File size: 24,109 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
(*  Title:       Quality_Increases.thy
    License:     BSD 2-Clause. See LICENSE.
    Author:      Timothy Bourke, Inria
*)

section "The quality increases predicate"

theory Quality_Increases
imports Aodv_Predicates Fresher
begin

definition quality_increases :: "state \<Rightarrow> state \<Rightarrow> bool"
where "quality_increases \<xi> \<xi>' \<equiv> (\<forall>dip\<in>kD(rt \<xi>). dip \<in> kD(rt \<xi>') \<and> rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>')
                                               \<and> (\<forall>dip. sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip)"

lemma quality_increasesI [intro!]:
  assumes "\<And>dip. dip \<in> kD(rt \<xi>) \<Longrightarrow> dip \<in> kD(rt \<xi>')"
      and "\<And>dip. \<lbrakk> dip \<in> kD(rt \<xi>); dip \<in> kD(rt \<xi>') \<rbrakk> \<Longrightarrow> rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>'"          
      and "\<And>dip. sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip"
    shows "quality_increases \<xi> \<xi>'"
  unfolding quality_increases_def using assms by clarsimp

lemma quality_increasesE [elim]:
    fixes dip
  assumes "quality_increases \<xi> \<xi>'"
      and "dip\<in>kD(rt \<xi>)"
      and "\<lbrakk> dip \<in> kD(rt \<xi>'); rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>'; sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip \<rbrakk> \<Longrightarrow> R dip \<xi> \<xi>'"
    shows "R dip \<xi> \<xi>'"
  using assms unfolding quality_increases_def by clarsimp

lemma quality_increases_rt_fresherD [dest]:
    fixes ip
  assumes "quality_increases \<xi> \<xi>'"
      and "ip\<in>kD(rt \<xi>)"
    shows "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> rt \<xi>'"
  using assms by auto

lemma quality_increases_sqnE [elim]:
    fixes dip
  assumes "quality_increases \<xi> \<xi>'"
      and "sqn (rt \<xi>) dip \<le> sqn (rt \<xi>') dip \<Longrightarrow> R dip \<xi> \<xi>'"
    shows "R dip \<xi> \<xi>'"
  using assms unfolding quality_increases_def by clarsimp

lemma quality_increases_refl [intro, simp]: "quality_increases \<xi> \<xi>"
  by rule simp_all

lemma strictly_fresher_quality_increases_right [elim]:
    fixes \<sigma> \<sigma>' dip
  assumes "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)"                       
      and qinc: "quality_increases (\<sigma> nhip) (\<sigma>' nhip)"
      and "dip\<in>kD(rt (\<sigma> nhip))"
    shows "rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma>' nhip)"
  proof -
    from qinc have "rt (\<sigma> nhip) \<sqsubseteq>\<^bsub>dip\<^esub> rt (\<sigma>' nhip)" using \<open>dip\<in>kD(rt (\<sigma> nhip))\<close>
      by auto
    with \<open>rt (\<sigma> i) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)\<close> show ?thesis ..
  qed

lemma kD_quality_increases [elim]:
  assumes "i\<in>kD(rt \<xi>)"
      and "quality_increases \<xi> \<xi>'"
    shows "i\<in>kD(rt \<xi>')"
  using assms by auto

lemma kD_nsqn_quality_increases [elim]:
  assumes "i\<in>kD(rt \<xi>)"
      and "quality_increases \<xi> \<xi>'"
    shows "i\<in>kD(rt \<xi>') \<and> nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i"
  proof -
    from assms have "i\<in>kD(rt \<xi>')" ..
    moreover with assms have "rt \<xi> \<sqsubseteq>\<^bsub>i\<^esub> rt \<xi>'" by auto
    ultimately have "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i"
      using \<open>i\<in>kD(rt \<xi>)\<close> by - (erule(2) rt_fresher_imp_nsqn_le)
    with \<open>i\<in>kD(rt \<xi>')\<close> show ?thesis ..
  qed

lemma nsqn_quality_increases [elim]:
  assumes "i\<in>kD(rt \<xi>)"
      and "quality_increases \<xi> \<xi>'"
    shows "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i"
  using assms by (rule kD_nsqn_quality_increases [THEN conjunct2])

lemma kD_nsqn_quality_increases_trans [elim]:
  assumes "i\<in>kD(rt \<xi>)"
      and "s \<le> nsqn (rt \<xi>) i"
      and "quality_increases \<xi> \<xi>'"
    shows "i\<in>kD(rt \<xi>') \<and> s \<le> nsqn (rt \<xi>') i"
  proof
    from \<open>i\<in>kD(rt \<xi>)\<close> and \<open>quality_increases \<xi> \<xi>'\<close> show "i\<in>kD(rt \<xi>')" ..
  next
    from \<open>i\<in>kD(rt \<xi>)\<close> and \<open>quality_increases \<xi> \<xi>'\<close> have "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i" ..
    with \<open>s \<le> nsqn (rt \<xi>) i\<close> show "s \<le> nsqn (rt \<xi>') i" by (rule le_trans)
  qed

lemma nsqn_quality_increases_nsqn_lt_lt [elim]:
  assumes "i\<in>kD(rt \<xi>)"
      and "quality_increases \<xi> \<xi>'"
     and "s < nsqn (rt \<xi>) i"
    shows "s < nsqn (rt \<xi>') i"
  proof -
    from assms(1-2) have "nsqn (rt \<xi>) i \<le> nsqn (rt \<xi>') i" ..
    with \<open>s < nsqn (rt \<xi>) i\<close> show "s < nsqn (rt \<xi>') i" by simp
  qed

lemma nsqn_quality_increases_dhops [elim]:
  assumes "i\<in>kD(rt \<xi>)"
      and "quality_increases \<xi> \<xi>'"
      and "nsqn (rt \<xi>) i = nsqn (rt \<xi>') i"
    shows "the (dhops (rt \<xi>) i) \<ge> the (dhops (rt \<xi>') i)"
  using assms unfolding quality_increases_def
  by (clarsimp) (drule(1) bspec, clarsimp simp: rt_fresher_def2)

lemma nsqn_quality_increases_nsqn_eq_le [elim]:
  assumes "i\<in>kD(rt \<xi>)"
      and "quality_increases \<xi> \<xi>'"
      and "s = nsqn (rt \<xi>) i"
    shows "s < nsqn (rt \<xi>') i \<or> (s = nsqn (rt \<xi>') i \<and> the (dhops (rt \<xi>) i) \<ge> the (dhops (rt \<xi>') i))"
  using assms by (metis nat_less_le nsqn_quality_increases nsqn_quality_increases_dhops)

lemma quality_increases_rreq_rrep_props [elim]:
    fixes sn ip hops sip
  assumes qinc: "quality_increases (\<sigma> sip) (\<sigma>' sip)"
      and "1 \<le> sn"
      and *: "ip\<in>kD(rt (\<sigma> sip)) \<and> sn \<le> nsqn (rt (\<sigma> sip)) ip
                                \<and> (nsqn (rt (\<sigma> sip)) ip = sn
                                    \<longrightarrow> (the (dhops (rt (\<sigma> sip)) ip) \<le> hops
                                          \<or> the (flag (rt (\<sigma> sip)) ip) = inv))"
    shows "ip\<in>kD(rt (\<sigma>' sip)) \<and> sn \<le> nsqn (rt (\<sigma>' sip)) ip
                              \<and> (nsqn (rt (\<sigma>' sip)) ip = sn
                                  \<longrightarrow> (the (dhops (rt (\<sigma>' sip)) ip) \<le> hops
                                        \<or> the (flag (rt (\<sigma>' sip)) ip) = inv))"
      (is "_ \<and> ?nsqnafter")
  proof -
    from *  obtain "ip\<in>kD(rt (\<sigma> sip))" and "sn \<le> nsqn (rt (\<sigma> sip)) ip" by auto

    from \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
       have "sqn (rt (\<sigma> sip)) ip \<le> sqn (rt (\<sigma>' sip)) ip" ..
    from \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close> and \<open>ip\<in>kD (rt (\<sigma> sip))\<close>
      have "ip\<in>kD (rt (\<sigma>' sip))" ..

    from \<open>sn \<le> nsqn (rt (\<sigma> sip)) ip\<close> have ?nsqnafter
    proof
      assume "sn < nsqn (rt (\<sigma> sip)) ip"
      also from \<open>ip\<in>kD(rt (\<sigma> sip))\<close> and \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
        have "... \<le> nsqn (rt (\<sigma>' sip)) ip" ..
      finally have "sn < nsqn (rt (\<sigma>' sip)) ip" .
      thus ?thesis by simp
    next
      assume "sn = nsqn (rt (\<sigma> sip)) ip"
      with \<open>ip\<in>kD(rt (\<sigma> sip))\<close> and \<open>quality_increases (\<sigma> sip) (\<sigma>' sip)\<close>
        have "sn < nsqn (rt (\<sigma>' sip)) ip
              \<or> (sn = nsqn (rt (\<sigma>' sip)) ip
                 \<and> the (dhops (rt (\<sigma>' sip)) ip) \<le> the (dhops (rt (\<sigma> sip)) ip))" ..
      hence "sn < nsqn (rt (\<sigma>' sip)) ip
              \<or> (nsqn (rt (\<sigma>' sip)) ip = sn \<and> (the (dhops (rt (\<sigma>' sip)) ip) \<le> hops
                                                 \<or> the (flag (rt (\<sigma>' sip)) ip) = inv))"
      proof
        assume "sn < nsqn (rt (\<sigma>' sip)) ip" thus ?thesis ..
      next
        assume "sn = nsqn (rt (\<sigma>' sip)) ip
                \<and> the (dhops (rt (\<sigma> sip)) ip) \<ge> the (dhops (rt (\<sigma>' sip)) ip)"
        hence "sn = nsqn (rt (\<sigma>' sip)) ip"
          and "the (dhops (rt (\<sigma>' sip)) ip) \<le> the (dhops (rt (\<sigma> sip)) ip)" by auto

        from * and \<open>sn = nsqn (rt (\<sigma> sip)) ip\<close> have "the (dhops (rt (\<sigma> sip)) ip) \<le> hops
                                                       \<or> the (flag (rt (\<sigma> sip)) ip) = inv"
          by simp
        thus ?thesis
        proof
          assume "the (dhops (rt (\<sigma> sip)) ip) \<le> hops"
          with  \<open>the (dhops (rt (\<sigma>' sip)) ip) \<le> the (dhops (rt (\<sigma> sip)) ip)\<close>
           have "the (dhops (rt (\<sigma>' sip)) ip) \<le> hops" by simp
          with \<open>sn = nsqn (rt (\<sigma>' sip)) ip\<close> show ?thesis by simp
        next
          assume "the (flag (rt (\<sigma> sip)) ip) = inv"
          with \<open>ip\<in>kD(rt (\<sigma> sip))\<close> have "nsqn (rt (\<sigma> sip)) ip = sqn (rt (\<sigma> sip)) ip - 1" ..

          with \<open>sn \<ge> 1\<close> and \<open>sn = nsqn (rt (\<sigma> sip)) ip\<close>
            have "sqn (rt (\<sigma> sip)) ip > 1" by simp

          from \<open>ip\<in>kD(rt (\<sigma>' sip))\<close> show ?thesis
          proof (rule vD_or_iD)
            assume "ip\<in>iD(rt (\<sigma>' sip))"
            hence "the (flag (rt (\<sigma>' sip)) ip) = inv" ..
            with \<open>sn = nsqn (rt (\<sigma>' sip)) ip\<close> show ?thesis
              by simp
          next
            (* the tricky case: sn = nsqn (rt (\<sigma>' sip)) ip
                                \<and> ip\<in>iD(rt (\<sigma> sip))
                                \<and> ip\<in>vD(rt (\<sigma>' sip)) *)
            assume "ip\<in>vD(rt (\<sigma>' sip))"
            hence "nsqn (rt (\<sigma>' sip)) ip = sqn (rt (\<sigma>' sip)) ip" ..
            with \<open>sqn (rt (\<sigma> sip)) ip \<le> sqn (rt (\<sigma>' sip)) ip\<close>
              have "nsqn (rt (\<sigma>' sip)) ip \<ge> sqn (rt (\<sigma> sip)) ip" by simp

            with \<open>sqn (rt (\<sigma> sip)) ip > 1\<close>
              have "nsqn (rt (\<sigma>' sip)) ip > sqn (rt (\<sigma> sip)) ip - 1" by simp
            with \<open>nsqn (rt (\<sigma> sip)) ip = sqn (rt (\<sigma> sip)) ip - 1\<close>
              have "nsqn (rt (\<sigma>' sip)) ip > nsqn (rt (\<sigma> sip)) ip" by simp
            with \<open>sn = nsqn (rt (\<sigma> sip)) ip\<close> have "nsqn (rt (\<sigma>' sip)) ip > sn"
              by simp
            thus ?thesis ..
          qed
        qed
      qed
      thus ?thesis by (metis (mono_tags) le_cases not_le)
    qed
    with \<open>ip\<in>kD (rt (\<sigma>' sip))\<close> show "ip\<in>kD (rt (\<sigma>' sip)) \<and> ?nsqnafter" ..
  qed

lemma quality_increases_rreq_rrep_props':
    fixes sn ip hops sip
  assumes "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
      and "1 \<le> sn"
      and *: "ip\<in>kD(rt (\<sigma> sip)) \<and> sn \<le> nsqn (rt (\<sigma> sip)) ip
                                \<and> (nsqn (rt (\<sigma> sip)) ip = sn
                                    \<longrightarrow> (the (dhops (rt (\<sigma> sip)) ip) \<le> hops
                                          \<or> the (flag (rt (\<sigma> sip)) ip) = inv))"
    shows "ip\<in>kD(rt (\<sigma>' sip)) \<and> sn \<le> nsqn (rt (\<sigma>' sip)) ip
                              \<and> (nsqn (rt (\<sigma>' sip)) ip = sn
                                  \<longrightarrow> (the (dhops (rt (\<sigma>' sip)) ip) \<le> hops
                                        \<or> the (flag (rt (\<sigma>' sip)) ip) = inv))"
  proof -
    from assms(1) have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
    thus ?thesis using assms(2-3) by (rule quality_increases_rreq_rrep_props)
  qed

lemma rteq_quality_increases:
  assumes "\<forall>j. j \<noteq> i \<longrightarrow> quality_increases (\<sigma> j) (\<sigma>' j)"
      and "rt (\<sigma>' i) = rt (\<sigma> i)"
    shows "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
  using assms by clarsimp (metis order_refl quality_increasesI rt_fresher_refl)

definition msg_fresh :: "(ip \<Rightarrow> state) \<Rightarrow> msg \<Rightarrow> bool"
where "msg_fresh \<sigma> m \<equiv>
         case m of Rreq hopsc _ _ _ _ oipc osnc sipc \<Rightarrow> osnc \<ge> 1 \<and> (sipc \<noteq> oipc \<longrightarrow>
                       oipc\<in>kD(rt (\<sigma> sipc)) \<and> nsqn (rt (\<sigma> sipc)) oipc \<ge> osnc
                       \<and> (nsqn (rt (\<sigma> sipc)) oipc = osnc
                             \<longrightarrow> (hopsc \<ge> the (dhops (rt (\<sigma> sipc)) oipc)
                                  \<or> the (flag (rt (\<sigma> sipc)) oipc) = inv)))
                   | Rrep hopsc dipc dsnc _ sipc \<Rightarrow> dsnc \<ge> 1 \<and> (sipc \<noteq> dipc \<longrightarrow>
                       dipc\<in>kD(rt (\<sigma> sipc)) \<and> nsqn (rt (\<sigma> sipc)) dipc \<ge> dsnc
                       \<and> (nsqn (rt (\<sigma> sipc)) dipc = dsnc
                             \<longrightarrow> (hopsc \<ge> the (dhops (rt (\<sigma> sipc)) dipc)
                                   \<or> the (flag (rt (\<sigma> sipc)) dipc) = inv)))
                   | Rerr destsc sipc \<Rightarrow> (\<forall>ripc\<in>dom(destsc). (ripc\<in>kD(rt (\<sigma> sipc))
                                         \<and> the (destsc ripc) - 1 \<le> nsqn (rt (\<sigma> sipc)) ripc))
                   | _ \<Rightarrow> True"

lemma msg_fresh [simp]:
  "\<And>hops rreqid dip dsn dsk oip osn sip.
           msg_fresh \<sigma> (Rreq hops rreqid dip dsn dsk oip osn sip) =
                            (osn \<ge> 1 \<and> (sip \<noteq> oip \<longrightarrow> oip\<in>kD(rt (\<sigma> sip))
                                     \<and> nsqn (rt (\<sigma> sip)) oip \<ge> osn
                                     \<and> (nsqn (rt (\<sigma> sip)) oip = osn
                                           \<longrightarrow> (hops \<ge> the (dhops (rt (\<sigma> sip)) oip)
                                                \<or> the (flag (rt (\<sigma> sip)) oip) = inv))))"
  "\<And>hops dip dsn oip sip. msg_fresh \<sigma> (Rrep hops dip dsn oip sip) =
                            (dsn \<ge> 1 \<and> (sip \<noteq> dip \<longrightarrow> dip\<in>kD(rt (\<sigma> sip))
                                     \<and> nsqn (rt (\<sigma> sip)) dip \<ge> dsn
                                     \<and> (nsqn (rt (\<sigma> sip)) dip = dsn
                                           \<longrightarrow> (hops \<ge> the (dhops (rt (\<sigma> sip)) dip))
                                                 \<or> the (flag (rt (\<sigma> sip)) dip) = inv)))"
  "\<And>dests sip.            msg_fresh \<sigma> (Rerr dests sip) =
                            (\<forall>ripc\<in>dom(dests). (ripc\<in>kD(rt (\<sigma> sip))
                                     \<and> the (dests ripc) - 1 \<le> nsqn (rt (\<sigma> sip)) ripc))"
  "\<And>d dip.                msg_fresh \<sigma> (Newpkt d dip)   = True"
  "\<And>d dip sip.            msg_fresh \<sigma> (Pkt d dip sip)  = True"
  unfolding msg_fresh_def by simp_all

lemma msg_fresh_inc_sn [simp, elim]:
  "msg_fresh \<sigma> m \<Longrightarrow> rreq_rrep_sn m"
  by (cases m) simp_all

lemma recv_msg_fresh_inc_sn [simp, elim]:
  "orecvmsg (msg_fresh) \<sigma> m \<Longrightarrow> recvmsg rreq_rrep_sn m"
  by (cases m) simp_all

lemma rreq_nsqn_is_fresh [simp]:
  fixes \<sigma> msg hops rreqid dip dsn dsk oip osn sip
  assumes "rreq_rrep_fresh (rt (\<sigma> sip)) (Rreq hops rreqid dip dsn dsk oip osn sip)"
      and "rreq_rrep_sn (Rreq hops rreqid dip dsn dsk oip osn sip)"
  shows "msg_fresh \<sigma> (Rreq hops rreqid dip dsn dsk oip osn sip)"
        (is "msg_fresh \<sigma> ?msg")
  proof -
    let ?rt = "rt (\<sigma> sip)"
    from assms(2) have "1 \<le> osn" by simp
    thus ?thesis
    unfolding msg_fresh_def
    proof (simp only: msg.case, intro conjI impI)
      assume "sip \<noteq> oip"
      with assms(1) show "oip \<in> kD(?rt)" by simp
    next
      assume "sip \<noteq> oip"
         and "nsqn ?rt oip = osn"
      show "the (dhops ?rt oip) \<le> hops \<or> the (flag ?rt oip) = inv"
      proof (cases "oip\<in>vD(?rt)")
        assume "oip\<in>vD(?rt)"
        hence "nsqn ?rt oip = sqn ?rt oip" ..
        with \<open>nsqn ?rt oip = osn\<close> have "sqn ?rt oip = osn" by simp
        with assms(1) and \<open>sip \<noteq> oip\<close> have "the (dhops ?rt oip) \<le> hops"
          by simp
        thus ?thesis ..
      next
        assume "oip\<notin>vD(?rt)"
        moreover from assms(1) and \<open>sip \<noteq> oip\<close> have "oip\<in>kD(?rt)" by simp
        ultimately have "oip\<in>iD(?rt)" by auto
        hence "the (flag ?rt oip) = inv" ..
        thus ?thesis ..
      qed
    next
      assume "sip \<noteq> oip"
      with assms(1) have "osn \<le> sqn ?rt oip" by auto
      thus "osn \<le> nsqn (rt (\<sigma> sip)) oip"
      proof (rule nat_le_eq_or_lt)
        assume "osn < sqn ?rt oip"
        hence "osn \<le> sqn ?rt oip - 1" by simp
        also have "... \<le> nsqn ?rt oip" by (rule sqn_nsqn)
        finally show "osn \<le> nsqn ?rt oip" .
      next
        assume "osn = sqn ?rt oip"
        with assms(1) and \<open>sip \<noteq> oip\<close> have "oip\<in>kD(?rt)"
                                       and "the (flag ?rt oip) = val"
          by auto
        hence "nsqn ?rt oip = sqn ?rt oip" ..
        with \<open>osn = sqn ?rt oip\<close> have "nsqn ?rt oip = osn" by simp
        thus "osn \<le> nsqn ?rt oip" by simp
      qed
    qed simp
  qed

lemma rrep_nsqn_is_fresh [simp]:
  fixes \<sigma> msg hops dip dsn oip sip
  assumes "rreq_rrep_fresh (rt (\<sigma> sip)) (Rrep hops dip dsn oip sip)"
      and "rreq_rrep_sn (Rrep hops dip dsn oip sip)"
  shows "msg_fresh \<sigma> (Rrep hops dip dsn oip sip)"
        (is "msg_fresh \<sigma> ?msg")
  proof -
    let ?rt = "rt (\<sigma> sip)"
    from assms have "sip \<noteq> dip \<longrightarrow> dip\<in>kD(?rt) \<and> sqn ?rt dip = dsn \<and> the (flag ?rt dip) = val"
      by simp
    hence "sip \<noteq> dip \<longrightarrow> dip\<in>kD(?rt) \<and> nsqn ?rt dip \<ge> dsn"
    by clarsimp
    with assms show "msg_fresh \<sigma> ?msg"
      by clarsimp
  qed

lemma rerr_nsqn_is_fresh [simp]:
  fixes \<sigma> msg dests sip
  assumes "rerr_invalid (rt (\<sigma> sip)) (Rerr dests sip)"
  shows "msg_fresh \<sigma> (Rerr dests sip)"
        (is "msg_fresh \<sigma> ?msg")
  proof -
    let ?rt = "rt (\<sigma> sip)"
    from assms have *: "(\<forall>rip\<in>dom(dests). (rip\<in>iD(rt (\<sigma> sip))
                                     \<and> the (dests rip) = sqn (rt (\<sigma> sip)) rip))"
      by clarsimp
    have "(\<forall>rip\<in>dom(dests). (rip\<in>kD(rt (\<sigma> sip))
                                     \<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip))"
    proof
      fix rip
      assume "rip \<in> dom dests"
      with * have "rip\<in>iD(rt (\<sigma> sip))" and "the (dests rip) = sqn (rt (\<sigma> sip)) rip"
        by auto

      from this(2) have "the (dests rip) - 1 = sqn (rt (\<sigma> sip)) rip - 1" by simp
      also have "... \<le> nsqn (rt (\<sigma> sip)) rip" by (rule sqn_nsqn)
      finally have "the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip" .

      with \<open>rip\<in>iD(rt (\<sigma> sip))\<close>
        show "rip\<in>kD(rt (\<sigma> sip)) \<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
          by clarsimp
    qed
    thus "msg_fresh \<sigma> ?msg"
      by simp
  qed

lemma quality_increases_msg_fresh [elim]:
  assumes qinc: "\<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)"
      and "msg_fresh \<sigma> m"
    shows "msg_fresh \<sigma>' m"
  using assms(2)
  proof (cases m)
    fix hops rreqid dip dsn dsk oip osn sip
    assume [simp]: "m = Rreq hops rreqid dip dsn dsk oip osn sip"
       and "msg_fresh \<sigma> m"
    then have "osn \<ge> 1" and "sip = oip \<or> (oip\<in>kD(rt (\<sigma> sip)) \<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
                                           \<and> (nsqn (rt (\<sigma> sip)) oip = osn
                                                 \<longrightarrow> (the (dhops (rt (\<sigma> sip)) oip) \<le> hops
                                                      \<or> the (flag (rt (\<sigma> sip)) oip) = inv)))"
      by auto
    from this(2) show ?thesis
    proof
      assume "sip = oip" with \<open>osn \<ge> 1\<close> show ?thesis by simp
    next
      assume "oip\<in>kD(rt (\<sigma> sip)) \<and> osn \<le> nsqn (rt (\<sigma> sip)) oip
                                  \<and> (nsqn (rt (\<sigma> sip)) oip = osn
                                      \<longrightarrow> (the (dhops (rt (\<sigma> sip)) oip) \<le> hops
                                           \<or> the (flag (rt (\<sigma> sip)) oip) = inv))"
      moreover from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
      ultimately have "oip\<in>kD(rt (\<sigma>' sip)) \<and> osn \<le> nsqn (rt (\<sigma>' sip)) oip
                                           \<and> (nsqn (rt (\<sigma>' sip)) oip = osn
                                              \<longrightarrow> (the (dhops (rt (\<sigma>' sip)) oip) \<le> hops
                                                    \<or> the (flag (rt (\<sigma>' sip)) oip) = inv))"
       using \<open>osn \<ge> 1\<close> by (rule quality_increases_rreq_rrep_props [rotated 2])
      with \<open>osn \<ge> 1\<close> show "msg_fresh \<sigma>' m"
        by (clarsimp)
    qed
  next
    fix hops dip dsn oip sip
    assume [simp]: "m = Rrep hops dip dsn oip sip"
       and "msg_fresh \<sigma> m"
    then have "dsn \<ge> 1" and "sip = dip \<or> (dip\<in>kD(rt (\<sigma> sip)) \<and> dsn \<le> nsqn (rt (\<sigma> sip)) dip
                                           \<and> (nsqn (rt (\<sigma> sip)) dip = dsn
                                                 \<longrightarrow> (the (dhops (rt (\<sigma> sip)) dip) \<le> hops
                                                      \<or> the (flag (rt (\<sigma> sip)) dip) = inv)))"
      by auto
    from this(2) show "?thesis"
    proof
      assume "sip = dip" with \<open>dsn \<ge> 1\<close> show ?thesis by simp
    next
      assume "dip\<in>kD(rt (\<sigma> sip)) \<and> dsn \<le> nsqn (rt (\<sigma> sip)) dip
                                  \<and> (nsqn (rt (\<sigma> sip)) dip = dsn
                                      \<longrightarrow> (the (dhops (rt (\<sigma> sip)) dip) \<le> hops
                                           \<or> the (flag (rt (\<sigma> sip)) dip) = inv))"
      moreover from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" ..
      ultimately have "dip\<in>kD(rt (\<sigma>' sip)) \<and> dsn \<le> nsqn (rt (\<sigma>' sip)) dip
                                           \<and> (nsqn (rt (\<sigma>' sip)) dip = dsn
                                              \<longrightarrow> (the (dhops (rt (\<sigma>' sip)) dip) \<le> hops
                                                    \<or> the (flag (rt (\<sigma>' sip)) dip) = inv))"
        using \<open>dsn \<ge> 1\<close> by (rule quality_increases_rreq_rrep_props [rotated 2])
      with \<open>dsn \<ge> 1\<close> show "msg_fresh \<sigma>' m"
        by clarsimp
    qed
  next
    fix dests sip
    assume [simp]: "m = Rerr dests sip"
       and "msg_fresh \<sigma> m"
    then have *: "\<forall>rip\<in>dom(dests). rip\<in>kD(rt (\<sigma> sip))
                              \<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
      by simp
    have "\<forall>rip\<in>dom(dests). rip\<in>kD(rt (\<sigma>' sip))
                         \<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma>' sip)) rip"
      proof
        fix rip
        assume "rip\<in>dom(dests)"
        with * have "rip\<in>kD(rt (\<sigma> sip))" and "the (dests rip) - 1 \<le> nsqn (rt (\<sigma> sip)) rip"
          by - (drule(1) bspec, clarsimp)+
        moreover from qinc have "quality_increases (\<sigma> sip) (\<sigma>' sip)" by simp
        ultimately show "rip\<in>kD(rt (\<sigma>' sip)) \<and> the (dests rip) - 1 \<le> nsqn (rt (\<sigma>' sip)) rip" ..
      qed
    thus ?thesis by simp
  qed simp_all

end