Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 2,238 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import ring_theory.polynomial.pochhammer

/-!
# Cast of factorials

This file allows calculating factorials (including ascending and descending ones) as elements of a
semiring.

This is particularly crucial for `nat.desc_factorial` as substraction on `ℕ` does **not** correspond
to substraction on a general semiring. For example, we can't rely on existing cast lemmas to prove
`↑(a.desc_factorial 2) = ↑a * (↑a - 1)`. We must use the fact that, whenever `↑(a - 1)` is not equal
to `↑a - 1`, the other factor is `0` anyway.
-/

open_locale nat

variables (S : Type*)

namespace nat

section semiring
variables [semiring S] (a b : ℕ)

lemma cast_asc_factorial :
  (a.asc_factorial b : S) = (pochhammer S b).eval (a + 1) :=
by rw [←pochhammer_nat_eq_asc_factorial, pochhammer_eval_cast, nat.cast_add, nat.cast_one]

lemma cast_desc_factorial :
  (a.desc_factorial b : S) = (pochhammer S b).eval (a - (b - 1) : ℕ) :=
begin
  rw [←pochhammer_eval_cast, pochhammer_nat_eq_desc_factorial],
  cases b,
  { simp_rw desc_factorial_zero },
  simp_rw [add_succ, succ_sub_one],
  obtain h | h := le_total a b,
  { rw [desc_factorial_of_lt (lt_succ_of_le h), desc_factorial_of_lt (lt_succ_of_le _)],
    rw [tsub_eq_zero_iff_le.mpr h, zero_add] },
  { rw tsub_add_cancel_of_le h }
end

lemma cast_factorial :
  (a! : S) = (pochhammer S a).eval 1 :=
by rw [←zero_asc_factorial, cast_asc_factorial, cast_zero, zero_add]

end semiring

section ring
variables [ring S] (a b : ℕ)

/-- Convenience lemma. The `a - 1` is not using truncated substraction, as opposed to the definition
of `nat.desc_factorial` as a natural. -/
lemma cast_desc_factorial_two :
  (a.desc_factorial 2 : S) = a * (a - 1) :=
begin
  rw cast_desc_factorial,
  cases a,
  { rw [zero_tsub, cast_zero, pochhammer_ne_zero_eval_zero _ (two_ne_zero), zero_mul] },
  { rw [succ_sub_succ, tsub_zero, cast_succ, add_sub_cancel, pochhammer_succ_right,
      pochhammer_one, polynomial.X_mul, polynomial.eval_mul_X, polynomial.eval_add,
      polynomial.eval_X, cast_one, polynomial.eval_one] }
end

end ring

end nat