Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 37,400 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
(* Title: Seq_Invariants.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke, Inria
*)
section "Invariant proofs on individual processes"
theory Seq_Invariants
imports AWN.Invariants Aodv Aodv_Data Aodv_Predicates Fresher
begin
text \<open>
The proposition numbers are taken from the December 2013 version of
the Fehnker et al technical report.
\<close>
text \<open>Proposition 7.2\<close>
lemma sequence_number_increases:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). sn \<xi> \<le> sn \<xi>')"
by inv_cterms
lemma sequence_number_one_or_bigger:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). 1 \<le> sn \<xi>)"
by (rule onll_step_to_invariantI [OF sequence_number_increases])
(auto simp: \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def)
text \<open>We can get rid of the onl/onll if desired...\<close>
lemma sequence_number_increases':
"paodv i \<TTurnstile>\<^sub>A (\<lambda>((\<xi>, _), _, (\<xi>', _)). sn \<xi> \<le> sn \<xi>')"
by (rule step_invariant_weakenE [OF sequence_number_increases]) (auto dest!: onllD)
lemma sequence_number_one_or_bigger':
"paodv i \<TTurnstile> (\<lambda>(\<xi>, _). 1 \<le> sn \<xi>)"
by (rule invariant_weakenE [OF sequence_number_one_or_bigger]) auto
lemma sip_in_kD:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> ({PAodv-:7} \<union> {PAodv-:5} \<union> {PRrep-:0..PRrep-:1}
\<union> {PRreq-:0..PRreq-:3}) \<longrightarrow> sip \<xi> \<in> kD (rt \<xi>))"
by inv_cterms
lemma rrep_1_update_changes:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l = PRrep-:1 \<longrightarrow>
rt \<xi> \<noteq> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {})))"
by inv_cterms
lemma addpreRT_partly_welldefined:
"paodv i \<TTurnstile>
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<union> {PRrep-:2..PRrep-:6} \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>))
\<and> (l \<in> {PRreq-:3..PRreq-:17} \<longrightarrow> oip \<xi> \<in> kD (rt \<xi>)))"
by inv_cterms
text \<open>Proposition 7.38\<close>
lemma includes_nhip:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). \<forall>dip\<in>kD(rt \<xi>). the (nhop (rt \<xi>) dip)\<in>kD(rt \<xi>))"
proof -
{ fix ip and \<xi> \<xi>' :: state
assume "\<forall>dip\<in>kD (rt \<xi>). the (nhop (rt \<xi>) dip) \<in> kD (rt \<xi>)"
and "\<xi>' = \<xi>\<lparr>rt := update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})\<rparr>"
hence "\<forall>dip\<in>kD (rt \<xi>).
the (nhop (update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})) dip) = ip
\<or> the (nhop (update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})) dip) \<in> kD (rt \<xi>)"
by clarsimp (metis nhop_update_unk_val update_another)
} note one_hop = this
{ fix ip sip sn hops and \<xi> \<xi>' :: state
assume "\<forall>dip\<in>kD (rt \<xi>). the (nhop (rt \<xi>) dip) \<in> kD (rt \<xi>)"
and "\<xi>' = \<xi>\<lparr>rt := update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})\<rparr>"
and "sip \<in> kD (rt \<xi>)"
hence "(the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) ip) = ip
\<or> the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) ip) \<in> kD (rt \<xi>))
\<and> (\<forall>dip\<in>kD (rt \<xi>).
the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) dip) = ip
\<or> the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) dip) \<in> kD (rt \<xi>))"
by (metis kD_update_unchanged nhop_update_changed update_another)
} note nhip_is_sip = this
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf sip_in_kD]
onl_invariant_sterms [OF aodv_wf addpreRT_partly_welldefined]
solve: one_hop nhip_is_sip)
qed
text \<open>Proposition 7.22: needed in Proposition 7.4\<close>
lemma addpreRT_welldefined:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) \<and>
(l = PRreq-:17 \<longrightarrow> oip \<xi> \<in> kD (rt \<xi>)) \<and>
(l = PRrep-:5 \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) \<and>
(l = PRrep-:6 \<longrightarrow> (the (nhop (rt \<xi>) (dip \<xi>))) \<in> kD (rt \<xi>)))"
(is "_ \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P")
unfolding invariant_def
proof
fix s
assume "s \<in> reachable (paodv i) TT"
then obtain \<xi> p where "s = (\<xi>, p)"
and "(\<xi>, p) \<in> reachable (paodv i) TT"
by (metis prod.exhaust)
have "onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P (\<xi>, p)"
proof (rule onlI)
fix l
assume "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
with \<open>(\<xi>, p) \<in> reachable (paodv i) TT\<close>
have I1: "l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> kD(rt \<xi>)"
and I2: "l = PRreq-:17 \<longrightarrow> oip \<xi> \<in> kD(rt \<xi>)"
and I3: "l \<in> {PRrep-:2..PRrep-:6} \<longrightarrow> dip \<xi> \<in> kD(rt \<xi>)"
by (auto dest!: invariantD [OF addpreRT_partly_welldefined])
moreover from \<open>(\<xi>, p) \<in> reachable (paodv i) TT\<close> \<open>l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and I3
have "l = PRrep-:6 \<longrightarrow> (the (nhop (rt \<xi>) (dip \<xi>))) \<in> kD(rt \<xi>)"
by (auto dest!: invariantD [OF includes_nhip])
ultimately show "?P (\<xi>, l)"
by simp
qed
with \<open>s = (\<xi>, p)\<close> show "onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P s"
by simp
qed
text \<open>Proposition 7.4\<close>
lemma known_destinations_increase:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). kD (rt \<xi>) \<subseteq> kD (rt \<xi>'))"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]
simp add: subset_insertI)
text \<open>Proposition 7.5\<close>
lemma rreqs_increase:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). rreqs \<xi> \<subseteq> rreqs \<xi>')"
by (inv_cterms simp add: subset_insertI)
lemma dests_bigger_than_sqn:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> {PAodv-:15..PAodv-:19}
\<union> {PPkt-:7..PPkt-:11}
\<union> {PRreq-:9..PRreq-:13}
\<union> {PRreq-:21..PRreq-:25}
\<union> {PRrep-:10..PRrep-:14}
\<union> {PRerr-:1..PRerr-:5}
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>kD(rt \<xi>) \<and> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)))"
proof -
have sqninv:
"\<And>dests rt rsn ip.
\<lbrakk> \<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip); dests ip = Some rsn \<rbrakk>
\<Longrightarrow> sqn (invalidate rt dests) ip \<le> rsn"
by (rule sqn_invalidate_in_dests [THEN eq_imp_le], assumption) auto
have indests:
"\<And>dests rt rsn ip.
\<lbrakk> \<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip); dests ip = Some rsn \<rbrakk>
\<Longrightarrow> ip\<in>kD(rt) \<and> sqn rt ip \<le> rsn"
by (metis domI option.sel)
show ?thesis
by inv_cterms
(clarsimp split: if_split_asm option.split_asm
elim!: sqninv indests)+
qed
text \<open>Proposition 7.6\<close>
lemma sqns_increase:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). \<forall>ip. sqn (rt \<xi>) ip \<le> sqn (rt \<xi>') ip)"
proof -
{ fix \<xi> :: state
assume *: "\<forall>ip\<in>dom(dests \<xi>). ip \<in> kD (rt \<xi>) \<and> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)"
have "\<forall>ip. sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
proof
fix ip
from * have "ip\<notin>dom(dests \<xi>) \<or> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)" by simp
thus "sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
by (metis domI invalidate_sqn option.sel)
qed
} note solve_invalidate = this
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]
onl_invariant_sterms [OF aodv_wf dests_bigger_than_sqn]
simp add: solve_invalidate)
qed
text \<open>Proposition 7.7\<close>
lemma ip_constant:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). ip \<xi> = i)"
by (inv_cterms simp add: \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def)
text \<open>Proposition 7.8\<close>
lemma sender_ip_valid':
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = ip \<xi>) a)"
by inv_cterms
lemma sender_ip_valid:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = i) a)"
by (rule step_invariant_weaken_with_invariantE [OF ip_constant sender_ip_valid'])
(auto dest!: onlD onllD)
lemma received_msg_inv:
"paodv i \<TTurnstile> (recvmsg P \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> {PAodv-:1} \<longrightarrow> P (msg \<xi>))"
by inv_cterms
text \<open>Proposition 7.9\<close>
lemma sip_not_ip':
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m \<noteq> i) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). sip \<xi> \<noteq> ip \<xi>)"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]
onl_invariant_sterms [OF aodv_wf ip_constant [THEN invariant_restrict_inD]]
simp add: clear_locals_sip_not_ip') clarsimp+
lemma sip_not_ip:
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m \<noteq> i) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). sip \<xi> \<noteq> i)"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]
onl_invariant_sterms [OF aodv_wf ip_constant [THEN invariant_restrict_inD]]
simp add: clear_locals_sip_not_ip') clarsimp+
text \<open>Neither \<open>sip_not_ip'\<close> nor \<open>sip_not_ip\<close> is needed to show loop freedom.\<close>
text \<open>Proposition 7.10\<close>
lemma hop_count_positive:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). \<forall>ip\<in>kD (rt \<xi>). the (dhops (rt \<xi>) ip) \<ge> 1)"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]) auto
lemma rreq_dip_in_vD_dip_eq_ip:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> vD(rt \<xi>))
\<and> (l \<in> {PRreq-:5, PRreq-:6} \<longrightarrow> dip \<xi> = ip \<xi>)
\<and> (l \<in> {PRreq-:15..PRreq-:18} \<longrightarrow> dip \<xi> \<noteq> ip \<xi>))"
proof (inv_cterms, elim conjE)
fix l \<xi> pp p'
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
and "{PRreq-:17}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))})\<rparr>\<rbrakk> p'
\<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
and "l = PRreq-:17"
and "dip \<xi> \<in> vD (rt \<xi>)"
from this(1-3) have "oip \<xi> \<in> kD (rt \<xi>)"
by (auto dest: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined, where l="PRreq-:17"])
with \<open>dip \<xi> \<in> vD (rt \<xi>)\<close>
show "dip \<xi> \<in> vD (the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))}))" by simp
qed
text \<open>Proposition 7.11\<close>
lemma anycast_msg_zhops:
"\<And>rreqid dip dsn dsk oip osn sip.
paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a)"
proof (inv_cterms inv add:
onl_invariant_sterms [OF aodv_wf rreq_dip_in_vD_dip_eq_ip [THEN invariant_restrict_inD]]
onl_invariant_sterms [OF aodv_wf hop_count_positive [THEN invariant_restrict_inD]],
elim conjE)
fix l \<xi> a pp p' pp'
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
and "{PRreq-:18}unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)),
\<lambda>\<xi>. Rrep (the (dhops (rt \<xi>) (dip \<xi>))) (dip \<xi>) (sqn (rt \<xi>) (dip \<xi>)) (oip \<xi>) (ip \<xi>)).
p' \<triangleright> pp' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
and "l = PRreq-:18"
and "a = unicast (the (nhop (rt \<xi>) (oip \<xi>)))
(Rrep (the (dhops (rt \<xi>) (dip \<xi>))) (dip \<xi>) (sqn (rt \<xi>) (dip \<xi>)) (oip \<xi>) (ip \<xi>))"
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
and "dip \<xi> \<in> vD (rt \<xi>)"
from \<open>dip \<xi> \<in> vD (rt \<xi>)\<close> have "dip \<xi> \<in> kD (rt \<xi>)"
by (rule vD_iD_gives_kD(1))
with * have "Suc 0 \<le> the (dhops (rt \<xi>) (dip \<xi>))" ..
thus "0 < the (dhops (rt \<xi>) (dip \<xi>))" by simp
qed
lemma hop_count_zero_oip_dip_sip:
"paodv i \<TTurnstile> (recvmsg msg_zhops \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
(l\<in>{PAodv-:4..PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow>
(hops \<xi> = 0 \<longrightarrow> oip \<xi> = sip \<xi>))
\<and>
((l\<in>{PAodv-:6..PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow>
(hops \<xi> = 0 \<longrightarrow> dip \<xi> = sip \<xi>))))"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) auto
lemma osn_rreq:
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> 1 \<le> osn \<xi>)"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) clarsimp
lemma osn_rreq':
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> 1 \<le> osn \<xi>)"
proof (rule invariant_weakenE [OF osn_rreq])
fix a
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
thus "recvmsg rreq_rrep_sn a"
by (cases a) simp_all
qed
lemma dsn_rrep:
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>)"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) clarsimp
lemma dsn_rrep':
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>)"
proof (rule invariant_weakenE [OF dsn_rrep])
fix a
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
thus "recvmsg rreq_rrep_sn a"
by (cases a) simp_all
qed
lemma hop_count_zero_oip_dip_sip':
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
(l\<in>{PAodv-:4..PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow>
(hops \<xi> = 0 \<longrightarrow> oip \<xi> = sip \<xi>))
\<and>
((l\<in>{PAodv-:6..PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow>
(hops \<xi> = 0 \<longrightarrow> dip \<xi> = sip \<xi>))))"
proof (rule invariant_weakenE [OF hop_count_zero_oip_dip_sip])
fix a
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
thus "recvmsg msg_zhops a"
by (cases a) simp_all
qed
text \<open>Proposition 7.12\<close>
lemma zero_seq_unk_hops_one':
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _).
\<forall>dip\<in>kD(rt \<xi>). (sqn (rt \<xi>) dip = 0 \<longrightarrow> sqnf (rt \<xi>) dip = unk)
\<and> (sqnf (rt \<xi>) dip = unk \<longrightarrow> the (dhops (rt \<xi>) dip) = 1)
\<and> (the (dhops (rt \<xi>) dip) = 1 \<longrightarrow> the (nhop (rt \<xi>) dip) = dip))"
proof -
{ fix dip and \<xi> :: state and P
assume "sqn (invalidate (rt \<xi>) (dests \<xi>)) dip = 0"
and all: "\<forall>ip. sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
and *: "sqn (rt \<xi>) dip = 0 \<Longrightarrow> P \<xi> dip"
have "P \<xi> dip"
proof -
from all have "sqn (rt \<xi>) dip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) dip" ..
with \<open>sqn (invalidate (rt \<xi>) (dests \<xi>)) dip = 0\<close> have "sqn (rt \<xi>) dip = 0" by simp
thus "P \<xi> dip" by (rule *)
qed
} note sqn_invalidate_zero [elim!] = this
{ fix dsn hops :: nat and sip oip rt and ip dip :: ip
assume "\<forall>dip\<in>kD(rt).
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
and "hops = 0 \<longrightarrow> sip = dip"
and "Suc 0 \<le> dsn"
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
hence "the (dhops (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = Suc 0 \<longrightarrow>
the (nhop (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = ip"
by - (rule update_cases, auto simp add: sqn_def dest!: bspec)
} note prreq_ok1 [simp] = this
{ fix ip dsn hops sip oip rt dip
assume "\<forall>dip\<in>kD(rt).
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
and "Suc 0 \<le> dsn"
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
hence "\<pi>\<^sub>3(the (update rt dip (dsn, kno, val, Suc hops, sip, {}) ip)) = unk \<longrightarrow>
the (dhops (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = Suc 0"
by - (rule update_cases, auto simp add: sqn_def sqnf_def dest!: bspec)
} note prreq_ok2 [simp] = this
{ fix ip dsn hops sip oip rt dip
assume "\<forall>dip\<in>kD(rt).
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
and "Suc 0 \<le> dsn"
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
hence "sqn (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip = 0 \<longrightarrow>
\<pi>\<^sub>3 (the (update rt dip (dsn, kno, val, Suc hops, sip, {}) ip)) = unk"
by - (rule update_cases, auto simp add: sqn_def dest!: bspec)
} note prreq_ok3 [simp] = this
{ fix rt sip
assume "\<forall>dip\<in>kD rt.
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
hence "\<forall>dip\<in>kD rt.
(sqn (update rt sip (0, unk, val, Suc 0, sip, {})) dip = 0 \<longrightarrow>
\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) dip)) = unk)
\<and> (\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) dip)) = unk \<longrightarrow>
the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = Suc 0)
\<and> (the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = Suc 0 \<longrightarrow>
the (nhop (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = dip)"
by - (rule update_cases, simp_all add: sqnf_def sqn_def)
} note prreq_ok4 [simp] = this
have prreq_ok5 [simp]: "\<And>sip rt.
\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) sip)) = unk \<longrightarrow>
the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) sip) = Suc 0"
by (rule update_cases) simp_all
have prreq_ok6 [simp]: "\<And>sip rt.
sqn (update rt sip (0, unk, val, Suc 0, sip, {})) sip = 0 \<longrightarrow>
\<pi>\<^sub>3 (the (update rt sip (0, unk, val, Suc 0, sip, {}) sip)) = unk"
by (rule update_cases) simp_all
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
onl_invariant_sterms [OF aodv_wf hop_count_zero_oip_dip_sip']
seq_step_invariant_sterms_TT [OF sqns_increase aodv_wf aodv_trans]
onl_invariant_sterms [OF aodv_wf osn_rreq']
onl_invariant_sterms [OF aodv_wf dsn_rrep']) clarsimp+
qed
lemma zero_seq_unk_hops_one:
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _).
\<forall>dip\<in>kD(rt \<xi>). (sqn (rt \<xi>) dip = 0 \<longrightarrow> (sqnf (rt \<xi>) dip = unk
\<and> the (dhops (rt \<xi>) dip) = 1
\<and> the (nhop (rt \<xi>) dip) = dip)))"
by (rule invariant_weakenE [OF zero_seq_unk_hops_one']) auto
lemma kD_unk_or_atleast_one:
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
\<forall>dip\<in>kD(rt \<xi>). \<pi>\<^sub>3(the (rt \<xi> dip)) = unk \<or> 1 \<le> \<pi>\<^sub>2(the (rt \<xi> dip)))"
proof -
{ fix sip rt dsn1 dsn2 dsk1 dsk2 flag1 flag2 hops1 hops2 nhip1 nhip2 pre1 pre2
assume "dsk1 = unk \<or> Suc 0 \<le> dsn2"
hence "\<pi>\<^sub>3(the (update rt sip (dsn1, dsk1, flag1, hops1, nhip1, pre1) sip)) = unk
\<or> Suc 0 \<le> sqn (update rt sip (dsn2, dsk2, flag2, hops2, nhip2, pre2)) sip"
unfolding update_def by (cases "dsk1 =unk") (clarsimp split: option.split)+
} note fromsip [simp] = this
{ fix dip sip rt dsn1 dsn2 dsk1 dsk2 flag1 flag2 hops1 hops2 nhip1 nhip2 pre1 pre2
assume allkd: "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn rt dip"
and **: "dsk1 = unk \<or> Suc 0 \<le> dsn2"
have "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (update rt sip (dsn1, dsk1, flag1, hops1, nhip1, pre1) dip)) = unk
\<or> Suc 0 \<le> sqn (update rt sip (dsn2, dsk2, flag2, hops2, nhip2, pre2)) dip"
(is "\<forall>dip\<in>kD(rt). ?prop dip")
proof
fix dip
assume "dip\<in>kD(rt)"
thus "?prop dip"
proof (cases "dip = sip")
assume "dip = sip"
with ** show ?thesis
by simp
next
assume "dip \<noteq> sip"
with \<open>dip\<in>kD(rt)\<close> allkd show ?thesis
by simp
qed
qed
} note solve_update [simp] = this
{ fix dip rt dests
assume *: "\<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip)"
and **: "\<forall>ip\<in>kD(rt). \<pi>\<^sub>3(the (rt ip)) = unk \<or> Suc 0 \<le> sqn rt ip"
have "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn (invalidate rt dests) dip"
proof
fix dip
assume "dip\<in>kD(rt)"
with ** have "\<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn rt dip" ..
thus "\<pi>\<^sub>3 (the (rt dip)) = unk \<or> Suc 0 \<le> sqn (invalidate rt dests) dip"
proof
assume "\<pi>\<^sub>3(the (rt dip)) = unk" thus ?thesis ..
next
assume "Suc 0 \<le> sqn rt dip"
have "Suc 0 \<le> sqn (invalidate rt dests) dip"
proof (cases "dip\<in>dom(dests)")
assume "dip\<in>dom(dests)"
with * have "sqn rt dip \<le> the (dests dip)" by simp
with \<open>Suc 0 \<le> sqn rt dip\<close> have "Suc 0 \<le> the (dests dip)" by simp
with \<open>dip\<in>dom(dests)\<close> \<open>dip\<in>kD(rt)\<close> [THEN kD_Some] show ?thesis
unfolding invalidate_def sqn_def by auto
next
assume "dip\<notin>dom(dests)"
with \<open>Suc 0 \<le> sqn rt dip\<close> \<open>dip\<in>kD(rt)\<close> [THEN kD_Some] show ?thesis
unfolding invalidate_def sqn_def by auto
qed
thus ?thesis by (rule disjI2)
qed
qed
} note solve_invalidate [simp] = this
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
onl_invariant_sterms [OF aodv_wf dests_bigger_than_sqn
[THEN invariant_restrict_inD]]
onl_invariant_sterms [OF aodv_wf osn_rreq]
onl_invariant_sterms [OF aodv_wf dsn_rrep]
simp add: proj3_inv proj2_eq_sqn)
qed
text \<open>Proposition 7.13\<close>
lemma rreq_rrep_sn_any_step_invariant:
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast rreq_rrep_sn a)"
proof -
have sqnf_kno: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
(l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> sqnf (rt \<xi>) (dip \<xi>) = kno))"
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined])
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
onl_invariant_sterms [OF aodv_wf sequence_number_one_or_bigger
[THEN invariant_restrict_inD]]
onl_invariant_sterms [OF aodv_wf kD_unk_or_atleast_one]
onl_invariant_sterms_TT [OF aodv_wf sqnf_kno]
onl_invariant_sterms [OF aodv_wf osn_rreq]
onl_invariant_sterms [OF aodv_wf dsn_rrep])
(auto simp: proj2_eq_sqn)
qed
text \<open>Proposition 7.14\<close>
lemma rreq_rrep_fresh_any_step_invariant:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (rreq_rrep_fresh (rt \<xi>)) a)"
proof -
have rreq_oip: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
(l \<in> {PRreq-:3, PRreq-:4, PRreq-:15, PRreq-:27}
\<longrightarrow> oip \<xi> \<in> kD(rt \<xi>)
\<and> (sqn (rt \<xi>) (oip \<xi>) > (osn \<xi>)
\<or> (sqn (rt \<xi>) (oip \<xi>) = (osn \<xi>)
\<and> the (dhops (rt \<xi>) (oip \<xi>)) \<le> Suc (hops \<xi>)
\<and> the (flag (rt \<xi>) (oip \<xi>)) = val))))"
proof inv_cterms
fix l \<xi> l' pp p'
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
and "{PRreq-:2}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt :=
update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk> p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
and "l' = PRreq-:3"
show "osn \<xi> < sqn (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>)
\<or> (sqn (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>) = osn \<xi>
\<and> the (dhops (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>))
\<le> Suc (hops \<xi>)
\<and> the (flag (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>))
= val)"
unfolding update_def by (clarsimp split: option.split)
(metis linorder_neqE_nat not_less)
qed
have rrep_prrep: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
(l \<in> {PRrep-:2..PRrep-:7} \<longrightarrow> (dip \<xi> \<in> kD(rt \<xi>)
\<and> sqn (rt \<xi>) (dip \<xi>) = dsn \<xi>
\<and> the (dhops (rt \<xi>) (dip \<xi>)) = Suc (hops \<xi>)
\<and> the (flag (rt \<xi>) (dip \<xi>)) = val
\<and> the (nhop (rt \<xi>) (dip \<xi>)) \<in> kD (rt \<xi>))))"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf rrep_1_update_changes]
onl_invariant_sterms [OF aodv_wf sip_in_kD])
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf rreq_oip]
onl_invariant_sterms [OF aodv_wf rreq_dip_in_vD_dip_eq_ip]
onl_invariant_sterms [OF aodv_wf rrep_prrep])
qed
text \<open>Proposition 7.15\<close>
lemma rerr_invalid_any_step_invariant:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (rerr_invalid (rt \<xi>)) a)"
proof -
have dests_inv: "paodv i \<TTurnstile>
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PAodv-:15, PPkt-:7, PRreq-:9,
PRreq-:21, PRrep-:10, PRerr-:1}
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>)))
\<and> (l \<in> {PAodv-:16..PAodv-:19}
\<union> {PPkt-:8..PPkt-:11}
\<union> {PRreq-:10..PRreq-:13}
\<union> {PRreq-:22..PRreq-:25}
\<union> {PRrep-:11..PRrep-:14}
\<union> {PRerr-:2..PRerr-:5} \<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>iD(rt \<xi>)
\<and> the (dests \<xi> ip) = sqn (rt \<xi>) ip))
\<and> (l = PPkt-:14 \<longrightarrow> dip \<xi>\<in>iD(rt \<xi>)))"
by inv_cterms (clarsimp split: if_split_asm option.split_asm simp: domIff)+
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf dests_inv])
qed
text \<open>Proposition 7.16\<close>
text \<open>
Some well-definedness obligations are irrelevant for the Isabelle development:
\begin{enumerate}
\item In each routing table there is at most one entry for each destination: guaranteed by type.
\item In each store of queued data packets there is at most one data queue for
each destination: guaranteed by structure.
\item Whenever a set of pairs @{term "(rip, rsn)"} is assigned to the variable
@{term "dests"} of type @{typ "ip \<rightharpoonup> sqn"}, or to the first argument of
the function @{term "rerr"}, this set is a partial function, i.e., there
is at most one entry @{term "(rip, rsn)"} for each destination
@{term "rip"}: guaranteed by type.
\end{enumerate}
\<close>
lemma dests_vD_inc_sqn:
"paodv i \<TTurnstile>
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PAodv-:15, PPkt-:7, PRreq-:9, PRreq-:21, PRrep-:10}
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>) \<and> the (dests \<xi> ip) = inc (sqn (rt \<xi>) ip)))
\<and> (l = PRerr-:1
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>) \<and> the (dests \<xi> ip) > sqn (rt \<xi>) ip)))"
by inv_cterms (clarsimp split: if_split_asm option.split_asm)+
text \<open>Proposition 7.27\<close>
lemma route_tables_fresher:
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)).
\<forall>dip\<in>kD(rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>')"
proof (inv_cterms inv add:
onl_invariant_sterms [OF aodv_wf dests_vD_inc_sqn [THEN invariant_restrict_inD]]
onl_invariant_sterms [OF aodv_wf hop_count_positive [THEN invariant_restrict_inD]]
onl_invariant_sterms [OF aodv_wf osn_rreq]
onl_invariant_sterms [OF aodv_wf dsn_rrep]
onl_invariant_sterms [OF aodv_wf addpreRT_welldefined [THEN invariant_restrict_inD]])
fix \<xi> pp p'
assume "(\<xi>, pp) \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)"
and "{PRreq-:2}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk>
p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
and "Suc 0 \<le> osn \<xi>"
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
show "\<forall>ip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
proof
fix ip
assume "ip\<in>kD (rt \<xi>)"
moreover with * have "1 \<le> the (dhops (rt \<xi>) ip)" by simp
moreover from \<open>Suc 0 \<le> osn \<xi>\<close>
have "update_arg_wf (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" ..
ultimately show "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
by (rule rt_fresher_update)
qed
next
fix \<xi> pp p'
assume "(\<xi>, pp) \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)"
and "{PRrep-:1}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk>
p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
and "Suc 0 \<le> dsn \<xi>"
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
show "\<forall>ip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
proof
fix ip
assume "ip\<in>kD (rt \<xi>)"
moreover with * have "1 \<le> the (dhops (rt \<xi>) ip)" by simp
moreover from \<open>Suc 0 \<le> dsn \<xi>\<close>
have "update_arg_wf (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" ..
ultimately show "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
by (rule rt_fresher_update)
qed
qed
end
|