qed.

Fact dlin (V' W' : normedModType R) (f : {linear V' -> W'}) x :
  continuous f -> f \o shift x = cst (f x) + f +o_ (0 : V') id.
Proof.
move=> df; apply: eqaddoE; rewrite funeqE => y /=.
rewrite linearD addrC -[LHS]addr0; congr (_ + _).
by rewrite littleoE; last exact: littleo0_subproof. (*fixme*)
Qed.

(* TODO: generalize *)
Lemma compoO_eqo (U V' W' : normedModType R) (f : U -> V')
  (g : V' -> W') :
  [o_ (0 : V') id of g] \o [O_ (0 : U) id of f] =o_ (0 : U) id.
Proof.
apply/eqoP => _ /posnumP[e].
have /bigO_exP [_ /posnumP[k]] := bigOP [bigO of [O_ (0 : U) id of f]].
have := littleoP [littleo of [o_ (0 : V') id of g]].
move=>  /(_ (e%:num / k%:num)) /(_ _) /nbhs_ballP [//|_ /posnumP[d] hd].
apply: filter_app; near=> x => leOxkx; apply: le_trans (hd _ _) _; last first.
  rewrite -ler_pdivl_mull //; apply: le_trans leOxkx _.
  by rewrite invf_div mulrA -[_ / _ * _]mulrA mulVf // mulr1.
rewrite -ball_normE /= distrC subr0 (le_lt_trans leOxkx) //.
rewrite -ltr_pdivl_mull //; near: x; rewrite /= !nbhs_simpl.
apply/nbhs_ballP; exists (k%:num ^-1 * d%:num) => //= x.
by rewrite -ball_normE /= distrC subr0.
Unshelve. all: by end_near. Qed.

Lemma compoO_eqox (U V' W' : normedModType R) (f : U -> V')
  (g : V' -> W') :
  forall x : U, [o_ (0 : V') id of g] ([O_ (0 : U) id of f] x) =o_(x \near 0 : U) x.
Proof. by move=> x; rewrite -[LHS]/((_ \o _) x) compoO_eqo. Qed.

(* TODO: generalize *)
Lemma compOo_eqo  (U V' W' : normedModType R) (f : U -> V')
  (g : V' -> W') :
  [O_ (0 : V') id of g] \o [o_ (0 : U) id of f] =o_ (0 : U) id.
Proof.
apply/eqoP => _ /posnumP[e].
have /bigO_exP [_ /posnumP[k]] := bigOP [bigO of [O_ (0 : V') id of g]].
move=> /nbhs_ballP [_ /posnumP[d] hd].
have ekgt0 : e%:num / k%:num > 0 by [].
have /(_ _ ekgt0) := littleoP [littleo of [o_ (0 : U) id of f]].
apply: filter_app; near=> x => leoxekx; apply: le_trans (hd _ _) _; last first.
  by rewrite -ler_pdivl_mull // mulrA [_^-1 * _]mulrC.
rewrite -ball_normE /= distrC subr0; apply: le_lt_trans leoxekx _.
rewrite -ltr_pdivl_mull //; near: x; rewrite /= nbhs_simpl.
apply/nbhs_ballP; exists ((e%:num / k%:num) ^-1 * d%:num) => //= x.
by rewrite -ball_normE /= distrC subr0.
Unshelve. all: by end_near. Qed.

End DifferentialR3.

Section DifferentialR3_numFieldType.
Variable R : numFieldType.

Lemma littleo_linear0 (V W : normedModType R) (f : {linear V -> W}) :
  (f : V -> W) =o_ (0 : V) id -> f = cst 0 :> (V -> W).
Proof.
move/eqoP => oid.
rewrite funeqE => x; apply/eqP; have [|xn0] := real_le0P (normr_real x).
  by rewrite normr_le0 => /eqP ->; rewrite linear0.
rewrite -normr_le0 -(mul0r `|x|) -ler_pdivr_mulr //.
apply/ler0_addgt0P => _ /posnumP[e]; rewrite ler_pdivr_mulr //.
have /oid /nbhs_ballP [_ /posnumP[d] dfe] := !! gt0 e.
set k := ((d%:num / 2) / (PosNum xn0)%:num)^-1.
rewrite -{1}(@scalerKV _ _ k _ x) /k // linearZZ normmZ.
rewrite -ler_pdivl_mull; last by rewrite gtr0_norm.
rewrite mulrCA (@le_trans _ _ (e%:num * `|k^-1 *: x|)) //; last first.
  by rewrite ler_pmul // normmZ normfV.
apply: dfe.
rewrite -ball_normE /ball_/= sub0r normrN normmZ.
rewrite invrK -ltr_pdivl_mulr // ger0_norm // ltr_pdivr_mulr //.
by rewrite -mulrA mulVf ?lt0r_neq0 // mulr1 [ltRHS]splitr ltr_addl.
Qed.

Lemma diff_unique (V W : normedModType R) (f : V -> W)
  (df : {linear V -> W}) x :
  continuous df -> f \o shift x = cst (f x) + df +o_ (0 : V) id ->
  'd f x = df :> (V -> W).
Proof.
move=> dfc dxf; apply/subr0_eq; rewrite -[LHS]/(_ \- _).
apply/littleo_linear0/eqoP/eq_some_oP => /=; rewrite funeqE => y /=.
have hdf h :
  (f \o shift x = cst (f x) + h +o_ (0 : V) id) ->
  h = f \o shift x - cst (f x) +o_ (0 : V) id.
  move=> hdf; apply: eqaddoE.
  rewrite hdf addrAC (addrC _ h) addrK.
  rewrite -[LHS]addr0 -addrA; congr (_ + _).
  by apply/eqP; rewrite eq_sym addrC addr_eq0 oppo.
rewrite (hdf _ dxf).
suff /diff_locally /hdf -> : differentiable f x.
  by rewrite opprD addrCA -(addrA (_ - _)) addKr oppox addox.
apply/diffP; apply: (@getPex _ (fun (df : {linear V -> W}) => continuous df /\
  forall y, f y = f (lim x) + df (y - lim x) +o_(y \near x) (y - lim x))).
exists df; split=> //; apply: eqaddoEx => z.
rewrite (hdf _ dxf) !addrA lim_id // /(_ \o _) /= subrK [f _ + _]addrC addrK.
rewrite -addrA -[LHS]addr0; congr (_ + _).
apply/eqP; rewrite eq_sym addrC addr_eq0 oppox; apply/eqP.
by rewrite littleo_center0 (comp_centerK x id) -[- _ in RHS](comp_centerK x).
Qed.

Lemma diff_cst (V W : normedModType R) a x : ('d (cst a) x : V -> W) = 0.
Proof. by apply/diff_unique; have [] := dcst a x. Qed.

Variables (V W : normedModType R).

Lemma differentiable_cst (W' : normedModType R) (a : W') (x : V) :
  differentiable (cst a) x.
Proof. by apply/diff_locallyP; rewrite diff_cst; have := dcst a x. Qed.

Global Instance is_diff_cst (a : W) (x : V) : is_diff x (cst a) 0.
Proof. exact: DiffDef (differentiable_cst _ _) (diff_cst _ _). Qed.

Lemma diffD (f g : V -> W) x :
  differentiable f x -> differentiable g x ->
  'd (f + g) x = 'd f x \+ 'd g x :> (V -> W).
Proof. by move=> df dg; apply/diff_unique; have [] := dadd df dg. Qed.

Lemma differentiableD (f g : V -> W) x :
  differentiable f x -> differentiable g x -> differentiable (f + g) x.
Proof.
by move=> df dg; apply/diff_locallyP; rewrite diffD //; have := dadd df dg.
Qed.

Global Instance is_diffD (f g df dg : V -> W) x :
  is_diff x f df -> is_diff x g dg -> is_diff x (f + g) (df + dg).
Proof.
move=> dfx dgx; apply: DiffDef; first exact: differentiableD.
by rewrite diffD // !diff_val.
Qed.

Lemma differentiable_sum n (f : 'I_n -> V -> W) (x : V) :
  (forall i, differentiable (f i) x) -> differentiable (\sum_(i < n) f i) x.
Proof.
elim: n f => [f _| n IH f H]; first by rewrite big_ord0.
rewrite big_ord_recr /=; apply/differentiableD; [apply/IH => ? |]; exact: H.
Qed.

Lemma diffN (f : V -> W) x :
  differentiable f x -> 'd (- f) x = - ('d f x : V -> W) :> (V -> W).
Proof.
move=> df; rewrite -[RHS]/(@GRing.opp _ \o _); apply/diff_unique;
by have [] := dopp df.
Qed.

Lemma differentiableN (f : V -> W) x :
  differentiable f x -> differentiable (- f) x.
Proof.
by move=> df; apply/diff_locallyP; rewrite diffN //; have := dopp df.
Qed.

Global Instance is_diffN (f df : V -> W) x :
  is_diff x f df -> is_diff x (- f) (- df).
Proof.
move=> dfx; apply: DiffDef; first exact: differentiableN.
by rewrite diffN // diff_val.
Qed.

Global Instance is_diffB (f g df dg : V -> W) x :
  is_diff x f df -> is_diff x g dg -> is_diff x (f - g) (df - dg).
Proof. by move=> dfx dgx; apply: is_diff_eq. Qed.

Lemma diffB (f g : V -> W) x :
  differentiable f x -> differentiable g x ->
  'd (f - g) x = 'd f x \- 'd g x :> (V -> W).
Proof. by move=> /differentiableP df /differentiableP dg; rewrite diff_val. Qed.

Lemma differentiableB (f g : V -> W) x :
  differentiable f x -> differentiable g x -> differentiable (f \- g) x.
Proof. by move=> /differentiableP df /differentiableP dg. Qed.

Lemma diffZ (f : V -> W) k x :
  differentiable f x -> 'd (k *: f) x = k \*: 'd f x :> (V -> W).
Proof. by move=> df; apply/diff_unique; have [] := dscale k df. Qed.

Lemma differentiableZ (f : V -> W) k x :
  differentiable f x -> differentiable (k *: f) x.
Proof.
by move=> df; apply/diff_locallyP; rewrite diffZ //; have := dscale k df.
Qed.

Global Instance is_diffZ (f df : V -> W) k x :
  is_diff x f df -> is_diff x (k *: f) (k *: df).
Proof.
move=> dfx; apply: DiffDef; first exact: differentiableZ.
by rewrite diffZ // diff_val.
Qed.

Lemma diffZl (k : V -> R) (f : W) x : differentiable k x ->
  'd (fun z => k z *: f) x = (fun z => 'd k x z *: f) :> (_ -> _).
Proof.
move=> df; set g := RHS; have glin : linear g.
  by move=> a u v; rewrite /g linearP /= scalerDl -scalerA.
by apply:(@diff_unique _ _ _ (Linear glin)); have [] := dscalel f df.
Qed.

Lemma differentiableZl (k : V -> R) (f : W) x :
  differentiable k x -> differentiable (fun z => k z *: f) x.
Proof.
by move=> df; apply/diff_locallyP; rewrite diffZl //; have [] := dscalel f df.
Qed.

Lemma diff_lin (V' W' : normedModType R) (f : {linear V' -> W'}) x :
  continuous f -> 'd f x = f :> (V' -> W').
Proof. by move=> fcont; apply/diff_unique => //; apply: dlin. Qed.

Lemma linear_differentiable (V' W' : normedModType R) (f : {linear V' -> W'})
  x : continuous f -> differentiable f x.
Proof.
by move=> fcont; apply/diff_locallyP; rewrite diff_lin //; have := dlin x fcont.
Qed.

Global Instance is_diff_id (x : V) : is_diff x id id.
Proof.
apply: DiffDef.
  by apply: (@linear_differentiable _ _ [linear of idfun]) => ? //.
by rewrite (@diff_lin _ _ [linear of idfun]) // => ? //.
Qed.

Global Instance is_diff_scaler (k : R) (x : V) : is_diff x ( *:%R k) ( *:%R k).
Proof.
apply: DiffDef; first exact/linear_differentiable/scaler_continuous.
by rewrite diff_lin //; apply: scaler_continuous.
Qed.

Global Instance is_diff_scalel (x k : R) :
  is_diff k ( *:%R ^~ x) ( *:%R ^~ x).
Proof.
have -> : *:%R ^~ x = GRing.scale_linear R x.
  by rewrite funeqE => ? /=; rewrite [_ *: _]mulrC.
apply: DiffDef; first exact/linear_differentiable/scaler_continuous.
by rewrite diff_lin //; apply: scaler_continuous.
Qed.

Lemma differentiable_coord m n (M : 'M[R]_(m.+1, n.+1)) i j :
  differentiable (fun N : 'M[R]_(m.+1, n.+1) => N i j : R ) M.
Proof.
have @f : {linear 'M[R]_(m.+1, n.+1) -> R}.
  by exists (fun N : 'M[R]_(_, _) => N i j); eexists; move=> ? ?; rewrite !mxE.
rewrite (_ : (fun _ => _) = f) //; exact/linear_differentiable/coord_continuous.
Qed.

Lemma linear_lipschitz (V' W' : normedModType R) (f : {linear V' -> W'}) :
  continuous f -> exists2 k, k > 0 & forall x, `|f x| <= k * `|x|.
Proof.
move=> /(_ 0); rewrite linear0 => /(_ _ (nbhsx_ballx 0 1%:pos)).
move=> /nbhs_ballP [_ /posnumP[e] he]; exists (2 / e%:num) => // x.
have [|xn0] := real_le0P (normr_real x).
  by rewrite normr_le0 => /eqP->; rewrite linear0 !normr0 mulr0.
set k := 2 / e%:num * (PosNum xn0)%:num.
have kn0 : k != 0 by rewrite /k.
have abskgt0 : `|k| > 0 by rewrite normr_gt0.
rewrite -[x in leLHS](scalerKV kn0) linearZZ normmZ -ler_pdivl_mull //.
suff /he : ball 0 e%:num (k^-1 *: x).
  rewrite -ball_normE /= distrC subr0 => /ltW /le_trans; apply.
  by rewrite ger0_norm /k // mulVf.
rewrite -ball_normE /= distrC subr0 normmZ.
rewrite normfV ger0_norm /k // invrM ?unitfE // mulrAC mulVf //.
by rewrite invf_div mul1r [ltRHS]splitr; apply: ltr_spaddr.
Qed.

Lemma linear_eqO (V' W' : normedModType R) (f : {linear V' -> W'}) :
  continuous f -> (f : V' -> W') =O_ (0 : V') id.
Proof.
move=> /linear_lipschitz [k kgt0 flip]; apply/eqO_exP; exists k => //.
exact: filterE.
Qed.

Lemma diff_eqO (V' W' : normedModType R) (x : filter_on V') (f : V' -> W') :
  differentiable f x -> ('d f x : V' -> W') =O_ (0 : V') id.
Proof. by move=> /diff_continuous /linear_eqO; apply. Qed.

Lemma compOo_eqox (U V' W' : normedModType R) (f : U -> V')
  (g : V' -> W') : forall x,
  [O_ (0 : V') id of g] ([o_ (0 : U) id of f] x) =o_(x \near 0 : U) x.
Proof. by move=> x; rewrite -[LHS]/((_ \o _) x) compOo_eqo. Qed.

Fact dcomp (U V' W' : normedModType R) (f : U -> V') (g : V' -> W') x :
  differentiable f x -> differentiable g (f x) ->
  continuous ('d g (f x) \o 'd f x) /\ forall y,
  g (f (y + x)) = g (f x) + ('d g (f x) \o 'd f x) y +o_(y \near 0 : U) y.
Proof.
move=> df dg; split; first by move=> ?; apply: continuous_comp.
apply: eqaddoEx => y; rewrite diff_locallyx// -addrA diff_locallyxC// linearD.
rewrite addrA -addrA; congr (_ + _ + _).
rewrite diff_eqO // ['d f x : _ -> _]diff_eqO //.
by rewrite {2}eqoO addOx compOo_eqox compoO_eqox addox.
Qed.

Lemma diff_comp (U V' W' : normedModType R) (f : U -> V') (g : V' -> W') x :
  differentiable f x -> differentiable g (f x) ->
  'd (g \o f) x = 'd g (f x) \o 'd f x :> (U -> W').
Proof. by move=> df dg; apply/diff_unique; have [? /funext] := dcomp df dg. Qed.

Lemma differentiable_comp (U V' W' : normedModType R) (f : U -> V')
  (g : V' -> W') x : differentiable f x -> differentiable g (f x) ->
  differentiable (g \o f) x.
Proof.
move=> df dg; apply/diff_locallyP; rewrite diff_comp //;
by have [? /funext]:= dcomp df dg.
Qed.

Global Instance is_diff_comp (U V' W' : normedModType R) (f df : U -> V')
  (g dg : V' -> W') x : is_diff x f df -> is_diff (f x) g dg ->
  is_diff x (g \o f) (dg \o df) | 99.
Proof.
move=> dfx dgfx; apply: DiffDef; first exact: differentiable_comp.
by rewrite diff_comp // !diff_val.
Qed.

Lemma bilinear_schwarz (U V' W' : normedModType R)
  (f : {bilinear U -> V' -> W'}) : continuous (fun p => f p.1 p.2) ->
  exists2 k, k > 0 & forall u v, `|f u v| <= k * `|u| * `|v|.
Proof.
move=> /(_ 0); rewrite linear0r => /(_ _ (nbhsx_ballx 0 1%:pos)).
move=> /nbhs_ballP [_ /posnumP[e] he]; exists ((2 / e%:num) ^+2) => // u v.
have [|un0] := real_le0P (normr_real u).
  by rewrite normr_le0 => /eqP->; rewrite linear0l !normr0 mulr0 mul0r.
have [|vn0] := real_le0P (normr_real v).
  by rewrite normr_le0 => /eqP->; rewrite linear0r !normr0 mulr0.
rewrite -[`|u|]/((PosNum un0)%:num) -[`|v|]/((PosNum vn0)%:num).
set ku := 2 / e%:num * (PosNum un0)%:num.
set kv := 2 / e%:num * (PosNum vn0)%:num.
rewrite -[X in f X](@scalerKV _ _ ku) /ku // linearZl_LR normmZ.
rewrite gtr0_norm // -ler_pdivl_mull //.
rewrite -[X in f _ X](@scalerKV _ _ kv) /kv // linearZr_LR normmZ.
rewrite gtr0_norm // -ler_pdivl_mull //.
suff /he : ball 0 e%:num (ku^-1 *: u, kv^-1 *: v).
  rewrite -ball_normE /= distrC subr0 => /ltW /le_trans; apply.
  rewrite ler_pdivl_mull 1?pmulr_lgt0// mulr1 ler_pdivl_mull 1?pmulr_lgt0//.
  by rewrite mulrA [ku * _]mulrAC expr2.
rewrite -ball_normE /= distrC subr0.
have -> : (ku^-1 *: u, kv^-1 *: v) =
  (e%:num / 2) *: ((PosNum un0)%:num ^-1 *: u, (PosNum vn0)%:num ^-1 *: v).
  rewrite invrM ?unitfE // [kv ^-1]invrM ?unitfE //.
  rewrite mulrC -[_ *: u]scalerA [X in X *: v]mulrC -[_ *: v]scalerA.
  by rewrite invf_div.
rewrite normmZ ger0_norm // -mulrA gtr_pmulr // ltr_pdivr_mull // mulr1.
by rewrite prod_normE/= !normmZ !normfV !normr_id !mulVf ?gt_eqF// maxxx ltr1n.
Qed.

Lemma bilinear_eqo (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) :
  continuous (fun p => f p.1 p.2) -> (fun p => f p.1 p.2) =o_ (0 : U * V') id.
Proof.
move=> fc; have [_ /posnumP[k] fschwarz] := bilinear_schwarz fc.
apply/eqoP=> _ /posnumP[e]; near=> x; rewrite (le_trans (fschwarz _ _))//.
rewrite ler_pmul ?pmulr_rge0 //; last by rewrite num_le_maxr /= lexx orbT.
rewrite -ler_pdivl_mull //.
suff : `|x| <= k%:num ^-1 * e%:num by apply: le_trans; rewrite num_le_maxr /= lexx.
near: x; rewrite !near_simpl; apply/nbhs_le_nbhs_norm.
by exists (k%:num ^-1 * e%:num) => //= ? /=; rewrite -ball_normE /= distrC subr0 => /ltW.
Unshelve. all: by end_near. Qed.

Fact dbilin (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) p :
  continuous (fun p => f p.1 p.2) ->
  continuous (fun q => (f p.1 q.2 + f q.1 p.2)) /\
  (fun q => f q.1 q.2) \o shift p = cst (f p.1 p.2) +
    (fun q => f p.1 q.2 + f q.1 p.2) +o_ (0 : U * V') id.
Proof.
move=> fc; split=> [q|].
  by apply: (@continuousD _ _ _ (fun q => f p.1 q.2) (fun q => f q.1 p.2));
    move=> A /(fc (_.1, _.2)) /= /nbhs_ballP [_ /posnumP[e] fpqe_A];
    apply/nbhs_ballP; exists e%:num => //= r [? ?]; exact: (fpqe_A (_.1, _.2)).
apply/eqaddoE; rewrite funeqE => q /=.
rewrite linearDl !linearDr addrA addrC.
rewrite -[f q.1 _ + _ + _]addrA [f q.1 _ + _]addrC addrA [f q.1 _ + _]addrC.
by congr (_ + _); rewrite -[LHS]/((fun p => f p.1 p.2) q) bilinear_eqo.
Qed.

Lemma diff_bilin (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) p :
  continuous (fun p => f p.1 p.2) -> 'd (fun q => f q.1 q.2) p =
  (fun q => f p.1 q.2 + f q.1 p.2) :> (U * V' -> W').
Proof.
move=> fc; have lind : linear (fun q => f p.1 q.2 + f q.1 p.2).
  by move=> ???; rewrite linearPr linearPl scalerDr addrACA.
have -> : (fun q => f p.1 q.2 + f q.1 p.2) = Linear lind by [].
by apply/diff_unique; have [] := dbilin p fc.
Qed.

Lemma differentiable_bilin (U V' W' : normedModType R)
  (f : {bilinear U -> V' -> W'}) p :
  continuous (fun p => f p.1 p.2) -> differentiable (fun p => f p.1 p.2) p.
Proof.
by move=> fc; apply/diff_locallyP; rewrite diff_bilin //; apply: dbilin p fc.
Qed.

Definition Rmult_rev (y x : R) := x * y.
Canonical rev_Rmult := @RevOp _ _ _ Rmult_rev (@GRing.mul [ringType of R])
  (fun _ _ => erefl).

Lemma Rmult_is_linear x : linear (@GRing.mul [ringType of R] x : R -> R).
Proof. by move=> ???; rewrite mulrDr scalerAr. Qed.
Canonical Rmult_linear x := Linear (Rmult_is_linear x).

Lemma Rmult_rev_is_linear y : linear (Rmult_rev y : R -> R).
Proof. by move=> ???; rewrite /Rmult_rev mulrDl scalerAl. Qed.
Canonical Rmult_rev_linear y := Linear (Rmult_rev_is_linear y).

Canonical Rmult_bilinear :=
  [bilinear of (@GRing.mul [ringType of [lmodType R of R]])].

Global Instance is_diff_Rmult (p : R*R ) :
  is_diff p (fun q => q.1 * q.2) (fun q => p.1 * q.2 + q.1 * p.2).
Proof.
apply: DiffDef; last by rewrite diff_bilin // => ?; apply: mul_continuous.
by apply: differentiable_bilin =>?; apply: mul_continuous.
Qed.

Lemma eqo_pair (U V' W' : normedModType R) (F : filter_on U)
  (f : U -> V') (g : U -> W') :
  (fun t => ([o_F id of f] t, [o_F id of g] t)) =o_F id.
Proof.
apply/eqoP => _/posnumP[e]; near=> x; rewrite num_le_maxl /=.
by apply/andP; split; near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.

Fact dpair (U V' W' : normedModType R) (f : U -> V') (g : U -> W') x :
  differentiable f x -> differentiable g x ->
  continuous (fun y => ('d f x y, 'd g x y)) /\
  (fun y => (f y, g y)) \o shift x = cst (f x, g x) +
  (fun y => ('d f x y, 'd g x y)) +o_ (0 : U) id.
Proof.
move=> df dg; split=> [?|]; first by apply: cvg_pair; apply: diff_continuous.
apply/eqaddoE; rewrite funeqE => y /=.
rewrite ![_ (_ + x)]diff_locallyx//.
(* fixme *)
have -> : forall h e, (f x + 'd f x y + [o_ (0 : U) id of h] y,
  g x + 'd g x y + [o_ (0 : U) id of e] y) =
  (f x, g x) + ('d f x y, 'd g x y) +
  ([o_ (0 : U) id of h] y, [o_ (0 : U) id of e] y) by [].
by congr (_ + _); rewrite -[LHS]/((fun y => (_ y, _ y)) y) eqo_pair.
Qed.

Lemma diff_pair (U V' W' : normedModType R) (f : U -> V') (g : U -> W') x :
  differentiable f x -> differentiable g x -> 'd (fun y => (f y, g y)) x =
  (fun y => ('d f x y, 'd g x y)) :> (U -> V' * W').
Proof.
move=> df dg.
have lin_pair : linear (fun y => ('d f x y, 'd g x y)).
  by move=> ???; rewrite !linearPZ.
have -> : (fun y => ('d f x y, 'd g x y)) = Linear lin_pair by [].
by apply: diff_unique; have [] := dpair df dg.
Qed.

Lemma differentiable_pair (U V' W' : normedModType R) (f : U -> V')
  (g : U -> W') x : differentiable f x -> differentiable g x ->
  differentiable (fun y => (f y, g y)) x.
Proof.
by move=> df dg; apply/diff_locallyP; rewrite diff_pair //; apply: dpair.
Qed.

Global Instance is_diff_pair (U V' W' : normedModType R) (f df : U -> V')
  (g dg : U -> W') x : is_diff x f df -> is_diff x g dg ->
   is_diff x (fun y => (f y, g y)) (fun y => (df y, dg y)).
Proof.
move=> dfx dgx; apply: DiffDef; first exact: differentiable_pair.
by rewrite diff_pair // !diff_val.
Qed.

Global Instance is_diffM (f g df dg : V -> R) x :
  is_diff x f df -> is_diff x g dg -> is_diff x (f * g) (f x *: dg + g x *: df).
Proof.
move=> dfx dgx.
have -> : f * g = (fun p => p.1 * p.2) \o (fun y => (f y, g y)) by [].
(* TODO: type class inference should succeed or fail, not leave an evar *)
apply: is_diff_eq; do ?exact: is_diff_comp.
by rewrite funeqE => ?; rewrite /= [_ * g _]mulrC.
Qed.

Lemma diffM (f g : V -> R) x :
  differentiable f x -> differentiable g x ->
  'd (f * g) x = f x \*: 'd g x + g x \*: 'd f x :> (V -> R).
Proof. by move=> /differentiableP df /differentiableP dg; rewrite diff_val. Qed.

Lemma differentiableM (f g : V -> R) x :
  differentiable f x -> differentiable g x -> differentiable (f * g) x.
Proof. by move=> /differentiableP df /differentiableP dg. Qed.

(* fixme using *)
(* (1 / (h + x) - 1 / x) / h = - 1 / (h + x) x = -1/x^2 + o(1) *)
Fact dinv (x : R) :
  x != 0 -> continuous (fun h : R => - x ^- 2 *: h) /\
  (fun x => x^-1)%R \o shift x = cst (x^-1)%R +
  (fun h : R => - x ^- 2 *: h) +o_ (0 : R) id.
Proof.
move=> xn0; suff: continuous (fun h : R => - (1 / x) ^+ 2 *: h) /\
  (fun x => 1 / x ) \o shift x = cst (1 / x) +
  (fun h : R => - (1 / x) ^+ 2 *: h) +o_ (0 : R) id.
  rewrite !mul1r !GRing.exprVn.
  rewrite (_ : (fun x => x^-1) =  (fun x => 1 / x ))//.
  by rewrite funeqE => y; rewrite mul1r.
split; first by move=> ?; apply: continuousZr.
apply/eqaddoP => _ /posnumP[e]; near=> h.
rewrite -[(_ + _ : R -> R) h]/(_ + _) -[(- _ : R -> R) h]/(- _) /=.
rewrite opprD scaleNr opprK /cst /=.
rewrite -[- _]mulr1 -[X in - _ * X](mulfVK xn0) mulrA mulNr -expr2 mulNr.
rewrite [- _ + _]addrC -mulrBr.
rewrite -[X in X + _]mulr1 -[X in 1 / _ * X](@mulfVK _ (x ^+ 2)); last first.
  by rewrite sqrf_eq0.
rewrite mulrA mulf_div mulr1.
have hDx_neq0 : h + x != 0.
  near: h; rewrite !nbhs_simpl; apply/nbhs_normP.
  exists `|x|; first by rewrite /= normr_gt0.
  move=> h /=; rewrite -ball_normE /= distrC subr0 -subr_gt0 => lthx.
  rewrite -(normr_gt0 (h + x)) addrC -[h]opprK.
  apply: lt_le_trans (ler_dist_dist _ _).
  by rewrite ger0_norm normrN //; apply: ltW.
rewrite addrC -[X in X * _]mulr1 -{2}[1](@mulfVK _ (h + x)) //.
rewrite mulrA expr_div_n expr1n mulf_div mulr1 [_ ^+ 2 * _]mulrC -mulrA.
rewrite -mulrDr mulrBr [1 / _ * _]mulrC normrM.
rewrite mulrDl mulrDl opprD addrACA addrA [x * _]mulrC expr2.
do 2 ?[rewrite -addrA [- _ + _]addrC subrr addr0].
rewrite div1r normfV [X in _ / X]normrM invfM [X in _ * X]mulrC.
rewrite mulrA mulrAC ler_pdivr_mulr ?normr_gt0 ?mulf_neq0 //.
rewrite mulrAC ler_pdivr_mulr ?normr_gt0 //.
have : `|h * h| <= `|x / 2| * (e%:num * `|x * x| * `|h|).
  rewrite !mulrA; near: h; exists (`|x / 2| * e%:num * `|x * x|).
    by rewrite /= !pmulr_rgt0 // normr_gt0 mulf_neq0.
  by move=> h /ltW; rewrite distrC subr0 [`|h * _|]normrM => /ler_pmul; apply.
move=> /le_trans-> //; rewrite [leLHS]mulrC ler_pmul ?mulr_ge0 //.
near: h; exists (`|x| / 2); first by rewrite /= divr_gt0 ?normr_gt0.
move=> h; rewrite /= distrC subr0 => lthhx; rewrite addrC -[h]opprK.
apply: le_trans (@ler_dist_dist  _ R  _ _).
rewrite normrN [leRHS]ger0_norm; last first.
  rewrite subr_ge0; apply: ltW; apply: lt_le_trans lthhx _.
  by rewrite ler_pdivr_mulr // -{1}(mulr1 `|x|) ler_pmul // ler1n.
rewrite ler_subr_addr -ler_subr_addl (splitr `|x|).
by rewrite normrM normfV (@ger0_norm _ 2) // -addrA subrr addr0; apply: ltW.
Unshelve. all: by end_near. Qed.

Lemma diff_Rinv (x : R) : x != 0 ->
  'd GRing.inv x = (fun h : R => - x ^- 2 *: h) :> (R -> R).
Proof.
move=> xn0; have -> : (fun h : R => - x ^- 2 *: h) =
  GRing.scale_linear _ (- x ^- 2) by [].
by apply: diff_unique; have [] := dinv xn0.
Qed.

Lemma differentiable_Rinv (x : R) : x != 0 ->
  differentiable (GRing.inv : R -> R) x.
Proof.
by move=> xn0; apply/diff_locallyP; rewrite diff_Rinv //; apply: dinv.
Qed.

Lemma diffV (f : V -> R) x : differentiable f x -> f x != 0 ->
  'd (fun y => (f y)^-1) x = - (f x) ^- 2 \*: 'd f x :> (V -> R).
Proof.
move=> df fxn0.
by rewrite [LHS](diff_comp df (differentiable_Rinv fxn0)) diff_Rinv.
Qed.

Lemma differentiableV (f : V -> R) x :
  differentiable f x -> f x != 0 -> differentiable (fun y => (f y)^-1) x.
Proof.
by move=> df fxn0; apply: differentiable_comp _ (differentiable_Rinv fxn0).
Qed.

Global Instance is_diffX (f df : V -> R) n x :
  is_diff x f df -> is_diff x (f ^+ n.+1) (n.+1%:R * f x ^+ n *: df).
Proof.
move=> dfx; elim: n => [|n ihn]; first by rewrite expr1 expr0 mulr1 scale1r.
rewrite exprS; apply: is_diff_eq.
rewrite scalerA mulrCA -exprS -scalerDl.
by rewrite [in LHS]mulr_natl exprfctE -mulrSr mulr_natl.
Qed.

Lemma differentiableX (f : V -> R) n x :
  differentiable f x -> differentiable (f ^+ n.+1) x.
Proof. by move=> /differentiableP. Qed.

Lemma diffX (f : V -> R) n x :
  differentiable f x ->
  'd (f ^+ n.+1) x = n.+1%:R * f x ^+ n \*: 'd f x :> (V -> R).
Proof. by move=> /differentiableP df; rewrite diff_val. Qed.

End DifferentialR3_numFieldType.

Section Derive.
Variables (R : numFieldType) (V W : normedModType R).

Let der1 (U : normedModType R) (f : R -> U) x : derivable f x 1 ->
  f \o shift x = cst (f x) + ( *:%R^~ (f^`() x)) +o_ (0 : R) id.
Proof.
move=> df; apply/eqaddoE; have /derivable_nbhsP := df.
have -> : (fun h => (f \o shift x) h%:A) = f \o shift x.
  by rewrite funeqE=> ?; rewrite [_%:A]mulr1.
by rewrite derive1E =>->.
Qed.

Lemma deriv1E (U : normedModType R) (f : R -> U) x :
  derivable f x 1 -> 'd f x = ( *:%R^~ (f^`() x)) :> (R -> U).
Proof.
move=> df; have lin_scal : linear (fun h : R => h *: f^`() x).
  by move=> ???; rewrite scalerDl scalerA.
have -> : (fun h => h *: f^`() x) = Linear lin_scal by [].
by apply: diff_unique; [apply: scalel_continuous|apply: der1].
Qed.

Lemma diff1E (U : normedModType R) (f : R -> U) x :
  differentiable f x -> 'd f x = (fun h => h *: f^`() x) :> (R -> U).
Proof.
move=> df; have lin_scal : linear (fun h : R => h *: 'd f x 1).
  by move=> ???; rewrite scalerDl scalerA.
have -> : (fun h => h *: f^`() x) = Linear lin_scal.
  by rewrite derive1E'.
apply: diff_unique; first exact: scalel_continuous.
apply/eqaddoE; have /diff_locally -> := df; congr (_ + _ + _).
by rewrite funeqE => h /=; rewrite -{1}[h]mulr1 linearZ.
Qed.

Lemma derivable1_diffP (U : normedModType R) (f : R -> U) x :
  derivable f x 1 <-> differentiable f x.
Proof.
split=> dfx.
  by apply/diff_locallyP; rewrite deriv1E //; split;
    [apply: scalel_continuous|apply: der1].
apply/derivable_nbhsP/eqaddoE.
have -> : (fun h => (f \o shift x) h%:A) = f \o shift x.
  by rewrite funeqE=> ?; rewrite [_%:A]mulr1.
by have /diff_locally := dfx; rewrite diff1E // derive1E =>->.
Qed.

Lemma derivable1P (U : normedModType R) (f : V -> U) x v :
  derivable f x v <-> derivable (fun h : R => f (h *: v + x)) 0 1.
Proof.
rewrite /derivable; set g1 := fun h => h^-1 *: _; set g2 := fun h => h^-1 *: _.
suff -> : g1 = g2 by [].
by rewrite funeqE /g1 /g2 => h /=; rewrite addr0 scale0r add0r [_%:A]mulr1.
Qed.

Lemma derivableP (U : normedModType R) (f : V -> U) x v :
  derivable f x v -> is_derive x v f ('D_v f x).
Proof. by move=> df; apply: DeriveDef. Qed.

Global Instance is_derive_cst (U : normedModType R) (a : U) (x v : V) :
  is_derive x v (cst a) 0.
Proof.
apply: DeriveDef; last by rewrite deriveE // diff_val.
apply/derivable1P/derivable1_diffP.
by have -> : (fun h => cst a (h *: v + x)) = cst a by rewrite funeqE.
Qed.

Fact der_add (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v ->
  (fun h => h^-1 *: (((f + g) \o shift x) (h *: v) - (f + g) x)) @
  0^'  --> 'D_v f x + 'D_v g x.
Proof.
move=> df dg.
evar (fg : R -> W); rewrite [X in X @ _](_ : _ = fg) /=; last first.
  rewrite funeqE => h.
  by rewrite !scalerDr scalerN scalerDr opprD addrACA -!scalerBr /fg.
exact: cvgD.
Qed.

Lemma deriveD (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v ->
  'D_v (f + g) x = 'D_v f x + 'D_v g x.
Proof. by move=> df dg; apply: cvg_map_lim (der_add df dg). Qed.

Lemma derivableD (f g : V -> W) (x v : V) :
  derivable f x v -> derivable g x v -> derivable (f + g) x v.
Proof.
move=> df dg; apply/cvg_ex; exists (derive f x v + derive g x v).
exact: der_add.
Qed.

Global Instance is_deriveD (f g : V -> W) (x v : V) (df dg : W) :
  is_derive x v f df -> is_derive x v g dg -> is_derive x v (f + g) (df + dg).
Proof.
move=> dfx dgx; apply: DeriveDef; first exact: derivableD.
by rewrite deriveD // !derive_val.
Qed.

Global Instance is_derive_sum n (f : 'I_n -> V -> W) (x v : V)
  (df : 'I_n -> W) : (forall i, is_derive x v (f i) (df i)) ->
  is_derive x v (\sum_(i < n) f i) (\sum_(i < n) df i).
Proof.
elim: n f df => [f df dfx|f df dfx n ihn].
  by rewrite !big_ord0 //; apply: is_derive_cst.
by rewrite !big_ord_recr /=; apply: is_deriveD.
Qed.

Lemma derivable_sum n (f : 'I_n -> V -> W) (x v : V) :
  (forall i, derivable (f i) x v) -> derivable (\sum_(i < n) f i) x v.
Proof.
move=> df; suff : forall i, is_derive x v (f i) ('D_v (f i) x) by [].
by move=> ?; apply: derivableP.
Qed.

Lemma derive_sum n (f : 'I_n -> V -> W) (x v : V) :
  (forall i, derivable (f i) x v) ->
  'D_v (\sum_(i < n) f i) x = \sum_(i < n) 'D_v (f i) x.
Proof.
move=> df; suff dfx : forall i, is_derive x v (f i) ('D_v (f i) x).
  by rewrite derive_val.
by move=> ?; apply: derivableP.
Qed.

Fact der_opp (f : V -> W) (x v : V) : derivable f x v ->
  (fun h => h^-1 *: (((- f) \o shift x) (h *: v) - (- f) x)) @
  0^' --> - 'D_v f x.
Proof.
move=> df; evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first.
  by rewrite funeqE => h; rewrite !scalerDr !scalerN -opprD -scalerBr /g.
exact: cvgN.
Qed.

Lemma deriveN (f : V -> W) (x v : V) : derivable f x v ->
  'D_v (- f) x = - 'D_v f x.
Proof. by move=> df; apply: cvg_map_lim (der_opp df). Qed.

Lemma derivableN (f : V -> W) (x v : V) :
  derivable f x v -> derivable (- f) x v.
Proof. by move=> df; apply/cvg_ex; exists (- 'D_v f x); apply: der_opp. Qed.

Global Instance is_deriveN (f : V -> W) (x v : V) (df : W) :
  is_derive x v f df -> is_derive x v (- f) (- df).
Proof.
move=> dfx; apply: DeriveDef; first exact: derivableN.
by rewrite deriveN // derive_val.
Qed.

Lemma is_derive_eq (V' W' : normedModType R) (f : V' -> W') (x v : V')
  (df f' : W') : is_derive x v f f' -> f' = df -> is_derive x v f df.
Proof. by move=> ? <-. Qed.

Global Instance is_deriveB (f g : V -> W) (x v : V) (df dg : W) :
  is_derive x v f df -> is_derive x v g dg -> is_derive x v (f - g) (df - dg).
Proof. by move=> ??; apply: is_derive_eq. Qed.

Lemma deriveB (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v ->
  'D_v (f - g) x = 'D_v f x - 'D_v g x.
Proof. by move=> /derivableP df /derivableP dg; rewrite derive_val. Qed.

Lemma derivableB (f g : V -> W) (x v : V) :
  derivable f x v -> derivable g x v -> derivable (f - g) x v.
Proof. by move=> /derivableP df /derivableP dg. Qed.

Fact der_scal (f : V -> W) (k : R) (x v : V) : derivable f x v ->
  (fun h => h^-1 *: ((k \*: f \o shift x) (h *: v) - (k \*: f) x)) @
  (0 : R)^' --> k *: 'D_v f x.
Proof.
move=> df; evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first.
  rewrite funeqE => h.
  by rewrite scalerBr !scalerA mulrC -!scalerA -!scalerBr /g.
exact: cvgZr.
Qed.

Lemma deriveZ (f : V -> W) (k : R) (x v : V) : derivable f x v ->
  'D_v (k \*: f) x = k *: 'D_v f x.
Proof. by move=> df; apply: cvg_map_lim (der_scal df). Qed.

Lemma derivableZ (f : V -> W) (k : R) (x v : V) :
  derivable f x v -> derivable (k \*: f) x v.
Proof.
by move=> df; apply/cvg_ex; exists (k *: 'D_v f x); apply: der_scal.
Qed.

Global Instance is_deriveZ (f : V -> W) (k : R) (x v : V) (df : W) :
  is_derive x v f df -> is_derive x v (k \*: f) (k *: df).
Proof.
move=> dfx; apply: DeriveDef; first exact: derivableZ.
by rewrite deriveZ // derive_val.
Qed.

Fact der_mult (f g : V -> R) (x v : V) :
  derivable f x v -> derivable g x v ->
  (fun h => h^-1 *: (((f * g) \o shift x) (h *: v) - (f * g) x)) @
  (0 : R)^' --> f x *: 'D_v g x + g x *: 'D_v f x.
Proof.
move=> df dg.
evar (fg : R -> R); rewrite [X in X @ _](_ : _ = fg) /=; last first.
  rewrite funeqE => h.
  have -> : (f * g) (h *: v + x) - (f * g) x =
    f (h *: v + x) *: (g (h *: v + x) - g x) + g x *: (f (h *: v + x) - f x).
    by rewrite !scalerBr -addrA ![g x *: _]mulrC addKr.
  rewrite scalerDr scalerA mulrC -scalerA.
  by rewrite [_ *: (g x *: _)]scalerA mulrC -scalerA /fg.
apply: cvgD; last exact: cvgZr df.
apply: cvg_comp2 (@mul_continuous _ (_, _)) => /=; last exact: dg.
suff : {for 0, continuous (fun h : R => f(h *: v + x))}.
  by move=> /continuous_withinNx; rewrite scale0r add0r.
exact/differentiable_continuous/derivable1_diffP/derivable1P.
Qed.

Lemma deriveM (f g : V -> R) (x v : V) :
  derivable f x v -> derivable g x v ->
  'D_v (f * g) x = f x *: 'D_v g x + g x *: 'D_v f x.
Proof. by move=> df dg; apply: cvg_map_lim (der_mult df dg). Qed.

Lemma derivableM (f g : V -> R) (x v : V) :
  derivable f x v -> derivable g x v -> derivable (f * g) x v.
Proof.
move=> df dg; apply/cvg_ex; exists (f x *: 'D_v g x + g x *: 'D_v f x).
exact: der_mult.
Qed.

Global Instance is_deriveM (f g : V -> R) (x v : V) (df dg : R) :
  is_derive x v f df -> is_derive x v g dg ->
  is_derive x v (f * g) (f x *: dg + g x *: df).
Proof.
move=> dfx dgx; apply: DeriveDef; first exact: derivableM.
by rewrite deriveM // !derive_val.
Qed.

Global Instance is_deriveX (f : V -> R) n (x v : V) (df : R) :
  is_derive x v f df -> is_derive x v (f ^+ n.+1) ((n.+1%:R * f x ^+n) *: df).
Proof.
move=> dfx; elim: n => [|n ihn]; first by rewrite expr1 expr0 mulr1 scale1r.
rewrite exprS; apply: is_derive_eq.
rewrite scalerA -scalerDl mulrCA -[f x * _]exprS.
by rewrite [in LHS]mulr_natl exprfctE -mulrSr mulr_natl.
Qed.

Lemma derivableX (f : V -> R) n (x v : V) :
  derivable f x v -> derivable (f ^+ n.+1) x v.
Proof. by move/derivableP. Qed.

Lemma deriveX (f : V -> R) n (x v : V) :
  derivable f x v ->
  'D_v (f ^+ n.+1) x = (n.+1%:R * f x ^+ n) *: 'D_v f x.
Proof. by move=> /derivableP df; rewrite derive_val. Qed.

Fact der_inv (f : V -> R) (x v : V) :
  f x != 0 -> derivable f x v ->
  (fun h => h^-1 *: (((fun y => (f y)^-1) \o shift x) (h *: v) - (f x)^-1)) @
  (0 : R)^' --> - (f x) ^-2 *: 'D_v f x.
Proof.
move=> fxn0 df.
have /derivable1P/derivable1_diffP/differentiable_continuous := df.
move=> /continuous_withinNx; rewrite scale0r add0r => fc.
have fn0 : (0 : R)^' [set h | f (h *: v + x) != 0].
  apply: (fc [set x | x != 0]); exists `|f x|; first by rewrite /= normr_gt0.
  move=> y; rewrite /= => yltfx.
  by apply/eqP => y0; move: yltfx; rewrite y0 subr0 ltxx.
have : (fun h => - ((f x)^-1 * (f (h *: v + x))^-1) *:
  (h^-1 *: (f (h *: v + x) - f x))) @ (0 : R)^' -->
  - (f x) ^- 2 *: 'D_v f x.
  by apply: cvgM => //; apply: cvgN; rewrite expr2 invfM; apply: cvgM;
     [exact: cvg_cst|  exact: cvgV].
apply: cvg_trans => A [_/posnumP[e] /= Ae].
move: fn0; apply: filter_app; near=> h => /= fhvxn0.
have he : ball 0 e%:num (h : R) by near: h; exists e%:num => /=.
have hn0 : h != 0 by near: h; exists e%:num => /=.
suff <- :
  - ((f x)^-1 * (f (h *: v + x))^-1) *: (h^-1 *: (f (h *: v + x) - f x)) =
  h^-1 *: ((f (h *: v + x))^-1 - (f x)^-1) by exact: Ae.
rewrite scalerA mulrC -scalerA; congr (_ *: _).
apply/eqP; rewrite scaleNr eqr_oppLR opprB scalerBr.
rewrite -scalerA [_ *: f _]mulVf // [_%:A]mulr1.
by rewrite mulrC -scalerA [_ *: f _]mulVf // [_%:A]mulr1.
Unshelve. all: by end_near. Qed.

Lemma deriveV (f : V -> R) x v : f x != 0 -> derivable f x v ->
  'D_v (fun y => (f y)^-1) x = - (f x) ^- 2 *: 'D_v f x.
Proof. by move=> fxn0 df; apply: cvg_map_lim (der_inv fxn0 df). Qed.

Lemma derivableV (f : V -> R) (x v : V) :
  f x != 0 -> derivable f x v -> derivable (fun y => (f y)^-1) x v.
Proof.
move=> df dg; apply/cvg_ex; exists (- (f x) ^- 2 *: 'D_v f x).
exact: der_inv.
Qed.

End Derive.

Lemma derive1_cst (R : numFieldType) (V : normedModType R) (k : V) t :
  (cst k)^`() t = 0.
Proof. by rewrite derive1E derive_val. Qed.

Lemma EVT_max (R : realType) (f : R -> R) (a b : R) : (* TODO : Filter not infered *)
  a <= b -> {within `[a, b], continuous f} -> exists2 c, c \in `[a, b]%R &
  forall t, t \in `[a, b]%R -> f t <= f c.
Proof.
move=> leab fcont; set imf := f @` `[a, b].
have imf_sup : has_sup imf.
  split; first by exists (f a); apply/imageP; rewrite /= in_itv /= lexx.
  have [M [Mreal imfltM]] : bounded_set (f @` `[a, b]).
    by apply/compact_bounded/continuous_compact => //; exact: segment_compact.
  exists (M + 1) => y /imfltM yleM.
  by rewrite (le_trans _ (yleM _ _)) ?ler_norm ?ltr_addl.
have [|imf_ltsup] := pselect (exists2 c, c \in `[a, b]%R & f c = sup imf).
  move=> [c cab fceqsup]; exists c => // t tab; rewrite fceqsup.
  by apply/sup_upper_bound => //; exact/imageP.
have {}imf_ltsup t : t \in `[a, b]%R -> f t < sup imf.
  move=> tab; case: (ltrP (f t) (sup imf)) => // supleft.
  rewrite falseE; apply: imf_ltsup; exists t => //; apply/eqP.
  by rewrite eq_le supleft andbT sup_upper_bound//; exact/imageP.
pose g t : R := (sup imf - f t)^-1.
have invf_continuous : {within `[a, b], continuous g}.
  rewrite continuous_subspace_in => t tab; apply: cvgV => //=.
    by rewrite subr_eq0 gt_eqF // imf_ltsup //; rewrite inE in tab.
  by apply: cvgD; [exact: cst_continuous | apply: cvgN; exact: (fcont t)].
have /ex_strict_bound_gt0 [k k_gt0 /= imVfltk] : bounded_set (g @` `[a, b]).
  apply/compact_bounded/continuous_compact; last exact: segment_compact.
  exact: invf_continuous.
have [_ [t tab <-]] : exists2 y, imf y & sup imf - k^-1 < y.
  by apply: sup_adherent => //; rewrite invr_gt0.
rewrite ltr_subl_addr -ltr_subl_addl.
suff : sup imf - f t > k^-1 by move=> /ltW; rewrite leNgt => /negbTE ->.
rewrite -[ltRHS]invrK ltf_pinv// ?qualifE ?invr_gt0 ?subr_gt0 ?imf_ltsup//.
by rewrite (le_lt_trans (ler_norm _) _) ?imVfltk//; exact: imageP.
Qed.

Lemma EVT_min (R : realType) (f : R -> R) (a b : R) :
  a <= b -> {within `[a, b], continuous f} -> exists2 c, c \in `[a, b]%R &
  forall t, t \in `[a, b]%R -> f c <= f t.
Proof.
move=> leab fcont.
have /(EVT_max leab) [c clr fcmax] : {within `[a, b], continuous (- f)}.
  by move=> ?; apply: continuousN => ?; exact: fcont.
by exists c => // ? /fcmax; rewrite ler_opp2.
Qed.

Lemma cvg_at_rightE (R : numFieldType) (V : normedModType R) (f : R -> V) x :
  cvg (f @ x^') -> lim (f @ x^') = lim (f @ at_right x).
Proof.
move=> cvfx; apply/Logic.eq_sym.
(* should be inferred *)
have atrF := at_right_proper_filter x.
apply: (@cvg_map_lim _ _ _ (at_right _)) => // A /cvfx /nbhs_ballP [_ /posnumP[e] xe_A].
by exists e%:num => //= y xe_y; rewrite lt_def => /andP [xney _]; apply: xe_A.
Qed.
Arguments cvg_at_rightE {R V} f x.

Lemma cvg_at_leftE (R : numFieldType) (V : normedModType R) (f : R -> V) x :
  cvg (f @ x^') -> lim (f @ x^') = lim (f @ at_left x).
Proof.
move=> cvfx; apply/Logic.eq_sym.
(* should be inferred *)
have atrF := at_left_proper_filter x.
apply: (@cvg_map_lim _ _ _ (at_left _)) => // A /cvfx /nbhs_ballP [_ /posnumP[e] xe_A].
exists e%:num => //= y xe_y; rewrite lt_def => /andP [xney _].
by apply: xe_A => //; rewrite eq_sym.
Qed.
Arguments cvg_at_leftE {R V} f x.

Lemma le0r_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T))
  (FF : ProperFilter F) (f : T -> R) :
  (\forall x \near F, 0 <= f x) -> cvg (f @ F) -> 0 <= lim (f @ F).
Proof.
move=> fge0 fcv; case: (lerP 0 (lim (f @ F))) => // limlt0; near F => x.
have := near fge0 x; rewrite leNgt => /(_ _) /negbTE<- //; near: x.
have normlimgt0 : `|lim (f @ F)| > 0 by rewrite normr_gt0 ltr0_neq0.
have /fcv := nbhs_ball_norm (lim (f @ F)) (PosNum normlimgt0).
rewrite /= !near_simpl; apply: filterS => x.
rewrite /= distrC => /(le_lt_trans (ler_norm _)).
rewrite ltr_subl_addr => /lt_le_trans; apply.
by rewrite ltr0_norm // addrC subrr.
Unshelve. all: by end_near. Qed.

Lemma ler0_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T))
  (FF : ProperFilter F) (f : T -> R) :
  (\forall x \near F, f x <= 0) -> cvg (f @ F) -> lim (f @ F) <= 0.
Proof.
move=> fle0 fcv; rewrite -oppr_ge0.
have limopp : - lim (f @ F) = lim (- f @ F).
  apply: Logic.eq_sym; apply: cvg_map_lim; first by apply: Rhausdorff.
  by apply: cvgN.
rewrite limopp; apply: le0r_cvg_map; last by rewrite -limopp; apply: cvgN.
by move: fle0; apply: filterS => x; rewrite oppr_ge0.
Qed.

Lemma ler_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T))
    (FF : ProperFilter F) (f g : T -> R) :
  (\forall x \near F, f x <= g x) -> cvg (f @ F) -> cvg (g @ F) ->
  lim (f @ F) <= lim (g @ F).
Proof.
move=> lefg fcv gcv; rewrite -subr_ge0.
have eqlim : lim (g @ F) - lim (f @ F) = lim ((g - f) @ F).
  by apply/esym; apply: cvg_map_lim => //; apply: cvgD => //; apply: cvgN.
rewrite eqlim; apply: le0r_cvg_map; last first.
  by rewrite /(cvg _) -eqlim /=; apply: cvgD => //; apply: cvgN.
by move: lefg; apply: filterS => x; rewrite subr_ge0.
Qed.

Lemma derive1_at_max (R : realFieldType) (f : R -> R) (a b c : R) :
  a <= b -> (forall t, t \in `]a, b[%R -> derivable f t 1) -> c \in `]a, b[%R ->
  (forall t, t \in `]a, b[%R -> f t <= f c) -> is_derive c 1 f 0.
Proof.
move=> leab fdrvbl cab cmax; apply: DeriveDef; first exact: fdrvbl.
apply/eqP; rewrite eq_le; apply/andP; split.
  rewrite ['D_1 f c]cvg_at_rightE; last exact: fdrvbl.
  apply: ler0_cvg_map; last first.
    have /fdrvbl dfc := cab.
    rewrite -(cvg_at_rightE (fun h : R => h^-1 *: ((f \o shift c) _ - f c))) //.
    apply: cvg_trans dfc; apply: cvg_app.
    move=> A [e egt0 Ae]; exists e => // x xe xgt0; apply: Ae => //.
    exact/lt0r_neq0.
  near=> h; apply: mulr_ge0_le0.
    by rewrite invr_ge0; apply: ltW; near: h; exists 1 => /=.
  rewrite subr_le0 [_%:A]mulr1; apply: cmax; near: h.
  exists (b - c); first by rewrite /= subr_gt0 (itvP cab).
  move=> h; rewrite /= distrC subr0 /= in_itv /= -ltr_subr_addr.
  move=> /(le_lt_trans (ler_norm _)) -> /ltr_spsaddl -> //.
  by rewrite (itvP cab).
rewrite ['D_1 f c]cvg_at_leftE; last exact: fdrvbl.
apply: le0r_cvg_map; last first.
  have /fdrvbl dfc := cab; rewrite -(cvg_at_leftE (fun h => h^-1 *: ((f \o shift c) _ - f c))) //.
  apply: cvg_trans dfc; apply: cvg_app.
  move=> A [e egt0 Ae]; exists e => // x xe xgt0; apply: Ae => //.
  exact/ltr0_neq0.
near=> h; apply: mulr_le0.
  by rewrite invr_le0; apply: ltW; near: h; exists 1 => /=.
rewrite subr_le0 [_%:A]mulr1; apply: cmax; near: h.
exists (c - a); first by rewrite /= subr_gt0 (itvP cab).
move=> h; rewrite /= distrC subr0.
move=> /ltr_normlP []; rewrite ltr_subr_addl ltr_subl_addl in_itv /= => -> _.
by move=> /ltr_snsaddl -> //; rewrite (itvP cab).
Unshelve. all: by end_near. Qed.

Lemma derive1_at_min (R : realFieldType) (f : R -> R) (a b c : R) :
  a <= b -> (forall t, t \in `]a, b[%R -> derivable f t 1) -> c \in `]a, b[%R ->
  (forall t, t \in `]a, b[%R -> f c <= f t) -> is_derive c 1 f 0.
Proof.
move=> leab fdrvbl cab cmin; apply: DeriveDef; first exact: fdrvbl.
apply/eqP; rewrite -oppr_eq0; apply/eqP.
rewrite -deriveN; last exact: fdrvbl.
suff df : is_derive c 1 (- f) 0 by rewrite derive_val.
apply: derive1_at_max leab _ (cab) _ => t tab; first exact/derivableN/fdrvbl.
by rewrite ler_opp2; apply: cmin.
Qed.

Lemma Rolle (R : realType) (f : R -> R) (a b : R) :
  a < b -> (forall x, x \in `]a, b[%R -> derivable f x 1) ->
  {within `[a, b], continuous f} -> f a = f b ->
  exists2 c, c \in `]a, b[%R & is_derive c 1 f 0.
Proof.
move=> ltab fdrvbl fcont faefb.
have [cmax cmaxab fcmax] := EVT_max (ltW ltab) fcont.
have [cmaxeaVb|] := boolP (cmax \in [set a; b]); last first.
  rewrite notin_set => /not_orP[/eqP cnea /eqP cneb].
  have {}cmaxab : cmax \in `]a, b[%R.
    by rewrite in_itv /= !lt_def !(itvP cmaxab) cnea eq_sym cneb.
  exists cmax => //; apply: derive1_at_max (ltW ltab) fdrvbl cmaxab _ => t tab.
  by apply: fcmax; rewrite in_itv /= !ltW // (itvP tab).
have [cmin cminab fcmin] := EVT_min (ltW ltab) fcont.
have [cmineaVb|] := boolP (cmin \in [set a; b]); last first.
  rewrite notin_set => /not_orP[/eqP cnea /eqP cneb].
  have {}cminab : cmin \in `]a, b[%R.
    by rewrite in_itv /= !lt_def !(itvP cminab) cnea eq_sym cneb.
  exists cmin => //; apply: derive1_at_min (ltW ltab) fdrvbl cminab _ => t tab.
  by apply: fcmin; rewrite in_itv /= !ltW // (itvP tab).
have midab : (a + b) / 2 \in `]a, b[%R by apply: mid_in_itvoo.
exists ((a + b) / 2) => //; apply: derive1_at_max (ltW ltab) fdrvbl (midab) _.
move=> t tab.
suff fcst s : s \in `]a, b[%R -> f s = f cmax by rewrite !fcst.
move=> sab.
apply/eqP; rewrite eq_le fcmax; last by rewrite in_itv /= !ltW ?(itvP sab).
suff -> : f cmax = f cmin by rewrite fcmin // in_itv /= !ltW ?(itvP sab).
by move: cmaxeaVb cmineaVb; rewrite 2!inE => -[|] -> [|] ->.
Qed.

Lemma MVT (R : realType) (f df : R -> R) (a b : R) :
  a < b -> (forall x, x \in `]a, b[%R -> is_derive x 1 f (df x)) ->
  {within `[a, b], continuous f} ->
  exists2 c, c \in `]a, b[%R & f b - f a = df c * (b - a).
Proof.
move=> altb fdrvbl fcont.
set g := f + (- ( *:%R^~ ((f b - f a) / (b - a)) : R -> R)).
have gdrvbl x : x \in `]a, b[%R -> derivable g x 1.
  by move=> /fdrvbl dfx; apply: derivableB => //; exact/derivable1_diffP.
have gcont : {within `[a, b], continuous g}.
  move=> x; apply: continuousD _ ; first by move=>?; exact: fcont.
  by apply/continuousN/continuous_subspaceT => ? ?; exact: scalel_continuous.
have gaegb : g a = g b.
  rewrite /g -![(_ - _ : _ -> _) _]/(_ - _).
  apply/eqP; rewrite -subr_eq /= opprK addrAC -addrA -scalerBl.
  rewrite [_ *: _]mulrA mulrC mulrA mulVf.
    by rewrite mul1r addrCA subrr addr0.
  by apply: lt0r_neq0; rewrite subr_gt0.
have [c cab dgc0] := Rolle altb gdrvbl gcont gaegb.
exists c; first exact: cab.
have /fdrvbl dfc := cab; move/@derive_val: dgc0; rewrite deriveB //; last first.
  exact/derivable1_diffP.
move/eqP; rewrite [X in _ - X]deriveE // derive_val diff_val scale1r subr_eq0.
move/eqP->; rewrite -mulrA mulVf ?mulr1 //; apply: lt0r_neq0.
by rewrite subr_gt0.
Qed.

(* Weakens MVT to work when the interval is a single point. *)
Lemma MVT_segment (R : realType) (f df : R -> R) (a b : R) :
  a <= b -> (forall x, x \in `]a, b[%R -> is_derive x 1 f (df x)) ->
  {within `[a, b], continuous f} ->
  exists2 c, c \in `[a, b]%R & f b - f a = df c * (b - a).
Proof.
move=> leab fdrvbl fcont; case: ltgtP leab => // [altb|aeb]; last first.
  by exists a; [rewrite inE/= aeb lexx|rewrite aeb !subrr mulr0].
have [c cab D] := MVT altb fdrvbl fcont.
by exists c => //; rewrite in_itv /= ltW (itvP cab).
Qed.

Lemma ler0_derive1_nincr (R : realType) (f : R -> R) (a b : R) :
  (forall x, x \in `]a, b[%R -> derivable f x 1) ->
  (forall x, x \in `]a, b[%R -> f^`() x <= 0) ->
  {within `[a,b], continuous f} ->
  forall x y, a <= x -> x <= y -> y <= b -> f y <= f x.
Proof.
move=> fdrvbl dfle0 ctsf x y leax lexy leyb; rewrite -subr_ge0.
case: ltgtP lexy => // [xlty|->]; last by rewrite subrr.
have itvW : {subset `[x, y]%R <= `[a, b]%R}.
  by apply/subitvP; rewrite /<=%O /= /<=%O /= leyb leax.
have itvWlt : {subset `]x, y[%R <= `]a, b[%R}.
  by apply subitvP; rewrite /<=%O /= /<=%O /= leyb leax.
have fdrv z : z \in `]x, y[%R -> is_derive z 1 f (f^`()z).
  rewrite in_itv/= => /andP[xz zy]; apply: DeriveDef; last by rewrite derive1E.
  by apply: fdrvbl; rewrite in_itv/= (le_lt_trans _ xz)// (lt_le_trans zy).
have [] := @MVT _ f (f^`()) x y xlty fdrv.
  apply: (@continuous_subspaceW _ _ _ `[a,b]); first exact: itvW.
  by rewrite continuous_subspace_in.
move=> t /itvWlt dft dftxy _; rewrite -oppr_le0 opprB dftxy.
by apply: mulr_le0_ge0 => //; [exact: dfle0|by rewrite subr_ge0 ltW].
Qed.

Lemma le0r_derive1_ndecr (R : realType) (f : R -> R) (a b : R) :
  (forall x, x \in `]a, b[%R -> derivable f x 1) ->
  (forall x, x \in `]a, b[%R -> 0 <= f^`() x) ->
  {within `[a,b], continuous f} ->
  forall x y, a <= x -> x <= y -> y <= b -> f x <= f y.
Proof.
move=> fdrvbl dfge0 fcont x y; rewrite -[f _ <= _]ler_opp2.
apply (@ler0_derive1_nincr _ (- f)) => t tab; first exact/derivableN/fdrvbl.
  rewrite derive1E deriveN; last exact: fdrvbl.
  by rewrite oppr_le0 -derive1E; apply: dfge0.
by apply: continuousN; exact: fcont.
Qed.

Lemma derive1_comp (R : realFieldType) (f g : R -> R) x :
  derivable f x 1 -> derivable g (f x) 1 ->
  (g \o f)^`() x = g^`() (f x) * f^`() x.
Proof.
move=> /derivable1_diffP df /derivable1_diffP dg.
rewrite derive1E'; last exact/differentiable_comp.
rewrite diff_comp // !derive1E' //= -[X in 'd  _ _ X = _]mulr1.
by rewrite [LHS]linearZ mulrC.
Qed.

Section is_derive_instances.
Variables (R : numFieldType) (V : normedModType R).

Lemma derivable_cst (x : V) : derivable (fun=> x) 0 1.
Proof. exact/derivable1_diffP/differentiable_cst. Qed.

Lemma derivable_id (x v : V) : derivable id x v.
Proof.
apply/derivable1P/derivableD; last exact/derivable_cst.
exact/derivable1_diffP/differentiableZl.
Qed.

Global Instance is_derive_id (x v : V) : is_derive x v id v.
Proof.
apply: (DeriveDef (@derivable_id _ _)).
by rewrite deriveE// (@diff_lin _ _ _ [linear of idfun]).
Qed.

Global Instance is_deriveNid (x v : V) : is_derive x v -%R (- v).
Proof. by apply: is_deriveN. Qed.

End is_derive_instances.

(* Trick to trigger type class resolution *)
Lemma trigger_derive (R : realType) (f : R -> R) x x1 y1 :
  is_derive x 1 f x1 -> x1 = y1 -> is_derive x 1 f y1.
Proof. by move=> Hi <-. Qed.