Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 2,824 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
/-
Copyright (c) 2022 YaΓ«l Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: YaΓ«l Dillies
-/
import data.finset.card
import data.multiset.sum
/-!
# Disjoint sum of finsets
This file defines the disjoint sum of two finsets as `finset (Ξ± β Ξ²)`. Beware not to confuse with
the `finset.sum` operation which computes the additive sum.
## Main declarations
* `finset.disj_sum`: `s.disj_sum t` is the disjoint sum of `s` and `t`.
-/
open function multiset sum
namespace finset
variables {Ξ± Ξ² : Type*} (s : finset Ξ±) (t : finset Ξ²)
/-- Disjoint sum of finsets. -/
def disj_sum : finset (Ξ± β Ξ²) := β¨s.1.disj_sum t.1, s.2.disj_sum t.2β©
@[simp] lemma val_disj_sum : (s.disj_sum t).1 = s.1.disj_sum t.1 := rfl
@[simp] lemma empty_disj_sum : (β
: finset Ξ±).disj_sum t = t.map embedding.inr :=
val_inj.1 $ multiset.zero_disj_sum _
@[simp] lemma disj_sum_empty : s.disj_sum (β
: finset Ξ²) = s.map embedding.inl :=
val_inj.1 $ multiset.disj_sum_zero _
@[simp] lemma card_disj_sum : (s.disj_sum t).card = s.card + t.card := multiset.card_disj_sum _ _
variables {s t} {sβ sβ : finset Ξ±} {tβ tβ : finset Ξ²} {a : Ξ±} {b : Ξ²} {x : Ξ± β Ξ²}
lemma mem_disj_sum : x β s.disj_sum t β (β a, a β s β§ inl a = x) β¨ β b, b β t β§ inr b = x :=
multiset.mem_disj_sum
@[simp] lemma inl_mem_disj_sum : inl a β s.disj_sum t β a β s := inl_mem_disj_sum
@[simp] lemma inr_mem_disj_sum : inr b β s.disj_sum t β b β t := inr_mem_disj_sum
lemma disj_sum_mono (hs : sβ β sβ) (ht : tβ β tβ) : sβ.disj_sum tβ β sβ.disj_sum tβ :=
val_le_iff.1 $ disj_sum_mono (val_le_iff.2 hs) (val_le_iff.2 ht)
lemma disj_sum_mono_left (t : finset Ξ²) : monotone (Ξ» s : finset Ξ±, s.disj_sum t) :=
Ξ» sβ sβ hs, disj_sum_mono hs subset.rfl
lemma disj_sum_mono_right (s : finset Ξ±) : monotone (s.disj_sum : finset Ξ² β finset (Ξ± β Ξ²)) :=
Ξ» tβ tβ, disj_sum_mono subset.rfl
lemma disj_sum_ssubset_disj_sum_of_ssubset_of_subset (hs : sβ β sβ) (ht : tβ β tβ) :
sβ.disj_sum tβ β sβ.disj_sum tβ :=
val_lt_iff.1 $ disj_sum_lt_disj_sum_of_lt_of_le (val_lt_iff.2 hs) (val_le_iff.2 ht)
lemma disj_sum_ssubset_disj_sum_of_subset_of_ssubset (hs : sβ β sβ) (ht : tβ β tβ) :
sβ.disj_sum tβ β sβ.disj_sum tβ :=
val_lt_iff.1 $ disj_sum_lt_disj_sum_of_le_of_lt (val_le_iff.2 hs) (val_lt_iff.2 ht)
lemma disj_sum_strict_mono_left (t : finset Ξ²) : strict_mono (Ξ» s : finset Ξ±, s.disj_sum t) :=
Ξ» sβ sβ hs, disj_sum_ssubset_disj_sum_of_ssubset_of_subset hs subset.rfl
lemma disj_sum_strict_mono_right (s : finset Ξ±) :
strict_mono (s.disj_sum : finset Ξ² β finset (Ξ± β Ξ²)) :=
Ξ» sβ sβ, disj_sum_ssubset_disj_sum_of_subset_of_ssubset subset.rfl
end finset
|