Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 4,799 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
/-
Copyright (c) 2019 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import data.finset.card
import data.multiset.nat_antidiagonal
/-!
# Antidiagonals in ℕ × ℕ as finsets
This file defines the antidiagonals of ℕ × ℕ as finsets: the `n`-th antidiagonal is the finset of
pairs `(i, j)` such that `i + j = n`. This is useful for polynomial multiplication and more
generally for sums going from `0` to `n`.
## Notes
This refines files `data.list.nat_antidiagonal` and `data.multiset.nat_antidiagonal`.
-/
namespace finset
namespace nat
/-- The antidiagonal of a natural number `n` is
the finset of pairs `(i, j)` such that `i + j = n`. -/
def antidiagonal (n : ℕ) : finset (ℕ × ℕ) :=
⟨multiset.nat.antidiagonal n, multiset.nat.nodup_antidiagonal n⟩
/-- A pair (i, j) is contained in the antidiagonal of `n` if and only if `i + j = n`. -/
@[simp] lemma mem_antidiagonal {n : ℕ} {x : ℕ × ℕ} :
x ∈ antidiagonal n ↔ x.1 + x.2 = n :=
by rw [antidiagonal, mem_def, multiset.nat.mem_antidiagonal]
/-- The cardinality of the antidiagonal of `n` is `n + 1`. -/
@[simp] lemma card_antidiagonal (n : ℕ) : (antidiagonal n).card = n+1 :=
by simp [antidiagonal]
/-- The antidiagonal of `0` is the list `[(0, 0)]` -/
@[simp] lemma antidiagonal_zero : antidiagonal 0 = {(0, 0)} :=
rfl
lemma antidiagonal_succ (n : ℕ) :
antidiagonal (n + 1) = cons (0, n + 1) ((antidiagonal n).map
(function.embedding.prod_map ⟨nat.succ, nat.succ_injective⟩ (function.embedding.refl _)))
(by simp) :=
begin
apply eq_of_veq,
rw [cons_val, map_val],
{ apply multiset.nat.antidiagonal_succ },
end
lemma antidiagonal_succ' (n : ℕ) :
antidiagonal (n + 1) = cons (n + 1, 0) ((antidiagonal n).map
(function.embedding.prod_map (function.embedding.refl _) ⟨nat.succ, nat.succ_injective⟩))
(by simp) :=
begin
apply eq_of_veq,
rw [cons_val, map_val],
exact multiset.nat.antidiagonal_succ',
end
lemma antidiagonal_succ_succ' {n : ℕ} :
antidiagonal (n + 2) =
cons (0, n + 2)
(cons (n + 2, 0) ((antidiagonal n).map
(function.embedding.prod_map ⟨nat.succ, nat.succ_injective⟩ ⟨nat.succ, nat.succ_injective⟩))
$ by simp) (by simp) :=
by { simp_rw [antidiagonal_succ (n + 1), antidiagonal_succ', finset.map_cons, map_map], refl }
lemma map_swap_antidiagonal {n : ℕ} :
(antidiagonal n).map ⟨prod.swap, prod.swap_right_inverse.injective⟩ = antidiagonal n :=
eq_of_veq $ by simp [antidiagonal, multiset.nat.map_swap_antidiagonal]
/-- A point in the antidiagonal is determined by its first co-ordinate. -/
lemma antidiagonal_congr {n : ℕ} {p q : ℕ × ℕ} (hp : p ∈ antidiagonal n)
(hq : q ∈ antidiagonal n) : p = q ↔ p.fst = q.fst :=
begin
refine ⟨congr_arg prod.fst, (λ h, prod.ext h ((add_right_inj q.fst).mp _))⟩,
rw mem_antidiagonal at hp hq,
rw [hq, ← h, hp],
end
lemma antidiagonal.fst_le {n : ℕ} {kl : ℕ × ℕ} (hlk : kl ∈ antidiagonal n) :
kl.1 ≤ n :=
begin
rw le_iff_exists_add,
use kl.2,
rwa [mem_antidiagonal, eq_comm] at hlk
end
lemma antidiagonal.snd_le {n : ℕ} {kl : ℕ × ℕ} (hlk : kl ∈ antidiagonal n) :
kl.2 ≤ n :=
begin
rw le_iff_exists_add,
use kl.1,
rwa [mem_antidiagonal, eq_comm, add_comm] at hlk
end
lemma filter_fst_eq_antidiagonal (n m : ℕ) :
filter (λ x : ℕ × ℕ, x.fst = m) (antidiagonal n) = if m ≤ n then {(m, n - m)} else ∅ :=
begin
ext ⟨x, y⟩,
simp only [mem_filter, nat.mem_antidiagonal],
split_ifs with h h,
{ simp [and_comm, eq_tsub_iff_add_eq_of_le h, add_comm] {contextual := tt} },
{ rw not_le at h,
simp only [not_mem_empty, iff_false, not_and],
exact λ hn, ne_of_lt (lt_of_le_of_lt (le_self_add.trans hn.le) h) }
end
lemma filter_snd_eq_antidiagonal (n m : ℕ) :
filter (λ x : ℕ × ℕ, x.snd = m) (antidiagonal n) = if m ≤ n then {(n - m, m)} else ∅ :=
begin
have : (λ (x : ℕ × ℕ), x.snd = m) ∘ prod.swap = (λ (x : ℕ × ℕ), x.fst = m),
{ ext, simp },
rw ←map_swap_antidiagonal,
simp [map_filter, this, filter_fst_eq_antidiagonal, apply_ite (finset.map _)]
end
section equiv_prod
/-- The disjoint union of antidiagonals `Σ (n : ℕ), antidiagonal n` is equivalent to the product
`ℕ × ℕ`. This is such an equivalence, obtained by mapping `(n, (k, l))` to `(k, l)`. -/
@[simps] def sigma_antidiagonal_equiv_prod : (Σ (n : ℕ), antidiagonal n) ≃ ℕ × ℕ :=
{ to_fun := λ x, x.2,
inv_fun := λ x, ⟨x.1 + x.2, x, mem_antidiagonal.mpr rfl⟩,
left_inv :=
begin
rintros ⟨n, ⟨k, l⟩, h⟩,
rw mem_antidiagonal at h,
exact sigma.subtype_ext h rfl,
end,
right_inv := λ x, rfl }
end equiv_prod
end nat
end finset
|