Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,270 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/-
Copyright (c) 2020 Fox Thomson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Fox Thomson
-/

import data.fintype.basic
import computability.language
import tactic.norm_num

/-!
# Deterministic Finite Automata
This file contains the definition of a Deterministic Finite Automaton (DFA), a state machine which
determines whether a string (implemented as a list over an arbitrary alphabet) is in a regular set
in linear time.
Note that this definition allows for Automaton with infinite states, a `fintype` instance must be
supplied for true DFA's.
-/

universes u v

/-- A DFA is a set of states (`σ`), a transition function from state to state labelled by the
  alphabet (`step`), a starting state (`start`) and a set of acceptance states (`accept`). -/
structure DFA (α : Type u) (σ : Type v) :=
(step : σ → α → σ)
(start : σ)
(accept : set σ)

namespace DFA

variables {α : Type u} {σ : Type v} (M : DFA α σ)

instance [inhabited σ] : inhabited (DFA α σ) :=
⟨DFA.mk (λ _ _, default) default ∅⟩

/-- `M.eval_from s x` evaluates `M` with input `x` starting from the state `s`. -/
def eval_from (start : σ) : list α → σ :=
list.foldl M.step start

@[simp] lemma eval_from_nil (s : σ) : M.eval_from s [] = s := rfl
@[simp] lemma eval_from_singleton (s : σ) (a : α) : M.eval_from s [a] = M.step s a := rfl
@[simp] lemma eval_from_append_singleton (s : σ) (x : list α) (a : α) :
  M.eval_from s (x ++ [a]) = M.step (M.eval_from s x) a :=
by simp only [eval_from, list.foldl_append, list.foldl_cons, list.foldl_nil]

/-- `M.eval x` evaluates `M` with input `x` starting from the state `M.start`. -/
def eval : list α → σ := M.eval_from M.start

@[simp] lemma eval_nil : M.eval [] = M.start := rfl
@[simp] lemma eval_singleton (a : α) : M.eval [a] = M.step M.start a := rfl
@[simp] lemma eval_append_singleton (x : list α) (a : α) :
  M.eval (x ++ [a]) = M.step (M.eval x) a :=
eval_from_append_singleton _ _ _ _

lemma eval_from_of_append (start : σ) (x y : list α) :
  M.eval_from start (x ++ y) = M.eval_from (M.eval_from start x) y :=
x.foldl_append _ _ y

/-- `M.accepts` is the language of `x` such that `M.eval x` is an accept state. -/
def accepts : language α :=
λ x, M.eval x ∈ M.accept

lemma mem_accepts (x : list α) : x ∈ M.accepts ↔ M.eval_from M.start x ∈ M.accept := by refl

lemma eval_from_split [fintype σ] {x : list α} {s t : σ} (hlen : fintype.card σ ≤ x.length)
  (hx : M.eval_from s x = t) :
  ∃ q a b c,
  x = a ++ b ++ c ∧
  a.length + b.length ≤ fintype.card σ ∧
  b ≠ [] ∧
  M.eval_from s a = q ∧
  M.eval_from q b = q ∧
  M.eval_from q c = t :=
begin
  obtain ⟨n, m, hneq, heq⟩ := fintype.exists_ne_map_eq_of_card_lt
    (λ n : fin (fintype.card σ + 1), M.eval_from s (x.take n)) (by norm_num),
  wlog hle : (n : ℕ) ≤ m using n m,
  have hlt : (n : ℕ) < m := (ne.le_iff_lt hneq).mp hle,
  have hm : (m : ℕ) ≤ fintype.card σ := fin.is_le m,
  dsimp at heq,

  refine ⟨M.eval_from s ((x.take m).take n), (x.take m).take n, (x.take m).drop n, x.drop m,
    _, _, _, by refl, _⟩,

  { rw [list.take_append_drop, list.take_append_drop] },

  { simp only [list.length_drop, list.length_take],
    rw [min_eq_left (hm.trans hlen), min_eq_left hle, add_tsub_cancel_of_le hle],
    exact hm },

  { intro h,
    have hlen' := congr_arg list.length h,
    simp only [list.length_drop, list.length, list.length_take] at hlen',
    rw [min_eq_left, tsub_eq_zero_iff_le] at hlen',
    { apply hneq,
      apply le_antisymm,
      assumption' },
    exact hm.trans hlen, },

  have hq :
    M.eval_from (M.eval_from s ((x.take m).take n)) ((x.take m).drop n) =
      M.eval_from s ((x.take m).take n),
  { rw [list.take_take, min_eq_left hle, ←eval_from_of_append, heq, ←min_eq_left hle,
        ←list.take_take, min_eq_left hle, list.take_append_drop] },

  use hq,
  rwa [←hq, ←eval_from_of_append, ←eval_from_of_append, ←list.append_assoc, list.take_append_drop,
       list.take_append_drop]
end

lemma eval_from_of_pow {x y : list α} {s : σ} (hx : M.eval_from s x = s)
  (hy : y ∈ @language.star α {x}) : M.eval_from s y = s :=
begin
  rw language.mem_star at hy,
  rcases hy with ⟨ S, rfl, hS ⟩,
  induction S with a S ih,
  { refl },
  { have ha := hS a (list.mem_cons_self _ _),
    rw set.mem_singleton_iff at ha,
    rw [list.join, eval_from_of_append, ha, hx],
    apply ih,
    intros z hz,
    exact hS z (list.mem_cons_of_mem a hz) }
end

lemma pumping_lemma [fintype σ] {x : list α} (hx : x ∈ M.accepts)
  (hlen : fintype.card σ ≤ list.length x) :
  ∃ a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ fintype.card σ ∧ b ≠ [] ∧
  {a} * language.star {b} * {c} ≤ M.accepts :=
begin
  obtain ⟨_, a, b, c, hx, hlen, hnil, rfl, hb, hc⟩ := M.eval_from_split hlen rfl,
  use [a, b, c, hx, hlen, hnil],
  intros y hy,
  rw language.mem_mul at hy,
  rcases hy with ⟨ ab, c', hab, hc', rfl ⟩,
  rw language.mem_mul at hab,
  rcases hab with ⟨ a', b', ha', hb', rfl ⟩,
  rw set.mem_singleton_iff at ha' hc',
  substs ha' hc',
  have h := M.eval_from_of_pow hb hb',
  rwa [mem_accepts, eval_from_of_append, eval_from_of_append, h, hc]
end

end DFA