Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,966 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import for_mathlib.is_locally_constant
import locally_constant.analysis
/-!
# Extending a locally constant map to larger profinite sets
In this file, we prove that, given a topological embedding `e : X → Y` from a non-empty
compact topological space to a profinite set (ie. compact Hausdorff totally disconnected space),
every locally constant map `f` from `X` to any type `Z` "extends" to a locally constant map
from `Y` to `Z`, ie. there exists `g : Y → Z` locally constant such that `f = g ∘ e`.
e
X ↪-→ Y
| /
f | / h
↓ ↙
Z
Notes:
* this wouldn't work if `X` and `Z` were empty and `Y` weren't. The minimal assumption
would be assuming `Z` isn't empty, I'll refactor this soon.
* Everything is stated assuming only `X` is compact but the existence of `f` ensures `X` is
profinite, we're just saving type-class search (and nothing in the construction or proofs
directly use `X` is profinite).
The main definition is `embedding.extend {e : X → Y} (he : embedding e) (f : X → Z) : Y → Z`
It assumes `X` is compact (and non-empty) and assumes `Y` is profinite but doesn't
assume `f` is locally constant, it is simply defined as a constant map if `f` isn't.
The announced properties of this extension are `embedding.extend_extends` and
`embedding.is_locally_constant_extend`.
-/
variables {X : Type*} [topological_space X]
noncomputable theory
open set
variables [compact_space X]
{Y : Type*} [topological_space Y] [t2_space Y] [compact_space Y] [totally_disconnected_space Y]
lemma embedding.preimage_clopen {f : X → Y} (hf : embedding f) {U : set X} (hU : is_clopen U) :
∃ V : set Y, is_clopen V ∧ U = f ⁻¹' V :=
begin
cases hU with hU hU',
have hfU : is_compact (f '' U),
from hU'.is_compact.image hf.continuous,
obtain ⟨W, W_op, hfW⟩ : ∃ W : set Y, is_open W ∧ f ⁻¹' W = U,
{ rw hf.to_inducing.induced at hU,
exact is_open_induced_iff.mp hU },
obtain ⟨ι, Z : ι → set Y, hWZ : W = ⋃ i, Z i, hZ : ∀ i, is_clopen $ Z i⟩ :=
is_topological_basis_clopen.open_eq_Union W_op,
have : f '' U ⊆ ⋃ i, Z i,
{ rw [image_subset_iff, ← hWZ, hfW] },
obtain ⟨I, hI⟩ : ∃ I : finset ι, f '' U ⊆ ⋃ i ∈ I, Z i,
from hfU.elim_finite_subcover _ (λ i, (hZ i).1) this,
refine ⟨⋃ i ∈ I, Z i, _, _⟩,
{ apply is_clopen_bUnion, apply finset.finite_to_set,
tauto },
{ apply subset.antisymm,
exact image_subset_iff.mp hI,
have : (⋃ i ∈ I, Z i) ⊆ ⋃ i, Z i,
from Union₂_subset_Union _ _,
rw [← hfW, hWZ],
mono },
end
lemma embedding.ex_discrete_quotient [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
∃ (S' : discrete_quotient Y) (g : S ≃ S'), S'.proj ∘ f = g ∘ S.proj :=
begin
classical,
inhabit X,
haveI : fintype S := discrete_quotient.fintype S,
have : ∀ s : S, ∃ V : set Y, is_clopen V ∧ S.proj ⁻¹' {s} = f ⁻¹' V,
from λ s, hf.preimage_clopen (S.fiber_clopen {s}),
choose V hV using this,
rw forall_and_distrib at hV,
cases hV with V_cl hV,
let s₀ := S.proj default,
let W : S → set Y := λ s, (V s) \ (⋃ s' (h : s' ≠ s), V s'),
have W_dis : ∀ {s s'}, s ≠ s' → disjoint (W s) (W s'),
{ rintros s s' hss x ⟨⟨hxs_in, hxs_out⟩, ⟨hxs'_in, hxs'_out⟩⟩,
apply hxs'_out,
rw mem_Union₂,
exact ⟨s, hss, hxs_in⟩ },
have hfW : ∀ x, f x ∈ W (S.proj x),
{ intro x,
split,
{ change x ∈ f ⁻¹' (V $ S.proj x),
rw ← hV (S.proj x),
exact mem_singleton _ },
{ intro h,
rcases mem_Union₂.mp h with ⟨s', hss', hfx : x ∈ f ⁻¹' (V s')⟩,
rw ← hV s' at hfx,
exact hss' hfx.symm } },
have W_nonempty : ∀ s, (W s).nonempty,
{ intro s,
obtain ⟨x, hx : S.proj x = s⟩ := S.proj_surjective s,
use f x,
rw ← hx,
apply hfW,
},
let R : S → set Y := λ s, if s = s₀ then W s₀ ∪ (⋃ s, W s)ᶜ else W s,
have W_cl : ∀ s, is_clopen (W s),
{ intro s,
apply (V_cl s).diff,
apply is_clopen_Union,
intro s',
by_cases h : s' = s,
simp [h, is_clopen_empty],
simp [h, V_cl s'] },
have R_cl : ∀ s, is_clopen (R s),
{ intro s,
dsimp [R],
split_ifs,
{ apply (W_cl s₀).union,
apply is_clopen.compl,
exact is_clopen_Union W_cl },
{ exact W_cl _ }, },
let R_part : indexed_partition R,
{ apply indexed_partition.mk',
{ rintros s s' hss x ⟨hxs, hxs'⟩,
dsimp [R] at hxs hxs',
split_ifs at hxs hxs' with hs hs',
{ exact (hss (hs.symm ▸ hs' : s = s')).elim },
{ cases hxs' with hx hx,
{ exact W_dis hs' ⟨hxs, hx⟩ },
{ apply hx,
rw mem_Union,
exact ⟨s, hxs⟩ } },
{ cases hxs with hx hx,
{ exact W_dis hs ⟨hxs', hx⟩ },
{ apply hx,
rw mem_Union,
exact ⟨s', hxs'⟩ } },
{ exact W_dis hss ⟨hxs, hxs'⟩ } },
{ intro s,
dsimp [R],
split_ifs,
{ use (W_nonempty s₀).some,
left,
exact (W_nonempty s₀).some_mem },
{ apply W_nonempty } },
{ intro y,
by_cases hy : ∃ s, y ∈ W s,
{ cases hy with s hys,
use s,
dsimp [R],
split_ifs,
{ left,
rwa h at hys },
{ exact hys } },
{ use s₀,
simp only [R, if_pos rfl],
right,
rwa [mem_compl_iff, mem_Union] } } },
let S' := R_part.discrete_quotient R_cl,
let g := R_part.discrete_quotient_equiv R_cl,
have hR : ∀ x, f x ∈ R (S.proj x),
{ intros x,
by_cases hx : S.proj x = s₀,
{ simp only [hx, R, if_pos rfl],
left,
rw ← hx,
apply hfW },
{ simp only [R, if_neg hx],
apply hfW }, },
use [S', g],
ext x,
change f x ∈ S'.proj ⁻¹' {g (S.proj x)},
rw R_part.discrete_quotient_fiber R_cl,
simpa using hR x,
end
def embedding.discrete_quotient_map [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
discrete_quotient Y := (hf.ex_discrete_quotient S).some
def embedding.discrete_quotient_equiv [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
S ≃ hf.discrete_quotient_map S :=
(hf.ex_discrete_quotient S).some_spec.some
lemma embedding.discrete_quotient_spec [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
(hf.discrete_quotient_map S).proj ∘ f = (hf.discrete_quotient_equiv S) ∘ S.proj :=
(hf.ex_discrete_quotient S).some_spec.some_spec
variables {Z : Type*} [inhabited Z]
open_locale classical
def embedding.extend {e : X → Y} (he : embedding e) (f : X → Z) : Y → Z :=
if h : is_locally_constant f ∧ nonempty X then
by {
haveI := h.2,
let ff : locally_constant X Z := ⟨f,h.1⟩,
let T := he.discrete_quotient_map ff.discrete_quotient,
let ee : ff.discrete_quotient ≃ T := he.discrete_quotient_equiv ff.discrete_quotient,
exact ff.lift ∘ ee.symm ∘ T.proj }
else λ y, default
/- lemma embedding.extend_eq {e : X → Y} (he : embedding e) {f : X → Z} (hf : is_locally_constant f) :
he.extend f = (hf.discrete_quotient_map) ∘ (he.discrete_quotient_equiv hf.discrete_quotient).symm ∘ (he.discrete_quotient_map hf.discrete_quotient).proj
:= dif_pos hf -/
lemma embedding.extend_extends {e : X → Y} (he : embedding e) {f : X → Z} (hf : is_locally_constant f) :
∀ x, he.extend f (e x) = f x :=
begin
intro x,
haveI : nonempty X := ⟨x⟩,
let ff : locally_constant X Z := ⟨f,hf⟩,
let S := ff.discrete_quotient,
let S' := he.discrete_quotient_map S,
let barf : S → Z := ff.lift,
let g : S ≃ S' := he.discrete_quotient_equiv S,
unfold embedding.extend,
have h : is_locally_constant f ∧ nonempty X := ⟨hf, ⟨x⟩⟩,
rw [dif_pos h],
change (barf ∘ g.symm ∘ (S'.proj ∘ e)) x = f x,
suffices : (barf ∘ S.proj) x = f x, by simpa [he.discrete_quotient_spec],
simpa,
end
lemma embedding.is_locally_constant_extend {e : X → Y} (he : embedding e) {f : X → Z} :
is_locally_constant (he.extend f) :=
begin
unfold embedding.extend,
split_ifs,
{ apply is_locally_constant.comp,
apply is_locally_constant.comp,
exact discrete_quotient.proj_is_locally_constant _ },
{ apply is_locally_constant.const },
end
lemma embedding.range_extend {e : X → Y} (he : embedding e)
[nonempty X] {Z : Type*} [inhabited Z] {f : X → Z} (hf : is_locally_constant f) :
range (he.extend f) = range f :=
begin
ext z,
split,
{ rintro ⟨y, rfl⟩,
let ff : locally_constant _ _ := ⟨f,hf⟩,
let T := he.discrete_quotient_map ff.discrete_quotient,
let ee : ff.discrete_quotient ≃ T := he.discrete_quotient_equiv ff.discrete_quotient,
dsimp only [embedding.extend],
rw dif_pos,
swap, { exact ⟨hf, ‹_›⟩ },
change ff.lift (ee.symm (T.proj y)) ∈ _,
rcases ff.discrete_quotient.proj_surjective (ee.symm (T.proj y)) with ⟨w,hz⟩,
use w,
rw ← hz,
refl },
{ rintro ⟨x, rfl⟩,
exact ⟨e x, he.extend_extends hf _⟩ }
end
def embedding.locally_constant_extend {e : X → Y} (he : embedding e) (f : locally_constant X Z) :
locally_constant Y Z :=
⟨he.extend f, he.is_locally_constant_extend⟩
@[simp]
lemma embedding.locally_constant_extend_extends {e : X → Y} (he : embedding e)
(f : locally_constant X Z) (x : X) : he.locally_constant_extend f (e x) = f x :=
he.extend_extends f.2 x
lemma embedding.comap_locally_constant_extend {e : X → Y} (he : embedding e)
(f : locally_constant X Z) : (he.locally_constant_extend f).comap e = f :=
begin
ext x,
rw locally_constant.coe_comap _ _ he.continuous,
exact he.locally_constant_extend_extends f x
end
lemma embedding.range_locally_constant_extend {e : X → Y} (he : embedding e)
[nonempty X] {Z : Type*} [inhabited Z] (f : locally_constant X Z) :
range (he.locally_constant_extend f) = range f :=
he.range_extend f.2
-- version avec comap_hom pour Z normed group ?
|