File size: 9,966 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import for_mathlib.is_locally_constant
import locally_constant.analysis

/-!
# Extending a locally constant map to larger profinite sets

In this file, we prove that, given a topological embedding `e : X → Y` from a non-empty
compact topological space to a profinite set (ie. compact Hausdorff totally disconnected space),
every locally constant map `f` from `X` to any type `Z` "extends" to a locally constant map
from `Y` to `Z`, ie. there exists `g : Y → Z` locally constant such that `f = g ∘ e`.

     e
  X ↪-→ Y
  |    /
f |   / h
  ↓ ↙
  Z

Notes:
* this wouldn't work if `X` and `Z` were empty and `Y` weren't. The minimal assumption
  would be assuming `Z` isn't empty, I'll refactor this soon.
* Everything is stated assuming only `X` is compact but the existence of `f` ensures `X` is
  profinite, we're just saving type-class search (and nothing in the construction or proofs
  directly use `X` is profinite).

The main definition is `embedding.extend {e : X → Y} (he : embedding e) (f : X → Z) : Y → Z`
It assumes `X` is compact (and non-empty) and assumes `Y` is profinite but doesn't
assume `f` is locally constant, it is simply defined as a constant map if `f` isn't.

The announced properties of this extension are `embedding.extend_extends` and
`embedding.is_locally_constant_extend`.
-/

variables {X : Type*} [topological_space X]

noncomputable theory
open set

variables [compact_space X]
  {Y : Type*} [topological_space Y] [t2_space Y] [compact_space Y] [totally_disconnected_space Y]

lemma embedding.preimage_clopen {f : X → Y} (hf : embedding f) {U : set X} (hU : is_clopen U) :
  ∃ V : set Y, is_clopen V ∧ U = f ⁻¹' V :=
begin
  cases hU with hU hU',
  have hfU : is_compact (f '' U),
    from hU'.is_compact.image hf.continuous,
  obtain ⟨W, W_op, hfW⟩ : ∃ W : set Y, is_open W ∧ f ⁻¹' W = U,
  { rw hf.to_inducing.induced at hU,
    exact is_open_induced_iff.mp hU },
  obtain ⟨ι, Z : ι → set Y, hWZ : W = ⋃ i, Z i, hZ : ∀ i, is_clopen $ Z i⟩ :=
    is_topological_basis_clopen.open_eq_Union W_op,
  have : f '' U ⊆ ⋃ i, Z i,
  { rw [image_subset_iff, ← hWZ, hfW] },
  obtain ⟨I, hI⟩ : ∃ I : finset ι, f '' U ⊆ ⋃ i ∈ I, Z i,
    from hfU.elim_finite_subcover _ (λ i, (hZ i).1) this,
  refine ⟨⋃ i ∈ I, Z i, _, _⟩,
  { apply is_clopen_bUnion, apply finset.finite_to_set,
    tauto },
  { apply subset.antisymm,
    exact image_subset_iff.mp hI,
    have : (⋃ i ∈ I, Z i) ⊆ ⋃ i, Z i,
      from Union₂_subset_Union _ _,
    rw [← hfW, hWZ],
    mono },
end

lemma embedding.ex_discrete_quotient [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
  ∃ (S' : discrete_quotient Y) (g : S ≃ S'), S'.proj ∘ f = g ∘ S.proj :=
begin
  classical,
  inhabit X,
  haveI : fintype S := discrete_quotient.fintype S,
  have : ∀ s : S, ∃ V : set Y, is_clopen V ∧ S.proj ⁻¹' {s} = f ⁻¹' V,
    from λ s, hf.preimage_clopen (S.fiber_clopen {s}),
  choose V hV using this,
  rw forall_and_distrib at hV,
  cases hV with V_cl hV,
  let s₀ := S.proj default,
  let W : S → set Y := λ s, (V s) \ (⋃ s' (h : s' ≠ s), V s'),
  have W_dis : ∀ {s s'}, s ≠ s' → disjoint (W s) (W s'),
  { rintros s s' hss x ⟨⟨hxs_in, hxs_out⟩, ⟨hxs'_in, hxs'_out⟩⟩,
    apply hxs'_out,
    rw mem_Union₂,
    exact ⟨s, hss, hxs_in⟩ },
  have hfW : ∀ x, f x ∈ W (S.proj x),
  { intro x,
    split,
    { change x ∈ f ⁻¹' (V $ S.proj x),
      rw ← hV (S.proj x),
      exact mem_singleton _ },
    { intro h,
      rcases mem_Union₂.mp h with ⟨s', hss', hfx : x ∈ f ⁻¹' (V s')⟩,
      rw ← hV s' at hfx,
      exact hss' hfx.symm } },
  have W_nonempty : ∀ s, (W s).nonempty,
  { intro s,
    obtain ⟨x, hx : S.proj x = s⟩ := S.proj_surjective s,
    use f x,
    rw ← hx,
    apply hfW,
     },
  let R : S → set Y := λ s, if s = s₀ then W s₀ ∪ (⋃ s, W s)ᶜ else W s,
  have W_cl : ∀ s, is_clopen (W s),
  { intro s,
    apply (V_cl s).diff,
    apply is_clopen_Union,
    intro s',
    by_cases h : s' = s,
    simp [h, is_clopen_empty],
    simp [h, V_cl s'] },
  have R_cl : ∀ s, is_clopen (R s),
  { intro s,
    dsimp [R],
    split_ifs,
    { apply (W_cl s₀).union,
      apply is_clopen.compl,
      exact is_clopen_Union W_cl },
    { exact W_cl _ }, },
  let R_part : indexed_partition R,
  { apply indexed_partition.mk',
    { rintros s s' hss x ⟨hxs, hxs'⟩,
      dsimp [R] at hxs hxs',
      split_ifs at hxs hxs' with hs hs',
      { exact (hss (hs.symm ▸ hs' : s = s')).elim },
      { cases hxs' with hx hx,
        { exact W_dis hs' ⟨hxs, hx⟩ },
        { apply hx,
          rw mem_Union,
          exact ⟨s, hxs⟩ } },
      { cases hxs with hx hx,
        { exact W_dis hs ⟨hxs', hx⟩ },
        { apply hx,
          rw mem_Union,
          exact ⟨s', hxs'⟩ } },
      { exact W_dis hss ⟨hxs, hxs'⟩ } },
    { intro s,
      dsimp [R],
      split_ifs,
      { use (W_nonempty s₀).some,
        left,
        exact (W_nonempty s₀).some_mem },
      { apply W_nonempty } },
    { intro y,
      by_cases hy : ∃ s, y ∈ W s,
      { cases hy with s hys,
        use s,
        dsimp [R],
        split_ifs,
        { left,
          rwa h at hys },
        { exact hys } },
      { use s₀,
        simp only [R, if_pos rfl],
        right,
        rwa [mem_compl_iff, mem_Union] } } },
  let S' := R_part.discrete_quotient R_cl,
  let g := R_part.discrete_quotient_equiv R_cl,
  have hR : ∀ x, f x ∈ R (S.proj x),
  { intros x,
    by_cases hx : S.proj x = s₀,
    { simp only [hx, R, if_pos rfl],
      left,
      rw ← hx,
      apply hfW },
    { simp only [R, if_neg hx],
      apply hfW }, },
  use [S', g],
  ext x,
  change f x ∈ S'.proj ⁻¹' {g (S.proj x)},
  rw R_part.discrete_quotient_fiber R_cl,
  simpa using hR x,
end

def embedding.discrete_quotient_map [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
discrete_quotient Y := (hf.ex_discrete_quotient S).some

def embedding.discrete_quotient_equiv [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
  S ≃ hf.discrete_quotient_map S :=
(hf.ex_discrete_quotient S).some_spec.some

lemma embedding.discrete_quotient_spec [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
(hf.discrete_quotient_map S).proj ∘ f = (hf.discrete_quotient_equiv S) ∘ S.proj :=
(hf.ex_discrete_quotient S).some_spec.some_spec

variables {Z : Type*} [inhabited Z]

open_locale classical

def embedding.extend {e : X → Y} (he : embedding e) (f : X → Z) : Y → Z :=
if h : is_locally_constant f ∧ nonempty X then
by {
  haveI := h.2,
  let ff : locally_constant X Z := ⟨f,h.1⟩,
  let T := he.discrete_quotient_map ff.discrete_quotient,
  let ee : ff.discrete_quotient ≃ T := he.discrete_quotient_equiv ff.discrete_quotient,
  exact ff.lift ∘ ee.symm ∘ T.proj }
else λ y, default

/- lemma embedding.extend_eq {e : X → Y} (he : embedding e) {f : X → Z} (hf : is_locally_constant f) :
  he.extend f = (hf.discrete_quotient_map) ∘ (he.discrete_quotient_equiv hf.discrete_quotient).symm ∘ (he.discrete_quotient_map hf.discrete_quotient).proj
  := dif_pos hf -/

lemma embedding.extend_extends {e : X → Y} (he : embedding e) {f : X → Z} (hf : is_locally_constant f) :
∀ x, he.extend f (e x) = f x :=
begin
  intro x,
  haveI : nonempty X := ⟨x⟩,
  let ff : locally_constant X Z := ⟨f,hf⟩,
  let S := ff.discrete_quotient,
  let S' := he.discrete_quotient_map S,
  let barf : S → Z := ff.lift,
  let g : S ≃ S' := he.discrete_quotient_equiv S,
  unfold embedding.extend,
  have h : is_locally_constant f ∧ nonempty X := ⟨hf, ⟨x⟩⟩,
  rw [dif_pos h],
  change (barf ∘ g.symm ∘ (S'.proj ∘ e)) x = f x,
  suffices : (barf ∘ S.proj) x = f x, by simpa [he.discrete_quotient_spec],
  simpa,
end

lemma embedding.is_locally_constant_extend {e : X → Y} (he : embedding e) {f : X → Z} :
  is_locally_constant (he.extend f) :=
begin
  unfold embedding.extend,
  split_ifs,
  { apply is_locally_constant.comp,
    apply is_locally_constant.comp,
    exact discrete_quotient.proj_is_locally_constant _ },
  { apply is_locally_constant.const },
end

lemma embedding.range_extend {e : X → Y} (he : embedding e)
  [nonempty X] {Z : Type*} [inhabited Z] {f : X → Z} (hf : is_locally_constant f) :
  range (he.extend f) = range f :=
begin
  ext z,
  split,
  { rintro ⟨y, rfl⟩,
    let ff : locally_constant _ _ := ⟨f,hf⟩,
    let T := he.discrete_quotient_map ff.discrete_quotient,
    let ee : ff.discrete_quotient ≃ T := he.discrete_quotient_equiv ff.discrete_quotient,
    dsimp only [embedding.extend],
    rw dif_pos,
    swap, { exact ⟨hf, ‹_›⟩ },
    change ff.lift (ee.symm (T.proj y)) ∈ _,
    rcases ff.discrete_quotient.proj_surjective (ee.symm (T.proj y)) with ⟨w,hz⟩,
    use w,
    rw ← hz,
    refl },
  { rintro ⟨x, rfl⟩,
    exact ⟨e x, he.extend_extends hf _⟩ }
end

def embedding.locally_constant_extend {e : X → Y} (he : embedding e) (f : locally_constant X Z) :
  locally_constant Y Z :=
⟨he.extend f, he.is_locally_constant_extend⟩

@[simp]
lemma embedding.locally_constant_extend_extends {e : X → Y} (he : embedding e)
  (f : locally_constant X Z) (x : X) : he.locally_constant_extend f (e x) = f x :=
he.extend_extends f.2 x

lemma embedding.comap_locally_constant_extend {e : X → Y} (he : embedding e)
  (f : locally_constant X Z) : (he.locally_constant_extend f).comap e = f :=
begin
  ext x,
  rw locally_constant.coe_comap _ _ he.continuous,
  exact he.locally_constant_extend_extends f x
end

lemma embedding.range_locally_constant_extend {e : X → Y} (he : embedding e)
  [nonempty X] {Z : Type*} [inhabited Z] (f : locally_constant X Z) :
  range (he.locally_constant_extend f) = range f :=
he.range_extend f.2

-- version avec comap_hom pour Z normed group ?