Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 65,529 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 |
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From mathcomp Require Import all_ssreflect ssralg ssrnum matrix interval.
Require Import boolp reals mathcomp_extra classical_sets signed functions.
Require Import topology prodnormedzmodule normedtype landau forms.
(******************************************************************************)
(* This file provides a theory of differentiation. It includes the standard *)
(* rules of differentiation (differential of a sum, of a product, of *)
(* exponentiation, of the inverse, etc.) as well as standard theorems (the *)
(* Extreme Value Theorem, Rolle's theorem, the Mean Value Theorem). *)
(* *)
(* Parsable notations (in all of the following, f is not supposed to be *)
(* differentiable): *)
(* 'd f x == the differential of a function f at a point x *)
(* differentiable f x == the function f is differentiable at a point x *)
(* 'J f x == the Jacobian of f at a point x *)
(* 'D_v f == the directional derivative of f along v *)
(* f^`() == the derivative of f of domain R *)
(* f^`(n) == the nth derivative of f of domain R *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Theory.
Import numFieldNormedType.Exports.
Local Open Scope ring_scope.
Local Open Scope classical_set_scope.
Reserved Notation "''d' f x" (at level 0, f at level 0, x at level 0,
format "''d' f x").
Reserved Notation "'is_diff' F" (at level 0, F at level 0,
format "'is_diff' F").
Reserved Notation "''J' f p" (at level 10, p, f at next level,
format "''J' f p").
Reserved Notation "''D_' v f" (at level 10, v, f at next level,
format "''D_' v f").
Reserved Notation "''D_' v f c" (at level 10, v, f at next level,
format "''D_' v f c"). (* printing *)
Reserved Notation "f ^` ()" (at level 8, format "f ^` ()").
Reserved Notation "f ^` ( n )" (at level 8, format "f ^` ( n )").
Section Differential.
Context {K : numDomainType} {V W : normedModType K}.
Definition diff (F : filter_on V) (_ : phantom (set (set V)) F) (f : V -> W) :=
(get (fun (df : {linear V -> W}) => continuous df /\ forall x,
f x = f (lim F) + df (x - lim F) +o_(x \near F) (x - lim F))).
Local Notation "''d' f x" := (@diff _ (Phantom _ [filter of x]) f).
Fact diff_key : forall T, T -> unit. Proof. by constructor. Qed.
CoInductive differentiable_def (f : V -> W) (x : filter_on V)
(phF : phantom (set (set V)) x) : Prop := DifferentiableDef of
(continuous ('d f x) /\
f = cst (f (lim x)) + 'd f x \o center (lim x) +o_x (center (lim x))).
Local Notation differentiable f F := (@differentiable_def f _ (Phantom _ [filter of F])).
Class is_diff_def (x : filter_on V) (Fph : phantom (set (set V)) x) (f : V -> W)
(df : V -> W) := DiffDef {
ex_diff : differentiable f x ;
diff_val : 'd f x = df :> (V -> W)
}.
Hint Mode is_diff_def - - ! - : typeclass_instances.
Lemma diffP (F : filter_on V) (f : V -> W) :
differentiable f F <->
continuous ('d f F) /\
(forall x, f x = f (lim F) + 'd f F (x - lim F) +o_(x \near F) (x - lim F)).
Proof. by split=> [[] |]; last constructor; rewrite funeqE. Qed.
Lemma diff_continuous (x : filter_on V) (f : V -> W) :
differentiable f x -> continuous ('d f x).
Proof. by move=> /diffP []. Qed.
(* We should have a continuous class or structure *)
Hint Extern 0 (continuous _) => exact: diff_continuous : core.
Lemma diffE (F : filter_on V) (f : V -> W) :
differentiable f F ->
forall x, f x = f (lim F) + 'd f F (x - lim F) +o_(x \near F) (x - lim F).
Proof. by move=> /diffP []. Qed.
Lemma littleo_center0 (x : V) (f : V -> W) (e : V -> V) :
[o_x e of f] = [o_ (0 : V) (e \o shift x) of f \o shift x] \o center x.
Proof.
rewrite /the_littleo /insubd /=; have [g /= _ <-{f}|/asboolP Nfe] /= := insubP.
rewrite insubT //= ?comp_shiftK //; apply/asboolP => _/posnumP[eps].
rewrite [\forall x \near _, _ <= _](near_shift x) sub0r; near=> y.
by rewrite /= subrK; near: y; have /eqoP := littleo_eqo g; apply.
rewrite insubF //; apply/asboolP => fe; apply: Nfe => _/posnumP[eps].
by rewrite [\forall x \near _, _ <= _](near_shift 0) subr0; apply: fe.
Unshelve. all: by end_near. Qed.
End Differential.
Section Differential_numFieldType.
Context {K : numFieldType (*TODO: to numDomainType?*)} {V W : normedModType K}.
(* duplicate from Section Differential *)
Local Notation differentiable f F := (@differentiable_def _ _ _ f _ (Phantom _ [filter of F])).
Local Notation "''d' f x" := (@diff _ _ _ _ (Phantom _ [filter of x]) f).
Hint Extern 0 (continuous _) => exact: diff_continuous : core.
Lemma diff_locallyxP (x : V) (f : V -> W) :
differentiable f x <-> continuous ('d f x) /\
forall h, f (h + x) = f x + 'd f x h +o_(h \near 0 : V) h.
Proof.
split=> [dxf|[dfc dxf]].
split => //; apply: eqaddoEx => h; have /diffE -> := dxf.
rewrite lim_id // addrK; congr (_ + _); rewrite littleo_center0 /= addrK.
by congr ('o); rewrite funeqE => k /=; rewrite addrK.
apply/diffP; split=> //; apply: eqaddoEx; move=> y.
rewrite lim_id // -[in LHS](subrK x y) dxf; congr (_ + _).
rewrite -(comp_centerK x id) -[X in the_littleo _ _ _ X](comp_centerK x).
by rewrite -[_ (y - x)]/((_ \o (center x)) y) -littleo_center0.
Qed.
Lemma diff_locallyx (x : V) (f : V -> W) : differentiable f x ->
forall h, f (h + x) = f x + 'd f x h +o_(h \near 0 : V) h.
Proof. by move=> /diff_locallyxP []. Qed.
Lemma diff_locallyxC (x : V) (f : V -> W) : differentiable f x ->
forall h, f (x + h) = f x + 'd f x h +o_(h \near 0 : V) h.
Proof. by move=> ?; apply/eqaddoEx => h; rewrite [x + h]addrC diff_locallyx. Qed.
Lemma diff_locallyP (x : V) (f : V -> W) :
differentiable f x <->
continuous ('d f x) /\ (f \o shift x = cst (f x) + 'd f x +o_ (0 : V) id).
Proof. by apply: iff_trans (diff_locallyxP _ _) _; rewrite funeqE. Qed.
Lemma diff_locally (x : V) (f : V -> W) : differentiable f x ->
(f \o shift x = cst (f x) + 'd f x +o_ (0 : V) id).
Proof. by move=> /diff_locallyP []. Qed.
End Differential_numFieldType.
Notation "''d' f F" := (@diff _ _ _ _ (Phantom _ [filter of F]) f).
Notation differentiable f F := (@differentiable_def _ _ _ f _ (Phantom _ [filter of F])).
Notation "'is_diff' F" := (is_diff_def (Phantom _ [filter of F])).
#[global] Hint Extern 0 (differentiable _ _) => solve[apply: ex_diff] : core.
#[global] Hint Extern 0 ({for _, continuous _}) => exact: diff_continuous : core.
Lemma differentiableP (R : numDomainType) (V W : normedModType R) (f : V -> W) x :
differentiable f x -> is_diff x f ('d f x).
Proof. by move=> ?; apply: DiffDef. Qed.
Section jacobian.
Definition jacobian n m (R : numFieldType) (f : 'rV[R]_n.+1 -> 'rV[R]_m.+1) p :=
lin1_mx ('d f p).
End jacobian.
Notation "''J' f p" := (jacobian f p).
Section DifferentialR.
Context {R : numFieldType} {V W : normedModType R}.
(* split in multiple bits:
- a linear map which is locally bounded is a little o of 1
- the identity is a littleo of 1
*)
Lemma differentiable_continuous (x : V) (f : V -> W) :
differentiable f x -> {for x, continuous f}.
Proof.
move=> /diff_locallyP [dfc]; rewrite -addrA.
rewrite (littleo_bigO_eqo (cst (1 : R))); last first.
apply/eqOP; near=> k; rewrite /cst [`|1|]normr1 mulr1.
near=> y; rewrite ltW //; near: y; apply/nbhs_normP.
exists k; first by near: k; exists 0.
by move=> ? /=; rewrite -ball_normE /= sub0r normrN.
rewrite addfo; first by move=> /eqolim; rewrite cvg_comp_shift add0r.
by apply/eqolim0P; apply: (cvg_trans (dfc 0)); rewrite linear0.
Unshelve. all: by end_near. Qed.
Section littleo_lemmas.
Variables (X Y Z : normedModType R).
Lemma normm_littleo x (f : X -> Y) : `| [o_(x \near x) (1 : R) of f x]| = 0.
Proof.
rewrite /cst /=; have [e /(_ (`|e x|/2) _)/nbhs_singleton /=] := littleo.
rewrite pmulr_lgt0 // [`|1|]normr1 mulr1 [leLHS]splitr ger_addr pmulr_lle0 //.
by move=> /implyP; case : real_ltgtP; rewrite ?realE ?normrE //= lexx.
Qed.
Lemma littleo_lim0 (f : X -> Y) (h : _ -> Z) (x : X) :
f @ x --> (0 : Y) -> [o_x f of h] x = 0.
Proof.
move/eqolim0P => ->; have [k /(_ _ [gt0 of 1 : R])/=] := littleo.
by move=> /nbhs_singleton; rewrite mul1r normm_littleo normr_le0 => /eqP.
Qed.
End littleo_lemmas.
Section diff_locally_converse_tentative.
(* if there exist A and B s.t. f(a + h) = A + B h + o(h) then
f is differentiable at a, A = f(a) and B = f'(a) *)
(* this is a consequence of diff_continuous and eqolim0 *)
(* indeed the differential being b *: idfun is locally bounded *)
(* and thus a littleo of 1, and so is id *)
(* This can be generalized to any dimension *)
Lemma diff_locally_converse_part1 (f : R -> R) (a b x : R) :
f \o shift x = cst a + b *: idfun +o_ (0 : R) id -> f x = a.
Proof.
rewrite funeqE => /(_ 0) /=; rewrite add0r => ->.
by rewrite -[LHS]/(_ 0 + _ 0 + _ 0) /cst [X in a + X]scaler0 littleo_lim0 ?addr0.
Qed.
End diff_locally_converse_tentative.
Definition derive (f : V -> W) a v :=
lim ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ 0^').
Local Notation "''D_' v f" := (derive f ^~ v).
Local Notation "''D_' v f c" := (derive f c v). (* printing *)
Definition derivable (f : V -> W) a v :=
cvg ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ 0^').
Class is_derive (a v : V) (f : V -> W) (df : W) := DeriveDef {
ex_derive : derivable f a v;
derive_val : 'D_v f a = df
}.
Lemma derivable_nbhs (f : V -> W) a v :
derivable f a v ->
(fun h => (f \o shift a) (h *: v)) = (cst (f a)) +
(fun h => h *: ('D_v f a)) +o_ (nbhs (0 :R)) id.
Proof.
move=> df; apply/eqaddoP => _/posnumP[e].
rewrite -nbhs_nearE nbhs_simpl /= dnbhsE; split; last first.
rewrite /at_point opprD -![(_ + _ : _ -> _) _]/(_ + _) scale0r add0r.
by rewrite addrA subrr add0r normrN scale0r !normr0 mulr0.
have /eqolimP := df; rewrite -[lim _]/(derive _ _ _).
move=> /eqaddoP /(_ e%:num) /(_ [gt0 of e%:num]).
apply: filter_app; rewrite /= !near_simpl near_withinE; near=> h => hN0.
rewrite /= opprD -![(_ + _ : _ -> _) _]/(_ + _) -![(- _ : _ -> _) _]/(- _).
rewrite /cst /= [`|1|]normr1 mulr1 => dfv.
rewrite addrA -[X in X + _]scale1r -(@mulVf _ h) //.
rewrite mulrC -scalerA -scalerBr normmZ.
rewrite -ler_pdivl_mull; last by rewrite normr_gt0.
by rewrite mulrCA mulVf ?mulr1; last by rewrite normr_eq0.
Unshelve. all: by end_near. Qed.
Lemma derivable_nbhsP (f : V -> W) a v :
derivable f a v <->
(fun h => (f \o shift a) (h *: v)) = (cst (f a)) +
(fun h => h *: ('D_v f a)) +o_ (nbhs (0 : R)) id.
Proof.
split; first exact: derivable_nbhs.
move=> df; apply/cvg_ex; exists ('D_v f a).
apply/(@eqolimP _ _ _ (dnbhs_filter_on _))/eqaddoP => _/posnumP[e].
have /eqaddoP /(_ e%:num) /(_ [gt0 of e%:num]) := df.
rewrite /= !(near_simpl, near_withinE); apply: filter_app; near=> h.
rewrite /= opprD -![(_ + _ : _ -> _) _]/(_ + _) -![(- _ : _ -> _) _]/(- _).
rewrite /cst /= [`|1|]normr1 mulr1 addrA => dfv hN0.
rewrite -[X in _ - X]scale1r -(@mulVf _ h) //.
rewrite -scalerA -scalerBr normmZ normfV ler_pdivr_mull ?normr_gt0 //.
by rewrite mulrC.
Unshelve. all: by end_near. Qed.
Lemma derivable_nbhsx (f : V -> W) a v :
derivable f a v -> forall h, f (a + h *: v) = f a + h *: 'D_v f a
+o_(h \near (nbhs (0 : R))) h.
Proof.
move=> /derivable_nbhs; rewrite funeqE => df.
by apply: eqaddoEx => h; have /= := (df h); rewrite addrC => ->.
Qed.
Lemma derivable_nbhsxP (f : V -> W) a v :
derivable f a v <-> forall h, f (a + h *: v) = f a + h *: 'D_v f a
+o_(h \near (nbhs (0 :R))) h.
Proof.
split; first exact: derivable_nbhsx.
move=> df; apply/derivable_nbhsP; apply/eqaddoE; rewrite funeqE => h.
by rewrite /= addrC df.
Qed.
End DifferentialR.
Notation "''D_' v f" := (derive f ^~ v).
Notation "''D_' v f c" := (derive f c v). (* printing *)
#[global] Hint Extern 0 (derivable _ _ _) => solve[apply: ex_derive] : core.
Section DifferentialR_numFieldType.
Context {R : numFieldType} {V W : normedModType R}.
Lemma deriveE (f : V -> W) (a v : V) :
differentiable f a -> 'D_v f a = 'd f a v.
Proof.
rewrite /derive => /diff_locally -> /=; set k := 'o _.
evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first.
rewrite funeqE=> h; rewrite !scalerDr scalerN /cst /=.
by rewrite addrC !addrA addNr add0r linearZ /= scalerA /g.
apply: cvg_map_lim => //.
pose g1 : R -> W := fun h => (h^-1 * h) *: 'd f a v.
pose g2 : R -> W := fun h : R => h^-1 *: k (h *: v ).
rewrite (_ : g = g1 + g2) ?funeqE // -(addr0 (_ _ v)); apply: cvgD.
rewrite -(scale1r (_ _ v)); apply: cvgZl => /= X [e e0].
rewrite /ball_ /= => eX.
apply/nbhs_ballP.
by exists e => //= x _ x0; apply eX; rewrite mulVr // ?unitfE //= subrr normr0.
rewrite /g2.
have [/eqP ->|v0] := boolP (v == 0).
rewrite (_ : (fun _ => _) = cst 0); first exact: cvg_cst.
by rewrite funeqE => ?; rewrite scaler0 /k littleo_lim0 // scaler0.
apply/cvg_distP => e e0.
rewrite nearE /=; apply/nbhs_ballP.
have /(littleoP [littleo of k]) /nbhs_ballP[i i0 Hi] : 0 < e / (2 * `|v|).
by rewrite divr_gt0 // pmulr_rgt0 // normr_gt0.
exists (i / `|v|); first by rewrite /= divr_gt0 // normr_gt0.
move=> /= j; rewrite /ball /= /ball_ add0r normrN.
rewrite ltr_pdivl_mulr ?normr_gt0 // => jvi j0.
rewrite add0r normrN normmZ -ltr_pdivl_mull ?normr_gt0 ?invr_neq0 //.
have /Hi/le_lt_trans -> // : ball 0 i (j *: v).
by rewrite -ball_normE /ball_/= add0r normrN (le_lt_trans _ jvi) // normmZ.
rewrite -(mulrC e) -mulrA -ltr_pdivl_mull // mulrA mulVr ?unitfE ?gt_eqF //.
rewrite normrV ?unitfE // div1r invrK ltr_pdivr_mull; last first.
by rewrite pmulr_rgt0 // normr_gt0.
rewrite normmZ mulrC -mulrA.
by rewrite ltr_pmull ?ltr1n // pmulr_rgt0 ?normm_gt0 // normr_gt0.
Qed.
End DifferentialR_numFieldType.
Section DifferentialR2.
Variable R : numFieldType.
Implicit Type (V : normedModType R).
Lemma derivemxE m n (f : 'rV[R]_m.+1 -> 'rV[R]_n.+1) (a v : 'rV[R]_m.+1) :
differentiable f a -> 'D_ v f a = v *m jacobian f a.
Proof. by move=> /deriveE->; rewrite /jacobian mul_rV_lin1. Qed.
Definition derive1 V (f : R -> V) (a : R) :=
lim ((fun h => h^-1 *: (f (h + a) - f a)) @ 0^').
Local Notation "f ^` ()" := (derive1 f).
Lemma derive1E V (f : R -> V) a : f^`() a = 'D_1 f a.
Proof.
rewrite /derive1 /derive; set d := (fun _ : R => _); set d' := (fun _ : R => _).
by suff -> : d = d' by []; rewrite funeqE=> h; rewrite /d /d' /= [h%:A](mulr1).
Qed.
(* Is it necessary? *)
Lemma derive1E' V f a : differentiable (f : R -> V) a ->
f^`() a = 'd f a 1.
Proof. by move=> ?; rewrite derive1E deriveE. Qed.
Definition derive1n V n (f : R -> V) := iter n (@derive1 V) f.
Local Notation "f ^` ( n )" := (derive1n n f).
Lemma derive1n0 V (f : R -> V) : f^`(0) = f.
Proof. by []. Qed.
Lemma derive1n1 V (f : R -> V) : f^`(1) = f^`().
Proof. by []. Qed.
Lemma derive1nS V (f : R -> V) n : f^`(n.+1) = f^`(n)^`().
Proof. by []. Qed.
Lemma derive1Sn V (f : R -> V) n : f^`(n.+1) = f^`()^`(n).
Proof. exact: iterSr. Qed.
End DifferentialR2.
Notation "f ^` ()" := (derive1 f).
Notation "f ^` ( n )" := (derive1n n f).
Section DifferentialR3.
Variable R : numFieldType.
Fact dcst (V W : normedModType R) (a : W) (x : V) : continuous (0 : V -> W) /\
cst a \o shift x = cst (cst a x) + \0 +o_ (0 : V) id.
Proof.
split; first exact: cst_continuous.
apply/eqaddoE; rewrite addr0 funeqE => ? /=; rewrite -[LHS]addr0; congr (_ + _).
by rewrite littleoE; last exact: littleo0_subproof.
Qed.
Variables (V W : normedModType R).
Fact dadd (f g : V -> W) x :
differentiable f x -> differentiable g x ->
continuous ('d f x \+ 'd g x) /\
(f + g) \o shift x = cst ((f + g) x) + ('d f x \+ 'd g x) +o_ (0 : V) id.
Proof.
move=> df dg; split => [?|]; do ?exact: continuousD.
apply/(@eqaddoE R); rewrite funeqE => y /=; rewrite -[(f + g) _]/(_ + _).
by rewrite ![_ (_ + x)]diff_locallyx// addrACA addox addrACA.
Qed.
Fact dopp (f : V -> W) x :
differentiable f x -> continuous (- ('d f x : V -> W)) /\
(- f) \o shift x = cst (- f x) \- 'd f x +o_ (0 : V) id.
Proof.
move=> df; split; first by move=> ?; apply: continuousN.
apply/eqaddoE; rewrite funeqE => y /=.
by rewrite -[(- f) _]/(- (_ _)) diff_locallyx// !opprD oppox.
Qed.
Lemma is_diff_eq (V' W' : normedModType R) (f f' g : V' -> W') (x : V') :
is_diff x f f' -> f' = g -> is_diff x f g.
Proof. by move=> ? <-. Qed.
Fact dscale (f : V -> W) k x :
differentiable f x -> continuous (k \*: 'd f x) /\
(k *: f) \o shift x = cst ((k *: f) x) + k \*: 'd f x +o_ (0 : V) id.
Proof.
move=> df; split; first by move=> ?; apply: continuousZr.
apply/eqaddoE; rewrite funeqE => y /=.
by rewrite -[(k *: f) _]/(_ *: _) diff_locallyx // !scalerDr scaleox.
Qed.
(* NB: could be generalized with K : absRingType instead of R; DONE? *)
Fact dscalel (k : V -> R) (f : W) x :
differentiable k x ->
continuous (fun z : V => 'd k x z *: f) /\
(fun z => k z *: f) \o shift x =
cst (k x *: f) + (fun z => 'd k x z *: f) +o_ (0 : V) id.
Proof.
move=> df; split.
move=> ?; exact/continuousZl/diff_continuous.
apply/eqaddoE; rewrite funeqE => y /=.
by rewrite diff_locallyx //= !scalerDl scaleolx.
Qed.
Fact dlin (V' W' : normedModType R) (f : {linear V' -> W'}) x :
continuous f -> f \o shift x = cst (f x) + f +o_ (0 : V') id.
Proof.
move=> df; apply: eqaddoE; rewrite funeqE => y /=.
rewrite linearD addrC -[LHS]addr0; congr (_ + _).
by rewrite littleoE; last exact: littleo0_subproof. (*fixme*)
Qed.
(* TODO: generalize *)
Lemma compoO_eqo (U V' W' : normedModType R) (f : U -> V')
(g : V' -> W') :
[o_ (0 : V') id of g] \o [O_ (0 : U) id of f] =o_ (0 : U) id.
Proof.
apply/eqoP => _ /posnumP[e].
have /bigO_exP [_ /posnumP[k]] := bigOP [bigO of [O_ (0 : U) id of f]].
have := littleoP [littleo of [o_ (0 : V') id of g]].
move=> /(_ (e%:num / k%:num)) /(_ _) /nbhs_ballP [//|_ /posnumP[d] hd].
apply: filter_app; near=> x => leOxkx; apply: le_trans (hd _ _) _; last first.
rewrite -ler_pdivl_mull //; apply: le_trans leOxkx _.
by rewrite invf_div mulrA -[_ / _ * _]mulrA mulVf // mulr1.
rewrite -ball_normE /= distrC subr0 (le_lt_trans leOxkx) //.
rewrite -ltr_pdivl_mull //; near: x; rewrite /= !nbhs_simpl.
apply/nbhs_ballP; exists (k%:num ^-1 * d%:num) => //= x.
by rewrite -ball_normE /= distrC subr0.
Unshelve. all: by end_near. Qed.
Lemma compoO_eqox (U V' W' : normedModType R) (f : U -> V')
(g : V' -> W') :
forall x : U, [o_ (0 : V') id of g] ([O_ (0 : U) id of f] x) =o_(x \near 0 : U) x.
Proof. by move=> x; rewrite -[LHS]/((_ \o _) x) compoO_eqo. Qed.
(* TODO: generalize *)
Lemma compOo_eqo (U V' W' : normedModType R) (f : U -> V')
(g : V' -> W') :
[O_ (0 : V') id of g] \o [o_ (0 : U) id of f] =o_ (0 : U) id.
Proof.
apply/eqoP => _ /posnumP[e].
have /bigO_exP [_ /posnumP[k]] := bigOP [bigO of [O_ (0 : V') id of g]].
move=> /nbhs_ballP [_ /posnumP[d] hd].
have ekgt0 : e%:num / k%:num > 0 by [].
have /(_ _ ekgt0) := littleoP [littleo of [o_ (0 : U) id of f]].
apply: filter_app; near=> x => leoxekx; apply: le_trans (hd _ _) _; last first.
by rewrite -ler_pdivl_mull // mulrA [_^-1 * _]mulrC.
rewrite -ball_normE /= distrC subr0; apply: le_lt_trans leoxekx _.
rewrite -ltr_pdivl_mull //; near: x; rewrite /= nbhs_simpl.
apply/nbhs_ballP; exists ((e%:num / k%:num) ^-1 * d%:num) => //= x.
by rewrite -ball_normE /= distrC subr0.
Unshelve. all: by end_near. Qed.
End DifferentialR3.
Section DifferentialR3_numFieldType.
Variable R : numFieldType.
Lemma littleo_linear0 (V W : normedModType R) (f : {linear V -> W}) :
(f : V -> W) =o_ (0 : V) id -> f = cst 0 :> (V -> W).
Proof.
move/eqoP => oid.
rewrite funeqE => x; apply/eqP; have [|xn0] := real_le0P (normr_real x).
by rewrite normr_le0 => /eqP ->; rewrite linear0.
rewrite -normr_le0 -(mul0r `|x|) -ler_pdivr_mulr //.
apply/ler0_addgt0P => _ /posnumP[e]; rewrite ler_pdivr_mulr //.
have /oid /nbhs_ballP [_ /posnumP[d] dfe] := !! gt0 e.
set k := ((d%:num / 2) / (PosNum xn0)%:num)^-1.
rewrite -{1}(@scalerKV _ _ k _ x) /k // linearZZ normmZ.
rewrite -ler_pdivl_mull; last by rewrite gtr0_norm.
rewrite mulrCA (@le_trans _ _ (e%:num * `|k^-1 *: x|)) //; last first.
by rewrite ler_pmul // normmZ normfV.
apply: dfe.
rewrite -ball_normE /ball_/= sub0r normrN normmZ.
rewrite invrK -ltr_pdivl_mulr // ger0_norm // ltr_pdivr_mulr //.
by rewrite -mulrA mulVf ?lt0r_neq0 // mulr1 [ltRHS]splitr ltr_addl.
Qed.
Lemma diff_unique (V W : normedModType R) (f : V -> W)
(df : {linear V -> W}) x :
continuous df -> f \o shift x = cst (f x) + df +o_ (0 : V) id ->
'd f x = df :> (V -> W).
Proof.
move=> dfc dxf; apply/subr0_eq; rewrite -[LHS]/(_ \- _).
apply/littleo_linear0/eqoP/eq_some_oP => /=; rewrite funeqE => y /=.
have hdf h :
(f \o shift x = cst (f x) + h +o_ (0 : V) id) ->
h = f \o shift x - cst (f x) +o_ (0 : V) id.
move=> hdf; apply: eqaddoE.
rewrite hdf addrAC (addrC _ h) addrK.
rewrite -[LHS]addr0 -addrA; congr (_ + _).
by apply/eqP; rewrite eq_sym addrC addr_eq0 oppo.
rewrite (hdf _ dxf).
suff /diff_locally /hdf -> : differentiable f x.
by rewrite opprD addrCA -(addrA (_ - _)) addKr oppox addox.
apply/diffP; apply: (@getPex _ (fun (df : {linear V -> W}) => continuous df /\
forall y, f y = f (lim x) + df (y - lim x) +o_(y \near x) (y - lim x))).
exists df; split=> //; apply: eqaddoEx => z.
rewrite (hdf _ dxf) !addrA lim_id // /(_ \o _) /= subrK [f _ + _]addrC addrK.
rewrite -addrA -[LHS]addr0; congr (_ + _).
apply/eqP; rewrite eq_sym addrC addr_eq0 oppox; apply/eqP.
by rewrite littleo_center0 (comp_centerK x id) -[- _ in RHS](comp_centerK x).
Qed.
Lemma diff_cst (V W : normedModType R) a x : ('d (cst a) x : V -> W) = 0.
Proof. by apply/diff_unique; have [] := dcst a x. Qed.
Variables (V W : normedModType R).
Lemma differentiable_cst (W' : normedModType R) (a : W') (x : V) :
differentiable (cst a) x.
Proof. by apply/diff_locallyP; rewrite diff_cst; have := dcst a x. Qed.
Global Instance is_diff_cst (a : W) (x : V) : is_diff x (cst a) 0.
Proof. exact: DiffDef (differentiable_cst _ _) (diff_cst _ _). Qed.
Lemma diffD (f g : V -> W) x :
differentiable f x -> differentiable g x ->
'd (f + g) x = 'd f x \+ 'd g x :> (V -> W).
Proof. by move=> df dg; apply/diff_unique; have [] := dadd df dg. Qed.
Lemma differentiableD (f g : V -> W) x :
differentiable f x -> differentiable g x -> differentiable (f + g) x.
Proof.
by move=> df dg; apply/diff_locallyP; rewrite diffD //; have := dadd df dg.
Qed.
Global Instance is_diffD (f g df dg : V -> W) x :
is_diff x f df -> is_diff x g dg -> is_diff x (f + g) (df + dg).
Proof.
move=> dfx dgx; apply: DiffDef; first exact: differentiableD.
by rewrite diffD // !diff_val.
Qed.
Lemma differentiable_sum n (f : 'I_n -> V -> W) (x : V) :
(forall i, differentiable (f i) x) -> differentiable (\sum_(i < n) f i) x.
Proof.
elim: n f => [f _| n IH f H]; first by rewrite big_ord0.
rewrite big_ord_recr /=; apply/differentiableD; [apply/IH => ? |]; exact: H.
Qed.
Lemma diffN (f : V -> W) x :
differentiable f x -> 'd (- f) x = - ('d f x : V -> W) :> (V -> W).
Proof.
move=> df; rewrite -[RHS]/(@GRing.opp _ \o _); apply/diff_unique;
by have [] := dopp df.
Qed.
Lemma differentiableN (f : V -> W) x :
differentiable f x -> differentiable (- f) x.
Proof.
by move=> df; apply/diff_locallyP; rewrite diffN //; have := dopp df.
Qed.
Global Instance is_diffN (f df : V -> W) x :
is_diff x f df -> is_diff x (- f) (- df).
Proof.
move=> dfx; apply: DiffDef; first exact: differentiableN.
by rewrite diffN // diff_val.
Qed.
Global Instance is_diffB (f g df dg : V -> W) x :
is_diff x f df -> is_diff x g dg -> is_diff x (f - g) (df - dg).
Proof. by move=> dfx dgx; apply: is_diff_eq. Qed.
Lemma diffB (f g : V -> W) x :
differentiable f x -> differentiable g x ->
'd (f - g) x = 'd f x \- 'd g x :> (V -> W).
Proof. by move=> /differentiableP df /differentiableP dg; rewrite diff_val. Qed.
Lemma differentiableB (f g : V -> W) x :
differentiable f x -> differentiable g x -> differentiable (f \- g) x.
Proof. by move=> /differentiableP df /differentiableP dg. Qed.
Lemma diffZ (f : V -> W) k x :
differentiable f x -> 'd (k *: f) x = k \*: 'd f x :> (V -> W).
Proof. by move=> df; apply/diff_unique; have [] := dscale k df. Qed.
Lemma differentiableZ (f : V -> W) k x :
differentiable f x -> differentiable (k *: f) x.
Proof.
by move=> df; apply/diff_locallyP; rewrite diffZ //; have := dscale k df.
Qed.
Global Instance is_diffZ (f df : V -> W) k x :
is_diff x f df -> is_diff x (k *: f) (k *: df).
Proof.
move=> dfx; apply: DiffDef; first exact: differentiableZ.
by rewrite diffZ // diff_val.
Qed.
Lemma diffZl (k : V -> R) (f : W) x : differentiable k x ->
'd (fun z => k z *: f) x = (fun z => 'd k x z *: f) :> (_ -> _).
Proof.
move=> df; set g := RHS; have glin : linear g.
by move=> a u v; rewrite /g linearP /= scalerDl -scalerA.
by apply:(@diff_unique _ _ _ (Linear glin)); have [] := dscalel f df.
Qed.
Lemma differentiableZl (k : V -> R) (f : W) x :
differentiable k x -> differentiable (fun z => k z *: f) x.
Proof.
by move=> df; apply/diff_locallyP; rewrite diffZl //; have [] := dscalel f df.
Qed.
Lemma diff_lin (V' W' : normedModType R) (f : {linear V' -> W'}) x :
continuous f -> 'd f x = f :> (V' -> W').
Proof. by move=> fcont; apply/diff_unique => //; apply: dlin. Qed.
Lemma linear_differentiable (V' W' : normedModType R) (f : {linear V' -> W'})
x : continuous f -> differentiable f x.
Proof.
by move=> fcont; apply/diff_locallyP; rewrite diff_lin //; have := dlin x fcont.
Qed.
Global Instance is_diff_id (x : V) : is_diff x id id.
Proof.
apply: DiffDef.
by apply: (@linear_differentiable _ _ [linear of idfun]) => ? //.
by rewrite (@diff_lin _ _ [linear of idfun]) // => ? //.
Qed.
Global Instance is_diff_scaler (k : R) (x : V) : is_diff x ( *:%R k) ( *:%R k).
Proof.
apply: DiffDef; first exact/linear_differentiable/scaler_continuous.
by rewrite diff_lin //; apply: scaler_continuous.
Qed.
Global Instance is_diff_scalel (x k : R) :
is_diff k ( *:%R ^~ x) ( *:%R ^~ x).
Proof.
have -> : *:%R ^~ x = GRing.scale_linear R x.
by rewrite funeqE => ? /=; rewrite [_ *: _]mulrC.
apply: DiffDef; first exact/linear_differentiable/scaler_continuous.
by rewrite diff_lin //; apply: scaler_continuous.
Qed.
Lemma differentiable_coord m n (M : 'M[R]_(m.+1, n.+1)) i j :
differentiable (fun N : 'M[R]_(m.+1, n.+1) => N i j : R ) M.
Proof.
have @f : {linear 'M[R]_(m.+1, n.+1) -> R}.
by exists (fun N : 'M[R]_(_, _) => N i j); eexists; move=> ? ?; rewrite !mxE.
rewrite (_ : (fun _ => _) = f) //; exact/linear_differentiable/coord_continuous.
Qed.
Lemma linear_lipschitz (V' W' : normedModType R) (f : {linear V' -> W'}) :
continuous f -> exists2 k, k > 0 & forall x, `|f x| <= k * `|x|.
Proof.
move=> /(_ 0); rewrite linear0 => /(_ _ (nbhsx_ballx 0 1%:pos)).
move=> /nbhs_ballP [_ /posnumP[e] he]; exists (2 / e%:num) => // x.
have [|xn0] := real_le0P (normr_real x).
by rewrite normr_le0 => /eqP->; rewrite linear0 !normr0 mulr0.
set k := 2 / e%:num * (PosNum xn0)%:num.
have kn0 : k != 0 by rewrite /k.
have abskgt0 : `|k| > 0 by rewrite normr_gt0.
rewrite -[x in leLHS](scalerKV kn0) linearZZ normmZ -ler_pdivl_mull //.
suff /he : ball 0 e%:num (k^-1 *: x).
rewrite -ball_normE /= distrC subr0 => /ltW /le_trans; apply.
by rewrite ger0_norm /k // mulVf.
rewrite -ball_normE /= distrC subr0 normmZ.
rewrite normfV ger0_norm /k // invrM ?unitfE // mulrAC mulVf //.
by rewrite invf_div mul1r [ltRHS]splitr; apply: ltr_spaddr.
Qed.
Lemma linear_eqO (V' W' : normedModType R) (f : {linear V' -> W'}) :
continuous f -> (f : V' -> W') =O_ (0 : V') id.
Proof.
move=> /linear_lipschitz [k kgt0 flip]; apply/eqO_exP; exists k => //.
exact: filterE.
Qed.
Lemma diff_eqO (V' W' : normedModType R) (x : filter_on V') (f : V' -> W') :
differentiable f x -> ('d f x : V' -> W') =O_ (0 : V') id.
Proof. by move=> /diff_continuous /linear_eqO; apply. Qed.
Lemma compOo_eqox (U V' W' : normedModType R) (f : U -> V')
(g : V' -> W') : forall x,
[O_ (0 : V') id of g] ([o_ (0 : U) id of f] x) =o_(x \near 0 : U) x.
Proof. by move=> x; rewrite -[LHS]/((_ \o _) x) compOo_eqo. Qed.
Fact dcomp (U V' W' : normedModType R) (f : U -> V') (g : V' -> W') x :
differentiable f x -> differentiable g (f x) ->
continuous ('d g (f x) \o 'd f x) /\ forall y,
g (f (y + x)) = g (f x) + ('d g (f x) \o 'd f x) y +o_(y \near 0 : U) y.
Proof.
move=> df dg; split; first by move=> ?; apply: continuous_comp.
apply: eqaddoEx => y; rewrite diff_locallyx// -addrA diff_locallyxC// linearD.
rewrite addrA -addrA; congr (_ + _ + _).
rewrite diff_eqO // ['d f x : _ -> _]diff_eqO //.
by rewrite {2}eqoO addOx compOo_eqox compoO_eqox addox.
Qed.
Lemma diff_comp (U V' W' : normedModType R) (f : U -> V') (g : V' -> W') x :
differentiable f x -> differentiable g (f x) ->
'd (g \o f) x = 'd g (f x) \o 'd f x :> (U -> W').
Proof. by move=> df dg; apply/diff_unique; have [? /funext] := dcomp df dg. Qed.
Lemma differentiable_comp (U V' W' : normedModType R) (f : U -> V')
(g : V' -> W') x : differentiable f x -> differentiable g (f x) ->
differentiable (g \o f) x.
Proof.
move=> df dg; apply/diff_locallyP; rewrite diff_comp //;
by have [? /funext]:= dcomp df dg.
Qed.
Global Instance is_diff_comp (U V' W' : normedModType R) (f df : U -> V')
(g dg : V' -> W') x : is_diff x f df -> is_diff (f x) g dg ->
is_diff x (g \o f) (dg \o df) | 99.
Proof.
move=> dfx dgfx; apply: DiffDef; first exact: differentiable_comp.
by rewrite diff_comp // !diff_val.
Qed.
Lemma bilinear_schwarz (U V' W' : normedModType R)
(f : {bilinear U -> V' -> W'}) : continuous (fun p => f p.1 p.2) ->
exists2 k, k > 0 & forall u v, `|f u v| <= k * `|u| * `|v|.
Proof.
move=> /(_ 0); rewrite linear0r => /(_ _ (nbhsx_ballx 0 1%:pos)).
move=> /nbhs_ballP [_ /posnumP[e] he]; exists ((2 / e%:num) ^+2) => // u v.
have [|un0] := real_le0P (normr_real u).
by rewrite normr_le0 => /eqP->; rewrite linear0l !normr0 mulr0 mul0r.
have [|vn0] := real_le0P (normr_real v).
by rewrite normr_le0 => /eqP->; rewrite linear0r !normr0 mulr0.
rewrite -[`|u|]/((PosNum un0)%:num) -[`|v|]/((PosNum vn0)%:num).
set ku := 2 / e%:num * (PosNum un0)%:num.
set kv := 2 / e%:num * (PosNum vn0)%:num.
rewrite -[X in f X](@scalerKV _ _ ku) /ku // linearZl_LR normmZ.
rewrite gtr0_norm // -ler_pdivl_mull //.
rewrite -[X in f _ X](@scalerKV _ _ kv) /kv // linearZr_LR normmZ.
rewrite gtr0_norm // -ler_pdivl_mull //.
suff /he : ball 0 e%:num (ku^-1 *: u, kv^-1 *: v).
rewrite -ball_normE /= distrC subr0 => /ltW /le_trans; apply.
rewrite ler_pdivl_mull 1?pmulr_lgt0// mulr1 ler_pdivl_mull 1?pmulr_lgt0//.
by rewrite mulrA [ku * _]mulrAC expr2.
rewrite -ball_normE /= distrC subr0.
have -> : (ku^-1 *: u, kv^-1 *: v) =
(e%:num / 2) *: ((PosNum un0)%:num ^-1 *: u, (PosNum vn0)%:num ^-1 *: v).
rewrite invrM ?unitfE // [kv ^-1]invrM ?unitfE //.
rewrite mulrC -[_ *: u]scalerA [X in X *: v]mulrC -[_ *: v]scalerA.
by rewrite invf_div.
rewrite normmZ ger0_norm // -mulrA gtr_pmulr // ltr_pdivr_mull // mulr1.
by rewrite prod_normE/= !normmZ !normfV !normr_id !mulVf ?gt_eqF// maxxx ltr1n.
Qed.
Lemma bilinear_eqo (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) :
continuous (fun p => f p.1 p.2) -> (fun p => f p.1 p.2) =o_ (0 : U * V') id.
Proof.
move=> fc; have [_ /posnumP[k] fschwarz] := bilinear_schwarz fc.
apply/eqoP=> _ /posnumP[e]; near=> x; rewrite (le_trans (fschwarz _ _))//.
rewrite ler_pmul ?pmulr_rge0 //; last by rewrite num_le_maxr /= lexx orbT.
rewrite -ler_pdivl_mull //.
suff : `|x| <= k%:num ^-1 * e%:num by apply: le_trans; rewrite num_le_maxr /= lexx.
near: x; rewrite !near_simpl; apply/nbhs_le_nbhs_norm.
by exists (k%:num ^-1 * e%:num) => //= ? /=; rewrite -ball_normE /= distrC subr0 => /ltW.
Unshelve. all: by end_near. Qed.
Fact dbilin (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) p :
continuous (fun p => f p.1 p.2) ->
continuous (fun q => (f p.1 q.2 + f q.1 p.2)) /\
(fun q => f q.1 q.2) \o shift p = cst (f p.1 p.2) +
(fun q => f p.1 q.2 + f q.1 p.2) +o_ (0 : U * V') id.
Proof.
move=> fc; split=> [q|].
by apply: (@continuousD _ _ _ (fun q => f p.1 q.2) (fun q => f q.1 p.2));
move=> A /(fc (_.1, _.2)) /= /nbhs_ballP [_ /posnumP[e] fpqe_A];
apply/nbhs_ballP; exists e%:num => //= r [? ?]; exact: (fpqe_A (_.1, _.2)).
apply/eqaddoE; rewrite funeqE => q /=.
rewrite linearDl !linearDr addrA addrC.
rewrite -[f q.1 _ + _ + _]addrA [f q.1 _ + _]addrC addrA [f q.1 _ + _]addrC.
by congr (_ + _); rewrite -[LHS]/((fun p => f p.1 p.2) q) bilinear_eqo.
Qed.
Lemma diff_bilin (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) p :
continuous (fun p => f p.1 p.2) -> 'd (fun q => f q.1 q.2) p =
(fun q => f p.1 q.2 + f q.1 p.2) :> (U * V' -> W').
Proof.
move=> fc; have lind : linear (fun q => f p.1 q.2 + f q.1 p.2).
by move=> ???; rewrite linearPr linearPl scalerDr addrACA.
have -> : (fun q => f p.1 q.2 + f q.1 p.2) = Linear lind by [].
by apply/diff_unique; have [] := dbilin p fc.
Qed.
Lemma differentiable_bilin (U V' W' : normedModType R)
(f : {bilinear U -> V' -> W'}) p :
continuous (fun p => f p.1 p.2) -> differentiable (fun p => f p.1 p.2) p.
Proof.
by move=> fc; apply/diff_locallyP; rewrite diff_bilin //; apply: dbilin p fc.
Qed.
Definition Rmult_rev (y x : R) := x * y.
Canonical rev_Rmult := @RevOp _ _ _ Rmult_rev (@GRing.mul [ringType of R])
(fun _ _ => erefl).
Lemma Rmult_is_linear x : linear (@GRing.mul [ringType of R] x : R -> R).
Proof. by move=> ???; rewrite mulrDr scalerAr. Qed.
Canonical Rmult_linear x := Linear (Rmult_is_linear x).
Lemma Rmult_rev_is_linear y : linear (Rmult_rev y : R -> R).
Proof. by move=> ???; rewrite /Rmult_rev mulrDl scalerAl. Qed.
Canonical Rmult_rev_linear y := Linear (Rmult_rev_is_linear y).
Canonical Rmult_bilinear :=
[bilinear of (@GRing.mul [ringType of [lmodType R of R]])].
Global Instance is_diff_Rmult (p : R*R ) :
is_diff p (fun q => q.1 * q.2) (fun q => p.1 * q.2 + q.1 * p.2).
Proof.
apply: DiffDef; last by rewrite diff_bilin // => ?; apply: mul_continuous.
by apply: differentiable_bilin =>?; apply: mul_continuous.
Qed.
Lemma eqo_pair (U V' W' : normedModType R) (F : filter_on U)
(f : U -> V') (g : U -> W') :
(fun t => ([o_F id of f] t, [o_F id of g] t)) =o_F id.
Proof.
apply/eqoP => _/posnumP[e]; near=> x; rewrite num_le_maxl /=.
by apply/andP; split; near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.
Fact dpair (U V' W' : normedModType R) (f : U -> V') (g : U -> W') x :
differentiable f x -> differentiable g x ->
continuous (fun y => ('d f x y, 'd g x y)) /\
(fun y => (f y, g y)) \o shift x = cst (f x, g x) +
(fun y => ('d f x y, 'd g x y)) +o_ (0 : U) id.
Proof.
move=> df dg; split=> [?|]; first by apply: cvg_pair; apply: diff_continuous.
apply/eqaddoE; rewrite funeqE => y /=.
rewrite ![_ (_ + x)]diff_locallyx//.
(* fixme *)
have -> : forall h e, (f x + 'd f x y + [o_ (0 : U) id of h] y,
g x + 'd g x y + [o_ (0 : U) id of e] y) =
(f x, g x) + ('d f x y, 'd g x y) +
([o_ (0 : U) id of h] y, [o_ (0 : U) id of e] y) by [].
by congr (_ + _); rewrite -[LHS]/((fun y => (_ y, _ y)) y) eqo_pair.
Qed.
Lemma diff_pair (U V' W' : normedModType R) (f : U -> V') (g : U -> W') x :
differentiable f x -> differentiable g x -> 'd (fun y => (f y, g y)) x =
(fun y => ('d f x y, 'd g x y)) :> (U -> V' * W').
Proof.
move=> df dg.
have lin_pair : linear (fun y => ('d f x y, 'd g x y)).
by move=> ???; rewrite !linearPZ.
have -> : (fun y => ('d f x y, 'd g x y)) = Linear lin_pair by [].
by apply: diff_unique; have [] := dpair df dg.
Qed.
Lemma differentiable_pair (U V' W' : normedModType R) (f : U -> V')
(g : U -> W') x : differentiable f x -> differentiable g x ->
differentiable (fun y => (f y, g y)) x.
Proof.
by move=> df dg; apply/diff_locallyP; rewrite diff_pair //; apply: dpair.
Qed.
Global Instance is_diff_pair (U V' W' : normedModType R) (f df : U -> V')
(g dg : U -> W') x : is_diff x f df -> is_diff x g dg ->
is_diff x (fun y => (f y, g y)) (fun y => (df y, dg y)).
Proof.
move=> dfx dgx; apply: DiffDef; first exact: differentiable_pair.
by rewrite diff_pair // !diff_val.
Qed.
Global Instance is_diffM (f g df dg : V -> R) x :
is_diff x f df -> is_diff x g dg -> is_diff x (f * g) (f x *: dg + g x *: df).
Proof.
move=> dfx dgx.
have -> : f * g = (fun p => p.1 * p.2) \o (fun y => (f y, g y)) by [].
(* TODO: type class inference should succeed or fail, not leave an evar *)
apply: is_diff_eq; do ?exact: is_diff_comp.
by rewrite funeqE => ?; rewrite /= [_ * g _]mulrC.
Qed.
Lemma diffM (f g : V -> R) x :
differentiable f x -> differentiable g x ->
'd (f * g) x = f x \*: 'd g x + g x \*: 'd f x :> (V -> R).
Proof. by move=> /differentiableP df /differentiableP dg; rewrite diff_val. Qed.
Lemma differentiableM (f g : V -> R) x :
differentiable f x -> differentiable g x -> differentiable (f * g) x.
Proof. by move=> /differentiableP df /differentiableP dg. Qed.
(* fixme using *)
(* (1 / (h + x) - 1 / x) / h = - 1 / (h + x) x = -1/x^2 + o(1) *)
Fact dinv (x : R) :
x != 0 -> continuous (fun h : R => - x ^- 2 *: h) /\
(fun x => x^-1)%R \o shift x = cst (x^-1)%R +
(fun h : R => - x ^- 2 *: h) +o_ (0 : R) id.
Proof.
move=> xn0; suff: continuous (fun h : R => - (1 / x) ^+ 2 *: h) /\
(fun x => 1 / x ) \o shift x = cst (1 / x) +
(fun h : R => - (1 / x) ^+ 2 *: h) +o_ (0 : R) id.
rewrite !mul1r !GRing.exprVn.
rewrite (_ : (fun x => x^-1) = (fun x => 1 / x ))//.
by rewrite funeqE => y; rewrite mul1r.
split; first by move=> ?; apply: continuousZr.
apply/eqaddoP => _ /posnumP[e]; near=> h.
rewrite -[(_ + _ : R -> R) h]/(_ + _) -[(- _ : R -> R) h]/(- _) /=.
rewrite opprD scaleNr opprK /cst /=.
rewrite -[- _]mulr1 -[X in - _ * X](mulfVK xn0) mulrA mulNr -expr2 mulNr.
rewrite [- _ + _]addrC -mulrBr.
rewrite -[X in X + _]mulr1 -[X in 1 / _ * X](@mulfVK _ (x ^+ 2)); last first.
by rewrite sqrf_eq0.
rewrite mulrA mulf_div mulr1.
have hDx_neq0 : h + x != 0.
near: h; rewrite !nbhs_simpl; apply/nbhs_normP.
exists `|x|; first by rewrite /= normr_gt0.
move=> h /=; rewrite -ball_normE /= distrC subr0 -subr_gt0 => lthx.
rewrite -(normr_gt0 (h + x)) addrC -[h]opprK.
apply: lt_le_trans (ler_dist_dist _ _).
by rewrite ger0_norm normrN //; apply: ltW.
rewrite addrC -[X in X * _]mulr1 -{2}[1](@mulfVK _ (h + x)) //.
rewrite mulrA expr_div_n expr1n mulf_div mulr1 [_ ^+ 2 * _]mulrC -mulrA.
rewrite -mulrDr mulrBr [1 / _ * _]mulrC normrM.
rewrite mulrDl mulrDl opprD addrACA addrA [x * _]mulrC expr2.
do 2 ?[rewrite -addrA [- _ + _]addrC subrr addr0].
rewrite div1r normfV [X in _ / X]normrM invfM [X in _ * X]mulrC.
rewrite mulrA mulrAC ler_pdivr_mulr ?normr_gt0 ?mulf_neq0 //.
rewrite mulrAC ler_pdivr_mulr ?normr_gt0 //.
have : `|h * h| <= `|x / 2| * (e%:num * `|x * x| * `|h|).
rewrite !mulrA; near: h; exists (`|x / 2| * e%:num * `|x * x|).
by rewrite /= !pmulr_rgt0 // normr_gt0 mulf_neq0.
by move=> h /ltW; rewrite distrC subr0 [`|h * _|]normrM => /ler_pmul; apply.
move=> /le_trans-> //; rewrite [leLHS]mulrC ler_pmul ?mulr_ge0 //.
near: h; exists (`|x| / 2); first by rewrite /= divr_gt0 ?normr_gt0.
move=> h; rewrite /= distrC subr0 => lthhx; rewrite addrC -[h]opprK.
apply: le_trans (@ler_dist_dist _ R _ _).
rewrite normrN [leRHS]ger0_norm; last first.
rewrite subr_ge0; apply: ltW; apply: lt_le_trans lthhx _.
by rewrite ler_pdivr_mulr // -{1}(mulr1 `|x|) ler_pmul // ler1n.
rewrite ler_subr_addr -ler_subr_addl (splitr `|x|).
by rewrite normrM normfV (@ger0_norm _ 2) // -addrA subrr addr0; apply: ltW.
Unshelve. all: by end_near. Qed.
Lemma diff_Rinv (x : R) : x != 0 ->
'd GRing.inv x = (fun h : R => - x ^- 2 *: h) :> (R -> R).
Proof.
move=> xn0; have -> : (fun h : R => - x ^- 2 *: h) =
GRing.scale_linear _ (- x ^- 2) by [].
by apply: diff_unique; have [] := dinv xn0.
Qed.
Lemma differentiable_Rinv (x : R) : x != 0 ->
differentiable (GRing.inv : R -> R) x.
Proof.
by move=> xn0; apply/diff_locallyP; rewrite diff_Rinv //; apply: dinv.
Qed.
Lemma diffV (f : V -> R) x : differentiable f x -> f x != 0 ->
'd (fun y => (f y)^-1) x = - (f x) ^- 2 \*: 'd f x :> (V -> R).
Proof.
move=> df fxn0.
by rewrite [LHS](diff_comp df (differentiable_Rinv fxn0)) diff_Rinv.
Qed.
Lemma differentiableV (f : V -> R) x :
differentiable f x -> f x != 0 -> differentiable (fun y => (f y)^-1) x.
Proof.
by move=> df fxn0; apply: differentiable_comp _ (differentiable_Rinv fxn0).
Qed.
Global Instance is_diffX (f df : V -> R) n x :
is_diff x f df -> is_diff x (f ^+ n.+1) (n.+1%:R * f x ^+ n *: df).
Proof.
move=> dfx; elim: n => [|n ihn]; first by rewrite expr1 expr0 mulr1 scale1r.
rewrite exprS; apply: is_diff_eq.
rewrite scalerA mulrCA -exprS -scalerDl.
by rewrite [in LHS]mulr_natl exprfctE -mulrSr mulr_natl.
Qed.
Lemma differentiableX (f : V -> R) n x :
differentiable f x -> differentiable (f ^+ n.+1) x.
Proof. by move=> /differentiableP. Qed.
Lemma diffX (f : V -> R) n x :
differentiable f x ->
'd (f ^+ n.+1) x = n.+1%:R * f x ^+ n \*: 'd f x :> (V -> R).
Proof. by move=> /differentiableP df; rewrite diff_val. Qed.
End DifferentialR3_numFieldType.
Section Derive.
Variables (R : numFieldType) (V W : normedModType R).
Let der1 (U : normedModType R) (f : R -> U) x : derivable f x 1 ->
f \o shift x = cst (f x) + ( *:%R^~ (f^`() x)) +o_ (0 : R) id.
Proof.
move=> df; apply/eqaddoE; have /derivable_nbhsP := df.
have -> : (fun h => (f \o shift x) h%:A) = f \o shift x.
by rewrite funeqE=> ?; rewrite [_%:A]mulr1.
by rewrite derive1E =>->.
Qed.
Lemma deriv1E (U : normedModType R) (f : R -> U) x :
derivable f x 1 -> 'd f x = ( *:%R^~ (f^`() x)) :> (R -> U).
Proof.
move=> df; have lin_scal : linear (fun h : R => h *: f^`() x).
by move=> ???; rewrite scalerDl scalerA.
have -> : (fun h => h *: f^`() x) = Linear lin_scal by [].
by apply: diff_unique; [apply: scalel_continuous|apply: der1].
Qed.
Lemma diff1E (U : normedModType R) (f : R -> U) x :
differentiable f x -> 'd f x = (fun h => h *: f^`() x) :> (R -> U).
Proof.
move=> df; have lin_scal : linear (fun h : R => h *: 'd f x 1).
by move=> ???; rewrite scalerDl scalerA.
have -> : (fun h => h *: f^`() x) = Linear lin_scal.
by rewrite derive1E'.
apply: diff_unique; first exact: scalel_continuous.
apply/eqaddoE; have /diff_locally -> := df; congr (_ + _ + _).
by rewrite funeqE => h /=; rewrite -{1}[h]mulr1 linearZ.
Qed.
Lemma derivable1_diffP (U : normedModType R) (f : R -> U) x :
derivable f x 1 <-> differentiable f x.
Proof.
split=> dfx.
by apply/diff_locallyP; rewrite deriv1E //; split;
[apply: scalel_continuous|apply: der1].
apply/derivable_nbhsP/eqaddoE.
have -> : (fun h => (f \o shift x) h%:A) = f \o shift x.
by rewrite funeqE=> ?; rewrite [_%:A]mulr1.
by have /diff_locally := dfx; rewrite diff1E // derive1E =>->.
Qed.
Lemma derivable1P (U : normedModType R) (f : V -> U) x v :
derivable f x v <-> derivable (fun h : R => f (h *: v + x)) 0 1.
Proof.
rewrite /derivable; set g1 := fun h => h^-1 *: _; set g2 := fun h => h^-1 *: _.
suff -> : g1 = g2 by [].
by rewrite funeqE /g1 /g2 => h /=; rewrite addr0 scale0r add0r [_%:A]mulr1.
Qed.
Lemma derivableP (U : normedModType R) (f : V -> U) x v :
derivable f x v -> is_derive x v f ('D_v f x).
Proof. by move=> df; apply: DeriveDef. Qed.
Global Instance is_derive_cst (U : normedModType R) (a : U) (x v : V) :
is_derive x v (cst a) 0.
Proof.
apply: DeriveDef; last by rewrite deriveE // diff_val.
apply/derivable1P/derivable1_diffP.
by have -> : (fun h => cst a (h *: v + x)) = cst a by rewrite funeqE.
Qed.
Fact der_add (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v ->
(fun h => h^-1 *: (((f + g) \o shift x) (h *: v) - (f + g) x)) @
0^' --> 'D_v f x + 'D_v g x.
Proof.
move=> df dg.
evar (fg : R -> W); rewrite [X in X @ _](_ : _ = fg) /=; last first.
rewrite funeqE => h.
by rewrite !scalerDr scalerN scalerDr opprD addrACA -!scalerBr /fg.
exact: cvgD.
Qed.
Lemma deriveD (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v ->
'D_v (f + g) x = 'D_v f x + 'D_v g x.
Proof. by move=> df dg; apply: cvg_map_lim (der_add df dg). Qed.
Lemma derivableD (f g : V -> W) (x v : V) :
derivable f x v -> derivable g x v -> derivable (f + g) x v.
Proof.
move=> df dg; apply/cvg_ex; exists (derive f x v + derive g x v).
exact: der_add.
Qed.
Global Instance is_deriveD (f g : V -> W) (x v : V) (df dg : W) :
is_derive x v f df -> is_derive x v g dg -> is_derive x v (f + g) (df + dg).
Proof.
move=> dfx dgx; apply: DeriveDef; first exact: derivableD.
by rewrite deriveD // !derive_val.
Qed.
Global Instance is_derive_sum n (f : 'I_n -> V -> W) (x v : V)
(df : 'I_n -> W) : (forall i, is_derive x v (f i) (df i)) ->
is_derive x v (\sum_(i < n) f i) (\sum_(i < n) df i).
Proof.
elim: n f df => [f df dfx|f df dfx n ihn].
by rewrite !big_ord0 //; apply: is_derive_cst.
by rewrite !big_ord_recr /=; apply: is_deriveD.
Qed.
Lemma derivable_sum n (f : 'I_n -> V -> W) (x v : V) :
(forall i, derivable (f i) x v) -> derivable (\sum_(i < n) f i) x v.
Proof.
move=> df; suff : forall i, is_derive x v (f i) ('D_v (f i) x) by [].
by move=> ?; apply: derivableP.
Qed.
Lemma derive_sum n (f : 'I_n -> V -> W) (x v : V) :
(forall i, derivable (f i) x v) ->
'D_v (\sum_(i < n) f i) x = \sum_(i < n) 'D_v (f i) x.
Proof.
move=> df; suff dfx : forall i, is_derive x v (f i) ('D_v (f i) x).
by rewrite derive_val.
by move=> ?; apply: derivableP.
Qed.
Fact der_opp (f : V -> W) (x v : V) : derivable f x v ->
(fun h => h^-1 *: (((- f) \o shift x) (h *: v) - (- f) x)) @
0^' --> - 'D_v f x.
Proof.
move=> df; evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first.
by rewrite funeqE => h; rewrite !scalerDr !scalerN -opprD -scalerBr /g.
exact: cvgN.
Qed.
Lemma deriveN (f : V -> W) (x v : V) : derivable f x v ->
'D_v (- f) x = - 'D_v f x.
Proof. by move=> df; apply: cvg_map_lim (der_opp df). Qed.
Lemma derivableN (f : V -> W) (x v : V) :
derivable f x v -> derivable (- f) x v.
Proof. by move=> df; apply/cvg_ex; exists (- 'D_v f x); apply: der_opp. Qed.
Global Instance is_deriveN (f : V -> W) (x v : V) (df : W) :
is_derive x v f df -> is_derive x v (- f) (- df).
Proof.
move=> dfx; apply: DeriveDef; first exact: derivableN.
by rewrite deriveN // derive_val.
Qed.
Lemma is_derive_eq (V' W' : normedModType R) (f : V' -> W') (x v : V')
(df f' : W') : is_derive x v f f' -> f' = df -> is_derive x v f df.
Proof. by move=> ? <-. Qed.
Global Instance is_deriveB (f g : V -> W) (x v : V) (df dg : W) :
is_derive x v f df -> is_derive x v g dg -> is_derive x v (f - g) (df - dg).
Proof. by move=> ??; apply: is_derive_eq. Qed.
Lemma deriveB (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v ->
'D_v (f - g) x = 'D_v f x - 'D_v g x.
Proof. by move=> /derivableP df /derivableP dg; rewrite derive_val. Qed.
Lemma derivableB (f g : V -> W) (x v : V) :
derivable f x v -> derivable g x v -> derivable (f - g) x v.
Proof. by move=> /derivableP df /derivableP dg. Qed.
Fact der_scal (f : V -> W) (k : R) (x v : V) : derivable f x v ->
(fun h => h^-1 *: ((k \*: f \o shift x) (h *: v) - (k \*: f) x)) @
(0 : R)^' --> k *: 'D_v f x.
Proof.
move=> df; evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first.
rewrite funeqE => h.
by rewrite scalerBr !scalerA mulrC -!scalerA -!scalerBr /g.
exact: cvgZr.
Qed.
Lemma deriveZ (f : V -> W) (k : R) (x v : V) : derivable f x v ->
'D_v (k \*: f) x = k *: 'D_v f x.
Proof. by move=> df; apply: cvg_map_lim (der_scal df). Qed.
Lemma derivableZ (f : V -> W) (k : R) (x v : V) :
derivable f x v -> derivable (k \*: f) x v.
Proof.
by move=> df; apply/cvg_ex; exists (k *: 'D_v f x); apply: der_scal.
Qed.
Global Instance is_deriveZ (f : V -> W) (k : R) (x v : V) (df : W) :
is_derive x v f df -> is_derive x v (k \*: f) (k *: df).
Proof.
move=> dfx; apply: DeriveDef; first exact: derivableZ.
by rewrite deriveZ // derive_val.
Qed.
Fact der_mult (f g : V -> R) (x v : V) :
derivable f x v -> derivable g x v ->
(fun h => h^-1 *: (((f * g) \o shift x) (h *: v) - (f * g) x)) @
(0 : R)^' --> f x *: 'D_v g x + g x *: 'D_v f x.
Proof.
move=> df dg.
evar (fg : R -> R); rewrite [X in X @ _](_ : _ = fg) /=; last first.
rewrite funeqE => h.
have -> : (f * g) (h *: v + x) - (f * g) x =
f (h *: v + x) *: (g (h *: v + x) - g x) + g x *: (f (h *: v + x) - f x).
by rewrite !scalerBr -addrA ![g x *: _]mulrC addKr.
rewrite scalerDr scalerA mulrC -scalerA.
by rewrite [_ *: (g x *: _)]scalerA mulrC -scalerA /fg.
apply: cvgD; last exact: cvgZr df.
apply: cvg_comp2 (@mul_continuous _ (_, _)) => /=; last exact: dg.
suff : {for 0, continuous (fun h : R => f(h *: v + x))}.
by move=> /continuous_withinNx; rewrite scale0r add0r.
exact/differentiable_continuous/derivable1_diffP/derivable1P.
Qed.
Lemma deriveM (f g : V -> R) (x v : V) :
derivable f x v -> derivable g x v ->
'D_v (f * g) x = f x *: 'D_v g x + g x *: 'D_v f x.
Proof. by move=> df dg; apply: cvg_map_lim (der_mult df dg). Qed.
Lemma derivableM (f g : V -> R) (x v : V) :
derivable f x v -> derivable g x v -> derivable (f * g) x v.
Proof.
move=> df dg; apply/cvg_ex; exists (f x *: 'D_v g x + g x *: 'D_v f x).
exact: der_mult.
Qed.
Global Instance is_deriveM (f g : V -> R) (x v : V) (df dg : R) :
is_derive x v f df -> is_derive x v g dg ->
is_derive x v (f * g) (f x *: dg + g x *: df).
Proof.
move=> dfx dgx; apply: DeriveDef; first exact: derivableM.
by rewrite deriveM // !derive_val.
Qed.
Global Instance is_deriveX (f : V -> R) n (x v : V) (df : R) :
is_derive x v f df -> is_derive x v (f ^+ n.+1) ((n.+1%:R * f x ^+n) *: df).
Proof.
move=> dfx; elim: n => [|n ihn]; first by rewrite expr1 expr0 mulr1 scale1r.
rewrite exprS; apply: is_derive_eq.
rewrite scalerA -scalerDl mulrCA -[f x * _]exprS.
by rewrite [in LHS]mulr_natl exprfctE -mulrSr mulr_natl.
Qed.
Lemma derivableX (f : V -> R) n (x v : V) :
derivable f x v -> derivable (f ^+ n.+1) x v.
Proof. by move/derivableP. Qed.
Lemma deriveX (f : V -> R) n (x v : V) :
derivable f x v ->
'D_v (f ^+ n.+1) x = (n.+1%:R * f x ^+ n) *: 'D_v f x.
Proof. by move=> /derivableP df; rewrite derive_val. Qed.
Fact der_inv (f : V -> R) (x v : V) :
f x != 0 -> derivable f x v ->
(fun h => h^-1 *: (((fun y => (f y)^-1) \o shift x) (h *: v) - (f x)^-1)) @
(0 : R)^' --> - (f x) ^-2 *: 'D_v f x.
Proof.
move=> fxn0 df.
have /derivable1P/derivable1_diffP/differentiable_continuous := df.
move=> /continuous_withinNx; rewrite scale0r add0r => fc.
have fn0 : (0 : R)^' [set h | f (h *: v + x) != 0].
apply: (fc [set x | x != 0]); exists `|f x|; first by rewrite /= normr_gt0.
move=> y; rewrite /= => yltfx.
by apply/eqP => y0; move: yltfx; rewrite y0 subr0 ltxx.
have : (fun h => - ((f x)^-1 * (f (h *: v + x))^-1) *:
(h^-1 *: (f (h *: v + x) - f x))) @ (0 : R)^' -->
- (f x) ^- 2 *: 'D_v f x.
by apply: cvgM => //; apply: cvgN; rewrite expr2 invfM; apply: cvgM;
[exact: cvg_cst| exact: cvgV].
apply: cvg_trans => A [_/posnumP[e] /= Ae].
move: fn0; apply: filter_app; near=> h => /= fhvxn0.
have he : ball 0 e%:num (h : R) by near: h; exists e%:num => /=.
have hn0 : h != 0 by near: h; exists e%:num => /=.
suff <- :
- ((f x)^-1 * (f (h *: v + x))^-1) *: (h^-1 *: (f (h *: v + x) - f x)) =
h^-1 *: ((f (h *: v + x))^-1 - (f x)^-1) by exact: Ae.
rewrite scalerA mulrC -scalerA; congr (_ *: _).
apply/eqP; rewrite scaleNr eqr_oppLR opprB scalerBr.
rewrite -scalerA [_ *: f _]mulVf // [_%:A]mulr1.
by rewrite mulrC -scalerA [_ *: f _]mulVf // [_%:A]mulr1.
Unshelve. all: by end_near. Qed.
Lemma deriveV (f : V -> R) x v : f x != 0 -> derivable f x v ->
'D_v (fun y => (f y)^-1) x = - (f x) ^- 2 *: 'D_v f x.
Proof. by move=> fxn0 df; apply: cvg_map_lim (der_inv fxn0 df). Qed.
Lemma derivableV (f : V -> R) (x v : V) :
f x != 0 -> derivable f x v -> derivable (fun y => (f y)^-1) x v.
Proof.
move=> df dg; apply/cvg_ex; exists (- (f x) ^- 2 *: 'D_v f x).
exact: der_inv.
Qed.
End Derive.
Lemma derive1_cst (R : numFieldType) (V : normedModType R) (k : V) t :
(cst k)^`() t = 0.
Proof. by rewrite derive1E derive_val. Qed.
Lemma EVT_max (R : realType) (f : R -> R) (a b : R) : (* TODO : Filter not infered *)
a <= b -> {within `[a, b], continuous f} -> exists2 c, c \in `[a, b]%R &
forall t, t \in `[a, b]%R -> f t <= f c.
Proof.
move=> leab fcont; set imf := f @` `[a, b].
have imf_sup : has_sup imf.
split; first by exists (f a); apply/imageP; rewrite /= in_itv /= lexx.
have [M [Mreal imfltM]] : bounded_set (f @` `[a, b]).
by apply/compact_bounded/continuous_compact => //; exact: segment_compact.
exists (M + 1) => y /imfltM yleM.
by rewrite (le_trans _ (yleM _ _)) ?ler_norm ?ltr_addl.
have [|imf_ltsup] := pselect (exists2 c, c \in `[a, b]%R & f c = sup imf).
move=> [c cab fceqsup]; exists c => // t tab; rewrite fceqsup.
by apply/sup_upper_bound => //; exact/imageP.
have {}imf_ltsup t : t \in `[a, b]%R -> f t < sup imf.
move=> tab; case: (ltrP (f t) (sup imf)) => // supleft.
rewrite falseE; apply: imf_ltsup; exists t => //; apply/eqP.
by rewrite eq_le supleft andbT sup_upper_bound//; exact/imageP.
pose g t : R := (sup imf - f t)^-1.
have invf_continuous : {within `[a, b], continuous g}.
rewrite continuous_subspace_in => t tab; apply: cvgV => //=.
by rewrite subr_eq0 gt_eqF // imf_ltsup //; rewrite inE in tab.
by apply: cvgD; [exact: cst_continuous | apply: cvgN; exact: (fcont t)].
have /ex_strict_bound_gt0 [k k_gt0 /= imVfltk] : bounded_set (g @` `[a, b]).
apply/compact_bounded/continuous_compact; last exact: segment_compact.
exact: invf_continuous.
have [_ [t tab <-]] : exists2 y, imf y & sup imf - k^-1 < y.
by apply: sup_adherent => //; rewrite invr_gt0.
rewrite ltr_subl_addr -ltr_subl_addl.
suff : sup imf - f t > k^-1 by move=> /ltW; rewrite leNgt => /negbTE ->.
rewrite -[ltRHS]invrK ltf_pinv// ?qualifE ?invr_gt0 ?subr_gt0 ?imf_ltsup//.
by rewrite (le_lt_trans (ler_norm _) _) ?imVfltk//; exact: imageP.
Qed.
Lemma EVT_min (R : realType) (f : R -> R) (a b : R) :
a <= b -> {within `[a, b], continuous f} -> exists2 c, c \in `[a, b]%R &
forall t, t \in `[a, b]%R -> f c <= f t.
Proof.
move=> leab fcont.
have /(EVT_max leab) [c clr fcmax] : {within `[a, b], continuous (- f)}.
by move=> ?; apply: continuousN => ?; exact: fcont.
by exists c => // ? /fcmax; rewrite ler_opp2.
Qed.
Lemma cvg_at_rightE (R : numFieldType) (V : normedModType R) (f : R -> V) x :
cvg (f @ x^') -> lim (f @ x^') = lim (f @ at_right x).
Proof.
move=> cvfx; apply/Logic.eq_sym.
(* should be inferred *)
have atrF := at_right_proper_filter x.
apply: (@cvg_map_lim _ _ _ (at_right _)) => // A /cvfx /nbhs_ballP [_ /posnumP[e] xe_A].
by exists e%:num => //= y xe_y; rewrite lt_def => /andP [xney _]; apply: xe_A.
Qed.
Arguments cvg_at_rightE {R V} f x.
Lemma cvg_at_leftE (R : numFieldType) (V : normedModType R) (f : R -> V) x :
cvg (f @ x^') -> lim (f @ x^') = lim (f @ at_left x).
Proof.
move=> cvfx; apply/Logic.eq_sym.
(* should be inferred *)
have atrF := at_left_proper_filter x.
apply: (@cvg_map_lim _ _ _ (at_left _)) => // A /cvfx /nbhs_ballP [_ /posnumP[e] xe_A].
exists e%:num => //= y xe_y; rewrite lt_def => /andP [xney _].
by apply: xe_A => //; rewrite eq_sym.
Qed.
Arguments cvg_at_leftE {R V} f x.
Lemma le0r_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T))
(FF : ProperFilter F) (f : T -> R) :
(\forall x \near F, 0 <= f x) -> cvg (f @ F) -> 0 <= lim (f @ F).
Proof.
move=> fge0 fcv; case: (lerP 0 (lim (f @ F))) => // limlt0; near F => x.
have := near fge0 x; rewrite leNgt => /(_ _) /negbTE<- //; near: x.
have normlimgt0 : `|lim (f @ F)| > 0 by rewrite normr_gt0 ltr0_neq0.
have /fcv := nbhs_ball_norm (lim (f @ F)) (PosNum normlimgt0).
rewrite /= !near_simpl; apply: filterS => x.
rewrite /= distrC => /(le_lt_trans (ler_norm _)).
rewrite ltr_subl_addr => /lt_le_trans; apply.
by rewrite ltr0_norm // addrC subrr.
Unshelve. all: by end_near. Qed.
Lemma ler0_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T))
(FF : ProperFilter F) (f : T -> R) :
(\forall x \near F, f x <= 0) -> cvg (f @ F) -> lim (f @ F) <= 0.
Proof.
move=> fle0 fcv; rewrite -oppr_ge0.
have limopp : - lim (f @ F) = lim (- f @ F).
apply: Logic.eq_sym; apply: cvg_map_lim; first by apply: Rhausdorff.
by apply: cvgN.
rewrite limopp; apply: le0r_cvg_map; last by rewrite -limopp; apply: cvgN.
by move: fle0; apply: filterS => x; rewrite oppr_ge0.
Qed.
Lemma ler_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T))
(FF : ProperFilter F) (f g : T -> R) :
(\forall x \near F, f x <= g x) -> cvg (f @ F) -> cvg (g @ F) ->
lim (f @ F) <= lim (g @ F).
Proof.
move=> lefg fcv gcv; rewrite -subr_ge0.
have eqlim : lim (g @ F) - lim (f @ F) = lim ((g - f) @ F).
by apply/esym; apply: cvg_map_lim => //; apply: cvgD => //; apply: cvgN.
rewrite eqlim; apply: le0r_cvg_map; last first.
by rewrite /(cvg _) -eqlim /=; apply: cvgD => //; apply: cvgN.
by move: lefg; apply: filterS => x; rewrite subr_ge0.
Qed.
Lemma derive1_at_max (R : realFieldType) (f : R -> R) (a b c : R) :
a <= b -> (forall t, t \in `]a, b[%R -> derivable f t 1) -> c \in `]a, b[%R ->
(forall t, t \in `]a, b[%R -> f t <= f c) -> is_derive c 1 f 0.
Proof.
move=> leab fdrvbl cab cmax; apply: DeriveDef; first exact: fdrvbl.
apply/eqP; rewrite eq_le; apply/andP; split.
rewrite ['D_1 f c]cvg_at_rightE; last exact: fdrvbl.
apply: ler0_cvg_map; last first.
have /fdrvbl dfc := cab.
rewrite -(cvg_at_rightE (fun h : R => h^-1 *: ((f \o shift c) _ - f c))) //.
apply: cvg_trans dfc; apply: cvg_app.
move=> A [e egt0 Ae]; exists e => // x xe xgt0; apply: Ae => //.
exact/lt0r_neq0.
near=> h; apply: mulr_ge0_le0.
by rewrite invr_ge0; apply: ltW; near: h; exists 1 => /=.
rewrite subr_le0 [_%:A]mulr1; apply: cmax; near: h.
exists (b - c); first by rewrite /= subr_gt0 (itvP cab).
move=> h; rewrite /= distrC subr0 /= in_itv /= -ltr_subr_addr.
move=> /(le_lt_trans (ler_norm _)) -> /ltr_spsaddl -> //.
by rewrite (itvP cab).
rewrite ['D_1 f c]cvg_at_leftE; last exact: fdrvbl.
apply: le0r_cvg_map; last first.
have /fdrvbl dfc := cab; rewrite -(cvg_at_leftE (fun h => h^-1 *: ((f \o shift c) _ - f c))) //.
apply: cvg_trans dfc; apply: cvg_app.
move=> A [e egt0 Ae]; exists e => // x xe xgt0; apply: Ae => //.
exact/ltr0_neq0.
near=> h; apply: mulr_le0.
by rewrite invr_le0; apply: ltW; near: h; exists 1 => /=.
rewrite subr_le0 [_%:A]mulr1; apply: cmax; near: h.
exists (c - a); first by rewrite /= subr_gt0 (itvP cab).
move=> h; rewrite /= distrC subr0.
move=> /ltr_normlP []; rewrite ltr_subr_addl ltr_subl_addl in_itv /= => -> _.
by move=> /ltr_snsaddl -> //; rewrite (itvP cab).
Unshelve. all: by end_near. Qed.
Lemma derive1_at_min (R : realFieldType) (f : R -> R) (a b c : R) :
a <= b -> (forall t, t \in `]a, b[%R -> derivable f t 1) -> c \in `]a, b[%R ->
(forall t, t \in `]a, b[%R -> f c <= f t) -> is_derive c 1 f 0.
Proof.
move=> leab fdrvbl cab cmin; apply: DeriveDef; first exact: fdrvbl.
apply/eqP; rewrite -oppr_eq0; apply/eqP.
rewrite -deriveN; last exact: fdrvbl.
suff df : is_derive c 1 (- f) 0 by rewrite derive_val.
apply: derive1_at_max leab _ (cab) _ => t tab; first exact/derivableN/fdrvbl.
by rewrite ler_opp2; apply: cmin.
Qed.
Lemma Rolle (R : realType) (f : R -> R) (a b : R) :
a < b -> (forall x, x \in `]a, b[%R -> derivable f x 1) ->
{within `[a, b], continuous f} -> f a = f b ->
exists2 c, c \in `]a, b[%R & is_derive c 1 f 0.
Proof.
move=> ltab fdrvbl fcont faefb.
have [cmax cmaxab fcmax] := EVT_max (ltW ltab) fcont.
have [cmaxeaVb|] := boolP (cmax \in [set a; b]); last first.
rewrite notin_set => /not_orP[/eqP cnea /eqP cneb].
have {}cmaxab : cmax \in `]a, b[%R.
by rewrite in_itv /= !lt_def !(itvP cmaxab) cnea eq_sym cneb.
exists cmax => //; apply: derive1_at_max (ltW ltab) fdrvbl cmaxab _ => t tab.
by apply: fcmax; rewrite in_itv /= !ltW // (itvP tab).
have [cmin cminab fcmin] := EVT_min (ltW ltab) fcont.
have [cmineaVb|] := boolP (cmin \in [set a; b]); last first.
rewrite notin_set => /not_orP[/eqP cnea /eqP cneb].
have {}cminab : cmin \in `]a, b[%R.
by rewrite in_itv /= !lt_def !(itvP cminab) cnea eq_sym cneb.
exists cmin => //; apply: derive1_at_min (ltW ltab) fdrvbl cminab _ => t tab.
by apply: fcmin; rewrite in_itv /= !ltW // (itvP tab).
have midab : (a + b) / 2 \in `]a, b[%R by apply: mid_in_itvoo.
exists ((a + b) / 2) => //; apply: derive1_at_max (ltW ltab) fdrvbl (midab) _.
move=> t tab.
suff fcst s : s \in `]a, b[%R -> f s = f cmax by rewrite !fcst.
move=> sab.
apply/eqP; rewrite eq_le fcmax; last by rewrite in_itv /= !ltW ?(itvP sab).
suff -> : f cmax = f cmin by rewrite fcmin // in_itv /= !ltW ?(itvP sab).
by move: cmaxeaVb cmineaVb; rewrite 2!inE => -[|] -> [|] ->.
Qed.
Lemma MVT (R : realType) (f df : R -> R) (a b : R) :
a < b -> (forall x, x \in `]a, b[%R -> is_derive x 1 f (df x)) ->
{within `[a, b], continuous f} ->
exists2 c, c \in `]a, b[%R & f b - f a = df c * (b - a).
Proof.
move=> altb fdrvbl fcont.
set g := f + (- ( *:%R^~ ((f b - f a) / (b - a)) : R -> R)).
have gdrvbl x : x \in `]a, b[%R -> derivable g x 1.
by move=> /fdrvbl dfx; apply: derivableB => //; exact/derivable1_diffP.
have gcont : {within `[a, b], continuous g}.
move=> x; apply: continuousD _ ; first by move=>?; exact: fcont.
by apply/continuousN/continuous_subspaceT => ? ?; exact: scalel_continuous.
have gaegb : g a = g b.
rewrite /g -![(_ - _ : _ -> _) _]/(_ - _).
apply/eqP; rewrite -subr_eq /= opprK addrAC -addrA -scalerBl.
rewrite [_ *: _]mulrA mulrC mulrA mulVf.
by rewrite mul1r addrCA subrr addr0.
by apply: lt0r_neq0; rewrite subr_gt0.
have [c cab dgc0] := Rolle altb gdrvbl gcont gaegb.
exists c; first exact: cab.
have /fdrvbl dfc := cab; move/@derive_val: dgc0; rewrite deriveB //; last first.
exact/derivable1_diffP.
move/eqP; rewrite [X in _ - X]deriveE // derive_val diff_val scale1r subr_eq0.
move/eqP->; rewrite -mulrA mulVf ?mulr1 //; apply: lt0r_neq0.
by rewrite subr_gt0.
Qed.
(* Weakens MVT to work when the interval is a single point. *)
Lemma MVT_segment (R : realType) (f df : R -> R) (a b : R) :
a <= b -> (forall x, x \in `]a, b[%R -> is_derive x 1 f (df x)) ->
{within `[a, b], continuous f} ->
exists2 c, c \in `[a, b]%R & f b - f a = df c * (b - a).
Proof.
move=> leab fdrvbl fcont; case: ltgtP leab => // [altb|aeb]; last first.
by exists a; [rewrite inE/= aeb lexx|rewrite aeb !subrr mulr0].
have [c cab D] := MVT altb fdrvbl fcont.
by exists c => //; rewrite in_itv /= ltW (itvP cab).
Qed.
Lemma ler0_derive1_nincr (R : realType) (f : R -> R) (a b : R) :
(forall x, x \in `]a, b[%R -> derivable f x 1) ->
(forall x, x \in `]a, b[%R -> f^`() x <= 0) ->
{within `[a,b], continuous f} ->
forall x y, a <= x -> x <= y -> y <= b -> f y <= f x.
Proof.
move=> fdrvbl dfle0 ctsf x y leax lexy leyb; rewrite -subr_ge0.
case: ltgtP lexy => // [xlty|->]; last by rewrite subrr.
have itvW : {subset `[x, y]%R <= `[a, b]%R}.
by apply/subitvP; rewrite /<=%O /= /<=%O /= leyb leax.
have itvWlt : {subset `]x, y[%R <= `]a, b[%R}.
by apply subitvP; rewrite /<=%O /= /<=%O /= leyb leax.
have fdrv z : z \in `]x, y[%R -> is_derive z 1 f (f^`()z).
rewrite in_itv/= => /andP[xz zy]; apply: DeriveDef; last by rewrite derive1E.
by apply: fdrvbl; rewrite in_itv/= (le_lt_trans _ xz)// (lt_le_trans zy).
have [] := @MVT _ f (f^`()) x y xlty fdrv.
apply: (@continuous_subspaceW _ _ _ `[a,b]); first exact: itvW.
by rewrite continuous_subspace_in.
move=> t /itvWlt dft dftxy _; rewrite -oppr_le0 opprB dftxy.
by apply: mulr_le0_ge0 => //; [exact: dfle0|by rewrite subr_ge0 ltW].
Qed.
Lemma le0r_derive1_ndecr (R : realType) (f : R -> R) (a b : R) :
(forall x, x \in `]a, b[%R -> derivable f x 1) ->
(forall x, x \in `]a, b[%R -> 0 <= f^`() x) ->
{within `[a,b], continuous f} ->
forall x y, a <= x -> x <= y -> y <= b -> f x <= f y.
Proof.
move=> fdrvbl dfge0 fcont x y; rewrite -[f _ <= _]ler_opp2.
apply (@ler0_derive1_nincr _ (- f)) => t tab; first exact/derivableN/fdrvbl.
rewrite derive1E deriveN; last exact: fdrvbl.
by rewrite oppr_le0 -derive1E; apply: dfge0.
by apply: continuousN; exact: fcont.
Qed.
Lemma derive1_comp (R : realFieldType) (f g : R -> R) x :
derivable f x 1 -> derivable g (f x) 1 ->
(g \o f)^`() x = g^`() (f x) * f^`() x.
Proof.
move=> /derivable1_diffP df /derivable1_diffP dg.
rewrite derive1E'; last exact/differentiable_comp.
rewrite diff_comp // !derive1E' //= -[X in 'd _ _ X = _]mulr1.
by rewrite [LHS]linearZ mulrC.
Qed.
Section is_derive_instances.
Variables (R : numFieldType) (V : normedModType R).
Lemma derivable_cst (x : V) : derivable (fun=> x) 0 1.
Proof. exact/derivable1_diffP/differentiable_cst. Qed.
Lemma derivable_id (x v : V) : derivable id x v.
Proof.
apply/derivable1P/derivableD; last exact/derivable_cst.
exact/derivable1_diffP/differentiableZl.
Qed.
Global Instance is_derive_id (x v : V) : is_derive x v id v.
Proof.
apply: (DeriveDef (@derivable_id _ _)).
by rewrite deriveE// (@diff_lin _ _ _ [linear of idfun]).
Qed.
Global Instance is_deriveNid (x v : V) : is_derive x v -%R (- v).
Proof. by apply: is_deriveN. Qed.
End is_derive_instances.
(* Trick to trigger type class resolution *)
Lemma trigger_derive (R : realType) (f : R -> R) x x1 y1 :
is_derive x 1 f x1 -> x1 = y1 -> is_derive x 1 f y1.
Proof. by move=> Hi <-. Qed.
|