Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 32,134 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
%%%% MACROS FOR NOTATION %%%%
% Use these for any notation where there are multiple options.
%%% Notes and exercise sections
\makeatletter
\newcommand{\sectionNotes}{\phantomsection\section*{Notes}\addcontentsline{toc}{section}{Notes}\markright{\textsc{\@chapapp{} \thechapter{} Notes}}}
\newcommand{\sectionExercises}[1]{\ifdef{\OPTexerciseperpage}{\newpage}{}\phantomsection\section*{Exercises}\addcontentsline{toc}{section}{Exercises}\markright{\textsc{\@chapapp{} \thechapter{} Exercises}}}
\makeatother
%%% Definitional equality (used infix) %%%
\newcommand{\jdeq}{\equiv} % An equality judgment
\let\judgeq\jdeq
%\newcommand{\defeq}{\coloneqq} % An equality currently being defined
\newcommand{\defeq}{\vcentcolon\equiv} % A judgmental equality currently being defined
%%% Term being defined
\newcommand{\define}[1]{\textbf{#1}}
%%% Vec (for example)
\newcommand{\Vect}{\ensuremath{\mathsf{Vec}}}
\newcommand{\Fin}{\ensuremath{\mathsf{Fin}}}
\newcommand{\fmax}{\ensuremath{\mathsf{fmax}}}
\newcommand{\seq}[1]{\langle #1\rangle}
%%% Dependent products %%%
\def\prdsym{\textstyle\prod}
%% Call the macro like \prd{x,y:A}{p:x=y} with any number of
%% arguments. Make sure that whatever comes *after* the call doesn't
%% begin with an open-brace, or it will be parsed as another argument.
\makeatletter
% Currently the macro is configured to produce
% {\textstyle\prod}(x:A) \; {\textstyle\prod}(y:B),{\ }
% in display-math mode, and
% \prod_{(x:A)} \prod_{y:B}
% in text-math mode.
% \def\prd#1{\@ifnextchar\bgroup{\prd@parens{#1}}{%
% \@ifnextchar\sm{\prd@parens{#1}\@eatsm}{%
% \prd@noparens{#1}}}}
\def\prd#1{\@ifnextchar\bgroup{\prd@parens{#1}}{%
\@ifnextchar\sm{\prd@parens{#1}\@eatsm}{%
\@ifnextchar\prd{\prd@parens{#1}\@eatprd}{%
\@ifnextchar\;{\prd@parens{#1}\@eatsemicolonspace}{%
\@ifnextchar\\{\prd@parens{#1}\@eatlinebreak}{%
\@ifnextchar\narrowbreak{\prd@parens{#1}\@eatnarrowbreak}{%
\prd@noparens{#1}}}}}}}}
\def\prd@parens#1{\@ifnextchar\bgroup%
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}\prd@parens}%
{\@ifnextchar\sm%
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}\@eatsm}%
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}}}}
\def\@eatsm\sm{\sm@parens}
\def\prd@noparens#1{\mathchoice{\@dprd@noparens{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}}
% Helper macros for three styles
\def\lprd#1{\@ifnextchar\bgroup{\@lprd{#1}\lprd}{\@@lprd{#1}}}
\def\@lprd#1{\mathchoice{{\textstyle\prod}}{\prod}{\prod}{\prod}({\textstyle #1})\;}
\def\@@lprd#1{\mathchoice{{\textstyle\prod}}{\prod}{\prod}{\prod}({\textstyle #1}),\ }
\def\tprd#1{\@tprd{#1}\@ifnextchar\bgroup{\tprd}{}}
\def\@tprd#1{\mathchoice{{\textstyle\prod_{(#1)}}}{\prod_{(#1)}}{\prod_{(#1)}}{\prod_{(#1)}}}
\def\dprd#1{\@dprd{#1}\@ifnextchar\bgroup{\dprd}{}}
\def\@dprd#1{\prod_{(#1)}\,}
\def\@dprd@noparens#1{\prod_{#1}\,}
% Look through spaces and linebreaks
\def\@eatnarrowbreak\narrowbreak{%
\@ifnextchar\prd{\narrowbreak\@eatprd}{%
\@ifnextchar\sm{\narrowbreak\@eatsm}{%
\narrowbreak}}}
\def\@eatlinebreak\\{%
\@ifnextchar\prd{\\\@eatprd}{%
\@ifnextchar\sm{\\\@eatsm}{%
\\}}}
\def\@eatsemicolonspace\;{%
\@ifnextchar\prd{\;\@eatprd}{%
\@ifnextchar\sm{\;\@eatsm}{%
\;}}}
%%% Lambda abstractions.
% Each variable being abstracted over is a separate argument. If
% there is more than one such argument, they *must* be enclosed in
% braces. Arguments can be untyped, as in \lam{x}{y}, or typed with a
% colon, as in \lam{x:A}{y:B}. In the latter case, the colons are
% automatically noticed and (with current implementation) the space
% around the colon is reduced. You can even give more than one variable
% the same type, as in \lam{x,y:A}.
\def\lam#1{{\lambda}\@lamarg#1:\@endlamarg\@ifnextchar\bgroup{.\,\lam}{.\,}}
\def\@lamarg#1:#2\@endlamarg{\if\relax\detokenize{#2}\relax #1\else\@lamvar{\@lameatcolon#2},#1\@endlamvar\fi}
\def\@lamvar#1,#2\@endlamvar{(#2\,{:}\,#1)}
% \def\@lamvar#1,#2{{#2}^{#1}\@ifnextchar,{.\,{\lambda}\@lamvar{#1}}{\let\@endlamvar\relax}}
\def\@lameatcolon#1:{#1}
\let\lamt\lam
% This version silently eats any typing annotation.
\def\lamu#1{{\lambda}\@lamuarg#1:\@endlamuarg\@ifnextchar\bgroup{.\,\lamu}{.\,}}
\def\@lamuarg#1:#2\@endlamuarg{#1}
%%% Dependent products written with \forall, in the same style
\def\fall#1{\forall (#1)\@ifnextchar\bgroup{.\,\fall}{.\,}}
%%% Existential quantifier %%%
\def\exis#1{\exists (#1)\@ifnextchar\bgroup{.\,\exis}{.\,}}
%%% Dependent sums %%%
\def\smsym{\textstyle\sum}
% Use in the same way as \prd
\def\sm#1{\@ifnextchar\bgroup{\sm@parens{#1}}{%
\@ifnextchar\prd{\sm@parens{#1}\@eatprd}{%
\@ifnextchar\sm{\sm@parens{#1}\@eatsm}{%
\@ifnextchar\;{\sm@parens{#1}\@eatsemicolonspace}{%
\@ifnextchar\\{\sm@parens{#1}\@eatlinebreak}{%
\@ifnextchar\narrowbreak{\sm@parens{#1}\@eatnarrowbreak}{%
\sm@noparens{#1}}}}}}}}
\def\sm@parens#1{\@ifnextchar\bgroup%
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}\sm@parens}%
{\@ifnextchar\prd%
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}\@eatprd}%
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}}}}
\def\@eatprd\prd{\prd@parens}
\def\sm@noparens#1{\mathchoice{\@dsm@noparens{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}}
\def\lsm#1{\@ifnextchar\bgroup{\@lsm{#1}\lsm}{\@@lsm{#1}}}
\def\@lsm#1{\mathchoice{{\textstyle\sum}}{\sum}{\sum}{\sum}({\textstyle #1})\;}
\def\@@lsm#1{\mathchoice{{\textstyle\sum}}{\sum}{\sum}{\sum}({\textstyle #1}),\ }
\def\tsm#1{\@tsm{#1}\@ifnextchar\bgroup{\tsm}{}}
\def\@tsm#1{\mathchoice{{\textstyle\sum_{(#1)}}}{\sum_{(#1)}}{\sum_{(#1)}}{\sum_{(#1)}}}
\def\dsm#1{\@dsm{#1}\@ifnextchar\bgroup{\dsm}{}}
\def\@dsm#1{\sum_{(#1)}\,}
\def\@dsm@noparens#1{\sum_{#1}\,}
%%% W-types
\def\wtypesym{{\mathsf{W}}}
\def\wtype#1{\@ifnextchar\bgroup%
{\mathchoice{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}\wtype}%
{\mathchoice{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}}}
\def\lwtype#1{\@ifnextchar\bgroup{\@lwtype{#1}\lwtype}{\@@lwtype{#1}}}
\def\@lwtype#1{\mathchoice{{\textstyle\mathsf{W}}}{\mathsf{W}}{\mathsf{W}}{\mathsf{W}}({\textstyle #1})\;}
\def\@@lwtype#1{\mathchoice{{\textstyle\mathsf{W}}}{\mathsf{W}}{\mathsf{W}}{\mathsf{W}}({\textstyle #1}),\ }
\def\twtype#1{\@twtype{#1}\@ifnextchar\bgroup{\twtype}{}}
\def\@twtype#1{\mathchoice{{\textstyle\mathsf{W}_{(#1)}}}{\mathsf{W}_{(#1)}}{\mathsf{W}_{(#1)}}{\mathsf{W}_{(#1)}}}
\def\dwtype#1{\@dwtype{#1}\@ifnextchar\bgroup{\dwtype}{}}
\def\@dwtype#1{\mathsf{W}_{(#1)}\,}
\newcommand{\suppsym}{{\mathsf{sup}}}
\newcommand{\supp}{\ensuremath\suppsym\xspace}
\def\wtypeh#1{\@ifnextchar\bgroup%
{\mathchoice{\@lwtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}\wtypeh}%
{\mathchoice{\@@lwtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}}}
\def\lwtypeh#1{\@ifnextchar\bgroup{\@lwtypeh{#1}\lwtypeh}{\@@lwtypeh{#1}}}
\def\@lwtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h}}{\mathsf{W}^h}{\mathsf{W}^h}{\mathsf{W}^h}({\textstyle #1})\;}
\def\@@lwtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h}}{\mathsf{W}^h}{\mathsf{W}^h}{\mathsf{W}^h}({\textstyle #1}),\ }
\def\twtypeh#1{\@twtypeh{#1}\@ifnextchar\bgroup{\twtypeh}{}}
\def\@twtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h_{(#1)}}}{\mathsf{W}^h_{(#1)}}{\mathsf{W}^h_{(#1)}}{\mathsf{W}^h_{(#1)}}}
\def\dwtypeh#1{\@dwtypeh{#1}\@ifnextchar\bgroup{\dwtypeh}{}}
\def\@dwtypeh#1{\mathsf{W}^h_{(#1)}\,}
\makeatother
% Other notations related to dependent sums
\let\setof\Set % from package 'braket', write \setof{ x:A | P(x) }.
\newcommand{\pair}{\ensuremath{\mathsf{pair}}\xspace}
\newcommand{\tup}[2]{(#1,#2)}
\newcommand{\proj}[1]{\ensuremath{\mathsf{pr}_{#1}}\xspace}
\newcommand{\fst}{\ensuremath{\proj1}\xspace}
\newcommand{\snd}{\ensuremath{\proj2}\xspace}
\newcommand{\ac}{\ensuremath{\mathsf{ac}}\xspace} % not needed in symbol index
%%% recursor and induction
\newcommand{\rec}[1]{\mathsf{rec}_{#1}}
\newcommand{\ind}[1]{\mathsf{ind}_{#1}}
\newcommand{\indid}[1]{\ind{=_{#1}}} % (Martin-Lof) path induction principle for identity types
\newcommand{\indidb}[1]{\ind{=_{#1}}'} % (Paulin-Mohring) based path induction principle for identity types
%%% Uniqueness principles
\newcommand{\uniq}[1]{\mathsf{uniq}_{#1}}
% Paths in pairs
\newcommand{\pairpath}{\ensuremath{\mathsf{pair}^{\mathord{=}}}\xspace}
% \newcommand{\projpath}[1]{\proj{#1}^{\mathord{=}}}
\newcommand{\projpath}[1]{\ensuremath{\apfunc{\proj{#1}}}\xspace}
\newcommand{\pairct}{\ensuremath{\mathsf{pair}^{\mathord{\ct}}}\xspace}
%%% For quotients %%%
%\newcommand{\pairr}[1]{{\langle #1\rangle}}
\newcommand{\pairr}[1]{{\mathopen{}(#1)\mathclose{}}}
\newcommand{\Pairr}[1]{{\mathopen{}\left(#1\right)\mathclose{}}}
% \newcommand{\type}{\ensuremath{\mathsf{Type}}} % this command is overridden below, so it's commented out
\newcommand{\im}{\ensuremath{\mathsf{im}}} % the image
%%% 2D path operations
\newcommand{\leftwhisker}{\mathbin{{\ct}_{\mathsf{l}}}} % was \ell
\newcommand{\rightwhisker}{\mathbin{{\ct}_{\mathsf{r}}}} % was r
\newcommand{\hct}{\star}
%%% modalities %%%
\newcommand{\modal}{\ensuremath{\ocircle}}
\let\reflect\modal
\newcommand{\modaltype}{\ensuremath{\type_\modal}}
% \newcommand{\ism}[1]{\ensuremath{\mathsf{is}_{#1}}}
% \newcommand{\ismodal}{\ism{\modal}}
% \newcommand{\existsmodal}{\ensuremath{{\exists}_{\modal}}}
% \newcommand{\existsmodalunique}{\ensuremath{{\exists!}_{\modal}}}
% \newcommand{\modalfunc}{\textsf{\modal-fun}}
% \newcommand{\Ecirc}{\ensuremath{\mathsf{E}_\modal}}
% \newcommand{\Mcirc}{\ensuremath{\mathsf{M}_\modal}}
\newcommand{\mreturn}{\ensuremath{\eta}}
\let\project\mreturn
%\newcommand{\mbind}[1]{\ensuremath{\hat{#1}}}
\newcommand{\ext}{\mathsf{ext}}
%\newcommand{\mmap}[1]{\ensuremath{\bar{#1}}}
%\newcommand{\mjoin}{\ensuremath{\mreturn^{-1}}}
% Subuniverse
\renewcommand{\P}{\ensuremath{\type_{P}}\xspace}
%%% Localizations
% \newcommand{\islocal}[1]{\ensuremath{\mathsf{islocal}_{#1}}\xspace}
% \newcommand{\loc}[1]{\ensuremath{\mathcal{L}_{#1}}\xspace}
%%% Identity types %%%
\newcommand{\idsym}{{=}}
\newcommand{\id}[3][]{\ensuremath{#2 =_{#1} #3}\xspace}
\newcommand{\idtype}[3][]{\ensuremath{\mathsf{Id}_{#1}(#2,#3)}\xspace}
\newcommand{\idtypevar}[1]{\ensuremath{\mathsf{Id}_{#1}}\xspace}
% A propositional equality currently being defined
\newcommand{\defid}{\coloneqq}
%%% Dependent paths
\newcommand{\dpath}[4]{#3 =^{#1}_{#2} #4}
%%% singleton
% \newcommand{\sgl}{\ensuremath{\mathsf{sgl}}\xspace}
% \newcommand{\sctr}{\ensuremath{\mathsf{sctr}}\xspace}
%%% Reflexivity terms %%%
% \newcommand{\reflsym}{{\mathsf{refl}}}
\newcommand{\refl}[1]{\ensuremath{\mathsf{refl}_{#1}}\xspace}
%%% Path concatenation (used infix, in diagrammatic order) %%%
\newcommand{\ct}{%
\mathchoice{\mathbin{\raisebox{0.5ex}{$\displaystyle\centerdot$}}}%
{\mathbin{\raisebox{0.5ex}{$\centerdot$}}}%
{\mathbin{\raisebox{0.25ex}{$\scriptstyle\,\centerdot\,$}}}%
{\mathbin{\raisebox{0.1ex}{$\scriptscriptstyle\,\centerdot\,$}}}
}
%%% Path reversal %%%
\newcommand{\opp}[1]{\mathord{{#1}^{-1}}}
\let\rev\opp
%%% Coherence paths %%%
\newcommand{\ctassoc}{\mathsf{assoc}} % associativity law
%%% Transport (covariant) %%%
\newcommand{\trans}[2]{\ensuremath{{#1}_{*}\mathopen{}\left({#2}\right)\mathclose{}}\xspace}
\let\Trans\trans
%\newcommand{\Trans}[2]{\ensuremath{{#1}_{*}\left({#2}\right)}\xspace}
\newcommand{\transf}[1]{\ensuremath{{#1}_{*}}\xspace} % Without argument
%\newcommand{\transport}[2]{\ensuremath{\mathsf{transport}_{*} \: {#2}\xspace}}
\newcommand{\transfib}[3]{\ensuremath{\mathsf{transport}^{#1}(#2,#3)\xspace}}
\newcommand{\Transfib}[3]{\ensuremath{\mathsf{transport}^{#1}\Big(#2,\, #3\Big)\xspace}}
\newcommand{\transfibf}[1]{\ensuremath{\mathsf{transport}^{#1}\xspace}}
%%% 2D transport
\newcommand{\transtwo}[2]{\ensuremath{\mathsf{transport}^2\mathopen{}\left({#1},{#2}\right)\mathclose{}}\xspace}
%%% Constant transport
\newcommand{\transconst}[3]{\ensuremath{\mathsf{transportconst}}^{#1}_{#2}(#3)\xspace}
\newcommand{\transconstf}{\ensuremath{\mathsf{transportconst}}\xspace}
%%% Map on paths %%%
\newcommand{\mapfunc}[1]{\ensuremath{\mathsf{ap}_{#1}}\xspace} % Without argument
\newcommand{\map}[2]{\ensuremath{{#1}\mathopen{}\left({#2}\right)\mathclose{}}\xspace}
\let\Ap\map
%\newcommand{\Ap}[2]{\ensuremath{{#1}\left({#2}\right)}\xspace}
\newcommand{\mapdepfunc}[1]{\ensuremath{\mathsf{apd}_{#1}}\xspace} % Without argument
% \newcommand{\mapdep}[2]{\ensuremath{{#1}\llparenthesis{#2}\rrparenthesis}\xspace}
\newcommand{\mapdep}[2]{\ensuremath{\mapdepfunc{#1}\mathopen{}\left(#2\right)\mathclose{}}\xspace}
\let\apfunc\mapfunc
\let\ap\map
\let\apdfunc\mapdepfunc
\let\apd\mapdep
%%% 2D map on paths
\newcommand{\aptwofunc}[1]{\ensuremath{\mathsf{ap}^2_{#1}}\xspace}
\newcommand{\aptwo}[2]{\ensuremath{\aptwofunc{#1}\mathopen{}\left({#2}\right)\mathclose{}}\xspace}
\newcommand{\apdtwofunc}[1]{\ensuremath{\mathsf{apd}^2_{#1}}\xspace}
\newcommand{\apdtwo}[2]{\ensuremath{\apdtwofunc{#1}\mathopen{}\left(#2\right)\mathclose{}}\xspace}
%%% Identity functions %%%
\newcommand{\idfunc}[1][]{\ensuremath{\mathsf{id}_{#1}}\xspace}
%%% Homotopies (written infix) %%%
\newcommand{\htpy}{\sim}
%%% Other meanings of \sim
\newcommand{\bisim}{\sim} % bisimulation
\newcommand{\eqr}{\sim} % an equivalence relation
%%% Equivalence types %%%
\newcommand{\eqv}[2]{\ensuremath{#1 \simeq #2}\xspace}
\newcommand{\eqvspaced}[2]{\ensuremath{#1 \;\simeq\; #2}\xspace}
\newcommand{\eqvsym}{\simeq} % infix symbol
\newcommand{\texteqv}[2]{\ensuremath{\mathsf{Equiv}(#1,#2)}\xspace}
\newcommand{\isequiv}{\ensuremath{\mathsf{isequiv}}}
\newcommand{\qinv}{\ensuremath{\mathsf{qinv}}}
\newcommand{\ishae}{\ensuremath{\mathsf{ishae}}}
\newcommand{\linv}{\ensuremath{\mathsf{linv}}}
\newcommand{\rinv}{\ensuremath{\mathsf{rinv}}}
\newcommand{\biinv}{\ensuremath{\mathsf{biinv}}}
\newcommand{\lcoh}[3]{\mathsf{lcoh}_{#1}(#2,#3)}
\newcommand{\rcoh}[3]{\mathsf{rcoh}_{#1}(#2,#3)}
\newcommand{\hfib}[2]{{\mathsf{fib}}_{#1}(#2)}
%%% Map on total spaces %%%
\newcommand{\total}[1]{\ensuremath{\mathsf{total}(#1)}}
%%% Universe types %%%
%\newcommand{\type}{\ensuremath{\mathsf{Type}}\xspace}
\newcommand{\UU}{\ensuremath{\mathcal{U}}\xspace}
\let\bbU\UU
\let\type\UU
% Universes of truncated types
\newcommand{\typele}[1]{\ensuremath{{#1}\text-\mathsf{Type}}\xspace}
\newcommand{\typeleU}[1]{\ensuremath{{#1}\text-\mathsf{Type}_\UU}\xspace}
\newcommand{\typelep}[1]{\ensuremath{{(#1)}\text-\mathsf{Type}}\xspace}
\newcommand{\typelepU}[1]{\ensuremath{{(#1)}\text-\mathsf{Type}_\UU}\xspace}
\let\ntype\typele
\let\ntypeU\typeleU
\let\ntypep\typelep
\let\ntypepU\typelepU
\renewcommand{\set}{\ensuremath{\mathsf{Set}}\xspace}
\newcommand{\setU}{\ensuremath{\mathsf{Set}_\UU}\xspace}
\newcommand{\prop}{\ensuremath{\mathsf{Prop}}\xspace}
\newcommand{\propU}{\ensuremath{\mathsf{Prop}_\UU}\xspace}
%Pointed types
\newcommand{\pointed}[1]{\ensuremath{#1_\bullet}}
%%% Ordinals and cardinals
\newcommand{\card}{\ensuremath{\mathsf{Card}}\xspace}
\newcommand{\ord}{\ensuremath{\mathsf{Ord}}\xspace}
\newcommand{\ordsl}[2]{{#1}_{/#2}}
%%% Univalence
\newcommand{\ua}{\ensuremath{\mathsf{ua}}\xspace} % the inverse of idtoeqv
\newcommand{\idtoeqv}{\ensuremath{\mathsf{idtoeqv}}\xspace}
\newcommand{\univalence}{\ensuremath{\mathsf{univalence}}\xspace} % the full axiom
%%% Truncation levels
\newcommand{\iscontr}{\ensuremath{\mathsf{isContr}}}
\newcommand{\contr}{\ensuremath{\mathsf{contr}}} % The path to the center of contraction
\newcommand{\isset}{\ensuremath{\mathsf{isSet}}}
\newcommand{\isprop}{\ensuremath{\mathsf{isProp}}}
% h-propositions
% \newcommand{\anhprop}{a mere proposition\xspace}
% \newcommand{\hprops}{mere propositions\xspace}
%%% Homotopy fibers %%%
%\newcommand{\hfiber}[2]{\ensuremath{\mathsf{hFiber}(#1,#2)}\xspace}
\let\hfiber\hfib
%%% Bracket/squash/truncation types %%%
% \newcommand{\brck}[1]{\textsf{mere}(#1)}
% \newcommand{\Brck}[1]{\textsf{mere}\Big(#1\Big)}
% \newcommand{\trunc}[2]{\tau_{#1}(#2)}
% \newcommand{\Trunc}[2]{\tau_{#1}\Big(#2\Big)}
% \newcommand{\truncf}[1]{\tau_{#1}}
%\newcommand{\trunc}[2]{\Vert #2\Vert_{#1}}
\newcommand{\trunc}[2]{\mathopen{}\left\Vert #2\right\Vert_{#1}\mathclose{}}
\newcommand{\ttrunc}[2]{\bigl\Vert #2\bigr\Vert_{#1}}
\newcommand{\Trunc}[2]{\Bigl\Vert #2\Bigr\Vert_{#1}}
\newcommand{\truncf}[1]{\Vert \blank \Vert_{#1}}
\newcommand{\tproj}[3][]{\mathopen{}\left|#3\right|_{#2}^{#1}\mathclose{}}
\newcommand{\tprojf}[2][]{|\blank|_{#2}^{#1}}
\def\pizero{\trunc0}
%\newcommand{\brck}[1]{\trunc{-1}{#1}}
%\newcommand{\Brck}[1]{\Trunc{-1}{#1}}
%\newcommand{\bproj}[1]{\tproj{-1}{#1}}
%\newcommand{\bprojf}{\tprojf{-1}}
\newcommand{\brck}[1]{\trunc{}{#1}}
\newcommand{\bbrck}[1]{\ttrunc{}{#1}}
\newcommand{\Brck}[1]{\Trunc{}{#1}}
\newcommand{\bproj}[1]{\tproj{}{#1}}
\newcommand{\bprojf}{\tprojf{}}
% Big parentheses
\newcommand{\Parens}[1]{\Bigl(#1\Bigr)}
% Projection and extension for truncations
\let\extendsmb\ext
\newcommand{\extend}[1]{\extendsmb(#1)}
%
%%% The empty type
\newcommand{\emptyt}{\ensuremath{\mathbf{0}}\xspace}
%%% The unit type
\newcommand{\unit}{\ensuremath{\mathbf{1}}\xspace}
\newcommand{\ttt}{\ensuremath{\star}\xspace}
%%% The two-element type
\newcommand{\bool}{\ensuremath{\mathbf{2}}\xspace}
\newcommand{\btrue}{{1_{\bool}}}
\newcommand{\bfalse}{{0_{\bool}}}
%%% Injections into binary sums and pushouts
\newcommand{\inlsym}{{\mathsf{inl}}}
\newcommand{\inrsym}{{\mathsf{inr}}}
\newcommand{\inl}{\ensuremath\inlsym\xspace}
\newcommand{\inr}{\ensuremath\inrsym\xspace}
%%% The segment of the interval
\newcommand{\seg}{\ensuremath{\mathsf{seg}}\xspace}
%%% Free groups
\newcommand{\freegroup}[1]{F(#1)}
\newcommand{\freegroupx}[1]{F'(#1)} % the "other" free group
%%% Glue of a pushout
\newcommand{\glue}{\mathsf{glue}}
%%% Colimits
\newcommand{\colim}{\mathsf{colim}}
\newcommand{\inc}{\mathsf{inc}}
\newcommand{\cmp}{\mathsf{cmp}}
%%% Circles and spheres
\newcommand{\Sn}{\mathbb{S}}
\newcommand{\base}{\ensuremath{\mathsf{base}}\xspace}
\newcommand{\lloop}{\ensuremath{\mathsf{loop}}\xspace}
\newcommand{\surf}{\ensuremath{\mathsf{surf}}\xspace}
%%% Suspension
\newcommand{\susp}{\Sigma}
\newcommand{\north}{\mathsf{N}}
\newcommand{\south}{\mathsf{S}}
\newcommand{\merid}{\mathsf{merid}}
%%% Blanks (shorthand for lambda abstractions)
\newcommand{\blank}{\mathord{\hspace{1pt}\text{--}\hspace{1pt}}}
%%% Nameless objects
\newcommand{\nameless}{\mathord{\hspace{1pt}\underline{\hspace{1ex}}\hspace{1pt}}}
%%% Some decorations
%\newcommand{\bbU}{\ensuremath{\mathbb{U}}\xspace}
% \newcommand{\bbB}{\ensuremath{\mathbb{B}}\xspace}
\newcommand{\bbP}{\ensuremath{\mathbb{P}}\xspace}
%%% Some categories
\newcommand{\uset}{\ensuremath{\mathcal{S}et}\xspace}
\newcommand{\ucat}{\ensuremath{{\mathcal{C}at}}\xspace}
\newcommand{\urel}{\ensuremath{\mathcal{R}el}\xspace}
\newcommand{\uhilb}{\ensuremath{\mathcal{H}ilb}\xspace}
\newcommand{\utype}{\ensuremath{\mathcal{T}\!ype}\xspace}
% Pullback corner
\newbox\pbbox
\setbox\pbbox=\hbox{\xy \POS(65,0)\ar@{-} (0,0) \ar@{-} (65,65)\endxy}
\def\pb{\save[]+<3.5mm,-3.5mm>*{\copy\pbbox} \restore}
% Macros for the categories chapter
\newcommand{\inv}[1]{{#1}^{-1}}
\newcommand{\idtoiso}{\ensuremath{\mathsf{idtoiso}}\xspace}
\newcommand{\isotoid}{\ensuremath{\mathsf{isotoid}}\xspace}
\newcommand{\op}{^{\mathrm{op}}}
\newcommand{\y}{\ensuremath{\mathbf{y}}\xspace}
\newcommand{\dgr}[1]{{#1}^{\dagger}}
\newcommand{\unitaryiso}{\mathrel{\cong^\dagger}}
\newcommand{\cteqv}[2]{\ensuremath{#1 \simeq #2}\xspace}
\newcommand{\cteqvsym}{\simeq} % Symbol for equivalence of categories
%%% Natural numbers
\newcommand{\N}{\ensuremath{\mathbb{N}}\xspace}
%\newcommand{\N}{\textbf{N}}
\let\nat\N
\newcommand{\natp}{\ensuremath{\nat'}\xspace} % alternative nat in induction chapter
\newcommand{\zerop}{\ensuremath{0'}\xspace} % alternative zero in induction chapter
\newcommand{\suc}{\mathsf{succ}}
\newcommand{\sucp}{\ensuremath{\suc'}\xspace} % alternative suc in induction chapter
\newcommand{\add}{\mathsf{add}}
\newcommand{\ack}{\mathsf{ack}}
\newcommand{\ite}{\mathsf{iter}}
\newcommand{\assoc}{\mathsf{assoc}}
\newcommand{\dbl}{\ensuremath{\mathsf{double}}}
\newcommand{\dblp}{\ensuremath{\dbl'}\xspace} % alternative double in induction chapter
%%% Lists
\newcommand{\lst}[1]{\mathsf{List}(#1)}
\newcommand{\nil}{\mathsf{nil}}
\newcommand{\cons}{\mathsf{cons}}
\newcommand{\lost}[1]{\mathsf{Lost}(#1)}
%%% Vectors of given length, used in induction chapter
\newcommand{\vect}[2]{\ensuremath{\mathsf{Vec}_{#1}(#2)}\xspace}
%%% Integers
\newcommand{\Z}{\ensuremath{\mathbb{Z}}\xspace}
\newcommand{\Zsuc}{\mathsf{succ}}
\newcommand{\Zpred}{\mathsf{pred}}
%%% Rationals
\newcommand{\Q}{\ensuremath{\mathbb{Q}}\xspace}
%%% Function extensionality
\newcommand{\funext}{\mathsf{funext}}
\newcommand{\happly}{\mathsf{happly}}
%%% A naturality lemma
\newcommand{\com}[3]{\mathsf{swap}_{#1,#2}(#3)}
%%% Code/encode/decode
\newcommand{\code}{\ensuremath{\mathsf{code}}\xspace}
\newcommand{\encode}{\ensuremath{\mathsf{encode}}\xspace}
\newcommand{\decode}{\ensuremath{\mathsf{decode}}\xspace}
% Function definition with domain and codomain
\newcommand{\function}[4]{\left\{\begin{array}{rcl}#1 &
\longrightarrow & #2 \\ #3 & \longmapsto & #4 \end{array}\right.}
%%% Cones and cocones
\newcommand{\cone}[2]{\mathsf{cone}_{#1}(#2)}
\newcommand{\cocone}[2]{\mathsf{cocone}_{#1}(#2)}
% Apply a function to a cocone
\newcommand{\composecocone}[2]{#1\circ#2}
\newcommand{\composecone}[2]{#2\circ#1}
%%% Diagrams
\newcommand{\Ddiag}{\mathscr{D}}
%%% (pointed) mapping spaces
\newcommand{\Map}{\mathsf{Map}}
%%% The interval
\newcommand{\interval}{\ensuremath{I}\xspace}
\newcommand{\izero}{\ensuremath{0_{\interval}}\xspace}
\newcommand{\ione}{\ensuremath{1_{\interval}}\xspace}
%%% Arrows
\newcommand{\epi}{\ensuremath{\twoheadrightarrow}}
\newcommand{\mono}{\ensuremath{\rightarrowtail}}
%%% Sets
\newcommand{\bin}{\ensuremath{\mathrel{\widetilde{\in}}}}
%%% Semigroup structure
\newcommand{\semigroupstrsym}{\ensuremath{\mathsf{SemigroupStr}}}
\newcommand{\semigroupstr}[1]{\ensuremath{\mathsf{SemigroupStr}}(#1)}
\newcommand{\semigroup}[0]{\ensuremath{\mathsf{Semigroup}}}
%%% Macros for the formal type theory
\newcommand{\emptyctx}{\ensuremath{\cdot}}
\newcommand{\production}{\vcentcolon\vcentcolon=}
\newcommand{\conv}{\downarrow}
\newcommand{\ctx}{\ensuremath{\mathsf{ctx}}}
\newcommand{\wfctx}[1]{#1\ \ctx}
\newcommand{\oftp}[3]{#1 \vdash #2 : #3}
\newcommand{\jdeqtp}[4]{#1 \vdash #2 \jdeq #3 : #4}
\newcommand{\judg}[2]{#1 \vdash #2}
\newcommand{\tmtp}[2]{#1 \mathord{:} #2}
% rule names
\newcommand{\rform}{\textsc{form}}
\newcommand{\rintro}{\textsc{intro}}
\newcommand{\relim}{\textsc{elim}}
\newcommand{\rcomp}{\textsc{comp}}
\newcommand{\runiq}{\textsc{uniq}}
\newcommand{\Weak}{\mathsf{Wkg}}
\newcommand{\Vble}{\mathsf{Vble}}
\newcommand{\Exch}{\mathsf{Exch}}
\newcommand{\Subst}{\mathsf{Subst}}
%%% Macros for HITs
\newcommand{\cc}{\mathsf{c}}
\newcommand{\pp}{\mathsf{p}}
\newcommand{\cct}{\widetilde{\mathsf{c}}}
\newcommand{\ppt}{\widetilde{\mathsf{p}}}
\newcommand{\Wtil}{\ensuremath{\widetilde{W}}\xspace}
%%% Macros for n-types
\newcommand{\istype}[1]{\mathsf{is}\mbox{-}{#1}\mbox{-}\mathsf{type}}
\newcommand{\nplusone}{\ensuremath{(n+1)}}
\newcommand{\nminusone}{\ensuremath{(n-1)}}
\newcommand{\fact}{\mathsf{fact}}
%%% Macros for homotopy
\newcommand{\kbar}{\overline{k}} % Used in van Kampen's theorem
%%% Macros for induction
\newcommand{\natw}{\ensuremath{\mathbf{N^w}}\xspace}
\newcommand{\zerow}{\ensuremath{0^\mathbf{w}}\xspace}
\newcommand{\sucw}{\ensuremath{\mathsf{succ}^{\mathbf{w}}}\xspace}
\newcommand{\nalg}{\nat\mathsf{Alg}}
\newcommand{\nhom}{\nat\mathsf{Hom}}
\newcommand{\ishinitw}{\mathsf{isHinit}_{\mathsf{W}}}
\newcommand{\ishinitn}{\mathsf{isHinit}_\nat}
\newcommand{\w}{\mathsf{W}}
\newcommand{\walg}{\w\mathsf{Alg}}
\newcommand{\whom}{\w\mathsf{Hom}}
%%% Macros for real numbers
\newcommand{\RC}{\ensuremath{\mathbb{R}_\mathsf{c}}\xspace} % Cauchy
\newcommand{\RD}{\ensuremath{\mathbb{R}_\mathsf{d}}\xspace} % Dedekind
\newcommand{\R}{\ensuremath{\mathbb{R}}\xspace} % Either
\newcommand{\barRD}{\ensuremath{\bar{\mathbb{R}}_\mathsf{d}}\xspace} % Dedekind completion of Dedekind
\newcommand{\close}[1]{\sim_{#1}} % Relation of closeness
\newcommand{\closesym}{\mathord\sim}
\newcommand{\rclim}{\mathsf{lim}} % HIT constructor for Cauchy reals
\newcommand{\rcrat}{\mathsf{rat}} % Embedding of rationals into Cauchy reals
\newcommand{\rceq}{\mathsf{eq}_{\RC}} % HIT path constructor
\newcommand{\CAP}{\mathcal{C}} % The type of Cauchy approximations
\newcommand{\Qp}{\Q_{+}}
\newcommand{\apart}{\mathrel{\#}} % apartness
\newcommand{\dcut}{\mathsf{isCut}} % Dedekind cut
\newcommand{\cover}{\triangleleft} % inductive cover
\newcommand{\intfam}[3]{(#2, \lam{#1} #3)} % family of rational intervals
% Macros for the Cauchy reals construction
\newcommand{\bsim}{\frown}
\newcommand{\bbsim}{\smile}
\newcommand{\hapx}{\diamondsuit\approx}
\newcommand{\hapname}{\diamondsuit}
\newcommand{\hapxb}{\heartsuit\approx}
\newcommand{\hapbname}{\heartsuit}
\newcommand{\tap}[1]{\bullet\approx_{#1}\triangle}
\newcommand{\tapname}{\triangle}
\newcommand{\tapb}[1]{\bullet\approx_{#1}\square}
\newcommand{\tapbname}{\square}
%%% Macros for surreals
\newcommand{\NO}{\ensuremath{\mathsf{No}}\xspace}
\newcommand{\surr}[2]{\{\,#1\,\big|\,#2\,\}}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\RR}{\mathcal{R}}
\newcommand{\noeq}{\mathsf{eq}_{\NO}} % HIT path constructor
\newcommand{\ble}{\trianglelefteqslant}
\newcommand{\blt}{\vartriangleleft}
\newcommand{\bble}{\sqsubseteq}
\newcommand{\bblt}{\sqsubset}
\newcommand{\hle}{\diamondsuit\preceq}
\newcommand{\hlt}{\diamondsuit\prec}
\newcommand{\hlname}{\diamondsuit}
\newcommand{\hleb}{\heartsuit\preceq}
\newcommand{\hltb}{\heartsuit\prec}
\newcommand{\hlbname}{\heartsuit}
% \newcommand{\tle}{(\bullet\preceq\triangle)}
% \newcommand{\tlt}{(\bullet\prec\triangle)}
\newcommand{\tle}{\triangle\preceq}
\newcommand{\tlt}{\triangle\prec}
\newcommand{\tlname}{\triangle}
% \newcommand{\tleb}{(\bullet\preceq\square)}
% \newcommand{\tltb}{(\bullet\prec\square)}
\newcommand{\tleb}{\square\preceq}
\newcommand{\tltb}{\square\prec}
\newcommand{\tlbname}{\square}
%%% Macros for set theory
\newcommand{\vset}{\mathsf{set}} % point constructor for cummulative hierarchy V
\def\cd{\tproj0}
\newcommand{\inj}{\ensuremath{\mathsf{inj}}} % type of injections
\newcommand{\acc}{\ensuremath{\mathsf{acc}}} % accessibility
\newcommand{\atMostOne}{\mathsf{atMostOne}}
\newcommand{\power}[1]{\mathcal{P}(#1)} % power set
\newcommand{\powerp}[1]{\mathcal{P}_+(#1)} % inhabited power set
%%%% THEOREM ENVIRONMENTS %%%%
% The cleveref package provides \cref{...} which is like \ref{...}
% except that it automatically inserts the type of the thing you're
% referring to, e.g. it produces "Theorem 3.8" instead of just "3.8"
% (and hyperref makes the whole thing a hyperlink). This saves a slight amount
% of typing, but more importantly it means that if you decide later on
% that 3.8 should be a Lemma or a Definition instead of a Theorem, you
% don't have to change the name in all the places you referred to it.
% The following hack improves on this by using the same counter for
% all theorem-type environments, so that after Theorem 1.1 comes
% Corollary 1.2 rather than Corollary 1.1. This makes it much easier
% for the reader to find a particular theorem when flipping through
% the document.
\makeatletter
\def\defthm#1#2#3{%
%% Ensure all theorem types are numbered with the same counter
\newaliascnt{#1}{thm}
\newtheorem{#1}[#1]{#2}
\aliascntresetthe{#1}
%% This command tells cleveref's \cref what to call things
\crefname{#1}{#2}{#3}% following brace must be on separate line to support poorman cleveref sed file
}
% Now define a bunch of theorem-type environments.
\newtheorem{thm}{Theorem}[section]
\crefname{thm}{Theorem}{Theorems}
%\defthm{prop}{Proposition} % Probably we shouldn't use "Proposition" in this way
\defthm{cor}{Corollary}{Corollaries}
\defthm{lem}{Lemma}{Lemmas}
\defthm{axiom}{Axiom}{Axioms}
% Since definitions and theorems in type theory are synonymous, should
% we actually use the same theoremstyle for them?
\theoremstyle{definition}
\defthm{defn}{Definition}{Definitions}
\theoremstyle{remark}
\defthm{rmk}{Remark}{Remarks}
\defthm{eg}{Example}{Examples}
\defthm{egs}{Examples}{Examples}
\defthm{notes}{Notes}{Notes}
% Number exercises within chapters, with their own counter.
\newtheorem{ex}{Exercise}[chapter]
\crefname{ex}{Exercise}{Exercises}
% Display format for sections
\crefformat{section}{\S#2#1#3}
\Crefformat{section}{Section~#2#1#3}
\crefrangeformat{section}{\S\S#3#1#4--#5#2#6}
\Crefrangeformat{section}{Sections~#3#1#4--#5#2#6}
\crefmultiformat{section}{\S\S#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\Crefmultiformat{section}{Sections~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\crefrangemultiformat{section}{\S\S#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
\Crefrangemultiformat{section}{Sections~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
% Display format for appendices
\crefformat{appendix}{Appendix~#2#1#3}
\Crefformat{appendix}{Appendix~#2#1#3}
\crefrangeformat{appendix}{Appendices~#3#1#4--#5#2#6}
\Crefrangeformat{appendix}{Appendices~#3#1#4--#5#2#6}
\crefmultiformat{appendix}{Appendices~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\Crefmultiformat{appendix}{Appendices~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\crefrangemultiformat{appendix}{Appendices~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
\Crefrangemultiformat{appendix}{Appendices~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
\crefname{part}{Part}{Parts}
% Number subsubsections
\setcounter{secnumdepth}{5}
% Display format for figures
\crefname{figure}{Figure}{Figures}
%%%% EQUATION NUMBERING %%%%
% The following hack uses the single theorem counter to number
% equations as well, so that we don't have both Theorem 1.1 and
% equation (1.1).
\let\c@equation\c@thm
\numberwithin{equation}{section}
%%%% ENUMERATE NUMBERING %%%%
% Number the first level of enumerates as (i), (ii), ...
\renewcommand{\theenumi}{(\roman{enumi})}
\renewcommand{\labelenumi}{\theenumi}
%%%% MARGINS %%%%
% This is a matter of personal preference, but I think the left
% margins on enumerates and itemizes are too wide.
\setitemize[1]{leftmargin=2em}
\setenumerate[1]{leftmargin=*}
% Likewise that they are too spaced out.
\setitemize[1]{itemsep=-0.2em}
\setenumerate[1]{itemsep=-0.2em}
%%% Notes %%%
\def\noteson{%
\gdef\note##1{\mbox{}\marginpar{\color{blue}\textasteriskcentered\ ##1}}}
\gdef\notesoff{\gdef\note##1{\null}}
\noteson
\newcommand{\Coq}{\textsc{Coq}\xspace}
\newcommand{\Agda}{\textsc{Agda}\xspace}
\newcommand{\NuPRL}{\textsc{NuPRL}\xspace}
%%%% CITATIONS %%%%
% \let \cite \citep
%%%% INDEX %%%%
\newcommand{\footstyle}[1]{{\hyperpage{#1}}n} % If you index something that is in a footnote
\newcommand{\defstyle}[1]{\textbf{\hyperpage{#1}}} % Style for pageref to a definition
\newcommand{\indexdef}[1]{\index{#1|defstyle}} % Index a definition
\newcommand{\indexfoot}[1]{\index{#1|footstyle}} % Index a term in a footnote
\newcommand{\indexsee}[2]{\index{#1|see{#2}}} % Index "see also"
%%%% Standard phrasing or spelling of common phrases %%%%
\newcommand{\ZF}{Zermelo--Fraenkel}
\newcommand{\CZF}{Constructive \ZF{} Set Theory}
\newcommand{\LEM}[1]{\ensuremath{\mathsf{LEM}_{#1}}\xspace}
\newcommand{\choice}[1]{\ensuremath{\mathsf{AC}_{#1}}\xspace}
%%%% MISC %%%%
\newcommand{\mentalpause}{\medskip} % Use for "mental" pause, instead of \smallskip or \medskip
%% Use \symlabel instead of \label to mark a pageref that you need in the index of symbols
\newcounter{symindex}
\newcommand{\symlabel}[1]{\refstepcounter{symindex}\label{#1}}
% Local Variables:
% mode: latex
% TeX-master: "hott-online"
% End:
|