Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 35,071 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
/-
Copyright (c) 2014 Robert Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Lewis, Leonardo de Moura, Mario Carneiro, Floris van Doorn
-/
import algebra.field.basic
import algebra.group_power.lemmas
import algebra.group_power.order
import algebra.order.ring
import order.bounds
import tactic.monotonicity.basic

/-!
# Linear ordered (semi)fields

A linear ordered (semi)field is a (semi)field equipped with a linear order such that
* addition respects the order: `a ≤ b → c + a ≤ c + b`;
* multiplication of positives is positive: `0 < a → 0 < b → 0 < a * b`;
* `0 < 1`.

## Main Definitions

* `linear_ordered_semifield`: Typeclass for linear order semifields.
* `linear_ordered_field`: Typeclass for linear ordered fields.
-/

set_option old_structure_cmd true

variables {α β : Type*}

/-- A linear ordered semifield is a field with a linear order respecting the operations. -/
@[protect_proj] class linear_ordered_semifield (α : Type*)
  extends linear_ordered_semiring α, semifield α

/-- A linear ordered field is a field with a linear order respecting the operations. -/
@[protect_proj] class linear_ordered_field (α : Type*) extends linear_ordered_comm_ring α, field α

@[priority 100] -- See note [lower instance priority]
instance linear_ordered_field.to_linear_ordered_semifield [linear_ordered_field α] :
  linear_ordered_semifield α :=
{ ..linear_ordered_ring.to_linear_ordered_semiring, ..‹linear_ordered_field α› }

namespace function

/-- Pullback a `linear_ordered_semifield` under an injective map. -/
@[reducible] -- See note [reducible non-instances]
def injective.linear_ordered_semifield [linear_ordered_semifield α] [has_zero β] [has_one β]
  [has_add β] [has_mul β] [has_pow β ℕ] [has_smul ℕ β] [has_nat_cast β] [has_inv β] [has_div β]
  [has_pow β ℤ] [has_sup β] [has_inf β] (f : β → α) (hf : injective f) (zero : f 0 = 0)
  (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y)
  (inv : ∀ x, f (x⁻¹) = (f x)⁻¹) (div : ∀ x y, f (x / y) = f x / f y)
  (nsmul : ∀ x (n : ℕ), f (n • x) = n • f x)
  (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) (zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n)
  (nat_cast : ∀ n : ℕ, f n = n) (hsup : ∀ x y, f (x ⊔ y) = max (f x) (f y))
  (hinf : ∀ x y, f (x ⊓ y) = min (f x) (f y)) :
  linear_ordered_semifield β :=
{ ..hf.linear_ordered_semiring f zero one add mul nsmul npow nat_cast hsup hinf,
  ..hf.semifield f zero one add mul inv div nsmul npow zpow nat_cast }

/-- Pullback a `linear_ordered_field` under an injective map. -/
@[reducible] -- See note [reducible non-instances]
def injective.linear_ordered_field [linear_ordered_field α] [has_zero β] [has_one β] [has_add β]
  [has_mul β] [has_neg β] [has_sub β] [has_pow β ℕ] [has_smul ℕ β] [has_smul ℤ β] [has_smul ℚ β]
  [has_nat_cast β] [has_int_cast β] [has_rat_cast β] [has_inv β] [has_div β] [has_pow β ℤ]
  [has_sup β] [has_inf β]
  (f : β → α) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1)
  (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y)
  (neg : ∀ x, f (-x) = -f x) (sub : ∀ x y, f (x - y) = f x - f y)
  (inv : ∀ x, f (x⁻¹) = (f x)⁻¹) (div : ∀ x y, f (x / y) = f x / f y)
  (nsmul : ∀ x (n : ℕ), f (n • x) = n • f x) (zsmul : ∀ x (n : ℤ), f (n • x) = n • f x)
  (qsmul : ∀ x (n : ℚ), f (n • x) = n • f x)
  (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) (zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n)
  (nat_cast : ∀ n : ℕ, f n = n) (int_cast : ∀ n : ℤ, f n = n) (rat_cast : ∀ n : ℚ, f n = n)
  (hsup : ∀ x y, f (x ⊔ y) = max (f x) (f y)) (hinf : ∀ x y, f (x ⊓ y) = min (f x) (f y)) :
  linear_ordered_field β :=
{ .. hf.linear_ordered_ring f zero one add mul neg sub nsmul zsmul npow nat_cast int_cast hsup hinf,
  .. hf.field f zero one add mul neg sub inv div nsmul zsmul qsmul npow zpow nat_cast int_cast
      rat_cast }

end function

section linear_ordered_semifield
variables [linear_ordered_semifield α] {a b c d e : α}

/-- `equiv.mul_left₀` as an order_iso. -/
@[simps {simp_rhs := tt}]
def order_iso.mul_left₀ (a : α) (ha : 0 < a) : α ≃o α :=
{ map_rel_iff' := λ _ _, mul_le_mul_left ha, ..equiv.mul_left₀ a ha.ne' }

/-- `equiv.mul_right₀` as an order_iso. -/
@[simps {simp_rhs := tt}]
def order_iso.mul_right₀ (a : α) (ha : 0 < a) : α ≃o α :=
{ map_rel_iff' := λ _ _, mul_le_mul_right ha, ..equiv.mul_right₀ a ha.ne' }

/-!
### Lemmas about pos, nonneg, nonpos, neg
-/

@[simp] lemma inv_pos : 0 < a⁻¹ ↔ 0 < a :=
suffices ∀ a : α, 0 < a → 0 < a⁻¹,
from ⟨λ h, inv_inv a ▸ this _ h, this a⟩,
assume a ha, flip lt_of_mul_lt_mul_left ha.le $ by simp [ne_of_gt ha, zero_lt_one]

alias inv_pos ↔ _ inv_pos_of_pos

@[simp] lemma inv_nonneg : 0 ≤ a⁻¹ ↔ 0 ≤ a :=
by simp only [le_iff_eq_or_lt, inv_pos, zero_eq_inv]

alias inv_nonneg ↔ _ inv_nonneg_of_nonneg

@[simp] lemma inv_lt_zero : a⁻¹ < 0 ↔ a < 0 :=
by simp only [← not_le, inv_nonneg]

@[simp] lemma inv_nonpos : a⁻¹ ≤ 0 ↔ a ≤ 0 :=
by simp only [← not_lt, inv_pos]

lemma one_div_pos : 0 < 1 / a ↔ 0 < a :=
inv_eq_one_div a ▸ inv_pos

lemma one_div_neg : 1 / a < 0 ↔ a < 0 :=
inv_eq_one_div a ▸ inv_lt_zero

lemma one_div_nonneg : 01 / a ↔ 0 ≤ a :=
inv_eq_one_div a ▸ inv_nonneg

lemma one_div_nonpos : 1 / a ≤ 0 ↔ a ≤ 0 :=
inv_eq_one_div a ▸ inv_nonpos

lemma div_pos (ha : 0 < a) (hb : 0 < b) : 0 < a / b :=
by { rw div_eq_mul_inv, exact mul_pos ha (inv_pos.2 hb) }

lemma div_nonneg (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a / b :=
by { rw div_eq_mul_inv, exact mul_nonneg ha (inv_nonneg.2 hb) }

lemma div_nonpos_of_nonpos_of_nonneg (ha : a ≤ 0) (hb : 0 ≤ b) : a / b ≤ 0 :=
by { rw div_eq_mul_inv, exact mul_nonpos_of_nonpos_of_nonneg ha (inv_nonneg.2 hb) }

lemma div_nonpos_of_nonneg_of_nonpos (ha : 0 ≤ a) (hb : b ≤ 0) : a / b ≤ 0 :=
by { rw div_eq_mul_inv, exact mul_nonpos_of_nonneg_of_nonpos ha (inv_nonpos.2 hb) }

/-!
### Relating one division with another term.
-/

lemma le_div_iff (hc : 0 < c) : a ≤ b / c ↔ a * c ≤ b :=
⟨λ h, div_mul_cancel b (ne_of_lt hc).symm ▸ mul_le_mul_of_nonneg_right h hc.le,
  λ h, calc
    a   = a * c * (1 / c) : mul_mul_div a (ne_of_lt hc).symm
    ... ≤ b * (1 / c)     : mul_le_mul_of_nonneg_right h (one_div_pos.2 hc).le
    ... = b / c           : (div_eq_mul_one_div b c).symm⟩

lemma le_div_iff' (hc : 0 < c) : a ≤ b / c ↔ c * a ≤ b :=
by rw [mul_comm, le_div_iff hc]

lemma div_le_iff (hb : 0 < b) : a / b ≤ c ↔ a ≤ c * b :=
⟨λ h, calc
  a = a / b * b : by rw (div_mul_cancel _ (ne_of_lt hb).symm)
  ... ≤ c * b     : mul_le_mul_of_nonneg_right h hb.le,
  λ h, calc
  a / b = a * (1 / b)     : div_eq_mul_one_div a b
  ... ≤ (c * b) * (1 / b) : mul_le_mul_of_nonneg_right h (one_div_pos.2 hb).le
  ... = (c * b) / b       : (div_eq_mul_one_div (c * b) b).symm
  ... = c                 : by refine (div_eq_iff (ne_of_gt hb)).mpr rfl⟩

lemma div_le_iff' (hb : 0 < b) : a / b ≤ c ↔ a ≤ b * c :=
by rw [mul_comm, div_le_iff hb]

lemma lt_div_iff (hc : 0 < c) : a < b / c ↔ a * c < b :=
lt_iff_lt_of_le_iff_le $ div_le_iff hc

lemma lt_div_iff' (hc : 0 < c) : a < b / c ↔ c * a < b :=
by rw [mul_comm, lt_div_iff hc]

lemma div_lt_iff (hc : 0 < c) : b / c < a ↔ b < a * c :=
lt_iff_lt_of_le_iff_le (le_div_iff hc)

lemma div_lt_iff' (hc : 0 < c) : b / c < a ↔ b < c * a :=
by rw [mul_comm, div_lt_iff hc]

lemma inv_mul_le_iff (h : 0 < b) : b⁻¹ * a ≤ c ↔ a ≤ b * c :=
begin
  rw [inv_eq_one_div, mul_comm, ← div_eq_mul_one_div],
  exact div_le_iff' h,
end

lemma inv_mul_le_iff' (h : 0 < b) : b⁻¹ * a ≤ c ↔ a ≤ c * b :=
by rw [inv_mul_le_iff h, mul_comm]

lemma mul_inv_le_iff (h : 0 < b) : a * b⁻¹ ≤ c ↔ a ≤ b * c :=
by rw [mul_comm, inv_mul_le_iff h]

lemma mul_inv_le_iff' (h : 0 < b) : a * b⁻¹ ≤ c ↔ a ≤ c * b :=
by rw [mul_comm, inv_mul_le_iff' h]

lemma div_self_le_one (a : α) : a / a ≤ 1 :=
if h : a = 0 then by simp [h] else by simp [h]

lemma inv_mul_lt_iff (h : 0 < b) : b⁻¹ * a < c ↔ a < b * c :=
begin
  rw [inv_eq_one_div, mul_comm, ← div_eq_mul_one_div],
  exact div_lt_iff' h,
end

lemma inv_mul_lt_iff' (h : 0 < b) : b⁻¹ * a < c ↔ a < c * b :=
by rw [inv_mul_lt_iff h, mul_comm]

lemma mul_inv_lt_iff (h : 0 < b) : a * b⁻¹ < c ↔ a < b * c :=
by rw [mul_comm, inv_mul_lt_iff h]

lemma mul_inv_lt_iff' (h : 0 < b) : a * b⁻¹ < c ↔ a < c * b :=
by rw [mul_comm, inv_mul_lt_iff' h]

lemma inv_pos_le_iff_one_le_mul (ha : 0 < a) : a⁻¹ ≤ b ↔ 1 ≤ b * a :=
by { rw [inv_eq_one_div], exact div_le_iff ha }

lemma inv_pos_le_iff_one_le_mul' (ha : 0 < a) : a⁻¹ ≤ b ↔ 1 ≤ a * b :=
by { rw [inv_eq_one_div], exact div_le_iff' ha }

lemma inv_pos_lt_iff_one_lt_mul (ha : 0 < a) : a⁻¹ < b ↔ 1 < b * a :=
by { rw [inv_eq_one_div], exact div_lt_iff ha }

lemma inv_pos_lt_iff_one_lt_mul' (ha : 0 < a) : a⁻¹ < b ↔ 1 < a * b :=
by { rw [inv_eq_one_div], exact div_lt_iff' ha }

/-- One direction of `div_le_iff` where `b` is allowed to be `0` (but `c` must be nonnegative) -/
lemma div_le_of_nonneg_of_le_mul (hb : 0 ≤ b) (hc : 0 ≤ c) (h : a ≤ c * b) : a / b ≤ c :=
by { rcases eq_or_lt_of_le hb with rfl|hb', simp [hc], rwa [div_le_iff hb'] }

lemma div_le_one_of_le (h : a ≤ b) (hb : 0 ≤ b) : a / b ≤ 1 :=
div_le_of_nonneg_of_le_mul hb zero_le_one $ by rwa one_mul

/-!
### Bi-implications of inequalities using inversions
-/

lemma inv_le_inv_of_le (ha : 0 < a) (h : a ≤ b) : b⁻¹ ≤ a⁻¹ :=
by rwa [← one_div a, le_div_iff' ha, ← div_eq_mul_inv, div_le_iff (ha.trans_le h), one_mul]

/-- See `inv_le_inv_of_le` for the implication from right-to-left with one fewer assumption. -/
lemma inv_le_inv (ha : 0 < a) (hb : 0 < b) : a⁻¹ ≤ b⁻¹ ↔ b ≤ a :=
by rw [← one_div, div_le_iff ha, ← div_eq_inv_mul, le_div_iff hb, one_mul]

/-- In a linear ordered field, for positive `a` and `b` we have `a⁻¹ ≤ b ↔ b⁻¹ ≤ a`.
See also `inv_le_of_inv_le` for a one-sided implication with one fewer assumption. -/
lemma inv_le (ha : 0 < a) (hb : 0 < b) : a⁻¹ ≤ b ↔ b⁻¹ ≤ a :=
by rw [← inv_le_inv hb (inv_pos.2 ha), inv_inv]

lemma inv_le_of_inv_le (ha : 0 < a) (h : a⁻¹ ≤ b) : b⁻¹ ≤ a :=
(inv_le ha ((inv_pos.2 ha).trans_le h)).1 h

lemma le_inv (ha : 0 < a) (hb : 0 < b) : a ≤ b⁻¹ ↔ b ≤ a⁻¹ :=
by rw [← inv_le_inv (inv_pos.2 hb) ha, inv_inv]

/-- See `inv_lt_inv_of_lt` for the implication from right-to-left with one fewer assumption. -/
lemma inv_lt_inv (ha : 0 < a) (hb : 0 < b) : a⁻¹ < b⁻¹ ↔ b < a :=
lt_iff_lt_of_le_iff_le (inv_le_inv hb ha)

lemma inv_lt_inv_of_lt (hb : 0 < b) (h : b < a) : a⁻¹ < b⁻¹ :=
(inv_lt_inv (hb.trans h) hb).2 h

/-- In a linear ordered field, for positive `a` and `b` we have `a⁻¹ < b ↔ b⁻¹ < a`.
See also `inv_lt_of_inv_lt` for a one-sided implication with one fewer assumption. -/
lemma inv_lt (ha : 0 < a) (hb : 0 < b) : a⁻¹ < b ↔ b⁻¹ < a :=
lt_iff_lt_of_le_iff_le (le_inv hb ha)

lemma inv_lt_of_inv_lt (ha : 0 < a) (h : a⁻¹ < b) : b⁻¹ < a :=
(inv_lt ha ((inv_pos.2 ha).trans h)).1 h

lemma lt_inv (ha : 0 < a) (hb : 0 < b) : a < b⁻¹ ↔ b < a⁻¹ :=
lt_iff_lt_of_le_iff_le (inv_le hb ha)

lemma inv_lt_one (ha : 1 < a) : a⁻¹ < 1 :=
by rwa [inv_lt ((@zero_lt_one α _ _).trans ha) zero_lt_one, inv_one]

lemma one_lt_inv (h₁ : 0 < a) (h₂ : a < 1) : 1 < a⁻¹ :=
by rwa [lt_inv (@zero_lt_one α _ _) h₁, inv_one]

lemma inv_le_one (ha : 1 ≤ a) : a⁻¹ ≤ 1 :=
by rwa [inv_le ((@zero_lt_one α _ _).trans_le ha) zero_lt_one, inv_one]

lemma one_le_inv (h₁ : 0 < a) (h₂ : a ≤ 1) : 1 ≤ a⁻¹ :=
by rwa [le_inv (@zero_lt_one α _ _) h₁, inv_one]

lemma inv_lt_one_iff_of_pos (h₀ : 0 < a) : a⁻¹ < 1 ↔ 1 < a :=
⟨λ h₁, inv_inv a ▸ one_lt_inv (inv_pos.2 h₀) h₁, inv_lt_one⟩

lemma inv_lt_one_iff : a⁻¹ < 1 ↔ a ≤ 0 ∨ 1 < a :=
begin
  cases le_or_lt a 0 with ha ha,
  { simp [ha, (inv_nonpos.2 ha).trans_lt zero_lt_one] },
  { simp only [ha.not_le, false_or, inv_lt_one_iff_of_pos ha] }
end

lemma one_lt_inv_iff : 1 < a⁻¹ ↔ 0 < a ∧ a < 1 :=
⟨λ h, ⟨inv_pos.1 (zero_lt_one.trans h), inv_inv a ▸ inv_lt_one h⟩, and_imp.2 one_lt_inv⟩

lemma inv_le_one_iff : a⁻¹ ≤ 1 ↔ a ≤ 0 ∨ 1 ≤ a :=
begin
  rcases em (a = 1) with (rfl|ha),
  { simp [le_rfl] },
  { simp only [ne.le_iff_lt (ne.symm ha), ne.le_iff_lt (mt inv_eq_one.1 ha), inv_lt_one_iff] }
end

lemma one_le_inv_iff : 1 ≤ a⁻¹ ↔ 0 < a ∧ a ≤ 1 :=
⟨λ h, ⟨inv_pos.1 (zero_lt_one.trans_le h), inv_inv a ▸ inv_le_one h⟩, and_imp.2 one_le_inv⟩

/-!
### Relating two divisions.
-/

@[mono] lemma div_le_div_of_le (hc : 0 ≤ c) (h : a ≤ b) : a / c ≤ b / c :=
begin
  rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c],
  exact mul_le_mul_of_nonneg_right h (one_div_nonneg.2 hc)
end

-- Not a `mono` lemma b/c `div_le_div` is strictly more general
lemma div_le_div_of_le_left (ha : 0 ≤ a) (hc : 0 < c) (h : c ≤ b) : a / b ≤ a / c :=
begin
  rw [div_eq_mul_inv, div_eq_mul_inv],
  exact mul_le_mul_of_nonneg_left ((inv_le_inv (hc.trans_le h) hc).mpr h) ha
end

lemma div_le_div_of_le_of_nonneg (hab : a ≤ b) (hc : 0 ≤ c) : a / c ≤ b / c :=
div_le_div_of_le hc hab

lemma div_lt_div_of_lt (hc : 0 < c) (h : a < b) : a / c < b / c :=
begin
  rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c],
  exact mul_lt_mul_of_pos_right h (one_div_pos.2 hc)
end

lemma div_le_div_right (hc : 0 < c) : a / c ≤ b / c ↔ a ≤ b :=
⟨le_imp_le_of_lt_imp_lt $ div_lt_div_of_lt hc, div_le_div_of_le $ hc.le⟩

lemma div_lt_div_right (hc : 0 < c) : a / c < b / c ↔ a < b :=
lt_iff_lt_of_le_iff_le $ div_le_div_right hc

lemma div_lt_div_left (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) : a / b < a / c ↔ c < b :=
by simp only [div_eq_mul_inv, mul_lt_mul_left ha, inv_lt_inv hb hc]

lemma div_le_div_left (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) : a / b ≤ a / c ↔ c ≤ b :=
le_iff_le_iff_lt_iff_lt.2 (div_lt_div_left ha hc hb)

lemma div_lt_div_iff (b0 : 0 < b) (d0 : 0 < d) :
  a / b < c / d ↔ a * d < c * b :=
by rw [lt_div_iff d0, div_mul_eq_mul_div, div_lt_iff b0]

lemma div_le_div_iff (b0 : 0 < b) (d0 : 0 < d) : a / b ≤ c / d ↔ a * d ≤ c * b :=
by rw [le_div_iff d0, div_mul_eq_mul_div, div_le_iff b0]

@[mono] lemma div_le_div (hc : 0 ≤ c) (hac : a ≤ c) (hd : 0 < d) (hbd : d ≤ b) : a / b ≤ c / d :=
by { rw div_le_div_iff (hd.trans_le hbd) hd, exact mul_le_mul hac hbd hd.le hc }

lemma div_lt_div (hac : a < c) (hbd : d ≤ b) (c0 : 0 ≤ c) (d0 : 0 < d) :
  a / b < c / d :=
(div_lt_div_iff (d0.trans_le hbd) d0).2 (mul_lt_mul hac hbd d0 c0)

lemma div_lt_div' (hac : a ≤ c) (hbd : d < b) (c0 : 0 < c) (d0 : 0 < d) :
  a / b < c / d :=
(div_lt_div_iff (d0.trans hbd) d0).2 (mul_lt_mul' hac hbd d0.le c0)

lemma div_lt_div_of_lt_left (hc : 0 < c) (hb : 0 < b) (h : b < a) : c / a < c / b :=
(div_lt_div_left hc (hb.trans h) hb).mpr h

/-!
### Relating one division and involving `1`
-/

lemma div_le_self (ha : 0 ≤ a) (hb : 1 ≤ b) : a / b ≤ a :=
by simpa only [div_one] using div_le_div_of_le_left ha zero_lt_one hb

lemma div_lt_self (ha : 0 < a) (hb : 1 < b) : a / b < a :=
by simpa only [div_one] using div_lt_div_of_lt_left ha zero_lt_one hb

lemma le_div_self (ha : 0 ≤ a) (hb₀ : 0 < b) (hb₁ : b ≤ 1) : a ≤ a / b :=
by simpa only [div_one] using div_le_div_of_le_left ha hb₀ hb₁

lemma one_le_div (hb : 0 < b) : 1 ≤ a / b ↔ b ≤ a :=
by rw [le_div_iff hb, one_mul]

lemma div_le_one (hb : 0 < b) : a / b ≤ 1 ↔ a ≤ b :=
by rw [div_le_iff hb, one_mul]

lemma one_lt_div (hb : 0 < b) : 1 < a / b ↔ b < a :=
by rw [lt_div_iff hb, one_mul]

lemma div_lt_one (hb : 0 < b) : a / b < 1 ↔ a < b :=
by rw [div_lt_iff hb, one_mul]

lemma one_div_le (ha : 0 < a) (hb : 0 < b) : 1 / a ≤ b ↔ 1 / b ≤ a :=
by simpa using inv_le ha hb

lemma one_div_lt (ha : 0 < a) (hb : 0 < b) : 1 / a < b ↔ 1 / b < a :=
by simpa using inv_lt ha hb

lemma le_one_div (ha : 0 < a) (hb : 0 < b) : a ≤ 1 / b ↔ b ≤ 1 / a :=
by simpa using le_inv ha hb

lemma lt_one_div (ha : 0 < a) (hb : 0 < b) : a < 1 / b ↔ b < 1 / a :=
by simpa using lt_inv ha hb

/-!
### Relating two divisions, involving `1`
-/
lemma one_div_le_one_div_of_le (ha : 0 < a) (h : a ≤ b) : 1 / b ≤ 1 / a :=
by simpa using inv_le_inv_of_le ha h

lemma one_div_lt_one_div_of_lt (ha : 0 < a) (h : a < b) : 1 / b < 1 / a :=
by rwa [lt_div_iff' ha, ← div_eq_mul_one_div, div_lt_one (ha.trans h)]

lemma le_of_one_div_le_one_div (ha : 0 < a) (h : 1 / a ≤ 1 / b) : b ≤ a :=
le_imp_le_of_lt_imp_lt (one_div_lt_one_div_of_lt ha) h

lemma lt_of_one_div_lt_one_div (ha : 0 < a) (h : 1 / a < 1 / b) : b < a :=
lt_imp_lt_of_le_imp_le (one_div_le_one_div_of_le ha) h

/-- For the single implications with fewer assumptions, see `one_div_le_one_div_of_le` and
  `le_of_one_div_le_one_div` -/
lemma one_div_le_one_div (ha : 0 < a) (hb : 0 < b) : 1 / a ≤ 1 / b ↔ b ≤ a :=
div_le_div_left zero_lt_one ha hb

/-- For the single implications with fewer assumptions, see `one_div_lt_one_div_of_lt` and
  `lt_of_one_div_lt_one_div` -/
lemma one_div_lt_one_div (ha : 0 < a) (hb : 0 < b) : 1 / a < 1 / b ↔ b < a :=
div_lt_div_left zero_lt_one ha hb

lemma one_lt_one_div (h1 : 0 < a) (h2 : a < 1) : 1 < 1 / a :=
by rwa [lt_one_div (@zero_lt_one α _ _) h1, one_div_one]

lemma one_le_one_div (h1 : 0 < a) (h2 : a ≤ 1) : 11 / a :=
by rwa [le_one_div (@zero_lt_one α _ _) h1, one_div_one]

/-!
### Results about halving.

The equalities also hold in semifields of characteristic `0`.
-/

/- TODO: Unify `add_halves` and `add_halves'` into a single lemma about
`division_semiring` + `char_zero` -/
lemma add_halves (a : α) : a / 2 + a / 2 = a :=
by rw [div_add_div_same, ← two_mul, mul_div_cancel_left a two_ne_zero]

-- TODO: Generalize to `division_semiring`
lemma add_self_div_two (a : α) : (a + a) / 2 = a :=
by rw [← mul_two, mul_div_cancel a two_ne_zero]

lemma half_pos (h : 0 < a) : 0 < a / 2 := div_pos h zero_lt_two

lemma one_half_pos : (0:α) < 1 / 2 := half_pos zero_lt_one

lemma div_two_lt_of_pos (h : 0 < a) : a / 2 < a :=
by { rw [div_lt_iff (@zero_lt_two α _ _)], exact lt_mul_of_one_lt_right h one_lt_two }

lemma half_lt_self : 0 < a → a / 2 < a := div_two_lt_of_pos

lemma half_le_self (ha_nonneg : 0 ≤ a) : a / 2 ≤ a :=
begin
  by_cases h0 : a = 0,
  { simp [h0], },
  { rw ← ne.def at h0,
    exact (half_lt_self (lt_of_le_of_ne ha_nonneg h0.symm)).le, },
end

lemma one_half_lt_one : (1 / 2 : α) < 1 := half_lt_self zero_lt_one

lemma left_lt_add_div_two : a < (a + b) / 2 ↔ a < b := by simp [lt_div_iff, mul_two]

lemma add_div_two_lt_right : (a + b) / 2 < b ↔ a < b := by simp [div_lt_iff, mul_two]

/-!
### Miscellaneous lemmas
-/

lemma mul_le_mul_of_mul_div_le (h : a * (b / c) ≤ d) (hc : 0 < c) : b * a ≤ d * c :=
begin
  rw [← mul_div_assoc] at h,
  rwa [mul_comm b, ← div_le_iff hc],
end

lemma div_mul_le_div_mul_of_div_le_div (h : a / b ≤ c / d) (he : 0 ≤ e) :
  a / (b * e) ≤ c / (d * e) :=
begin
  rw [div_mul_eq_div_mul_one_div, div_mul_eq_div_mul_one_div],
  exact mul_le_mul_of_nonneg_right h (one_div_nonneg.2 he)
end

lemma exists_pos_mul_lt {a : α} (h : 0 < a) (b : α) : ∃ c : α, 0 < c ∧ b * c < a :=
begin
  have : 0 < a / max (b + 1) 1, from div_pos h (lt_max_iff.2 (or.inr zero_lt_one)),
  refine ⟨a / max (b + 1) 1, this, _⟩,
  rw [← lt_div_iff this, div_div_cancel' h.ne'],
  exact lt_max_iff.2 (or.inl $ lt_add_one _)
end

lemma monotone.div_const {β : Type*} [preorder β] {f : β → α} (hf : monotone f)
  {c : α} (hc : 0 ≤ c) : monotone (λ x, (f x) / c) :=
by simpa only [div_eq_mul_inv] using hf.mul_const (inv_nonneg.2 hc)

lemma strict_mono.div_const {β : Type*} [preorder β] {f : β → α} (hf : strict_mono f)
  {c : α} (hc : 0 < c) :
  strict_mono (λ x, (f x) / c) :=
by simpa only [div_eq_mul_inv] using hf.mul_const (inv_pos.2 hc)

@[priority 100] -- see Note [lower instance priority]
instance linear_ordered_field.to_densely_ordered : densely_ordered α :=
{ dense := λ a₁ a₂ h, ⟨(a₁ + a₂) / 2,
  calc a₁ = (a₁ + a₁) / 2 : (add_self_div_two a₁).symm
      ... < (a₁ + a₂) / 2 : div_lt_div_of_lt zero_lt_two (add_lt_add_left h _),
  calc (a₁ + a₂) / 2 < (a₂ + a₂) / 2 : div_lt_div_of_lt zero_lt_two (add_lt_add_right h _)
                 ... = a₂            : add_self_div_two a₂⟩ }

lemma min_div_div_right {c : α} (hc : 0 ≤ c) (a b : α) : min (a / c) (b / c) = (min a b) / c :=
eq.symm $ monotone.map_min (λ x y, div_le_div_of_le hc)

lemma max_div_div_right {c : α} (hc : 0 ≤ c) (a b : α) : max (a / c) (b / c) = (max a b) / c :=
eq.symm $ monotone.map_max (λ x y, div_le_div_of_le hc)

lemma one_div_strict_anti_on : strict_anti_on (λ x : α, 1 / x) (set.Ioi 0) :=
λ x x1 y y1 xy, (one_div_lt_one_div (set.mem_Ioi.mp y1) (set.mem_Ioi.mp x1)).mpr xy

lemma one_div_pow_le_one_div_pow_of_le (a1 : 1 ≤ a) {m n : ℕ} (mn : m ≤ n) :
  1 / a ^ n ≤ 1 / a ^ m :=
by refine (one_div_le_one_div _ _).mpr (pow_le_pow a1 mn);
  exact pow_pos (zero_lt_one.trans_le a1) _

lemma one_div_pow_lt_one_div_pow_of_lt (a1 : 1 < a) {m n : ℕ} (mn : m < n) :
  1 / a ^ n < 1 / a ^ m :=
by refine (one_div_lt_one_div _ _).mpr (pow_lt_pow a1 mn);
  exact pow_pos (trans zero_lt_one a1) _

lemma one_div_pow_anti (a1 : 1 ≤ a) : antitone (λ n : ℕ, 1 / a ^ n) :=
λ m n, one_div_pow_le_one_div_pow_of_le a1

lemma one_div_pow_strict_anti (a1 : 1 < a) : strict_anti (λ n : ℕ, 1 / a ^ n) :=
λ m n, one_div_pow_lt_one_div_pow_of_lt a1

lemma inv_strict_anti_on : strict_anti_on (λ x : α, x⁻¹) (set.Ioi 0) :=
λ x hx y hy xy, (inv_lt_inv hy hx).2 xy

lemma inv_pow_le_inv_pow_of_le (a1 : 1 ≤ a) {m n : ℕ} (mn : m ≤ n) :
  (a ^ n)⁻¹ ≤ (a ^ m)⁻¹ :=
by convert one_div_pow_le_one_div_pow_of_le a1 mn; simp

lemma inv_pow_lt_inv_pow_of_lt (a1 : 1 < a) {m n : ℕ} (mn : m < n) :
  (a ^ n)⁻¹ < (a ^ m)⁻¹ :=
by convert one_div_pow_lt_one_div_pow_of_lt a1 mn; simp

lemma inv_pow_anti (a1 : 1 ≤ a) : antitone (λ n : ℕ, (a ^ n)⁻¹) :=
λ m n, inv_pow_le_inv_pow_of_le a1

lemma inv_pow_strict_anti (a1 : 1 < a) : strict_anti (λ n : ℕ, (a ^ n)⁻¹) :=
λ m n, inv_pow_lt_inv_pow_of_lt a1

/-! ### Results about `is_lub` and `is_glb` -/

lemma is_glb.mul_left {s : set α} (ha : 0 ≤ a) (hs : is_glb s b) :
  is_glb ((λ b, a * b) '' s) (a * b) :=
begin
  rcases lt_or_eq_of_le ha with ha | rfl,
  { exact (order_iso.mul_left₀ _ ha).is_glb_image'.2 hs, },
  { simp_rw zero_mul,
    rw hs.nonempty.image_const,
    exact is_glb_singleton },
end

lemma is_glb.mul_right {s : set α} (ha : 0 ≤ a) (hs : is_glb s b) :
  is_glb ((λ b, b * a) '' s) (b * a) :=
by simpa [mul_comm] using hs.mul_left ha

end linear_ordered_semifield

section
variables [linear_ordered_field α] {a b c d : α}

/-! ### Lemmas about pos, nonneg, nonpos, neg -/

lemma div_pos_iff : 0 < a / b ↔ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0 := by simp [division_def, mul_pos_iff]
lemma div_neg_iff : a / b < 00 < a ∧ b < 0 ∨ a < 00 < b := by simp [division_def, mul_neg_iff]

lemma div_nonneg_iff : 0 ≤ a / b ↔ 0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0 :=
by simp [division_def, mul_nonneg_iff]

lemma div_nonpos_iff : a / b ≤ 00 ≤ a ∧ b ≤ 0 ∨ a ≤ 00 ≤ b :=
by simp [division_def, mul_nonpos_iff]

lemma div_nonneg_of_nonpos (ha : a ≤ 0) (hb : b ≤ 0) : 0 ≤ a / b :=
div_nonneg_iff.2 $ or.inr ⟨ha, hb⟩

lemma div_pos_of_neg_of_neg (ha : a < 0) (hb : b < 0) : 0 < a / b :=
div_pos_iff.2 $ or.inr ⟨ha, hb⟩

lemma div_neg_of_neg_of_pos (ha : a < 0) (hb : 0 < b) : a / b < 0 :=
div_neg_iff.2 $ or.inr ⟨ha, hb⟩

lemma div_neg_of_pos_of_neg (ha : 0 < a) (hb : b < 0) : a / b < 0 :=
div_neg_iff.2 $ or.inl ⟨ha, hb⟩

/-! ### Relating one division with another term -/

lemma div_le_iff_of_neg (hc : c < 0) : b / c ≤ a ↔ a * c ≤ b :=
⟨λ h, div_mul_cancel b (ne_of_lt hc) ▸ mul_le_mul_of_nonpos_right h hc.le,
  λ h, calc
    a = a * c * (1 / c) : mul_mul_div a (ne_of_lt hc)
  ... ≥ b * (1 / c)     : mul_le_mul_of_nonpos_right h (one_div_neg.2 hc).le
  ... = b / c           : (div_eq_mul_one_div b c).symm⟩

lemma div_le_iff_of_neg' (hc : c < 0) : b / c ≤ a ↔ c * a ≤ b :=
by rw [mul_comm, div_le_iff_of_neg hc]

lemma le_div_iff_of_neg (hc : c < 0) : a ≤ b / c ↔ b ≤ a * c :=
by rw [← neg_neg c, mul_neg, div_neg, le_neg,
    div_le_iff (neg_pos.2 hc), neg_mul]

lemma le_div_iff_of_neg' (hc : c < 0) : a ≤ b / c ↔ b ≤ c * a :=
by rw [mul_comm, le_div_iff_of_neg hc]

lemma div_lt_iff_of_neg (hc : c < 0) : b / c < a ↔ a * c < b :=
lt_iff_lt_of_le_iff_le $ le_div_iff_of_neg hc

lemma div_lt_iff_of_neg' (hc : c < 0) : b / c < a ↔ c * a < b :=
by rw [mul_comm, div_lt_iff_of_neg hc]

lemma lt_div_iff_of_neg (hc : c < 0) : a < b / c ↔ b < a * c :=
lt_iff_lt_of_le_iff_le $ div_le_iff_of_neg hc

lemma lt_div_iff_of_neg' (hc : c < 0) : a < b / c ↔ b < c * a :=
by rw [mul_comm, lt_div_iff_of_neg hc]

/-! ### Bi-implications of inequalities using inversions -/

lemma inv_le_inv_of_neg (ha : a < 0) (hb : b < 0) : a⁻¹ ≤ b⁻¹ ↔ b ≤ a :=
by rw [← one_div, div_le_iff_of_neg ha, ← div_eq_inv_mul, div_le_iff_of_neg hb, one_mul]

lemma inv_le_of_neg (ha : a < 0) (hb : b < 0) : a⁻¹ ≤ b ↔ b⁻¹ ≤ a :=
by rw [← inv_le_inv_of_neg hb (inv_lt_zero.2 ha), inv_inv]

lemma le_inv_of_neg (ha : a < 0) (hb : b < 0) : a ≤ b⁻¹ ↔ b ≤ a⁻¹ :=
by rw [← inv_le_inv_of_neg (inv_lt_zero.2 hb) ha, inv_inv]

lemma inv_lt_inv_of_neg (ha : a < 0) (hb : b < 0) : a⁻¹ < b⁻¹ ↔ b < a :=
lt_iff_lt_of_le_iff_le (inv_le_inv_of_neg hb ha)

lemma inv_lt_of_neg (ha : a < 0) (hb : b < 0) : a⁻¹ < b ↔ b⁻¹ < a :=
lt_iff_lt_of_le_iff_le (le_inv_of_neg hb ha)

lemma lt_inv_of_neg (ha : a < 0) (hb : b < 0) : a < b⁻¹ ↔ b < a⁻¹ :=
lt_iff_lt_of_le_iff_le (inv_le_of_neg hb ha)

/-! ### Relating two divisions -/

lemma div_le_div_of_nonpos_of_le (hc : c ≤ 0) (h : b ≤ a) : a / c ≤ b / c :=
begin
  rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c],
  exact mul_le_mul_of_nonpos_right h (one_div_nonpos.2 hc)
end

lemma div_lt_div_of_neg_of_lt (hc : c < 0) (h : b < a) : a / c < b / c :=
begin
  rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c],
  exact mul_lt_mul_of_neg_right h (one_div_neg.2 hc)
end

lemma div_le_div_right_of_neg (hc : c < 0) : a / c ≤ b / c ↔ b ≤ a :=
⟨le_imp_le_of_lt_imp_lt $ div_lt_div_of_neg_of_lt hc, div_le_div_of_nonpos_of_le $ hc.le⟩

lemma div_lt_div_right_of_neg (hc : c < 0) : a / c < b / c ↔ b < a :=
lt_iff_lt_of_le_iff_le $ div_le_div_right_of_neg hc

/-! ### Relating one division and involving `1` -/

lemma one_le_div_of_neg (hb : b < 0) : 1 ≤ a / b ↔ a ≤ b :=
by rw [le_div_iff_of_neg hb, one_mul]

lemma div_le_one_of_neg (hb : b < 0) : a / b ≤ 1 ↔ b ≤ a :=
by rw [div_le_iff_of_neg hb, one_mul]

lemma one_lt_div_of_neg (hb : b < 0) : 1 < a / b ↔ a < b :=
by rw [lt_div_iff_of_neg hb, one_mul]

lemma div_lt_one_of_neg (hb : b < 0) : a / b < 1 ↔ b < a :=
by rw [div_lt_iff_of_neg hb, one_mul]

lemma one_div_le_of_neg (ha : a < 0) (hb : b < 0) : 1 / a ≤ b ↔ 1 / b ≤ a :=
by simpa using inv_le_of_neg ha hb

lemma one_div_lt_of_neg (ha : a < 0) (hb : b < 0) : 1 / a < b ↔ 1 / b < a :=
by simpa using inv_lt_of_neg ha hb

lemma le_one_div_of_neg (ha : a < 0) (hb : b < 0) : a ≤ 1 / b ↔ b ≤ 1 / a :=
by simpa using le_inv_of_neg ha hb

lemma lt_one_div_of_neg (ha : a < 0) (hb : b < 0) : a < 1 / b ↔ b < 1 / a :=
by simpa using lt_inv_of_neg ha hb

lemma one_lt_div_iff : 1 < a / b ↔ 0 < b ∧ b < a ∨ b < 0 ∧ a < b :=
begin
  rcases lt_trichotomy b 0 with (hb|rfl|hb),
  { simp [hb, hb.not_lt, one_lt_div_of_neg] },
  { simp [lt_irrefl, zero_le_one] },
  { simp [hb, hb.not_lt, one_lt_div] }
end

lemma one_le_div_iff : 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b :=
begin
  rcases lt_trichotomy b 0 with (hb|rfl|hb),
  { simp [hb, hb.not_lt, one_le_div_of_neg] },
  { simp [lt_irrefl, zero_lt_one.not_le, zero_lt_one] },
  { simp [hb, hb.not_lt, one_le_div] }
end

lemma div_lt_one_iff : a / b < 10 < b ∧ a < b ∨ b = 0 ∨ b < 0 ∧ b < a :=
begin
  rcases lt_trichotomy b 0 with (hb|rfl|hb),
  { simp [hb, hb.not_lt, hb.ne, div_lt_one_of_neg] },
  { simp [zero_lt_one], },
  { simp [hb, hb.not_lt, div_lt_one, hb.ne.symm] }
end

lemma div_le_one_iff : a / b ≤ 10 < b ∧ a ≤ b ∨ b = 0 ∨ b < 0 ∧ b ≤ a :=
begin
  rcases lt_trichotomy b 0 with (hb|rfl|hb),
  { simp [hb, hb.not_lt, hb.ne, div_le_one_of_neg] },
  { simp [zero_le_one], },
  { simp [hb, hb.not_lt, div_le_one, hb.ne.symm] }
end

/-! ### Relating two divisions, involving `1` -/

lemma one_div_le_one_div_of_neg_of_le (hb : b < 0) (h : a ≤ b) : 1 / b ≤ 1 / a :=
by rwa [div_le_iff_of_neg' hb, ← div_eq_mul_one_div, div_le_one_of_neg (h.trans_lt hb)]

lemma one_div_lt_one_div_of_neg_of_lt (hb : b < 0) (h : a < b) : 1 / b < 1 / a :=
by rwa [div_lt_iff_of_neg' hb, ← div_eq_mul_one_div, div_lt_one_of_neg (h.trans hb)]

lemma le_of_neg_of_one_div_le_one_div (hb : b < 0) (h : 1 / a ≤ 1 / b) : b ≤ a :=
le_imp_le_of_lt_imp_lt (one_div_lt_one_div_of_neg_of_lt hb) h

lemma lt_of_neg_of_one_div_lt_one_div (hb : b < 0) (h : 1 / a < 1 / b) : b < a :=
lt_imp_lt_of_le_imp_le (one_div_le_one_div_of_neg_of_le hb) h

/-- For the single implications with fewer assumptions, see `one_div_lt_one_div_of_neg_of_lt` and
  `lt_of_one_div_lt_one_div` -/
lemma one_div_le_one_div_of_neg (ha : a < 0) (hb : b < 0) : 1 / a ≤ 1 / b ↔ b ≤ a :=
by simpa [one_div] using inv_le_inv_of_neg ha hb

/-- For the single implications with fewer assumptions, see `one_div_lt_one_div_of_lt` and
  `lt_of_one_div_lt_one_div` -/
lemma one_div_lt_one_div_of_neg (ha : a < 0) (hb : b < 0) : 1 / a < 1 / b ↔ b < a :=
lt_iff_lt_of_le_iff_le (one_div_le_one_div_of_neg hb ha)

lemma one_div_lt_neg_one (h1 : a < 0) (h2 : -1 < a) : 1 / a < -1 :=
suffices 1 / a < 1 / -1, by rwa one_div_neg_one_eq_neg_one at this,
one_div_lt_one_div_of_neg_of_lt h1 h2

lemma one_div_le_neg_one (h1 : a < 0) (h2 : -1 ≤ a) : 1 / a ≤ -1 :=
suffices 1 / a ≤ 1 / -1, by rwa one_div_neg_one_eq_neg_one at this,
one_div_le_one_div_of_neg_of_le h1 h2

/-! ### Results about halving -/

lemma sub_self_div_two (a : α) : a - a / 2 = a / 2 :=
suffices a / 2 + a / 2 - a / 2 = a / 2, by rwa add_halves at this,
by rw [add_sub_cancel]

lemma div_two_sub_self (a : α) : a / 2 - a = - (a / 2) :=
suffices a / 2 - (a / 2 + a / 2) = - (a / 2), by rwa add_halves at this,
by rw [sub_add_eq_sub_sub, sub_self, zero_sub]

lemma add_sub_div_two_lt (h : a < b) : a + (b - a) / 2 < b :=
begin
  rwa [← div_sub_div_same, sub_eq_add_neg, add_comm (b/2), ← add_assoc, ← sub_eq_add_neg,
    ← lt_sub_iff_add_lt, sub_self_div_two, sub_self_div_two, div_lt_div_right (@zero_lt_two α _ _)]
end

/--  An inequality involving `2`. -/
lemma sub_one_div_inv_le_two (a2 : 2 ≤ a) : (1 - 1 / a)⁻¹ ≤ 2 :=
begin
  -- Take inverses on both sides to obtain `2⁻¹ ≤ 1 - 1 / a`
  refine (inv_le_inv_of_le (inv_pos.2 zero_lt_two) _).trans_eq (inv_inv (2 : α)),
  -- move `1 / a` to the left and `1 - 1 / 2 = 1 / 2` to the right to obtain `1 / a ≤ ⅟ 2`
  refine (le_sub_iff_add_le.2 (_ : _ + 2⁻¹ = _ ).le).trans ((sub_le_sub_iff_left 1).2 _),
  { -- show 2⁻¹ + 2⁻¹ = 1
    exact (two_mul _).symm.trans (mul_inv_cancel two_ne_zero) },
  { -- take inverses on both sides and use the assumption `2 ≤ a`.
    exact (one_div a).le.trans (inv_le_inv_of_le zero_lt_two a2) }
end

/-! ### Results about `is_lub` and `is_glb` -/

-- TODO: Generalize to `linear_ordered_semifield`
lemma is_lub.mul_left {s : set α} (ha : 0 ≤ a) (hs : is_lub s b) :
  is_lub ((λ b, a * b) '' s) (a * b) :=
begin
  rcases lt_or_eq_of_le ha with ha | rfl,
  { exact (order_iso.mul_left₀ _ ha).is_lub_image'.2 hs, },
  { simp_rw zero_mul,
    rw hs.nonempty.image_const,
    exact is_lub_singleton },
end

-- TODO: Generalize to `linear_ordered_semifield`
lemma is_lub.mul_right {s : set α} (ha : 0 ≤ a) (hs : is_lub s b) :
  is_lub ((λ b, b * a) '' s) (b * a) :=
by simpa [mul_comm] using hs.mul_left ha

/-! ### Miscellaneous lemmmas -/

lemma mul_sub_mul_div_mul_neg_iff (hc : c ≠ 0) (hd : d ≠ 0) :
  (a * d - b * c) / (c * d) < 0 ↔ a / c < b / d :=
by rw [mul_comm b c, ← div_sub_div _ _ hc hd, sub_lt_zero]

lemma mul_sub_mul_div_mul_nonpos_iff (hc : c ≠ 0) (hd : d ≠ 0) :
  (a * d - b * c) / (c * d) ≤ 0 ↔ a / c ≤ b / d :=
by rw [mul_comm b c, ← div_sub_div _ _ hc hd, sub_nonpos]

alias mul_sub_mul_div_mul_neg_iff ↔ div_lt_div_of_mul_sub_mul_div_neg mul_sub_mul_div_mul_neg
alias mul_sub_mul_div_mul_nonpos_iff ↔
  div_le_div_of_mul_sub_mul_div_nonpos mul_sub_mul_div_mul_nonpos

lemma exists_add_lt_and_pos_of_lt (h : b < a) : ∃ c, b + c < a ∧ 0 < c :=
⟨(a - b) / 2, add_sub_div_two_lt h, div_pos (sub_pos_of_lt h) zero_lt_two⟩

lemma le_of_forall_sub_le (h : ∀ ε > 0, b - ε ≤ a) : b ≤ a :=
begin
  contrapose! h,
  simpa only [and_comm ((0 : α) < _), lt_sub_iff_add_lt, gt_iff_lt]
    using exists_add_lt_and_pos_of_lt h,
end

lemma mul_self_inj_of_nonneg (a0 : 0 ≤ a) (b0 : 0 ≤ b) : a * a = b * b ↔ a = b :=
mul_self_eq_mul_self_iff.trans $ or_iff_left_of_imp $
  λ h, by { subst a, have : b = 0 := le_antisymm (neg_nonneg.1 a0) b0, rw [this, neg_zero] }

lemma min_div_div_right_of_nonpos (hc : c ≤ 0) (a b : α) : min (a / c) (b / c) = (max a b) / c :=
eq.symm $ antitone.map_max $ λ x y, div_le_div_of_nonpos_of_le hc

lemma max_div_div_right_of_nonpos (hc : c ≤ 0) (a b : α) : max (a / c) (b / c) = (min a b) / c :=
eq.symm $ antitone.map_min $ λ x y, div_le_div_of_nonpos_of_le hc

lemma abs_inv (a : α) : |a⁻¹| = (|a|)⁻¹ := (abs_hom : α →*₀ α).map_inv a
lemma abs_div (a b : α) : |a / b| = |a| / |b| := (abs_hom : α →*₀ α).map_div a b
lemma abs_one_div (a : α) : |1 / a| = 1 / |a| := by rw [abs_div, abs_one]

lemma pow_minus_two_nonneg : 0 ≤ a^(-2 : ℤ) :=
begin
  simp only [inv_nonneg, zpow_neg],
  change 0 ≤ a ^ ((2 : ℕ) : ℤ),
  rw zpow_coe_nat,
  apply sq_nonneg,
end

/-- Bernoulli's inequality reformulated to estimate `(n : α)`. -/
lemma nat.cast_le_pow_sub_div_sub (H : 1 < a)  (n : ℕ) : (n : α) ≤ (a ^ n - 1) / (a - 1) :=
(le_div_iff (sub_pos.2 H)).2 $ le_sub_left_of_add_le $
  one_add_mul_sub_le_pow ((neg_le_self zero_le_one).trans H.le) _

/-- For any `a > 1` and a natural `n` we have `n ≤ a ^ n / (a - 1)`. See also
`nat.cast_le_pow_sub_div_sub` for a stronger inequality with `a ^ n - 1` in the numerator. -/
theorem nat.cast_le_pow_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ a ^ n / (a - 1) :=
(n.cast_le_pow_sub_div_sub H).trans $ div_le_div_of_le (sub_nonneg.2 H.le)
  (sub_le_self _ zero_le_one)

end