Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 4,799 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/-
Copyright (c) 2019 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import data.finset.card
import data.multiset.nat_antidiagonal

/-!
# Antidiagonals in ℕ × ℕ as finsets

This file defines the antidiagonals of ℕ × ℕ as finsets: the `n`-th antidiagonal is the finset of
pairs `(i, j)` such that `i + j = n`. This is useful for polynomial multiplication and more
generally for sums going from `0` to `n`.

## Notes

This refines files `data.list.nat_antidiagonal` and `data.multiset.nat_antidiagonal`.
-/

namespace finset
namespace nat

/-- The antidiagonal of a natural number `n` is
    the finset of pairs `(i, j)` such that `i + j = n`. -/
def antidiagonal (n : ℕ) : finset (ℕ × ℕ) :=
⟨multiset.nat.antidiagonal n, multiset.nat.nodup_antidiagonal n⟩

/-- A pair (i, j) is contained in the antidiagonal of `n` if and only if `i + j = n`. -/
@[simp] lemma mem_antidiagonal {n : ℕ} {x : ℕ × ℕ} :
  x ∈ antidiagonal n ↔ x.1 + x.2 = n :=
by rw [antidiagonal, mem_def, multiset.nat.mem_antidiagonal]

/-- The cardinality of the antidiagonal of `n` is `n + 1`. -/
@[simp] lemma card_antidiagonal (n : ℕ) : (antidiagonal n).card = n+1 :=
by simp [antidiagonal]

/-- The antidiagonal of `0` is the list `[(0, 0)]` -/
@[simp] lemma antidiagonal_zero : antidiagonal 0 = {(0, 0)} :=
rfl

lemma antidiagonal_succ (n : ℕ) :
  antidiagonal (n + 1) = cons (0, n + 1) ((antidiagonal n).map
  (function.embedding.prod_map ⟨nat.succ, nat.succ_injective⟩ (function.embedding.refl _)))
  (by simp) :=
begin
  apply eq_of_veq,
  rw [cons_val, map_val],
  { apply multiset.nat.antidiagonal_succ },
end

lemma antidiagonal_succ' (n : ℕ) :
  antidiagonal (n + 1) = cons (n + 1, 0) ((antidiagonal n).map
  (function.embedding.prod_map (function.embedding.refl _) ⟨nat.succ, nat.succ_injective⟩))
  (by simp) :=
begin
  apply eq_of_veq,
  rw [cons_val, map_val],
  exact multiset.nat.antidiagonal_succ',
end

lemma antidiagonal_succ_succ' {n : ℕ} :
  antidiagonal (n + 2) =
    cons (0, n + 2)
      (cons (n + 2, 0) ((antidiagonal n).map
        (function.embedding.prod_map ⟨nat.succ, nat.succ_injective⟩ ⟨nat.succ, nat.succ_injective⟩))
        $ by simp) (by simp) :=
by { simp_rw [antidiagonal_succ (n + 1), antidiagonal_succ', finset.map_cons, map_map], refl }

lemma map_swap_antidiagonal {n : ℕ} :
  (antidiagonal n).map ⟨prod.swap, prod.swap_right_inverse.injective⟩ = antidiagonal n :=
eq_of_veq $ by simp [antidiagonal, multiset.nat.map_swap_antidiagonal]

/-- A point in the antidiagonal is determined by its first co-ordinate. -/
lemma antidiagonal_congr {n : ℕ} {p q : ℕ × ℕ} (hp : p ∈ antidiagonal n)
  (hq : q ∈ antidiagonal n) : p = q ↔ p.fst = q.fst :=
begin
  refine ⟨congr_arg prod.fst, (λ h, prod.ext h ((add_right_inj q.fst).mp _))⟩,
  rw mem_antidiagonal at hp hq,
  rw [hq, ← h, hp],
end

lemma antidiagonal.fst_le {n : ℕ} {kl : ℕ × ℕ} (hlk : kl ∈ antidiagonal n) :
  kl.1 ≤ n :=
begin
  rw le_iff_exists_add,
  use kl.2,
  rwa [mem_antidiagonal, eq_comm] at hlk
end

lemma antidiagonal.snd_le {n : ℕ} {kl : ℕ × ℕ} (hlk : kl ∈ antidiagonal n) :
  kl.2 ≤ n :=
begin
  rw le_iff_exists_add,
  use kl.1,
  rwa [mem_antidiagonal, eq_comm, add_comm] at hlk
end

lemma filter_fst_eq_antidiagonal (n m : ℕ) :
  filter (λ x : ℕ × ℕ, x.fst = m) (antidiagonal n) = if m ≤ n then {(m, n - m)} else ∅ :=
begin
  ext ⟨x, y⟩,
  simp only [mem_filter, nat.mem_antidiagonal],
  split_ifs with h h,
  { simp [and_comm, eq_tsub_iff_add_eq_of_le h, add_comm] {contextual := tt} },
  { rw not_le at h,
    simp only [not_mem_empty, iff_false, not_and],
    exact λ hn, ne_of_lt (lt_of_le_of_lt (le_self_add.trans hn.le) h) }
end

lemma filter_snd_eq_antidiagonal (n m : ℕ) :
  filter (λ x : ℕ × ℕ, x.snd = m) (antidiagonal n) = if m ≤ n then {(n - m, m)} else ∅ :=
begin
  have : (λ (x : ℕ × ℕ), x.snd = m) ∘ prod.swap = (λ (x : ℕ × ℕ), x.fst = m),
  { ext, simp },
  rw ←map_swap_antidiagonal,
  simp [map_filter, this, filter_fst_eq_antidiagonal, apply_ite (finset.map _)]
end

section equiv_prod

/-- The disjoint union of antidiagonals `Σ (n : ℕ), antidiagonal n` is equivalent to the product
    `ℕ × ℕ`. This is such an equivalence, obtained by mapping `(n, (k, l))` to `(k, l)`. -/
@[simps] def sigma_antidiagonal_equiv_prod : (Σ (n : ℕ), antidiagonal n) ≃ ℕ × ℕ :=
{ to_fun := λ x, x.2,
  inv_fun := λ x, ⟨x.1 + x.2, x, mem_antidiagonal.mpr rfl⟩,
  left_inv :=
    begin
      rintros ⟨n, ⟨k, l⟩, h⟩,
      rw mem_antidiagonal at h,
      exact sigma.subtype_ext h rfl,
    end,
  right_inv := λ x, rfl }

end equiv_prod

end nat

end finset