Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 107,683 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 |
% This is the exercise solution document for the homotopy type theory book.
% This file supports two book sizes:
% - Letter size (8.5" x 11")
% - US Trade size (6" x 9")
%
% To activate one or the other, uncomment the appropriate font size in
% the documentclass below, and then one of the two page geometry incantations
%
% NOTE: The 6" x 9" format is only experimental. It will break the
% title page, for example.
\PassOptionsToPackage{table}{xcolor}
% DOCUMENT CLASS
\documentclass[
%
%10pt % for US Trade 6" x 9" book
%
11pt % for Letter size book
]{article}
\usepackage{etex} % We're running out of registers and dimensions, or some such
\newcounter{chapter} % So that macros.tex doesn't choke
% PAGE GEOMETRY
%
% Uncomment one of these
% We make the page 40pt taller than the standard LaTeX book.
% OPTION 1: Letter
\usepackage[papersize={8.5in,11in},
twoside,
includehead,
top=1in,
bottom=1in,
inner=0.75in,
outer=1.0in,
bindingoffset=0.35in]{geometry}
% OPTION 2: US Trade
% \usepackage[papersize={6in,9in},
% twoside,
% includehead,
% top=0.75in,
% bottom=0.75in,
% inner=0.5in,
% outer=0.75in,
% bindingoffset=0.35in]{geometry}
% HYPERLINKING AND PDF METADATA
\usepackage[pagebackref,
colorlinks,
citecolor=darkgreen,
linkcolor=darkgreen,
unicode,
pdfauthor={Univalent Foundations Program},
pdftitle={Homotopy Type Theory: Univalent Foundations of Mathematics},
pdfsubject={Mathematics},
pdfkeywords={type theory, homotopy theory, univalence axiom}]{hyperref}
% OTHER PACKAGES
% Use this package and stick \layout somewhere in the text to see
% page margins, text size and width etc. Useful for debugging page format.
%\usepackage{layout}
%%% Because Germans have umlauts and Slavs have even stranger ways of mangling letters
\usepackage[utf8]{inputenc}
%%% For table {tab:theorems}
\usepackage{pifont}
%%% Multi-Columns for long lists of names
\usepackage{multicol}
%%% Set the fonts
\usepackage{mathpazo}
\usepackage[scaled=0.95]{helvet}
\usepackage{courier}
\linespread{1.05} % Palatino looks better with this
\usepackage{graphicx}
\DeclareGraphicsExtensions{.png}
\input{bmpsize-hack} % for bounding boxes in dvi mode
\usepackage{comment}
\usepackage{wallpaper} % For the background image on the cover page
\usepackage{fancyhdr} % To set headers and footers
\usepackage{nextpage} % So we can jump to odd-numbered pages
\usepackage{amssymb,amsmath,amsthm,stmaryrd,mathrsfs,wasysym}
\usepackage{enumitem,mathtools,xspace}
\usepackage{xcolor} % For colored cells in tables we need \cellcolor
\usepackage{booktabs} % For nice tables
\usepackage{array} % For nice tables
\usepackage{supertabular} % For index of symbols
\definecolor{darkgreen}{rgb}{0,0.45,0}
\usepackage{aliascnt}
\usepackage[capitalize]{cleveref}
\usepackage[all,2cell]{xy}
\UseAllTwocells
\usepackage{braket} % used for \setof{ ... } macro
\usepackage{tikz}
\usetikzlibrary{decorations.pathmorphing}
\usepackage{etoolbox} % hacking commands for TOC
\usepackage{mathpartir} % for formal.tex appendix, section 3
\usepackage[numbered]{bookmark} % add chapter/section numbers to the toc in the pdf metadata
\input{macros}
%%%% Indexing
\usepackage{makeidx}
\makeindex
%%%% Header and footers
\pagestyle{fancyplain}
\setlength{\headheight}{15pt}
\renewcommand{\sectionmark}[1]{\markright{\textsc{\thesection\ #1}}}
\newcommand{\transfun}[3]{\mathcal{I}_{#1}(#2, #3)}
\newcommand{\nathom}[2]{\mathsf{nat}_{#1}(#2)}
\newcommand{\Tgh}[2]{\mathcal{T}_1(#1,#2)}
\newcommand{\T}[2]{\mathcal{T}_2(#1,#2)}
\newcommand{\TT}[2]{\mathcal{T}_3(#1,#2)}
\newcommand{\I}{\mathcal{I}_1}
\newcommand{\II}{\mathcal{I}_2}
\newcommand{\hapfuneq}{\mathsf{happly}\mbox{-}\mathsf{funext}\mbox{-}\mathsf{inv}}
\lhead[\fancyplain{}{{\thepage}}]%
{\fancyplain{}{\nouppercase{\rightmark}}}
\rhead[\fancyplain{}{\nouppercase{\leftmark}}]%
{\fancyplain{}{\thepage}}
\cfoot{\textsc{\scriptsize \textcolor{gray}{[Draft of \today]}}}
\lfoot[]{}
\rfoot[]{}
%%%% Chapter & part style
\usepackage{titlesec}
\titleformat{\part}[display]{\fontsize{40}{40}\fontseries{m}\fontshape{sc}\selectfont}{\hfil\partname\ \Roman{part}}{20pt}{\fontsize{60}{60}\fontseries{b}\fontshape{sc}\selectfont\hfil}
\titleformat{\chapter}[display]{\fontsize{23}{25}\fontseries{m}\fontshape{it}\selectfont}{\chaptertitlename\ \thechapter}{20pt}{\fontsize{35}{35}\fontseries{b}\fontshape{n}\selectfont}
\input{main.labels}
\title{Solutions to selected exercises}
\begin{document}
\maketitle
\section*{Exercises from \cref{cha:typetheory}}
\subsection*{Solution to \cref{ex:composition}}
We of course know what composition of functions $f : A \to B$ and $g : B \to C$ should be, but let us see how we might derive it by considering available forms of construction. We want a term
\[ g \circ f \defeq (\Box : A \to C), \]
where $\Box : A \to C$ indicates that in place of $\Box$ we would like to put something of type $A \to C$.
Since we are defining a function whose domain is $A$, we expect it to be of the form
\[ g \circ f \defeq \lam{x:A} (\Box : C), \]
so now we are looking for something of type $C$, with $x$, $f$ and $g$ available. Of these $g$ looks most promising as it lands in $C$:
\[ g \circ f \defeq \lam{x:A} g (\Box : B). \]
Now we repeat the same trick with $f$ to get
\[ g \circ f \defeq \lam{x:A} g(f(\Box : A)). \]
Inside the abstraction $x$ is available and has the type we need, so we define
\begin{equation}
\label{eq:composdef}
g \circ f \defeq \lam{x:A} g(f(x)) : C
\end{equation}
%
This baby example demonstrates how one often works with a proof assistant: look at what
you need and what is available, and try to make some progress.
Now, suppose given also $h : C \to D$. We have, according to \cref{eq:composdef},
%
\begin{align*}
h \circ (g \circ f) &\jdeq \lamu{x:A} h ((\lam{y:A} g(f(y))) x)\\
&\jdeq \lamu{x:A} h(g(f(x))),
\end{align*}
%
and
%
\begin{align*}
(h \circ g) \circ f & \jdeq \lamu{x:A} (\lam{y:A} h(g(y))) (f(x))\\
& \jdeq \lamu{x:A} h(g(f(x))).
\end{align*}
%
They are equal, which establishes associativity of composition.
\subsection*{Solution to \cref{ex:pr-to-rec}}
If we suppose given only $\fst : A \times B \to A$ and $\snd : A \times B \to B$ satisfying $\fst(\tup{a}{b}) \jdeq a$ and $\snd(\tup{a}{b})\jdeq b$, we can define $\rec{A\times B}'$ by
\[ \rec{A\times B}'(C,g,x) \defeq g (\fst x) (\snd x). \]
We can now verify, given $C:\UU$, $g:A\to B \to C$ and $(a,b):A\times B$,
\begin{align*}
\rec{A\times B}'(C,g,(a,b)) &\jdeq g (\fst (a,b)) (\snd (a,b))\\
&\jdeq g (a) (b).
\end{align*}
%
For $\Sigma$-types we replace $A \times B$ above with $\sm{a:A} B(a)$, but otherwise
everything else stays the same:
\[ \rec{\sm{x:A} B(x)}'(C,g,x) \defeq g (\fst x) (\snd x). \]
\subsection*{Solution to \cref{ex:pr-to-ind}}
Quite naturally, we form
\[ \ind{A\times B}''(C,g,x) \defeq g (\fst x) (\snd x),\]
of type
\[ \prd{C:A\times B \to \UU}\Parens{\prd{y:A}\prd{z:B} C(\tup yz)} \to
\prd{x : A \times B} C (\tup{\fst x}{\snd x}). \]
This is not quite what we need because $\ind{A\times B}$ has the type
\[ \prd{C:A\times B \to \UU}\Parens{\prd{y:A}\prd{z:B} C(\tup{y}{z})} \to
\prd{x : A \times B} C (x). \]
%
Recall that we have the propositional uniqueness principle
%
\[ \uniq{A\times B}: \prd{x : A \times B} (\id[A\times B]{\tup{\fst x}{\snd x}}{x}), \]
%
satisfying $\id{\uniq{A\times B}(\tup{a}{b})}{\refl{(a,b)}}$.
We can transport along $\uniq{A\times B}(x)$ to get from $C(\tup{\fst x}{\snd x})$ to $C(x)$:
%
\[ \ind{A\times B}'(C,g,x) \defeq
\transfib{C}{\uniq{A\times B}(x)}{\ind{A \times B}''(C, g, x)}.
\]
%
It remains to verify that $\ind{A \times B}'(C, g, x)$ behaves as expected:
%
\begin{align*}
\ind{A \times B}'(C,g,(a,b))
&\jdeq \transfib{C}{\uniq{A\times B}(\tup{a}{b})}{g(\fst \tup{a}{b})(\snd\tup{a}{b})} \\
&\jdeq \transfib{C}{\uniq{A\times B}(\tup{a}{b})}{g(a)(b)} \\
&\jdeq \transfib{C}{\refl{\tup ab}}{g(a)(b)} \\
&\jdeq g(a)(b).
\end{align*}
%
Now for $\Sigma$-types the exact same expressions work as well, except that the types change.
\section*{Exercises from \cref{cha:logic}}
\subsection*{Solution to \cref{ex:decidable-choice}}
The hypotheses imply that
\[ \Parens{\sm{n:\nat}P(n)} \to \sm{n:\nat}\Parens{P(n) \times \prd{m:\nat} \big((m<n) \to \neg P(m)\big)}. \]
In words, given $n$ such that $P(n)$, we can find the least such $n$: we test every $m<n$ in turn, using decidability to do a case analysis, until we find the first one that satisfies $P(m)$.
However, the right-hand side of the above implication is a mere proposition: if both $n$ and $n'$ are least numbers satisfying~$P$ then they must be equal.
Therefore, we also have
\[ \Brck{\sm{n:\nat}P(n)} \to \sm{n:\nat}\Parens{P(n) \times \prd{m:\nat} \big((m<n) \to \neg P(m)\big)} \]
from which the claim follows.
\section*{Exercises from \cref{cha:equivalences}}
\subsection*{Solution to \cref{ex:symmetric-equiv}}
First note that for any type $A$ we have $\eqv{\iscontr(A)}{A\times \iscontr(A)}$.
Thus
\begin{align*}
\prd{a:A} \iscontr\Parens{\sm{b:B} R(a,b)}
&\eqvsym \prd{a:A} \Parens{\sm{b:B} R(a,b)} \times \iscontr\Parens{\sm{b:B} R(a,b)}\\
&\eqvsym \Parens{\prd{a:A}\sm{b:B} R(a,b)} \times \Parens{\prd{a:A}\iscontr\Parens{\sm{b:B} R(a,b)}}\\
&\eqvsym \Parens{\sm{f:A\to B} \prd{a:A} R(a,f(a))} \times \Parens{\prd{a:A}\iscontr\Parens{\sm{b:B} R(a,b)}}
\end{align*}
using \cref{thm:ttac} at the last step.
So the type given in the exercise is equivalent to
\begin{equation*}
\sm{f:A\to B}{R:A\to B\to \type}
\Parens{\prd{a:A} R(a,f(a))}\times
\Parens{\prd{a:A} \iscontr\Parens{\sm{b:B} R(a,b)}} \times
\Parens{\prd{b:B} \iscontr\Parens{\sm{a:A} R(a,b)}}.
\end{equation*}
It will therefore suffice to show that for any $f:A\to B$, the type
\begin{equation}\label{eq:symmetric-isequiv}
\sm{R:A\to B\to \type}
\Parens{\prd{a:A} R(a,f(a))}\times
\Parens{\prd{a:A} \iscontr\Parens{\sm{b:B} R(a,b)}} \times
\Parens{\prd{b:B} \iscontr\Parens{\sm{a:A} R(a,b)}}.
\end{equation}
is equivalent to $\isequiv(f)$, or equivalently that it satisfies the three desiderata of $\isequiv(f)$.
Firstly, suppose $f$ has a quasi-inverse $g$, and define $R(a,b) \defeq (f(a)=b)$.
For any $a$ we have $\iscontr(\sm{b:B} R(a,b))$ by \cref{thm:contr-paths}, and in particular we have $R(a,f(a))$.
On the other hand, by \cref{thm:paths-respects-equiv} we have $\eqv{R(a,b)}{(gf(a) = g(b))}$, which is equivalent to $a = g(b)$, so \cref{thm:contr-paths} also implies that $\iscontr(\sm{a:A} R(a,b))$ for any $b:B$.
Secondly, suppose~\eqref{eq:symmetric-isequiv} is inhabited, i.e.\ we have $R:A\to B\to \type$ and witnesses $r:\prd{a:A} R(a,f(a))$ and $c:\prd{a:A} \iscontr(\sm{b:B} R(a,b))$ and $d:\prd{b:B} \iscontr(\sm{a:A} R(a,b))$.
Let $g(b) \defeq \proj1 (\proj1(d(b)))$, yielding $g:B\to A$; thus we have $R(g(b),b)$ for any $b:B$.
Then for any $a_0:A$ we have $R(a_0,f(a_0))$ and $R(g(f(a_0)),f(a_0))$; but $\sm{a:A} R(a,f(a_0))$ is contractible, so $a_0 = g(f(a_0))$.
Similarly, $b_0 = f(g(b_0))$ for any $b_0:B$, so $g$ is a quasi-inverse to $f$.
Finally, we must show that~\eqref{eq:symmetric-isequiv} is a mere proposition.
Since $\prd{b:B} \iscontr\Parens{\sm{a:A} R(a,b)}$ is a mere proposition by \cref{thm:isprop-forall,thm:isprop-iscontr}, by \cref{thm:path-subset} we may ignore it and consider only the remainder:
\begin{equation*}
\sm{R:A\to B\to \type}
\Parens{\prd{a:A} R(a,f(a))}\times
\Parens{\prd{a:A} \iscontr\Parens{\sm{b:B} R(a,b)}}.
\end{equation*}
Using \cref{thm:ttac} again, this is equivalent to
\begin{equation*}
\prd{a:A}\sm{R:B\to \type} R(fa)\times \iscontr\Parens{\sm{b:B} R(b)}.
\end{equation*}
Thus it will suffice to show that for any $b_0:B$, the type
\[ \sm{R:B\to \type} R(b_0)\times \iscontr\Parens{\sm{b:B} R(b)} \]
is a mere proposition.
But in fact, this type is contractible; its center of contraction consists of $\lam{b}(b_0=b)$ and $\refl{b_0}$ and \cref{thm:contr-paths}, and the contracting homotopy arises from \cref{thm:identity-systems}\ref{item:identity-systems4}$\Rightarrow$\ref{item:identity-systems3} (together with univalence and function extensionality).
\subsection*{Solution to \cref{ex:embedding-cancellable}}
An embedding clearly has properties~\ref{item:ex:ec1} and~\ref{item:ex:ec2}.
Conversely, suppose $f$ has properties~\ref{item:ex:ec1} and~\ref{item:ex:ec2} and let $x,y:A$; we must show that $\apfunc f: (x=y) \to (f(x)=f(y))$ is an equivalence.
By \cref{thm:equiv-inhabcod}, we are free to assume that $f(x)=f(y)$.
Thus, by~\ref{item:ex:ec1}, we have some $p:x=y$.
Now the following square commutes by \cref{lem:ap-functor}:
\begin{equation*}
\vcenter{\xymatrix@C=4pc{
\Omega(A,y)\ar[r]^-{p\ct\blank}\ar[d]_{\apfunc{f}} &
(x=y)\ar[d]^{\apfunc{f}}\\
\Omega(B,f(y))\ar[r]_-{\ap f p \ct \blank} &
(f(x)=f(y)).
}}
\end{equation*}
Both horizontal maps are equivalences by \cref{ex:equiv-concat}, while the left-hand vertical map is an equivalence by~\ref{item:ex:ec2}.
Thus, by \cref{thm:two-out-of-three}, so is the right-hand vertical map, as desired.
As for examples, the unique map $\bool\to\unit$ satisfies~\ref{item:ex:ec2} but not~\ref{item:ex:ec1}, while the map $\lam{x}\bool:\unit\to\UU$ satisfies~\ref{item:ex:ec1} but not~\ref{item:ex:ec2}.
\section*{Exercises from \cref{cha:hits}}
\subsection*{Solution to \cref{ex:torus}}
The torus $T^2$ is a higher inductive type generated by a point $b : T^2$, two paths $p : b = b$, $q : b = b$, and a 2-path $t : p \ct q = q \ct p$. The recursion principle thus says that given $C : \type$, for a function $f : T^2 \to C$ we require
\begin{itemize}
\item a point $b':C$,
\item a path $p' : b' = b'$,
\item a path $q' : b' = b'$, and
\item a 2-path $t' : p' \ct q' = q' \ct p'$.
\end{itemize}
The recursor $f : T^2 \to C$ then has the property that $f(b) \jdeq b'$. Furthermore, there exist terms $\beta : \ap{f}{p} = p'$ and $\gamma : \ap{f}{q} = q'$ such that the following diagram commutes:
\begin{center}
\begin{tikzpicture}
\node (Nc) at (1.5,0) {=};
\node (N0) at (0,1.5) {$\ap{f}{p\ct q}$};
\node (N1) at (3,1.5) {$\ap{f}{q\ct p}$};
\node (N2) at (0,0) {$\ap{f}{p}\ct\ap{f}{q}$};
\node (N3) at (3,0) {$\ap{f}{q}\ct\ap{f}{p}$};
\node (N4) at (0,-1.5) {$p' \ct q'$};
\node (N5) at (3,-1.5) {$q' \ct p'$};
\draw[-] (N0) -- node[above]{\footnotesize $\mapfunc{\mapfunc{f}}(t)$} (N1);
\draw[-] (N0) -- node[left]{} (N2);
\draw[-] (N1) -- node[above]{} (N3);
\draw[-] (N2) -- node[left]{\footnotesize via $\beta$, $\gamma$} (N4);
\draw[-] (N3) -- node[right]{\footnotesize via $\beta$, $\gamma$} (N5);
\draw[-] (N4) -- node[below]{\footnotesize $t'$} (N5);
\end{tikzpicture}
\end{center}
The induction principle is more complicated; it says that given a family $P : T^2 \to \type$, for a section $f : \prd{x:T^2} P(x)$ we require
\begin{itemize}
\item a point $b':P(b)$,
\item a path $p' : \trans{p}{b'} = b'$,
\item a path $q' : \trans{q}{b'} = b'$, and
\item a 2-path $t'$ witnessing the equality of the following two paths from $\trans{(q\ct p)}{b'}$ to $b'$:
\begin{align*}
& \opp{\big(\mapfunc{\alpha \mapsto \trans{\alpha}{b'}}(t)\big)} \ct \big(\happly_{\transfun{P}{p}{q}}(b') \ct \mapfunc{\transf{q}}(p') \ct q' \big)\\
& \happly_{\transfun{P}{q}{p}}(b') \ct \mapfunc{\transf{p}}(q') \ct p'
\end{align*}
where for any type family $B : A \to \type$ and paths $\alpha: x =_A y$ and $\alpha' : y =_A z$, the path \[\transfun{E}{\alpha}{\alpha'} : \transf{(\alpha \ct \alpha')} = \lam{u:B(x)} \trans{\alpha'}{\trans{\alpha}{u}}\] is obtained by a path induction on $\alpha$ and $\alpha'$.
\end{itemize}
The inductor $f : \prd{x:T^2} P(x)$ then has the property that $f(b) \jdeq b'$. Furthermore, there exist terms $\beta : \mapdep{f}{p} = p'$ and $\gamma : \mapdep{f}{q} = q'$ such that the 2-path
\[ \mapdep{\mapdepfunc{f}}{t} : \transfib{\alpha \mapsto \trans{\alpha}{b'} = b'}{t}{\mapdepfunc{f}{(p\ct q)}} = \mapdepfunc{f}{(q \ct p)} \]
is equal to the 2-path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,7.5) {$\transfib{\alpha \mapsto \trans{\alpha}{b'} = b'}{t}{\mapdepfunc{f}{(p\ct q)}}$};
\node (N1) at (0,6) {$\opp{\big(\mapfunc{\alpha \mapsto \trans{\alpha}{b'}}(t)\big)} \ct \mapdepfunc{f}{(p\ct q)}$};
\node (N2) at (0,4.5) {$\opp{\big(\mapfunc{\alpha \mapsto \trans{\alpha}{b'}}(t)\big)} \ct \big(\happly_{\transfun{P}{p}{q}}(b') \ct \mapfunc{\transf{q}}(\mapdep{f}{p}) \ct \mapdep{f}{q}\big)$};
\node (N3) at (0,3) {$\opp{\big(\mapfunc{\alpha \mapsto \trans{\alpha}{b'}}(t)\big)} \ct \big(\happly_{\transfun{P}{p}{q}}(b') \ct \mapfunc{\transf{q}}(p') \ct q'\big)$};
\node (N4) at (0,1.5) {$\happly_{\transfun{P}{q}{p}}(b') \ct \mapfunc{\transf{p}}(q') \ct p'$};
\node (N5) at (0,0) {$\happly_{\transfun{P}{q}{p}}(b') \ct \mapfunc{\transf{p}}(\mapdep{f}{q}) \ct \mapdep{f}{p}$};
\node (N6) at (0,-1.5) {$\mapdep{f}{q\ct p}$};
\draw[-] (N0) -- node[right]{\footnotesize $\mathcal{T}^{b'}_{\alpha \mapsto \trans{\alpha}{b'}}(t,\mapdepfunc{f}{(p\ct q)})$} (N1);
\draw[-] (N1) -- node[right]{\footnotesize via $\mathcal{D}_f(p,q)$} (N2);
\draw[-] (N2) -- node[right]{\footnotesize via $\beta$, $\gamma$} (N3);
\draw[-] (N3) -- node[right]{\footnotesize $t'$} (N4);
\draw[-] (N4) -- node[right]{\footnotesize via $\opp{\beta}$, $\opp{\gamma}$} (N5);
\draw[-] (N5) -- node[right]{\footnotesize $\opp{\mathcal{D}_f(q,p)}$} (N6);
\end{tikzpicture}
\end{center}
where for any $g : A \to B$, $c : B$, $\alpha : a =_A a'$ and $u : g(a) =_B c$, the path \[\mathcal{T}_g^c(\alpha,u) : \transfib{x \to g(x) = c}{\alpha}{u} = \opp{\ap{g}{\alpha}} \ct u\]
is obtained by a straightforward path induction on $\alpha$. Similarly, for any $g : \prd{x : A}B(x)$ and paths $\alpha: x =_A y$, $\alpha' : y =_A z$, the path
\[ \mathcal{D}_g(\alpha,\alpha') : \mapdep{g}{\alpha \ct \alpha'} = \happly_{\transfun{B}{\alpha}{\alpha'}}(g(x)) \ct \mapfunc{\transf{\alpha'}}(\mapdep{g}{\alpha}) \ct \mapdep{g}{\alpha'}\]
is obtained by a path induction on $\alpha$ and $\alpha'$.
\subsection*{Solution to \cref{ex:torus-s1-times-s1}}
\subsubsection*{Logical equivalence between $\Sn^1 \times \Sn^1$ and $T^2$}
We define a function $f : \Sn^1 \to T^2$ by circle recursion, mapping $\base \mapsto b$ and $\lloop \mapsto p$. We define a function $F^\to : \Sn^1 \to \Sn^1 \to T^2$ again by circle recursion, mapping $\base \mapsto f$ and $\lloop \mapsto \funext(H)$, where $H : \prd{x:\Sn^1} f(x) = f(x)$ is defined by circle induction as follows. We map $\base$ to $q$ and $\lloop$ to the path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,3) {$\transfib{z \mapsto f(z) = f(z)}{\lloop}{q}$};
\node (N1) at (0,1.5) {$\opp{\ap{f}{\lloop}} \ct (q \ct \ap{f}{\lloop})$};
\node (N2) at (0,0) {$q$};
\draw[-] (N0) -- node[right]{\footnotesize $\Tgh{\lloop}{q}$} (N1);
\draw[-] (N1) -- node[right]{\footnotesize $\I(\delta)$} (N2);
\end{tikzpicture}
\end{center}
where for any $\alpha : x =_{\Sn^1} y$, and $u : f(x) = f(x)$, the path \[\Tgh{\alpha}{u} : \transfib{z \mapsto f(z) = f(z)}{\alpha}{u} = \opp{\ap{f}{\alpha}} \ct u \ct \ap{f}{\alpha} \]
is obtained by a straightforward path induction on $\alpha$. For any $u : a =_A b$, $v : b =_A d$, $w : a =_A c$, $z : c =_A d$, we have functions
\begin{align*}
\I & : (u \ct v = w \ct z) \to (\opp{u} \ct w \ct z = v)\\
\I^{-1} & : (\opp{u} \ct w \ct z = v) \to (u \ct v = w \ct z)
\end{align*}
defined by path induction on $u$ and $z$, which form a quasi-equivalence. Finally, $\delta$ is the path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,4.5) {$\ap{f}{\lloop} \ct q$};
\node (N1) at (0,3) {$p \ct q$};
\node (N2) at (0,1.5) {$q \ct p$};
\node (N3) at (0,0) {$q \ct \ap{f}{\lloop}$};
\draw[-] (N0) -- node[right]{\footnotesize via $\beta_f$} (N1);
\draw[-] (N1) -- node[right]{\footnotesize $t$} (N2);
\draw[-] (N2) -- node[right]{\footnotesize via $\beta_f$} (N3);
\end{tikzpicture}
\end{center}
where $\beta_f : \ap{f}{\lloop} = p$ witnesses the second computation rule for the circle.
Having defined a function $F^\to : \Sn^1 \to \Sn^1 \to T^2$, it is now straightforward to define a function $F^\times : \Sn^1 \times \Sn^1 \to T^2$. For the other direction, we define $G : T^2 \to \Sn^1 \times \Sn^1$ by torus recursion as follows. We map $b \mapsto (\base,\base)$, $p \mapsto \pairpath(\refl{\base},\lloop)$, $q \mapsto \pairpath(\lloop, \refl{\base})$, and $t \mapsto \Phi_{\lloop,\lloop}$, where for $\alpha : x =_A x'$ and $\alpha' : y =_A y'$,
\[ \Phi_{\alpha,\alpha'} : \Big(\pairpath(\refl{x},\alpha') \ct \pairpath(\alpha, \refl{y'})\Big) = \Big(\pairpath(\alpha, \refl{y}) \ct \pairpath(\refl{x'},\alpha')\Big) \]
is defined by induction on $\alpha'$.
This completes the definition of a logical equivalence between $\Sn^1 \times \Sn^1$ and $T^2$. Before we proceed to show that it is in fact a quasi-equivalence, we note a few key properties of the functions $H$, $F^\times$, $G$ constructed above.
The 1-path computation rule for $F^\to$ gives us a term
\[ \beta_{F^\to} : \ap{F^\to}{\lloop} = \funext(H) \]
The 1-path computation rules for $G$ give us terms
\begin{align*}
& \beta_G : \ap{G}{p} = \pairpath(\refl{\base},\lloop)\\
& \gamma_G : \ap{G}{q} =\pairpath(\lloop, \refl{\base})
\end{align*}
The 2-path computation rule for $G$ gives us the following commuting diagram:
\begin{center}
\begin{tikzpicture}
\node (Nc) at (4.5,0) {$(1)$};
\node (N0) at (0,1.5) {$\ap{G}{p\ct q}$};
\node (N1) at (9,1.5) {$\ap{G}{q\ct p}$};
\node (N2) at (0,0) {$\ap{G}{p}\ct\ap{G}{q}$};
\node (N3) at (9,0) {$\ap{G}{q}\ct\ap{G}{p}$};
\node (N4) at (0,-1.5) {$\pairpath(\refl{},\lloop) \ct \pairpath(\lloop, \refl{})$};
\node (N5) at (9,-1.5) {$\pairpath(\lloop, \refl{}) \ct \pairpath(\refl{},\lloop)$};
\draw[-] (N0) -- node[above]{\footnotesize via $t$} (N1);
\draw[-] (N0) -- node[left]{} (N2);
\draw[-] (N1) -- node[above]{} (N3);
\draw[-] (N2) -- node[left]{\footnotesize via $\beta_G$, $\gamma_G$} (N4);
\draw[-] (N3) -- node[right]{\footnotesize via $\beta_G$, $\gamma_G$} (N5);
\draw[-] (N4) -- node[below]{\footnotesize $\Phi_{\lloop,\lloop}$} (N5);
\end{tikzpicture}
\end{center}
For any $\alpha : x =_{T^2} x'$ and $\alpha' : y =_{T^2} y'$, we have path families
\begin{align*}
& \mu(\alpha') : \ap{F^\times}{\pairpath(\refl{x},\alpha')} = \ap{F^\to(x)}{\alpha'}\\
& \nu(\alpha) : \ap{F^\times}{\pairpath(\alpha,\refl{y})} = \happly_{\ap{F^\to}{\alpha}}(y)
\end{align*}
defined by path induction on $\alpha$ and $\alpha'$.
The function $H$ is a homotopy between $f$ and $f$. As such, for any path $\alpha : x =_{\Sn^1} y$, there exists a 2-path \[\nathom{H}{\alpha} : \ap{f}{\alpha} \ct H(y) = H(x) \ct \ap{f}{\alpha}\] defined by induction on $\alpha$. In the case when $\alpha \defeq \lloop$, we can show that the following diagram commutes:
\begin{center}
\begin{tikzpicture}
\node (Na) at (2,1) {$(2)$};
\node (N0) at (0,2) {$\ap{f}{\lloop} \ct q$};
\node (N1) at (4,2) {$p \ct q$};
\node (N2) at (0,0) {$q \ct \ap{f}{\lloop}$};
\node (N3) at (4,0) {$q \ct p$};
\draw[-] (N0) -- node[above]{\footnotesize via $\beta_f$} (N1);
\draw[-] (N1) -- node[right]{\footnotesize $t$} (N3);
\draw[-] (N0) -- node[left]{\footnotesize $\nathom{H}{\lloop}$} (N2);
\draw[-] (N2) -- node[below]{\footnotesize via $\beta_f$} (N3);
\end{tikzpicture}
\end{center}
To show this, we note that for any $\alpha : x =_{\Sn^1} y$, applying $\I^{-1}$ to the path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,3) {$\opp{\ap{f}{\alpha}} \ct H(x) \ct \ap{f}{\alpha}$};
\node (N1) at (0,1.5) {$\transfib{z \mapsto f(z) = f(z)}{\alpha}{H(x)}$};
\node (N2) at (0,0) {$H(y)$};
\draw[-] (N0) -- node[right]{\footnotesize $\opp{\Tgh{\alpha}{H(x)}}$} (N1);
\draw[-] (N1) -- node[right]{\footnotesize $\mapdep{H}{\alpha}$} (N2);
\end{tikzpicture}
\end{center}
yields precisely $\nathom{H}{\alpha}$ (by a simple path induction on $\alpha$). The second computation rule for $H$ tells us that $\mapdep{H}{\lloop} = \Tgh{\lloop}{q} \ct \I(\delta)$. Thus
\[\nathom{H}{\lloop} = \I^{-1}\big(\opp{\Tgh{\lloop}{q}} \ct \mapdep{H}{\lloop}\big) = \delta \]
which proves the commutativity of $(2)$.
\subsubsection*{Equivalence between $\Sn^1 \times \Sn^1$ and $T^2$}
\paragraph*{Left-to-right}
We need to show that for any $x,y : \Sn^1$ we have $G(F^\times(x,y)) = (x,y)$. To use the circle induction, we first define a path family $\epsilon : \prd{y:\Sn^1} G(f(y)) = (\base,y)$. The definition of $\epsilon$ itself proceeds by circle induction: we map $\base$ to the path $\refl{(\base,\base)}$ and $\lloop$ to the path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,6) {$\transfib{z \mapsto G(f(z)) = (\base,z)}{\lloop}{\refl{}}$};
\node (N1) at (0,4.5) {$\opp{\ap{G}{\ap{f}{\lloop}}} \ct \refl{} \ct \pairpath(\refl{},\lloop)$};
\node (N2) at (0,3) {$\refl{}$};
\draw[-] (N0) -- node[right]{\footnotesize $\T{\lloop}{\refl{}}$} (N1);
\draw[-] (N1) -- node[right]{\footnotesize $\I(\kappa)$} (N2);
\end{tikzpicture}
\end{center}
where for any $\alpha : x =_{\Sn^1} y$ and $u : G(f(x)) = (\base,x)$, the path \[\T{\alpha}{u} : \transfib{z \mapsto G(f(z)) = (\base,z)}{\alpha}{u} = \opp{\ap{G}{\ap{f}{\alpha}}} \ct u \ct \pairpath(\refl{},\alpha) \]
is defined by path induction on $\alpha$. Finally, $\kappa$ is the path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,6) {$\ap{G}{\ap{f}{\lloop}} \ct \refl{}$};
\node (N1) at (0,4.5) {$\ap{G}{\ap{f}{\lloop}}$};
\node (N2) at (0,3) {$\pairpath(\refl{},\lloop)$};
\node (N3) at (0,1.5) {$\refl{} \ct \pairpath(\refl{},\lloop)$};
\draw[-] (N0) -- node[right]{} (N1);
\draw[-] (N1) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N2);
\draw[-] (N2) -- node[right]{} (N3);
\end{tikzpicture}
\end{center}
This finishes the definition of $\epsilon$. As before, for any $\alpha : x =_{\Sn^1} y$ we have a 2-path \[\nathom{\epsilon}{\alpha} : \ap{G}{\ap{f}{\alpha}} \ct \epsilon(y) = \epsilon(x) \ct \pairpath(\refl{},\alpha)\] defined by induction on $\alpha$. In the case $\alpha \defeq \lloop$, the following diagram commutes:
\begin{center}
\begin{tikzpicture}
\node (Na) at (2,1) {$(3)$};
\node (N0) at (0,2) {$\ap{G}{\ap{f}{\lloop}} \ct \refl{}$};
\node (N1) at (4,2) {$\ap{G}{\ap{f}{\lloop}}$};
\node (N2) at (0,0) {$\refl{} \ct \pairpath(\refl{},\lloop)$};
\node (N3) at (4,0) {$\pairpath(\refl{},\lloop)$};
\draw[-] (N0) -- node[above]{\footnotesize} (N1);
\draw[-] (N1) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N3);
\draw[-] (N0) -- node[left]{\footnotesize $\nathom{\epsilon}{\lloop}$} (N2);
\draw[-] (N2) -- node[below]{\footnotesize} (N3);
\end{tikzpicture}
\end{center}
To show this, we note that for any $\alpha : x =_{\Sn^1} y$, applying $\I^{-1}$ to the path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,3) {$\opp{\ap{G}{\ap{f}{\alpha}}} \ct \epsilon(x) \ct \pairpath(\refl{},\alpha)$};
\node (N1) at (0,1.5) {$\transfib{z \mapsto G(f(z)) = (\base,z)}{\alpha}{\epsilon(x)}$};
\node (N2) at (0,0) {$\epsilon(y)$};
\draw[-] (N0) -- node[right]{\footnotesize $\opp{\T{\alpha}{\epsilon(x)}}$} (N1);
\draw[-] (N1) -- node[right]{\footnotesize $\mapdep{\epsilon}{\alpha}$} (N2);
\end{tikzpicture}
\end{center}
yields precisely $\nathom{\epsilon}{\alpha}$ (by a simple path induction on $\alpha$). The second computation rule for $\epsilon$ tells us that $\mapdep{\epsilon}{\lloop} = \T{\lloop}{\refl{}} \ct \I(\kappa)$. Thus
\[\nathom{\epsilon}{\lloop} = \I^{-1}\big(\opp{\T{\lloop}{\refl{}}} \ct \mapdep{\epsilon}{\lloop}\big) = \kappa \]
which proves the commutativity of $(3)$.
All that remains now is to prove that \[\transfib{x \mapsto \prd{y:\Sn^1} G(F^\times(x,y)) = (x,y)}{\lloop}{\epsilon} = \epsilon\] The left endpoint can be expressed explicitly as the function
\[ y \mapsto \opp{\ap{G}{\happly_{\ap{F^\to}{\lloop}}(y)}} \ct \epsilon(y) \ct \pairpath(\lloop,\refl{})\]
as a generalization of $\lloop$ to an arbitrary $\alpha$ and a subsequent path induction on $\alpha$ shows. By function extensionality it thus suffices to show that for any $y : \Sn^1$, we have
\[ \opp{\ap{G}{\happly_{\ap{F^\to}{\lloop}}(y)}} \ct \epsilon(y) \ct \pairpath(\lloop,\refl{}) = \epsilon(y) \]
The left endpoint can be simplified using $\beta_{F^\to}$ and the fact that $\happly$ and $\funext$ form a quasi-inverse:
\[ \opp{\ap{G}{H(y)}} \ct \epsilon(y) \ct \pairpath(\lloop,\refl{}) = \epsilon(y) \]
Showing the above is the same as showing
\[ \ap{G}{H(y)} \ct \epsilon(y) = \epsilon(y) \ct \pairpath(\lloop,\refl{}) \]
for any $y :\Sn^1$. We proceed yet again by circle induction. We map $\base$ to the path $\eta$ below:
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,3) {$\ap{G}{q} \ct \refl{}$};
\node (N1) at (0,1.5) {$\ap{G}{q}$};
\node (N2) at (0,0) {$\pairpath(\lloop,\refl{})$};
\node (N3) at (0,-1.5) {$\refl{} \ct \pairpath(\lloop,\refl{})$};
\draw[-] (N0) -- node[right]{\footnotesize} (N1);
\draw[-] (N1) -- node[right]{\footnotesize $\gamma_G$} (N2);
\draw[-] (N2) -- node[right]{\footnotesize} (N3);
\end{tikzpicture}
\end{center}
Now it remains to show that
\[ \transfib{z \mapsto \ap{G}{H(z)} \ct \epsilon(z) = \epsilon(z) \ct \pairpath(\lloop,\refl{})}{\lloop}{\eta} = \eta \]
For any $u : a =_A b$, $v : b =_A d$, $w : a =_A c$, $z : c =_A d$, we have functions
\begin{align*}
\II & : (u \ct v = w \ct z) \to (v \ct \opp{z} = \opp{u} \ct w) \\
\II^{-1} & : (v \ct \opp{z} = \opp{u} \ct w) \to (u \ct v = w \ct z)
\end{align*}
defined by induction on $u$ and $z$, which form a quasi-equivalence.
For any $\alpha : x =_{\Sn^1} y$, let $\delta^\star(\alpha)$ be the path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,3) {$\ap{G}{\ap{f}{\alpha}} \ct \ap{G}{H_y}$};
\node (N1) at (0,1.5) {$\ap{G}{\ap{f}{\alpha} \ct H_y}$};
\node (N2) at (0,0) {$\ap{G}{H_x \ct \ap{f}{\alpha}}$};
\node (N3) at (0,-1.5) {$\ap{G}{H_x} \ct \ap{G}{\ap{f}{\alpha}}$};
\draw[-] (N0) -- node[right]{\footnotesize} (N1);
\draw[-] (N1) -- node[right]{\footnotesize via $\nathom{H}{\alpha}$} (N2);
\draw[-] (N2) -- node[right]{\footnotesize} (N3);
\end{tikzpicture}
\end{center}
Given any $\alpha : x =_{\Sn^1} y$ and $\eta' : G(H(x)) \ct \eta(x) = \eta(x) \ct \pairpath(\lloop,\refl{})$, we can now express the path $\transfib{z \mapsto \ap{G}{H(z)} \ct \epsilon(z) = \epsilon(z) \ct \pairpath(\lloop,\refl{})}{\alpha}{\eta'}$ explicitly as the following path:
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,19.8) {$\ap{G}{H_y} \ct \epsilon_y$};
\node (N1) at (0,18.15){$\ap{G}{H_y} \ct \Big(\opp{\ap{G}{\ap{f}{\alpha}}} \ct \ap{G}{\ap{f}{\alpha}}\Big) \ct \epsilon_y$};
\node (N2) at (0,16.5) {$\Big(\ap{G}{H_y} \ct \opp{\ap{G}{\ap{f}{\alpha}}}\Big) \ct \Big(\ap{G}{\ap{f}{\alpha}} \ct \epsilon_y\Big)$};
\node (N3) at (0,14.85){$\Big(\opp{\ap{G}{\ap{f}{\alpha}}} \ct \ap{G}{H_x}\Big) \ct \Big(\ap{G}{\ap{f}{\alpha}} \ct \epsilon_y\Big)$};
\node (N4) at (0,13.2){$\Big(\opp{\ap{G}{\ap{f}{\alpha}}}\ct \ap{G}{H_x}\Big) \ct \Big(\epsilon_x \ct \pairpath(\refl{},\alpha)\Big)$};
\node (N5) at (0,11.55){$\opp{\ap{G}{\ap{f}{\alpha}}}\ct\Big(\ap{G}{H_x}\ct \epsilon_x\Big) \ct \pairpath(\refl{},\alpha)$};
\node (N6) at (0,9.9){$\opp{\ap{G}{\ap{f}{\alpha}}}\ct\Big(\epsilon_x\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\alpha)$};
\node (N7) at (0,8.25){$\Big(\opp{\ap{G}{\ap{f}{\alpha}}}\ct\epsilon_x\Big)\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\alpha)\Big)$};
\node (N8) at (0,6.6){$\Big(\opp{\ap{G}{\ap{f}{\alpha}}}\ct\epsilon_x\Big)\ct\Big(\pairpath(\refl{},\alpha)\ct \pairpath(\lloop,\refl{})\Big)$};
\node (N9) at (0,4.95){$\opp{\ap{G}{\ap{f}{\alpha}}}\ct\Big(\epsilon_x\ct\pairpath(\refl{},\alpha)\Big)\ct\pairpath(\lloop,\refl{})$};
\node (N10) at (0,3.3){$\opp{\ap{G}{\ap{f}{\alpha}}}\ct\Big(\ap{G}{\ap{f}{\alpha}}\ct\epsilon_y\Big)\ct\pairpath(\lloop,\refl{})$};
\node (N11) at (0,1.65){$\Big(\opp{\ap{G}{\ap{f}{\alpha}}}\ct\ap{G}{\ap{f}{\alpha}}\Big)\ct\Big(\epsilon_y\ct\pairpath(\lloop,\refl{})\Big)$};
\node (N12) at (0,0){$\epsilon_y\ct\pairpath(\lloop,\refl{})$};
\draw[-] (N0) -- node[right]{\footnotesize} (N1);
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\footnotesize via $\II(\delta^\star(\alpha))$} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\nathom{\epsilon}{\alpha}$} (N4);
\draw[-] (N4) -- node[right]{\footnotesize} (N5);
\draw[-] (N5) -- node[right]{\footnotesize via $\eta'$} (N6);
\draw[-] (N6) -- node[right]{\footnotesize} (N7);
\draw[-] (N7) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\alpha}$} (N8);
\draw[-] (N8) -- node[right]{\footnotesize} (N9);
\draw[-] (N9) -- node[right]{\footnotesize via $\opp{\nathom{\epsilon}{\alpha}}$} (N10);
\draw[-] (N10) -- node[right]{\footnotesize} (N11);
\draw[-] (N11) -- node[right]{\footnotesize} (N12);
\end{tikzpicture}
\end{center}
In the case $\alpha \defeq \lloop$ and $\eta' \defeq \eta$ we thus have:
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,19.8) {$\ap{G}{q} \ct \refl{}$};
\node (N1) at (0,18.15){$\ap{G}{q} \ct \Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{\ap{f}{\lloop}}\Big) \ct \refl{}$};
\node (N2) at (0,16.5) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \Big(\ap{G}{\ap{f}{\lloop}} \ct \refl{}\Big)$};
\node (N3) at (0,14.85){$\Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{q}\Big) \ct \Big(\ap{G}{\ap{f}{\lloop}} \ct \refl{}\Big)$};85
\node (N4) at (0,13.2){$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct \ap{G}{q}\Big) \ct \Big(\refl{} \ct \pairpath(\refl{},\lloop)\Big)$};
\node (N5) at (0,11.55){$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\ap{G}{q}\ct \refl{}\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N6) at (0,9.8){$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\refl{}\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N7) at (0,8.25){$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\refl{}\Big)\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$};
\node (N8) at (0,6.6){$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\refl{}\Big)\ct\Big(\pairpath(\refl{},\lloop)\ct \pairpath(\lloop,\refl{})\Big)$};
\node (N9) at (0,4.95){$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\refl{}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$};
\node (N10) at (0,3.3){$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\ap{G}{\ap{f}{\lloop}}\ct\refl{}\Big)\ct\pairpath(\lloop,\refl{})$};
\node (N11) at (0,1.65){$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\ap{G}{\ap{f}{\lloop}}\Big)\ct\Big(\refl{}\ct\pairpath(\lloop,\refl{})\Big)$};
\node (N12) at (0,0){$\refl{}\ct\pairpath(\lloop,\refl{})$};
\draw[-] (N0) -- node[right]{\footnotesize} (N1);
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\footnotesize via $\II(\delta^\star(\lloop))$} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\nathom{\epsilon}{\lloop}$} (N4);
\draw[-] (N4) -- node[right]{\footnotesize} (N5);
\draw[-] (N5) -- node[right]{\footnotesize via $\eta$} (N6);
\draw[-] (N6) -- node[right]{\footnotesize} (N7);
\draw[-] (N7) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N8);
\draw[-] (N8) -- node[right]{\footnotesize} (N9);
\draw[-] (N9) -- node[right]{\footnotesize via $\opp{\nathom{\epsilon}{\lloop}}$} (N10);
\draw[-] (N10) -- node[right]{\footnotesize} (N11);
\draw[-] (N11) -- node[right]{\footnotesize} (N12);
\end{tikzpicture}
\end{center}
We can now use the commutativity of $(3)$ and get rid of the extraneous identity paths to obtain:
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,19.8) {$\ap{G}{q} \ct \refl{}$};
\node (N1) at (0,18.15) {$\ap{G}{q}$};
\node (N2) at (0,16.5) {$\ap{G}{q} \ct \Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{\ap{f}{\lloop}}\Big)$};
\node (N3) at (0,14.85) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \ap{G}{\ap{f}{\lloop}}$};
\node (N4) at (0,13.2) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{q}\Big) \ct \ap{G}{\ap{f}{\lloop}}$};
\node (N5) at (0,11.55) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct \ap{G}{q}\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N6) at (0,9.8) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N7) at (0,8.25) {$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$};
\node (N8) at (0,6.6) {$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\pairpath(\refl{},\lloop)\ct \pairpath(\lloop,\refl{})\Big)$};
\node (N9) at (0,4.95) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$};
\node (N10) at (0,3.3) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\ap{G}{\ap{f}{\lloop}}\Big)\ct\pairpath(\lloop,\refl{})$};
\node (N11) at (0,1.65) {$\pairpath(\lloop,\refl{})$};
\node (N12) at (0,0) {$\refl{}\ct\pairpath(\lloop,\refl{})$};
\draw[-] (N0) -- node[right]{\footnotesize} (N1);
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\footnotesize} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\II(\delta^\star(\lloop))$} (N4);
\draw[-] (N4) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N5);
\draw[-] (N5) -- node[right]{\footnotesize via $\gamma_G$} (N6);
\draw[-] (N6) -- node[right]{\footnotesize} (N7);
\draw[-] (N7) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N8);
\draw[-] (N8) -- node[right]{\footnotesize} (N9);
\draw[-] (N9) -- node[right]{\footnotesize via $\beta^{-1}_G$, $\beta^{-1}_f$} (N10);
\draw[-] (N10) -- node[right]{\footnotesize} (N11);
\draw[-] (N11) -- node[right]{\footnotesize} (N12);
\end{tikzpicture}
\end{center}
or equivalently:
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,19.8) {$\ap{G}{q} \ct \refl{}$};
\node (N1) at (0,18.15) {$\ap{G}{q}$};
\node (N2) at (0,16.5) {$\ap{G}{q} \ct \Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{\ap{f}{\lloop}}\Big)$};
\node (N3) at (0,14.85) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \ap{G}{\ap{f}{\lloop}}$};
\node (N4) at (0,13.2) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{q}\Big) \ct \ap{G}{\ap{f}{\lloop}}$};
\node (N5) at (0,11.55) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct \ap{G}{q}\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N6) at (0,9.8) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N7) at (0,8.25) {$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$};
\node (N8) at (0,6.6) {$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\pairpath(\refl{},\lloop)\ct \pairpath(\lloop,\refl{})\Big)$};
\node (N9) at (0,4.95) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$};
\node[red] (N10) at (0,3.3) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$};
\node (N11) at (0,1.65) {$\pairpath(\lloop,\refl{})$};
\node (N12) at (0,0) {$\refl{}\ct\pairpath(\lloop,\refl{})$};
\draw[-] (N0) -- node[right]{\footnotesize} (N1);
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\footnotesize} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\II(\delta^\star(\lloop))$} (N4);
\draw[-] (N4) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N5);
\draw[-] (N5) -- node[right]{\footnotesize via $\gamma_G$} (N6);
\draw[-] (N6) -- node[right]{\footnotesize} (N7);
\draw[-] (N7) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N8);
\draw[-] (N8) -- node[right]{\footnotesize} (N9);
\draw[red,-] (N9) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N10);
\draw[red,-] (N10) -- node[right]{\footnotesize} (N11);
\draw[-] (N11) -- node[right]{\footnotesize} (N12);
\end{tikzpicture}
\end{center}
After some rearranging we get:
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,19.8) {$\ap{G}{q} \ct \refl{}$};
\node (N1) at (0,18.15) {$\ap{G}{q}$};
\node (N2) at (0,16.5) {$\ap{G}{q} \ct \Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{\ap{f}{\lloop}}\Big)$};
\node (N3) at (0,14.85) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \ap{G}{\ap{f}{\lloop}}$};
\node[red] (N4) at (0,13.2) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N5) at (0,11.55) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct \ap{G}{q}\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N6) at (0,9.8) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\lloop)$};
\node[red] (N7) at (0,8.25) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\lloop,\refl{})\Big)\ct \pairpath(\refl{},\lloop)$};
\node[red] (N8) at (0,6.6) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$};
\node[red] (N9) at (0,4.95) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\refl{},\lloop)\ct\pairpath(\lloop,\refl{})\Big)$};
\node (N10) at (0,3.3) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$};
\node (N11) at (0,1.65) {$\pairpath(\lloop,\refl{})$};
\node (N12) at (0,0) {$\refl{}\ct\pairpath(\lloop,\refl{})$};
\draw[-] (N0) -- node[right]{\footnotesize} (N1);
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\footnotesize} (N3);
\draw[red,-] (N3) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N4);
\draw[red,-] (N4) -- node[right]{\footnotesize via $\II(\delta^\star(\lloop))$} (N5);
\draw[-] (N5) -- node[right]{\footnotesize via $\gamma_G$} (N6);
\draw[red,-] (N6) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N7);
\draw[red,-] (N7) -- node[right]{\footnotesize} (N8);
\draw[red,-] (N8) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N9);
\draw[red,-] (N9) -- node[right]{\footnotesize} (N10);
\draw[-] (N10) -- node[right]{\footnotesize} (N11);
\draw[-] (N11) -- node[right]{\footnotesize} (N12);
\end{tikzpicture}
\end{center}
We now observe the following:
\begin{itemize}
\item For any paths $\alpha_u : u_1 =_{a =_A b} u_2$, $\alpha_v : v_1 =_{b =_A d} v_2$, $\alpha_w : w_1 =_{a =_A c} w_2$, $\alpha_z : z_1 =_{c =_A d} z_2$ and $\phi : u_1 \ct v_1 = w_1 \ct z_1$, $\phi' : u_2 \ct v_2 = w_2 \ct z_2$, we have
\begin{center}
\begin{tikzpicture}
\node (Na) at (2.5,1) {$=$};
\node (N0) at (0,2) {$u_1 \ct v_1$};
\node (N1) at (2.5,2) {$u_1 \ct v_2$};
\node (N2) at (5,2) {$u_2 \ct v_2$};
\node (N3) at (0,0) {$w_1 \ct z_1$};
\node (N4) at (2.5,0) {$w_1 \ct z_2$};
\node (N5) at (5,0) {$w_2 \ct z_2$};
\draw[-] (N0) -- node[above]{\footnotesize via $\alpha_v$} (N1);
\draw[-] (N1) -- node[above]{\footnotesize via $\alpha_u$} (N2);
\draw[-] (N0) -- node[left]{\footnotesize $\phi$} (N3);
\draw[-] (N3) -- node[below]{\footnotesize via $\alpha_z$} (N4);
\draw[-] (N4) -- node[below]{\footnotesize via $\alpha_w$} (N5);
\draw[-] (N2) -- node[right]{\footnotesize $\phi'$} (N5);
\end{tikzpicture}
\end{center}
if and only if
\begin{center}
\begin{tikzpicture}
\node (Na) at (2.5,1) {$=$};
\node (N0) at (0,2) {$v_1 \ct z^{-1}_1$};
\node (N1) at (2.5,2) {$v_1 \ct z^{-1}_2$};
\node (N2) at (5,2) {$v_2 \ct z^{-1}_2$};
\node (N3) at (0,0) {$u^{-1}_1 \ct w_1$};
\node (N4) at (2.5,0) {$u^{-1}_1 \ct w_2$};
\node (N5) at (5,0) {$u^{-1}_2 \ct w_2$};
\draw[-] (N0) -- node[above]{\footnotesize via $\alpha_z$} (N1);
\draw[-] (N1) -- node[above]{\footnotesize via $\alpha_v$} (N2);
\draw[-] (N0) -- node[left]{\footnotesize $\II(\phi)$} (N3);
\draw[-] (N3) -- node[below]{\footnotesize via $\alpha_w$} (N4);
\draw[-] (N4) -- node[below]{\footnotesize via $\alpha_u$} (N5);
\draw[-] (N2) -- node[right]{\footnotesize $\II(\phi')$} (N5);
\end{tikzpicture}
\end{center}
This follows at once by path induction on $\alpha_u, \alpha_v, \alpha_w, \alpha_z$ and the fact that $\II$ is an equivalence.
\end{itemize}
Next we want to show that the following diagram commutes:
\begin{center}
\begin{tikzpicture}
\node (Na) at (4.5,1) {$(4)$};
\node (N0) at (0,2) {$\ap{G}{\ap{f}{\lloop}} \ct \ap{G}{q}$};
\node (N1) at (0,0) {$\ap{G}{q} \ct \ap{G}{\ap{f}{\lloop}}$};
\node (N2) at (9,2) {$\pairpath(\refl{},\lloop) \ct \pairpath(\lloop,\refl{})$};
\node (N3) at (9,0) {$\pairpath(\lloop,\refl{}) \ct \pairpath(\refl{},\lloop)$};
\draw[-] (N0) -- node[left]{\footnotesize $\delta^\star(\lloop)$} (N1);
\draw[-] (N0) -- node[above]{\footnotesize via $\beta_f$, $\beta_G$, $\gamma_G$} (N2);
\draw[-] (N2) -- node[right]{\footnotesize $\Phi_{\lloop,\lloop}$} (N3);
\draw[-] (N1) -- node[below]{\footnotesize via $\beta_f$, $\beta_G$, $\gamma_G$} (N3);
\end{tikzpicture}
\end{center}
This is the same as saying that the outer rectangle in the diagram below commutes:
\begin{center}
\begin{tikzpicture}
\node (Na) at (2.5,4.125) {A};
\node (Nb) at (2.5,2.375) {B};
\node (Nc) at (2.5,0.725) {C};
\node (Nd) at (8,2.475) {D};
\node (N0) at (0,4.95) {$\ap{G}{\ap{f}{\lloop}} \ct \ap{G}{q}$};
\node (N2) at (5,4.95) {$\ap{G}{p} \ct \ap{G}{q}$};
\node (N4) at (11,4.95) {$\pairpath(\refl{},\lloop) \ct \pairpath(\lloop,\refl{})$};
\node (N1) at (0,3.3) {$\ap{G}{\ap{f}{\lloop}\ct q}$};
\node (N1c) at (0,1.65) {$\ap{G}{q\ct \ap{f}{\lloop}}$};
\node (N3) at (0,0) {$\ap{G}{q}\ct\ap{G}{\ap{f}{\lloop}}$};
\node (N5) at (5,0) {$\ap{G}{q} \ct \ap{G}{p}$};
\node (N7) at (11,0) {$\pairpath(\lloop,\refl{}) \ct \pairpath(\refl{},\lloop)$};
\node (N6) at (5,3.3) {$\ap{G}{p\ct q}$};
\node (N6a) at (5,1.65) {$\ap{G}{q\ct p}$};
\draw[-] (N0) -- node[above]{\footnotesize via $\beta_f$} (N2);
\draw[-] (N2) -- node[above]{\footnotesize via $\beta_G$, $\gamma_G$} (N4);
\draw[-] (N0) -- node[left]{\footnotesize} (N1);
\draw[-] (N1c) -- node[left]{\footnotesize} (N3);
\draw[-] (N3) -- node[below]{\footnotesize via $\beta_f$} (N5);
\draw[-] (N5) -- node[below]{\footnotesize via $\beta_G$, $\gamma_G$} (N7);
\draw[-] (N4) -- node[right]{\footnotesize $\Phi_{\lloop,\lloop}$} (N7);
\draw[-] (N1) -- node[below]{\footnotesize via $\beta_f$} (N6);
\draw[-] (N6) -- node[right]{\footnotesize via $t$} (N6a);
\draw[-] (N1c) -- node[below]{\footnotesize via $\beta_f$} (N6a);
\draw[-] (N2) -- node[above]{\footnotesize} (N6);
\draw[-] (N1) -- node[left]{\footnotesize $\nathom{H}{\lloop}$} (N1c);
\draw[-] (N6a) -- node[below]{\footnotesize} (N5);
\end{tikzpicture}
\end{center}
But this is clear: A and C obviously commute, B is precisely the diagram $(2)$, and D is the diagram $(1)$.
Since $(4)$ commutes, by our earlier observation the following diagram commutes:
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,2) {$\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}$};
\node (N1) at (0,0) {$\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{q}$};
\node (N2) at (9,2) {$\pairpath(\lloop,\refl{}) \ct \opp{\pairpath(\refl{},\lloop)}$};
\node (N3) at (9,0) {$\opp{\pairpath(\refl{},\lloop)} \ct \pairpath(\lloop,\refl{})$};
\draw[-] (N0) -- node[left]{\footnotesize $\II(\delta^\star(\lloop))$} (N1);
\draw[-] (N0) -- node[above]{\footnotesize via $\beta_f$, $\beta_G$, $\gamma_G$} (N2);
\draw[-] (N2) -- node[right]{\footnotesize $\II(\Phi_{\lloop,\lloop})$} (N3);
\draw[-] (N1) -- node[below]{\footnotesize via $\gamma_G$, $\beta_f$, $\beta_G$} (N3);
\end{tikzpicture}
\end{center}
Our path can now be equivalently stated as:
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,19.8) {$\ap{G}{q} \ct \refl{}$};
\node (N1) at (0,18.15) {$\ap{G}{q}$};
\node (N2) at (0,16.5) {$\ap{G}{q} \ct \Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{\ap{f}{\lloop}}\Big)$};
\node (N3) at (0,14.85) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \ap{G}{\ap{f}{\lloop}}$};
\node (N4) at (0,13.2) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \pairpath(\refl{},\lloop)$};
\node[red] (N5) at (0,11.55) {$\Big(\ap{G}{q} \ct \pairpath(\refl{},\lloop)\Big) \ct \pairpath(\refl{},\lloop)$};
\node[red] (N6) at (0,9.8) {$\Big(\pairpath(\lloop,\refl{}) \ct \pairpath(\refl{},\lloop)\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N7) at (0,8.25) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\lloop,\refl{})\Big)\ct \pairpath(\refl{},\lloop)$};
\node (N8) at (0,6.6) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$};
\node (N9) at (0,4.95) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\refl{},\lloop)\ct\pairpath(\lloop,\refl{})\Big)$};
\node (N10) at (0,3.3) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$};
\node (N11) at (0,1.65) {$\pairpath(\lloop,\refl{})$};
\node (N12) at (0,0) {$\refl{}\ct\pairpath(\lloop,\refl{})$};
\draw[-] (N0) -- node[right]{\footnotesize} (N1);
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\footnotesize} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N4);
\draw[red,-] (N4) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N5);
\draw[red,-] (N5) -- node[right]{\footnotesize via $\gamma_G$} (N6);
\draw[red,-] (N6) -- node[right]{\footnotesize via $\II(\Phi_{\lloop,\lloop})$} (N7);
\draw[-] (N7) -- node[right]{\footnotesize} (N8);
\draw[-] (N8) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N9);
\draw[-] (N9) -- node[right]{\footnotesize} (N10);
\draw[-] (N10) -- node[right]{\footnotesize} (N11);
\draw[-] (N11) -- node[right]{\footnotesize} (N12);
\end{tikzpicture}
\end{center}
which is equal to:
\begin{center}
\begin{tikzpicture}
\node (N1) at (0,18.15) {$\ap{G}{q} \ct \refl{}$};
\node (N2) at (0,16.5) {$\ap{G}{q}$};
\node[red] (N3) at (0,14.85) {$\pairpath(\lloop,\refl{})$};
\node[red] (N4) at (0,13.2) {$\pairpath(\lloop,\refl{}) \ct \Big(\opp{\pairpath(\refl{},\lloop)} \ct \pairpath(\refl{},\lloop)\Big)$};
\node (N5) at (0,11.5) {$\Big(\pairpath(\lloop,\refl{}) \ct \opp{\pairpath(\refl{},\lloop)}\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N6) at (0,9.8) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\lloop)$};
\node (N8) at (0,8.25) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$};
\node (N9) at (0,6.6) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\refl{},\lloop)\ct\pairpath(\lloop,\refl{})\Big)$};
\node (N10) at (0,4.95) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$};
\node (N11) at (0,3.3) {$\pairpath(\lloop,\refl{})$};
\node (N12) at (0,1.65) {$\refl{}\ct\pairpath(\lloop,\refl{})$};
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[red,-] (N2) -- node[right]{\footnotesize via $\gamma_G$} (N3);
\draw[red,-] (N3) -- node[right]{\footnotesize} (N4);
\draw[red,-] (N4) -- node[right]{\footnotesize} (N5);
\draw[-] (N5) -- node[right]{\footnotesize via $\II(\Phi_{\lloop,\lloop})$} (N6);
\draw[-] (N6) -- node[right]{\footnotesize} (N8);
\draw[-] (N8) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N9);
\draw[-] (N9) -- node[right]{\footnotesize} (N10);
\draw[-] (N10) -- node[right]{\footnotesize} (N11);
\draw[-] (N11) -- node[right]{\footnotesize} (N12);
\end{tikzpicture}
\end{center}
We now make the following observation:
\begin{itemize}
\item For any paths $u :a =_A b$, $v: b =_A d$, $w: a =_A c$, $z: c =_A d$ and $\phi : u \ct v = w \ct z$, the path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,9) {$v$};
\node (N1) at (0,7.5) {$v \ct (\opp{z}\ct z)$};
\node (N2) at (0,6) {$(v \ct \opp{z})\ct z$};
\node (N3) at (0,4.5) {$(\opp{u}\ct w) \ct z$};
\node (N4) at (0,3) {$\opp{u}\ct(w \ct z)$};
\node (N5) at (0,1.5) {$\opp{u}\ct(u \ct v)$};
\node (N6) at (0,0) {$(\opp{u}\ct u) \ct v$};
\node (N7) at (0,-1.5) {$v$};
\draw[-] (N0) -- node[right]{\footnotesize} (N1);
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\footnotesize via $\II(\phi)$} (N3);
\draw[-] (N3) -- node[right]{\footnotesize} (N4);
\draw[-] (N4) -- node[right]{\footnotesize $\opp{\phi}$} (N5);
\draw[-] (N5) -- node[right]{\footnotesize} (N6);
\draw[-] (N6) -- node[right]{\footnotesize} (N7);
\end{tikzpicture}
\end{center}
is equal to the identity path at $v$. This follows by path induction on $u$ and $z$.
\end{itemize}
Using the above observation, we can express our path simply as
\begin{center}
\begin{tikzpicture}
\node (N1) at (0,18.15) {$\ap{G}{q} \ct \refl{}$};
\node (N2) at (0,16.5) {$\ap{G}{q}$};
\node (N3) at (0,14.85) {$\pairpath(\lloop,\refl{})$};
\node (N12) at (0,13.2) {$\refl{}\ct\pairpath(\lloop,\refl{})$};
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\footnotesize via $\gamma_G$} (N3);
\draw[-] (N3) -- node[right]{\footnotesize} (N12);
\end{tikzpicture}
\end{center}
which is precisely $\eta$.
\paragraph*{Right-to-left}
We need to show that for any $x:T^2$ we have $F^\times(G(t)) = t$. We use torus induction, with $b' \defeq \refl{b}$. We let $p'$ be the path
\begin{center}
\begin{tikzpicture}
\node (N1) at (0,9.9) {$\transfib{z \mapsto F^\times(G(z))=z}{p}{\refl{}}$};
\node (N2) at (0,8.25) {$\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct p$};
\node (N3) at (0,6.6) {$\refl{}$};
\draw[-] (N1) -- node[right]{\footnotesize $\TT{p}{\refl{}}$} (N2);
\draw[-] (N2) -- node[right]{\footnotesize $\zeta_p$} (N3);
\end{tikzpicture}
\end{center}
where for any $\alpha : x =_{T^2} y$ and $u : F^\times(G(x))=x$, the path \[\TT{\alpha}{u} : \transfib{z \mapsto F^\times(G(z))=z}{\alpha}{u} = \opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u \ct \alpha \]
is defined by path induction on $\alpha$ and $\zeta_p$ is the path
\begin{center}
\begin{tikzpicture}
\node (N2) at (0,8.25) {$\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct p$};
\node (N3) at (0,6.6) {$\opp{\ap{F^\times}{\ap{G}{p}}} \ct p$};
\node (N4) at (0,4.95) {$\opp{\ap{F^\times}{\pairpath(\refl{},\lloop)}} \ct p$};
\node (N5) at (0,3.3) {$\opp{\ap{f}{\lloop}} \ct p$};
\node (N6) at (0,1.65) {$\opp{p} \ct p$};
\node (N7) at (0,0) {$\refl{}$};
\draw[-] (N2) -- node[right]{\footnotesize} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\beta_G$} (N4);
\draw[-] (N4) -- node[right]{\footnotesize via $\mu(\lloop)$} (N5);
\draw[-] (N5) -- node[right]{\footnotesize via $\beta_f$} (N6);
\draw[-] (N6) -- node[right]{\footnotesize} (N7);
\end{tikzpicture}
\end{center}
Similarly, let $q'$ be the path
\begin{center}
\begin{tikzpicture}
\node (N1) at (0,9.9) {$\transfib{z \mapsto F^\times(G(z))=z}{q}{\refl{}}$};
\node (N2) at (0,8.25) {$\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q$};
\node (N3) at (0,6.6) {$\refl{}$};
\draw[-] (N1) -- node[right]{\footnotesize $\TT{q}{\refl{}}$} (N2);
\draw[-] (N2) -- node[right]{\footnotesize $\zeta_q$} (N3);
\end{tikzpicture}
\end{center}
where $\zeta_q$ is the path
\begin{center}
\begin{tikzpicture}
\node (N2) at (0,8.25) {$\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q$};
\node (N3) at (0,6.6) {$\opp{\ap{F^\times}{\ap{G}{q}}} \ct q$};
\node (N4) at (0,4.95) {$\opp{\ap{F^\times}{\pairpath(\lloop,\refl{})}} \ct q$};
\node (N5) at (0,3.3) {$\opp{\happly_{\ap{F^\to}{\lloop}}(\base)} \ct q$};
\node (N6) at (0,1.65) {$\opp{\happly_{\funext(H)}(\base)} \ct q$};
\node (N7) at (0,0) {$\opp{q} \ct q$};
\node (N8) at (0,-1.65) {$\refl{}$};
\draw[-] (N2) -- node[right]{\footnotesize} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\gamma_G$} (N4);
\draw[-] (N4) -- node[right]{\footnotesize via $\nu(\lloop)$} (N5);
\draw[-] (N5) -- node[right]{\footnotesize via $\beta_{F^\to}$} (N6);
\draw[-] (N6) -- node[right]{\footnotesize via $\hapfuneq(H)$} (N7);
\draw[-] (N7) -- node[right]{\footnotesize} (N8);
\end{tikzpicture}
\end{center}
All that remains now is to show that the following diagram commutes:
\begin{center}
\begin{tikzpicture}
\node (N1) at (0,9.9) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{p \ct q}{\refl{}}$};
\node (N2) at (0,8.25) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{q}{\transfib{z \mapsto F^\times(G(z))=z}{p}{\refl{}}}$\;\;\;\;\;};
\node (N3) at (0,6.6) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{q}{\refl{}}$};
\node (N4) at (4.5,4.95) {$\refl{}$};
\node (N5) at (8,9.9) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{q \ct p}{\refl{}}$};
\node (N6) at (8,8.25) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{p}{\transfib{z \mapsto F^\times(G(z))=z}{q}{\refl{}}}$};
\node (N7) at (8,6.6) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{p}{\refl{}}$};
\draw[-] (N1) -- node[above]{\footnotesize via $t$} (N5);
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\footnotesize via $p'$} (N3);
\draw[-] (N3) -- node[below]{\footnotesize $q'$} (N4);
\draw[-] (N5) -- node[right]{\footnotesize} (N6);
\draw[-] (N6) -- node[right]{\footnotesize via $q'$} (N7);
\draw[-] (N7) -- node[below]{\footnotesize $p'$} (N4);
\end{tikzpicture}
\end{center}
We make the following observation:
\begin{itemize}
\item For any $\alpha : x =_{T^2} y$, $\alpha' : y =_{T^2} z$, $u_x : F^\times(G(x))=x$, $u_y : F^\times(G(y))=y$, $u_z : F^\times(G(z))=z$, and $\eta_y : \opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha = u_y$, $\eta_z : \opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct u_y \ct \alpha' = u_z$, the path
\begin{center}
\begin{tikzpicture}
\node (N1) at (0,9.9) {$\transfib{z \mapsto F^\times(G(z))=z}{\alpha \ct \alpha'}{u_x}$};
\node (N2) at (0,8.25) {$\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{\transfib{z \mapsto F^\times(G(z))=z}{\alpha}{u_x}}$};
\node (N3) at (0,6.6) {$\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{\opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha}$};
\node (N4) at (0,4.95) {$\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{u_y}$};
\node (N5) at (0,3.3) {$\opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct u_y \ct \alpha'$};
\node (N6) at (0,1.65) {$u_z$};
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\footnotesize via $\TT{\alpha}{u_x}$} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\eta_y$} (N4);
\draw[-] (N4) -- node[right]{\footnotesize $\TT{\alpha'}{u_y}$} (N5);
\draw[-] (N5) -- node[right]{\footnotesize $\eta_z$} (N6);
\end{tikzpicture}
\end{center}
can be equivalently expressed as the path
\begin{center}
\begin{tikzpicture}
\node (N1) at (0,9.9) {$\transfib{z \mapsto F^\times(G(z))=z}{\alpha \ct \alpha'}{u_x}$};
\node (N2) at (0,8.25) {$\opp{\ap{F^\times}{\ap{G}{\alpha \ct \alpha'}}} \ct u_x \ct (\alpha \ct \alpha')$};
\node (N3) at (0,6.6) {$\opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha\Big) \ct \alpha'$};
\node (N4) at (0,4.95) {$\opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct u_y \ct \alpha'$};
\node (N5) at (0,3.3) {$u_z$};
\draw[-] (N1) -- node[right]{\footnotesize $\TT{\alpha \ct \alpha'}{u_x}$} (N2);
\draw[-] (N2) -- node[right]{\footnotesize} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\eta_y$} (N4);
\draw[-] (N4) -- node[right]{\footnotesize $\eta_z$} (N5);
\end{tikzpicture}
\end{center}
To prove this, it suffices to show that the outer rectangle in the diagram below commutes:
\begin{center}
\begin{tikzpicture}
\node (Na) at (4.5,8.25) {A};
\node (Nb) at (4.5,5.575) {B};
\node (N1) at (0,9.9) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{\alpha \ct \alpha'}{u_x}$};
\node (N2) at (0,8.25) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{\transfib{z \mapsto F^\times(G(z))=z}{\alpha}{u_x}}$};
\node (N3) at (0,6.6) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{\opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha}$};
\node (N4) at (0,4.95) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{u_y}$};
\node (N5) at (9,4.95) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct u_y \ct \alpha'$};
\node (N7) at (9,9.9) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{\alpha \ct \alpha'}}} \ct u_x \ct (\alpha \ct \alpha')$};
\node (N8) at (9,6.6) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha\Big) \ct \alpha'$};
\draw[-] (N1) -- node[right]{\footnotesize} (N2);
\draw[-] (N2) -- node[right]{\scriptsize via $\TT{\alpha}{u_x}$} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\eta_y$} (N4);
\draw[-] (N4) -- node[below]{\scriptsize $\TT{\alpha'}{u_y}$} (N5);
\draw[-] (N1) -- node[above]{\scriptsize $\TT{\alpha \ct \alpha'}{u_x}$} (N7);
\draw[-] (N7) -- node[right]{\footnotesize} (N8);
\draw[-] (N3) -- node[below]{\scriptsize $\TT{\alpha'}{\opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha}$} (N8);
\draw[-] (N8) -- node[right]{\footnotesize via $\eta_y$} (N5);
\end{tikzpicture}
\end{center}
Both of the rectangles A and B are easily shown to commute by a suitable path induction.
\end{itemize}
Using the above observation, it suffices to show that the outer part of the following diagram commutes:
\begin{center}
\begin{tikzpicture}
\node (Na) at (5,9.075) {A};
\node (Nb) at (5,6.6) {B};
\node (N1) at (0,9.9) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{p \ct q}{\refl{}}$};
\node (N2) at (0,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p \ct q}}} \ct \refl{} \ct (p \ct q)$};
\node (N3) at (0,6.6) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct p\Big) \ct q$};
\node (N4) at (0,4.95) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q$};
\node (N5) at (5,3.3) {\scriptsize $\refl{}$};
\node (N6) at (10,9.9) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{q \ct p}{\refl{}}$};
\node (N7) at (10,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (q \ct p)$};
\node (N8) at (10,6.6) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q\Big) \ct p$};
\node (N9) at (10,4.95) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct q$};
\node (N10) at (5,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (p \ct q)$};
\draw[-] (N1) -- node[above]{\scriptsize via $t$} (N6);
\draw[-] (N1) -- node[right]{\scriptsize $\TT{p \ct q}{\refl{}}$} (N2);
\draw[-] (N2) -- node[right]{\scriptsize} (N3);
\draw[-] (N3) -- node[right]{\scriptsize via $\zeta_p$} (N4);
\draw[-] (N4) -- node[below]{\scriptsize $\zeta_q$} (N5);
\draw[-] (N6) -- node[right]{\scriptsize $\TT{q \ct p}{\refl{}}$} (N7);
\draw[-] (N7) -- node[below]{\footnotesize} (N8);
\draw[-] (N8) -- node[right]{\scriptsize via $\zeta_q$} (N9);
\draw[-] (N9) -- node[below]{\scriptsize $\zeta_p$} (N5);
\draw[-] (N2) -- node[below]{\scriptsize via $t$} (N10);
\draw[-] (N10) -- node[below]{\scriptsize via $t$} (N7);
\end{tikzpicture}
\end{center}
Since rectangle A clearly commutes, it suffices to prove that part B commutes.
We can equivalently express diagram B as
\begin{center}
\begin{tikzpicture}
\node (N2) at (0,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p \ct q}}} \ct \refl{} \ct (p \ct q)$};
\node[red] (N2a) at (0,6.6) {\scriptsize $\opp{\Big(\ap{F^\times}{\ap{G}{p}} \ct \ap{F^\times}{\ap{G}{q}}\Big)} \ct \refl{} \ct (p \ct q)$};
\node (N3) at (0,4.95) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct p\Big) \ct q$};
\node (N4) at (0,3.3) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q$};
\node (N5) at (5,1.65) {\scriptsize $\refl{}$};
\node (N7) at (10,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (q \ct p)$};
\node[red] (N7a) at (10,6.6) {\scriptsize $\opp{\Big(\ap{F^\times}{\ap{G}{q}} \ct \ap{F^\times}{\ap{G}{p}}\Big)} \ct \refl{} \ct (q \ct p)$};
\node (N8) at (10,4.95) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q\Big) \ct p$};
\node (N9) at (10,3.3) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct q$};
\node (N10) at (5,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (p \ct q)$};
\draw[red,-] (N2) -- node[right]{\scriptsize} (N2a);
\draw[red,-] (N2a) -- node[right]{\scriptsize} (N3);
\draw[-] (N3) -- node[right]{\scriptsize via $\zeta_p$} (N4);
\draw[-] (N4) -- node[below]{\scriptsize $\zeta_q$} (N5);
\draw[red,-] (N7) -- node[below]{\footnotesize} (N7a);
\draw[red,-] (N7a) -- node[below]{\footnotesize} (N8);
\draw[-] (N8) -- node[right]{\scriptsize via $\zeta_q$} (N9);
\draw[-] (N9) -- node[below]{\scriptsize $\zeta_p$} (N5);
\draw[-] (N2) -- node[below]{\scriptsize via $t$} (N10);
\draw[-] (N10) -- node[below]{\scriptsize via $t$} (N7);
\end{tikzpicture}
\end{center}
We make the following observation:
\begin{itemize}
\item For any $\alpha_u : u_1 =_{a =_A b} u_2$, $\alpha_v : v_1 =_{b =_A c} v_2$, the path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,9) {$\opp{(u_1 \ct v_1)} \ct \refl{} \ct (u_2 \ct v_2)$};
\node (N1) at (0,7.5) {$v^{-1}_1 \ct (u^{-1}_1 \ct \refl{} \ct u_2) \ct v_2$};
\node (N2) at (0,6) {$v^{-1}_1 \ct (u^{-1}_1 \ct u_2) \ct v_2$};
\node (N3) at (0,4.5) {$v^{-1}_1 \ct (u^{-1}_2 \ct u_2) \ct v_2$};
\node (N4) at (0,3) {$v^{-1}_1 \ct \refl{} \ct v_2$};
\node (N5) at (0,1.5) {$v^{-1}_1 \ct v_2$};
\node (N6) at (0,0) {$v^{-1}_2 \ct v_2$};
\node (N7) at (0,-1.5) {$\refl{}$};
\draw[-] (N0) -- node[right]{} (N1);
\draw[-] (N1) -- node[right]{} (N2);
\draw[-] (N2) -- node[right]{\footnotesize via $\alpha_u$} (N3);
\draw[-] (N3) -- node[right]{} (N4);
\draw[-] (N4) -- node[right]{} (N5);
\draw[-] (N5) -- node[right]{\footnotesize via $\alpha_v$} (N6);
\draw[-] (N6) -- node[right]{} (N7);
\end{tikzpicture}
\end{center}
is equivalent to the path
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,9) {$\opp{(u_1 \ct v_1)} \ct \refl{} \ct (u_2 \ct v_2)$};
\node (N1) at (0,7.5) {$\opp{(u_2 \ct v_1)} \ct \refl{} \ct (u_2 \ct v_2)$};
\node (N2) at (0,6) {$\opp{(u_2 \ct v_2)} \ct \refl{} \ct (u_2 \ct v_2)$};
\node (N3) at (0,4.5) {$\opp{(u_2 \ct v_2)} \ct (u_2 \ct v_2)$};
\node (N4) at (0,3) {$\refl{}$};
\draw[-] (N0) -- node[right]{\footnotesize via $\alpha_u$} (N1);
\draw[-] (N1) -- node[right]{\footnotesize via $\alpha_v$} (N2);
\draw[-] (N2) -- node[right]{} (N3);
\draw[-] (N3) -- node[right]{} (N4);
\end{tikzpicture}
\end{center}
This is clear by path induction.
\end{itemize}
Using this observation, it suffices to show that the outer part of the following diagram commutes:
\begin{center}
\begin{tikzpicture}
\node (Na) at (5,7) {A};
\node (Nb) at (5,1.65) {B};
\node (N2) at (0,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p \ct q}}} \ct \refl{} \ct (p \ct q)$};
\node (N2a) at (0,6.6) {\scriptsize $\opp{\Big(\ap{F^\times}{\ap{G}{p}} \ct \ap{F^\times}{\ap{G}{q}}\Big)} \ct \refl{} \ct (p \ct q)$};
\node[red] (N3) at (0,4.95) {\scriptsize $\opp{\Big(p \ct \ap{F^\times}{\ap{G}{q}}\Big)} \ct \refl{} \ct (p \ct q)$};
\node[red] (N4) at (0,3.3) {\scriptsize $\opp{(p \ct q)} \ct \refl{} \ct (p \ct q)$};
\node[red] (N5) at (0,1.65) {\scriptsize $\opp{(p \ct q)} \ct (p \ct q)$};
\node (N6) at (5,0) {\scriptsize $\refl{}$};
\node (N7) at (10,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (q \ct p)$};
\node (N7a) at (10,6.6) {\scriptsize $\opp{\Big(\ap{F^\times}{\ap{G}{q}} \ct \ap{F^\times}{\ap{G}{p}}\Big)} \ct \refl{} \ct (q \ct p)$};
\node[red] (N8) at (10,4.95) {\scriptsize $\opp{\Big(q \ct \ap{F^\times}{\ap{G}{p}}\Big)} \ct \refl{} \ct (q \ct p)$};
\node[red] (N9) at (10,3.3) {\scriptsize $\opp{(q \ct p)} \ct \refl{} \ct (q \ct p)$};
\node[red] (N11) at (10,1.65) {\scriptsize $\opp{(q \ct p)} \ct (q \ct p)$};
\node (N10) at (5,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (p \ct q)$};
\node[red] (N12) at (5,3.3) {\scriptsize $\opp{(q \ct p)} \ct \refl{} \ct (p \ct q)$};
\draw[-] (N2) -- node[right]{\scriptsize} (N2a);
\draw[red,-] (N2a) -- node[right]{\scriptsize via $\beta_G$, $\mu(\lloop)$, $\beta_f$} (N3);
\draw[red,-] (N3) -- node[right]{\scriptsize via $\gamma_G$, $\nu(\lloop)$, $\beta_{F^\to}$, $\hapfuneq(H)$} (N4);
\draw[red,-] (N4) -- node[right]{\scriptsize} (N5);
\draw[red,-] (N5) -- node[below]{\scriptsize} (N6);
\draw[-] (N7) -- node[below]{\footnotesize} (N7a);
\draw[red,-] (N7a) -- node[left]{\scriptsize via $\gamma_G$, $\nu(\lloop)$, $\beta_{F^\to}$, $\hapfuneq(H)$} (N8);
\draw[red,-] (N8) -- node[left]{\scriptsize via $\beta_G$, $\mu(\lloop)$, $\beta_f$} (N9);
\draw[red,-] (N9) -- node[right]{\scriptsize} (N11);
\draw[red,-] (N11) -- node[below]{\scriptsize} (N6);
\draw[-] (N2) -- node[below]{\scriptsize via $t$} (N10);
\draw[-] (N10) -- node[below]{\scriptsize via $t$} (N7);
\draw[red,-] (N4) -- node[below]{\scriptsize via $t$} (N12);
\draw[red,-] (N12) -- node[below]{\scriptsize via $t$} (N9);
\end{tikzpicture}
\end{center}
Part B clearly commutes. This leaves us to show that part A commutes. We now make the following observation:
\begin{itemize}
\item For any 2-paths $\alpha^1_u : u_1 =_{a =_A b} u_2$, $\alpha_u^2 : u_1 =_{a =_A b} u_3$, $\alpha_u^3 : u_3 =_{a =_A b} u_4$, $\alpha_u^4 : u_2 =_{a =_A b} u_4$, $\alpha_v : v_1 =_{c =_A d} v_2$ and path $w : b=_A c$ such that
\begin{center}
\begin{tikzpicture}
\node (Na) at (1,0.75) {=};
\node (N0) at (0,1.5) {$u_1$};
\node (N1) at (0,0) {$u_2$};
\node (N2) at (2,1.5) {$u_3$};
\node (N3) at (2,0) {$u_4$};
\draw[-] (N0) -- node[left]{\footnotesize $\alpha^1_u$} (N1);
\draw[-] (N0) -- node[above]{\footnotesize $\alpha^2_u$} (N2);
\draw[-] (N1) -- node[below]{\footnotesize $\alpha^4_u$} (N3);
\draw[-] (N2) -- node[right]{\footnotesize $\alpha^3_u$} (N3);
\end{tikzpicture}
\end{center}
the following diagram commutes:
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,1.5) {$u^{-1}_1 \ct w \ct v_1$};
\node (N1) at (0,0) {$u^{-1}_2 \ct w \ct v_1$};
\node (N2) at (4,1.5) {$u^{-1}_3 \ct w \ct v_1$};
\node (N3) at (4,0) {$u^{-1}_4 \ct w \ct v_1$};
\node (N4) at (8,1.5) {$u^{-1}_3 \ct w \ct v_2$};
\node (N5) at (8,0) {$u^{-1}_4 \ct w \ct v_2$};
\draw[-] (N0) -- node[left]{\footnotesize via $\alpha^1_u$} (N1);
\draw[-] (N0) -- node[above]{\footnotesize via $\alpha^2_u$} (N2);
\draw[-] (N1) -- node[below]{\footnotesize via $\alpha^4_u$} (N3);
\draw[-] (N2) -- node[above]{\footnotesize via $\alpha_v$} (N4);
\draw[-] (N3) -- node[below]{\footnotesize via $\alpha_v$} (N5);
\draw[-] (N4) -- node[right]{\footnotesize via $\alpha^3_u$} (N5);
\end{tikzpicture}
\end{center}
This is clear by path induction on $\alpha_v$, $\alpha_u^2$, $\alpha_u^4$.
\end{itemize}
Using this observation, it suffices to show that the following diagram commutes:
\begin{center}
\begin{tikzpicture}
\node (N2) at (0,8.25) {$\ap{F^\times}{\ap{G}{p \ct q}}$};
\node (N2a) at (0,6.6) {$\ap{F^\times}{\ap{G}{p}} \ct \ap{F^\times}{\ap{G}{q}}$};
\node (N3) at (0,4.95) {$p \ct \ap{F^\times}{\ap{G}{q}}$};
\node (N4) at (0,3.3) {$p \ct q$};
\node (N7) at (10,8.25) {$\ap{F^\times}{\ap{G}{q \ct p}}$};
\node (N7a) at (10,6.6) {$\ap{F^\times}{\ap{G}{q}} \ct \ap{F^\times}{\ap{G}{p}}$};
\node (N8) at (10,4.95) {$q \ct \ap{F^\times}{\ap{G}{p}}$};
\node (N9) at (10,3.3) {$q \ct p$};
\draw[-] (N2) -- node[right]{\footnotesize} (N2a);
\draw[-] (N2a) -- node[right]{\footnotesize via $\beta_G$, $\mu(\lloop)$, $\beta_f$} (N3);
\draw[-] (N3) -- node[right]{\footnotesize via $\gamma_G$, $\nu(\lloop)$, $\beta_{F^\to}$, $\hapfuneq(H)$} (N4);
\draw[-] (N7) -- node[below]{\footnotesize} (N7a);
\draw[-] (N7a) -- node[left]{\footnotesize via $\gamma_G$, $\nu(\lloop)$, $\beta_{F^\to}$, $\hapfuneq(H)$} (N8);
\draw[-] (N8) -- node[left]{\footnotesize via $\beta_G$, $\mu(\lloop)$, $\beta_f$} (N9);
\draw[-] (N2) -- node[above]{\footnotesize via $t$} (N7);
\draw[-] (N4) -- node[below]{\footnotesize via $t$} (N9);
\end{tikzpicture}
\end{center}
After some rearranging we get:
\begin{center}
\begin{tikzpicture}
\node (N1) at (0,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{p \ct q}}$};
\node[red] (N2) at (0,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{p} \ct \ap{G}{q}}$};
\node[red] (N3) at (0,6.6) {\footnotesize $\ap{F^\times}{\ap{G}{p}} \ct \ap{F^\times}{\ap{G}{q}}$};
\node[red] (N4) at (0,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\refl{},\lloop)} \ct \ap{F^\times}{\pairpath(\lloop,\refl{})}$};
\node[red] (N5) at (0,3.3) {\footnotesize $\ap{f}{\lloop} \ct \happly_{\ap{F^\to}{\lloop}}(\base)$};
\node[red] (N6) at (0,1.65) {\footnotesize $\ap{f}{\lloop} \ct q$};
\node (N7) at (0,0) {\footnotesize $p \ct q$};
\node (N11) at (9,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{q \ct p}}$};
\node[red] (N12) at (9,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{q} \ct \ap{G}{p}}$};
\node[red] (N13) at (9,6.6) {\footnotesize $\ap{F^\times}{\ap{G}{q}} \ct \ap{F^\times}{\ap{G}{p}}$};
\node[red] (N14) at (9,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\lloop,\refl{})} \ct \ap{F^\times}{\pairpath(\refl{},\lloop)}$};
\node[red] (N15) at (9,3.3) {\footnotesize $\happly_{\ap{F^\to}{\lloop}}(\base) \ct \ap{f}{\lloop}$};
\node[red] (N16) at (9,1.65) {\footnotesize $q \ct \ap{f}{\lloop}$};
\node (N17) at (9,0) {\footnotesize $q \ct p$};
\draw[red,-] (N1) -- node[right]{\scriptsize} (N2);
\draw[red,-] (N2) -- node[right]{\scriptsize} (N3);
\draw[red,-] (N3) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N4);
\draw[red,-] (N4) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N5);
\draw[red,-] (N5) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N6);
\draw[red,-] (N6) -- node[right]{\scriptsize via $\beta_f$} (N7);
\draw[red,-] (N11) -- node[right]{\scriptsize} (N12);
\draw[red,-] (N12) -- node[right]{\scriptsize} (N13);
\draw[red,-] (N13) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N14);
\draw[red,-] (N14) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N15);
\draw[red,-] (N15) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N16);
\draw[red,-] (N16) -- node[right]{\scriptsize via $\beta_f$} (N17);
\draw[-] (N1) -- node[above]{\scriptsize via $t$} (N11);
\draw[-] (N7) -- node[below]{\scriptsize via $t$} (N17);
\end{tikzpicture}
\end{center}
or equivalently:
\begin{center}
\begin{tikzpicture}
\node (N1) at (0,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{p \ct q}}$};
\node (N2) at (0,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{p} \ct \ap{G}{q}}$};
\node[red] (N3) at (0,6.6) {\footnotesize $\ap{F^\times}{\pairpath(\refl{},\lloop) \ct \pairpath(\lloop,\refl{})}$};
\node (N4) at (0,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\refl{},\lloop)} \ct \ap{F^\times}{\pairpath(\lloop,\refl{})}$};
\node (N5) at (0,3.3) {\footnotesize $\ap{f}{\lloop} \ct \happly_{\ap{F^\to}{\lloop}}(\base)$};
\node (N6) at (0,1.65) {\footnotesize $\ap{f}{\lloop} \ct q$};
\node (N7) at (0,0) {\footnotesize $p \ct q$};
\node (N11) at (9,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{q \ct p}}$};
\node (N12) at (9,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{q} \ct \ap{G}{p}}$};
\node[red] (N13) at (9,6.6) {\footnotesize $\ap{F^\times}{\pairpath(\lloop,\refl{}) \ct \pairpath(\refl{},\lloop)}$};
\node (N14) at (9,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\lloop,\refl{})} \ct \ap{F^\times}{\pairpath(\refl{},\lloop)}$};
\node (N15) at (9,3.3) {\footnotesize $\happly_{\ap{F^\to}{\lloop}}(\base) \ct \ap{f}{\lloop}$};
\node (N16) at (9,1.65) {\footnotesize $q \ct \ap{f}{\lloop}$};
\node (N17) at (9,0) {\footnotesize $q \ct p$};
\draw[-] (N1) -- node[right]{\scriptsize} (N2);
\draw[red,-] (N2) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N3);
\draw[red,-] (N3) -- node[right]{\scriptsize} (N4);
\draw[-] (N4) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N5);
\draw[-] (N5) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N6);
\draw[-] (N6) -- node[right]{\scriptsize via $\beta_f$} (N7);
\draw[-] (N11) -- node[right]{\scriptsize} (N12);
\draw[red,-] (N12) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N13);
\draw[red,-] (N13) -- node[right]{\scriptsize} (N14);
\draw[-] (N14) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N15);
\draw[-] (N15) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N16);
\draw[-] (N16) -- node[right]{\scriptsize via $\beta_f$} (N17);
\draw[-] (N1) -- node[above]{\scriptsize via $t$} (N11);
\draw[-] (N7) -- node[below]{\scriptsize via $t$} (N17);
\end{tikzpicture}
\end{center}
Finally, this diagram can be viewed as follows:
\begin{center}
\begin{tikzpicture}
\node (Na) at (4.5,8.25) {A};
\node (Nb) at (4.5,4.95) {B};
\node (Nc) at (4.5,2.475) {C};
\node (Nd) at (4.5,0.76) {D};
\node (N1) at (0,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{p \ct q}}$};
\node (N2) at (0,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{p} \ct \ap{G}{q}}$};
\node (N3) at (0,6.6) {\footnotesize $\ap{F^\times}{\pairpath(\refl{},\lloop) \ct \pairpath(\lloop,\refl{})}$};
\node (N4) at (0,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\refl{},\lloop)} \ct \ap{F^\times}{\pairpath(\lloop,\refl{})}$};
\node (N5) at (0,3.3) {\footnotesize $\ap{f}{\lloop} \ct \happly_{\ap{F^\to}{\lloop}}(\base)$};
\node (N6) at (0,1.65) {\footnotesize $\ap{f}{\lloop} \ct q$};
\node (N7) at (0,0) {\footnotesize $p \ct q$};
\node (N11) at (9,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{q \ct p}}$};
\node (N12) at (9,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{q} \ct \ap{G}{p}}$};
\node (N13) at (9,6.6) {\footnotesize $\ap{F^\times}{\pairpath(\lloop,\refl{}) \ct \pairpath(\refl{},\lloop)}$};
\node (N14) at (9,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\lloop,\refl{})} \ct \ap{F^\times}{\pairpath(\refl{},\lloop)}$};
\node (N15) at (9,3.3) {\footnotesize $\happly_{\ap{F^\to}{\lloop}}(\base) \ct \ap{f}{\lloop}$};
\node (N16) at (9,1.65) {\footnotesize $q \ct \ap{f}{\lloop}$};
\node (N17) at (9,0) {\footnotesize $q \ct p$};
\draw[-] (N1) -- node[right]{\scriptsize} (N2);
\draw[-] (N2) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N3);
\draw[-] (N3) -- node[right]{\scriptsize} (N4);
\draw[-] (N4) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N5);
\draw[-] (N5) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N6);
\draw[-] (N6) -- node[right]{\scriptsize via $\beta_f$} (N7);
\draw[-] (N11) -- node[right]{\scriptsize} (N12);
\draw[-] (N12) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N13);
\draw[-] (N13) -- node[right]{\scriptsize} (N14);
\draw[-] (N14) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N15);
\draw[-] (N15) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N16);
\draw[-] (N16) -- node[right]{\scriptsize via $\beta_f$} (N17);
\draw[-] (N1) -- node[above]{\scriptsize via $t$} (N11);
\draw[-] (N7) -- node[below]{\scriptsize via $t$} (N17);
\draw[-] (N3) -- node[above]{\scriptsize via $\Phi_{\lloop,\lloop}$} (N13);
\draw[-] (N5) -- node[above]{\scriptsize $\nathom{\happly_{\ap{F^\to}{\lloop}}}{\lloop}$} (N15);
\draw[-] (N6) -- node[below]{\scriptsize $\nathom{H}{\lloop}$} (N16);
\end{tikzpicture}
\end{center}
where for any $\alpha : x =_{\Sn^1} y$, the 2-path
\[ \nathom{\happly_{\ap{F^\to}{\lloop}}}{\alpha} : \ap{f}{\alpha} \ct \happly_{\ap{F^\to}{\lloop}}(y) =
\happly_{\ap{F^\to}{\lloop}}(x) \ct \ap{f}{\alpha} \]
is defined by induction on $\alpha$.
Now rectangles A and D commute by diagrams (1) and (2) respectively. Rectangles B and C commute by a suitable path induction. \qed
\subsection*{Solution to \cref{ex:trunc-bool-interval}}
Let's call the given homotopy $p:\prd{x:A}(f(x)=g(x))$.
Since $B$ may not be a mere proposition, we consider the contractible type $\sm{y:B}(f(x)=y)$.
For all $x:A$ we define a function ${q}_x:\bool\to{}\sm{y:B}(f(x)=y)$ by recursion on $\bool$, with:
\begin{align*}
{q}_x(\btrue) &\defeq \pairr{f(x),\refl{f(x)}},\\
{q}_x(\bfalse) &\defeq \pairr{g(x),p(x)}.
\end{align*}
By induction on truncation, since $\sm{y:B}(f(x)=y)$ is a mere proposition, we get $\widetilde{p}_x:\brck \bool\to{}\sm{y:B}(f(x)=y)$ satisfying $\widetilde{p}_x (\bproj b) \equiv {q}_x(b)$ for all $b:B$.
Hence we can define $q:\brck \bool \to(A\to{}B)$ by
\[q(i)\defeq \lam{x} \proj1(\widetilde{p}_x(i))\]
Then we have $q(\bproj\btrue)(x)\jdeq f(x)$ for all $x:A$, and hence $q(\bproj\btrue) \jdeq f$.
Similarly, $q(\bproj\bfalse)\jdeq g$, and hence $\map{q} r : \id[(A\to{}B)]fg$, where $r: \bproj\btrue =_{\brck \bool} \bproj\bfalse$ exists since $\brck\bool$ is a mere proposition.
\section*{Exercises from \cref{cha:hlevels}}
\subsection*{Solution to \cref{ex:ntype-from-nconn-const}}
Let $\modal$ be a modality; it remains to show that if all maps into $B$ out of a $\modal$-connected type are constant, then $B$ is $\modal$-modal.
We show under that hypothesis that $\eta:B\to \modal B$ is an equivalence, by showing that its fibers are contractible.
Since $\eta$ is always $\modal$-connected, its fibers are $\modal$-connected, and thus the inclusion of $\hfib{\eta}{z}$ into $B$ is constant.
Thus, there is an $a:B$ such that for any $b:B$ and $p:\eta b=z$ we have $q(b,p):a=b$.
Then $\apfunc{\eta}(q(b,p))\ct p : \eta a=z$ for any $(b,p):\hfib\eta z$, so we have a map $\hfib\eta z \to (\eta a=z)$.
But $\modal B$ is $\modal$-modal, hence so is $\eta a = z$.
Thus, by \cref{thm:nconn-to-ntype-const}, this map is constant; hence we have $r:\eta a=z$ such that $\apfunc{\eta}(q(b,p))\ct p = r$ for all $(b,p)$.
But using the characterization of paths in fibers, this means exactly that $(b,p)=(a,r)$ for all $(b,p)$; hence $\hfib\eta z$ is contractible with center $(a,r)$.
\subsection*{Solution to \cref{ex:connectivity-inductively}}
If $A$ is $n$-connected, then since $\trunc{-1}A = \trunc{-1}{\trunc{n}A}$, also $A$ is $(-1)$-connected.
And since $\trunc{n-1}{\id[A]ab} = (\id[\trunc n A]{\tproj na}{\tproj nb})$ by \cref{thm:path-truncation} and the path spaces of a contractible type are contractible, each $\id[A]ab$ is $(n-1)$-connected.
Conversely, suppose $A$ is $(-1)$-connected and all its path spaces are $(n-1)$-connected.
Firstly, we claim $\trunc nA$ is a mere proposition, i.e.\ that for all $x,y:\trunc nA$, the type $x=y$ is contractible.
Since contractibility of $x=y$ is a mere proposition, it suffices to assume that $x$ and $y$ are of the form $\tproj na$ and $\tproj nb$ respectively.
But $\id[\trunc n A]{\tproj na}{\tproj nb}$ is contractible by \cref{thm:path-truncation} and the assumption.
Thus, $\trunc nA$ is a mere proposition.
Since it is also $(-1)$-connected by assumption, it is therefore contractible, so $A$ is $n$-connected.
\subsection*{Solution to \cref{ex:lemnm}}
Evidently $\mathsf{LEM}$ is the same as $\mathsf{LEM}_{-1,-1}$, so for the first part it suffices to assume $\mathsf{LEM}$ and prove $\mathsf{LEM}_{n,-1}$ and $\mathsf{LEM}_{-1,m}$ for all $n,m$.
For the latter, note that if $A$ is a mere proposition, then by \cref{ex:lem-mereprop} so is $A+\neg A$, and thus $\trunc m{A+\neg A}= A+\neg A$ for any $m\ge -1$.
For the former, note that assuming LEM, by \cref{ex:lem-brck} we have $\trunc{-1}{B} = \neg\neg B$ for any $B$, while $\neg\neg(A+\neg A)$ is always true for any type $A$ (\cref{ex:not-not-lem}).
For the second part, it suffices to derive a contradiction from $\mathsf{LEM}_{0,0}$; but the proof of \cref{thm:not-lem} already uses an $A$ that is a set (namely $\bool$).
\subsection*{Solution to \cref{ex:acconn}}
Suppose the $(-1)$-connected AC, and by induction suppose also the $n$-connected AC.
Let $X$ be a set and $Y:X\to \type$ a family of $(n+1)$-connected types.
By \cref{ex:connectivity-inductively}, to show that $\prd{x:X} Y(x)$ is $(n+1)$-connected, it suffices to show that it is $(-1)$-connected and that all its path-types are $n$-connected.
But also by \cref{ex:connectivity-inductively}, each $Y(x)$ is $(-1)$-connected and all its path types are $n$-connected.
Applying function extensionality to characterize the path types of $\prd{x:X} Y(x)$, the claim follows from the $(-1)$-connected and $n$-connected axioms of choice.
\subsection*{Solution to \cref{ex:is-conn-trunc-functor}}
We distinguish the cases $k \le n$ and $k \ge n$. If $k \le n$, we know
by \cref{lem:connected-map-equiv-truncation} that $\trunc nf : \trunc nA \to \trunc nB$ is an
equivalence. We can now prove that $\trunc kf$ is also an equivalence. This follows from the fact
that $\trunc kf$ is homotopic to $\trunc k{\trunc nf}$, under the equivalence given
by \cref{lem:truncation-le}. This homotopy is easily proven by truncation induction. Now since
$\trunc kf$ is an equivalence, it's clearly $n$-connected.
If $k \ge n$ we apply \cref{prop:nconnected_tested_by_lv_n_dependent types}. It is sufficient to
show that the map $\lam{s} s\circ \trunc kf : \Parens{\prd{b:\trunc kB}
P(b)}\to\Parens{\prd{a:\trunc kA}P(\trunc kf(a))}$ has a section, for all $P : \trunc
kB\to\type$. We know that the map $\lam{s} s\circ f :\Parens{\prd{b:B}
Q(b)}\to\Parens{\prd{a:A}Q(f(a))}$ has a section $g$, for $Q:B\to\type$ defined by $Q(b)\defeq
P(\tproj kb)$. We define $h : \Parens{\prd{a:\trunc kA}P(\trunc kf(a))}\to\Parens{\prd{b:\trunc kB}
P(b)}$ by $h(t,\tproj kb):\equiv g(t \circ \tprojf k, b)$. The function $h$ is indeed a section,
which means that we need to show that for $t : \prd{a:\trunc kA}P(\trunc kf(a))$ we have
$h(t)\circ \trunc kf = t$. By function extensionality and truncation induction, it is sufficient to
show that the functions have the same value when applied to $\tproj ka$, for $a : A$. This follows
from the following computation
\begin{align*}
(h(t)\circ \trunc kf)(\tproj ka) & \equiv h(t, \tproj k{f(a)})\\
& \equiv g(t \circ \tprojf k, f(a)) \\
&= (t \circ \tprojf k)(a) \tag{since $g$ is a section of $\lam{s} s\circ f$}\\
& \equiv t(\tproj ka).
\end{align*}
\subsection*{Solution to \cref{ex:categorical-connectedness}}
Let us denote by $\mathsf{isConn}(A)$ the proposition that a type $A$ is connected. It is known that
\begin{displaymath}
\eqv{\mathsf{isConn}(A)}{\brck A \times \prd{x,y:A} \brck {\id[A]xy}}
\end{displaymath}
(see \cref{ex:connectivity-inductively}).
\begin{enumerate}
\item Suppose a type $A$ is connected. The goal $\prd{B,C:\type} \isequiv(e_{A,B,C})$ is a mere proposition, so we can assume $a:A$ and $\prd{x,y:A} \brck {x = y}$.
Let $B,C$ be types.
We want to construct $h:(A\to B+C) \to (A\to B)+(A\to C)$ such that
$h \circ e_{A,B,C} = \idfunc[(A \to B) + (A \to C)]$ and
$e_{A,B,C} \circ h = \idfunc[A \to B + C]$.
Let $f:A \to B+C$ be an arbitrary function.
Let us define $h(f):(A \to B) + (A \to C)$
by case analysis on $f(a):B + C$:
\begin{itemize}
\item if $f(a) \jdeq \inl(u)$ for some $u:B$:
Let us define $k_1:B+C\to B$ by
\begin{align*}
k_1(\inl(b)) &\defeq b;\\
k_1(\inr(c)) &\defeq u,
\end{align*}
and let $h(f)$ be $\inl(k_1 \circ f)$.
\item if $f(a) \jdeq \inr(u)$ for some $u:C$:
Let us define $k_2:B+C\to C$ by
\begin{align*}
k_2(\inl(b)) &\defeq u;\\
k_2(\inr(c)) &\defeq c,
\end{align*}
and let $h(f)$ be $\inr(k_2 \circ f)$.
\end{itemize}
Let us prove that this $h$ is indeed an inverse of $e_{A,B,C}$.
First we prove $e_{A,B,C}(h(f)) = f$ for every $f:A \to B + C$
by case analysis on $f(a)$:
\begin{enumerate}[label=(\alph*)]
\item \label{enum:categorical-connectedness-inl}
if $f(a) \jdeq \inl(u)$ for some $u:B$:
We have $\inl(k_1(f(x))) = f(x)$ for every $x:A$
by case analysis on $f(x)$:
\begin{itemize}
\item if $f(x) \jdeq \inl(v)$ for some $v:B$:
$\inl(k_1(f(x))) = \inl(k_1(\inl(v))) = \inl(v) = f(x)$,
\item if $f(x) \jdeq \inr(v)$ for some $v:C$:
we have $f(a) \neq f(x)$,
which contradicts $\brck {\id[A]{a}{x}}$.
\end{itemize}
Then we have
\begin{displaymath}
e_{A,B,C}(h(f)) = e_{A,B,C}(\inl(k_1 \circ f))
= \lam{x} \inl(k_1(f(x))) = f.
\end{displaymath}
\item if $f(a) \jdeq \inr(u)$ for some $u:C$:
Similar to \ref{enum:categorical-connectedness-inl}.
\end{enumerate}
Next we prove $h(e_{A,B,C}(f)) = f$ for every $f:(A \to B) + (A \to C)$
by case analysis on $f$:
\begin{enumerate}[label=(\alph*)]
\item if $f \jdeq \inl(g)$ for some $g: A \to B$:
\begin{displaymath}
h(e_{A,B,C}(f)) = h(e_{A,B,C}(\inl(g))) = h(\lam{x} \inl(g(x)))
= \inl(\lam{x} g(x)) = f,
\end{displaymath}
\item if $f \jdeq \inr(g)$ for some $g: A \to C$:
\begin{displaymath}
h(e_{A,B,C}(f)) = h(e_{A,B,C}(\inr(g))) = h(\lam{x} \inr(g(x)))
= \inr(\lam{x} g(x)) = f.
\end{displaymath}
\end{enumerate}
Therefore we have $\isequiv(e_{A,B,C})$.
\item (Categorical connectedness to $\mathsf{isConn}$ implies $\LEM{}$):
Assume for every type $A$,
\begin{displaymath}
\Parens{\prd{B,C:\type}\isequiv(e_{A,B,C})} \to \mathsf{isConn}(A).
\end{displaymath}
Assuming $\neg \neg P$ for a mere proposition $P$, we want to prove $P$.
Let us define $A \defeq \susp P$.
Since $P \eqvsym (\id[\susp P]{\north}{\south}) \eqvsym \brck {\id[\susp P]{\north}{\south}}$ (by \cref{prop:trunc_of_prop_is_set}
and since $P$ is a mere proposition) and $\mathsf{isConn}(\susp P)$ implies $\brck {\id[\susp P]{\north}{\south}}$ (by \cref{ex:connectivity-inductively}),
it suffices to prove $\prd{B,C:\type}\isequiv(e_{\susp P,B,C})$.
Before proving this, we prove that
\begin{equation}
\label{lem:cat-conn-neg-neg-eq-xy}
\prd{x, y:\susp P} \neg \neg (x =_{\susp P} y)
\end{equation}
by case analysis on $x$ and $y$:
\begin{enumerate}[label=(\alph*)]
\item if $x \jdeq \north$:
\begin{itemize}
\item if $y \jdeq \north$: $\lam{k} k(\refl{\north})$ has type
$\neg \neg (\north = \north)$.
\item if $y \jdeq \south$:
$\neg \neg (\north = \south)$ is equivalent to
$\neg \neg P$, so it is inhabited.
\item if $y$ varies on $\merid(p)$ for some $p: P$: Since
$\neg \neg (\north =_{\susp P} y)$ is a mere proposition
for every $y$ (see \cref{thm:isprop-forall}),
we do not need to consider this case.
\end{itemize}
\label{enum:categorical-connectedness-north}
\item if $x \jdeq \south$:
Similar to \ref{enum:categorical-connectedness-north}.
\item if $x$ varies on $\merid(p)$ for some $p: P$:
Since $\prd{y:\susp P} \neg \neg (x =_{\susp P} y)$
is a mere proposition for every $x$,
we do not need to consider this case.
\end{enumerate}
Let us prove $\prd{B,C:\type}\isequiv(e_{\susp P,B,C})$.
Let $B, C$ be types.
We want to construct
$h:(\susp P\to B+C) \to (\susp P \to B)+(\susp P\to C)$ such that
$h \circ e_{\susp P,B,C} = \idfunc[(\susp P\to B) + (\susp P\to C)]$ and
$e_{\susp P,B,C} \circ h = \idfunc[\susp P\to B + C]$.
Let $f:\susp P\to B+C$ be an arbitrary function.
Let us define $h(f):(\susp P\to B) + (\susp P\to C)$
by case analysis on $(f(\north), f(\south)):(B + C) \times (B + C)$:
\begin{itemize}
\item if $(f(\north), f(\south)) \jdeq (\inl(u_1), \inl(u_2))$
for some $u_1, u_2:B$:
Let us define $k_1:B+C\to B$ by
\begin{align*}
k_1(\inl(b)) &\defeq b;\\
k_1(\inr(c)) &\defeq u_1,
\end{align*}
and let $h(f)$ be $\inl(k_1 \circ f)$.
\item if $(f(\north), f(\south)) \jdeq (\inr(u_1), \inr(u_2))$
for some $u_1, u_2:C$:
Let us define $k_2:B+C\to C$ by
\begin{align*}
k_2(\inl(b)) &\defeq u_1;\\
k_2(\inr(c)) &\defeq c,
\end{align*}
and let $h(f)$ be $\inl(k_2 \circ f)$.
\item if $(f(\north), f(\south)) \jdeq (\inl(u), \inr(v))$
for some $u: B, v:C$: This case is impossible.
$f(\north) \neq f(\south)$ implies $\north \neq \south$,
which contradicts \eqref{lem:cat-conn-neg-neg-eq-xy}.
\item if $(f(\north), f(\south)) \jdeq (\inr(u), \inl(v))$
for some $u: C, v:B$: This case is also impossible.
\end{itemize}
Let us prove that this $h$ is indeed an inverse of $e_{\susp P,B,C}$.
First we prove $e_{\susp P,B,C}(h(f)) = f$ for every $f:\susp P\to B+C$.
It is done by case analysis on
$(f(\north), f(\south)):(B + C) \times (B + C)$:
\begin{enumerate}[label=(\alph*)]
\item if $(f(\north), f(\south)) \jdeq (\inl(u_1), \inl(u_2))$
for some $u_1, u_2:B$:
We have $\inl(k_1(f(x))) = f(x)$ for every $x:\susp P$
by case analysis on $f(x)$:
\begin{itemize}
\item if $f(x) \jdeq \inl(v)$ for some $v:B$:
$\inl(k_1(f(x))) = \inl(k_1(\inl(v))) = \inl(v) = f(x)$,
\item if $f(x) \jdeq \inr(v)$ for some $v:C$:
we have $f(\north) \neq f(x)$ and hence $\north \neq x$,
which contradicts \eqref{lem:cat-conn-neg-neg-eq-xy}.
\end{itemize}
Then we have
\begin{displaymath}
e_{\susp P,B,C}(h(f)) = e_{\susp P,B,C}(\inl(k_1 \circ f))
= \lam{x} \inl(k_1(f(x))) = f.
\end{displaymath}
\label{enum:inl-inl}
\item if $(f(\north), f(\south)) \jdeq (\inr(u_1), \inr(u_2))$
for some $u_1, u_2:C$: Similar to \ref{enum:inl-inl}.
\end{enumerate}
Next we prove $h(e_{\susp P,B,C}(f)) = f$
for every $f:(\susp P\to B) + (\susp P\to C)$
by case analysis on $f$:
\begin{enumerate}
\item if $f \jdeq \inl(g)$ for some $g: \susp P\to B$:
\begin{displaymath}
h(e_{\susp P,B,C}(f)) = h(e_{\susp P,B,C}(\inl(g)))
= h(\lam{x} \inl(g(x)))
= \inl(\lam{x} g(x)) = f,
\end{displaymath}
\item if $f \jdeq \inr(g)$ for some $g: \susp P\to C$:
\begin{displaymath}
h(e_{\susp P,B,C}(f)) = h(e_{\susp P,B,C}(\inr(g)))
= h(\lam{x} \inr(g(x)))
= \inr(\lam{x} g(x)) = f.
\end{displaymath}
\end{enumerate}
Therefore we have $\isequiv(e_{\susp P,B,C})$.
($\LEM{}$ implies categorical connectedness to $\mathsf{isConn}$):
Assume $\LEM{}$, $A:\type$ and
\begin{displaymath}
\prd{B,C:\type} \isequiv(e_{A,B,C}).
\end{displaymath}
We need to prove $\mathsf{isConn}(A)$.
By $\LEM{}$ we have $\brck A$, because if $\neg \brck A$ we have $\eqv{A}{\emptyt}$ and $\eqv{\unit + \unit}{\unit}$, which is not the case.
Also by $\LEM{}$, for every $x,y:A$ we have $\brck {x = y} + \neg \brck {x = y}$. So if we fix $x:A$ we have a function $f_x:A \to \unit + \unit$ such that
\begin{displaymath}
f_x(y) \defeq \begin{cases}
\inl(\ttt) & \mbox{if } \brck {x = y} \\
\inr(\ttt) & \mbox{if } \neg \brck {x = y}
\end{cases}
\end{displaymath}
Applying the assumption to $f_x$, we obtain
\begin{displaymath}
\inv{e_{A,\unit,\unit}}(f_x): (A \to \unit) + (A \to \unit)
\end{displaymath}
but by definition of $e$ and because $f_x(x) = \inl(\ttt)$,
it must be equal to $\inl(\lam{y} \ttt): (A \to \unit) + (A \to \unit)$,
which means we have $\prd{y:A} \brck {x = y}$.
\end{enumerate}
\section*{Exercises from \cref{cha:homotopy}}
\subsection*{Solution to \cref{ex:homotopy-groups-resp-prod}}
Remember that the fundamental group of a pointed space is defined as the
$0$-truncation of the loop space of that space.
If we prove the equivalence without applying $\trunc 0{\blank}$ to both sides
we are done. We use induction on the natural numbers, with base case $1$.
Suppose we have two pointed types $(A,a)$ and $(B,b)$.
For the base case, we have $\eqv{\Omega(A \times B)}{\Omega(A) \times \Omega(B)}$
because it is, by definition, the equivalence of pointed types:
\[\eqv{ \Parens{(a,b)=(a,b), \refl{(a,b)}} }{\Parens{(a=a \times b=b), (\refl{a}, \refl{b})}}.\]
By the characterization of \cref{thm:path-sigma} we see
that it suffices to give a:
\[p:\eqv{\Parens{(a,b)=(a,b)}}{\Parens{(a=a)\times (b=b)}}\]
And to show that transporting $\refl{(a,b)}$ along $p$ is equal to
$(\refl{a}, \refl{b})$. To construct $p$ just use \cref{thm:path-prod}. To
show that transport respects the equality we use
the definition
of our function $p$, that is just an application of the projections and
functoriality (see \cref{eq:path-prod}).
For the inductive step we use the inductive hypothesis to get an equivalence:
$\eqv{\Omega^n(A \times B)}{\Omega^n(A) \times \Omega^n(B)}$.
Then we apply $\Omega(\blank)$ on both sides and use exactly the same
propositions we used in the base
case. This settles the inductive case, because of the inductive definition of
$\Omega^{\suc(n)}(\blank)$.
\subsection*{Solution to \cref{ex:contr-infinity-sphere-colim}}
To solve this exercise we must first define the spheres as a type family
$\Sn^{\blank} : \nat \to \UU$.
Then we must define the inclusions that appear the in the diagram:
\[ \Sn^0 \to \Sn^1 \to \Sn^2 \to\cdots \]
Then we will be able to define the colimit as
a higher inductive type.
So, by induction on the natural numbers, we define $\Sn^{\blank} : \nat \to \UU$
with the base case being the two point type $\bool$, and the inductive case
being the iterated application of the suspension.
Now we define the inclusions $i_n : \Sn^n \to \Sn^{n+1}$.
For the base case we have to give a function $i_0 : \bool \to \susp \bool$.
This is easy: send one point to $\north$ and the other to $\south$.
For the inductive case we notice that the domain of the function $i_n$ that
we have to define is the suspension $\susp \Sn^{n-1}$. So we can use the
induction of $\susp \Sn^{n-1}$. The codomain is also a suspension, so we can
use any of the constructors:
\begin{align*}
\north_{n+1} &: \Sn^{n+1}\\
\south_{n+1} &: \Sn^{n+1}\\
\merid_{n+1} &:\Sn^n \to \north_{n+1} = \south_{n+1}
\end{align*}
to define our function.
We send $\north_n \mapsto \north_{n+1}$ and $\south_n \mapsto \south_{n+1}$.
Now we must give a $\susp \Sn^{n-1}$-indexed family of equalities between
$\north_{n+1}$ and $\south_{n+1}$. By inductive hypothesis we have
$i_{n-1} : \Sn^{n-1} \to \Sn^n$, so we can use:
\[ \merid_{n+1} \circ i_{n-1} \]
It is also interesting to note that this construction works in a more general
setting: any function $f : A \to B$ induces a function $\susp f : \susp A \to \susp B$.
Now is a good time to make a drawing to convince oneself that this is the
right way to define the inclusions between consecutive spheres, and that this
is the diagram intended in the exercise.
Let's define the type $\Sn^{\infty}$ as the colimit of the diagram we just
constructed. The constructors are:
\begin{align*}
j_{\blank} &: \prd{n : \nat} \Sn^n \to \Sn^{\infty}\\
\glue_{\blank} &: \prd{n : \nat}{x: \Sn^n} j_n(x) = j_{n+1}(i_n (x))
\end{align*}
And the induction:
\[
\ind{\Sn^{\infty}} : \prd{C:\Sn^\infty \to \UU}{J_{\blank} : \prd{n : \nat}{x : \Sn^n} C(j_n(x))}
\Parens{\prd{n:\nat}{x:\Sn^n} \dpath C {\glue_n(x)} {J_n(x)} {J_{n+1} (i_n (x))}}
\to \prd{e:\Sn^{\infty}} C(e)
\]
We also have the usual computational rules.
Now, we can interpret the proof that we are going to give as follows.
Each sphere is a meridian of the next one, as it passes
through the $\north$ and $\south$ of the bigger sphere.
The intuitive idea is that we can retract to a point a circle that is the equator of a sphere.
Just as we can retract to a point two points that are the equator of a circle.
This idea extends to all $n$-spheres. If we have all the spheres at the same time
we can retract them all. But we have to be careful: the homotopies
must be coherent for the total homotopy to be well defined. This can be done in
classical homotopy theory using the fact that a CW complex is the colimit of
the inclusions between its skeletons. In our case we constructed the colimit.
So, if we define a homotopy for each sphere, and prove that this functions
coincide in the glued parts (respect the equalities given by $\glue$), by
induction on the colimit we get a homotopy defined in the colimit.
The outline of the argument is as follows. It suffices to show that every point in
$\Sn^{\infty}$ is equal to $j_0(\north_0)$, we prove it in two steps.
The first step is to prove it only for the points of the form $j_n(\north_n)$.
For the second step we will take an arbitrary $x:\Sn^{\infty}$
and, by induction, we will assume it comes from a $y : \Sn^n$ for some $n$,
that is $x \defeq j_n(y)$.
Then we note that using the commutative diagram given by $\glue_n(x)$:
\begin{center}
\begin{tikzpicture}
\node (N0) at (0,2) {$\Sn^{n}$};
\node (N1) at (2,2) {$\Sn^{n+1}$};
\node (N2) at (2,0) {$\Sn^{\infty}$};
\node (N3) at (1.1,1.1) {};
\node (N4) at (1.5,1.5) {};
\draw[->] (N0) -- node[above]{\footnotesize $i_n$} (N1);
\draw[->] (N0) -- node[left]{\footnotesize $j_n$} (N2);
\draw[->] (N1) -- node[right]{\footnotesize $j_{n+1}$} (N2);
\draw[double, double equal sign distance] (N3) -- node[left,above]{\footnotesize $glue_n$} (N4);
\end{tikzpicture}
\end{center}
we get a path $x \defeq j_n(y) = j_{n+1} (i_n(y))$.
But, as we will show, the inclusion $i_n$ of $\Sn^n$ in $\Sn^{n+1}$ is nullhomotopic,
every point in the image is equal to $\north_{n+1}$. Thus, we are able to show that
$j_{n+1}(i_n(y)) = j_{n+1}(\north_{n+1})$. Composing the proof of the first step
with the proof of the second step we conclude the exercise.
To construct a $D_{\blank} : \prd{n:\nat} j_n(\north_n) = j_0(\north_0)$ we
proceed by induction on $n$. For the base case we can
use $\refl{j_0(\north_0)}$. For the inductive case, we have by inductive
hypothesis $j_n(\north_n) = j_0(\north_0)$. By our definition of $i_{\blank}$,
we have that $\north_{n+1} \equiv i_n(\north_n)$. So $j_{n+1} (\north_{n+1})$
equals $j_{n+1}(i_n(\north_n))$. By concatenation with $\glue_n(\north_n)$,
we reduce our goal to the inductive hypothesis.
Let's now show that the inclusion of $\Sn^n$ in $\Sn^{n+1}$ can be
continuously retracted to $\north_{n+1}$.
That is, let's construct a homotopy:
\[ H_{\blank} : \prd{n:\nat}{x:\Sn^n} i_n(x) = \north_{n+1} \]
For the case $n\equiv 0$ we know that $i_0(\btrue) \equiv \north_1$ and
$i_0(\bfalse) \equiv \south_1$. This is because we constructed the inclusion
that way. So we can prove the equalities
using $\refl{\north_1}$ and $\merid_1(\btrue) : \north_1 = \south_1$.
For the inductive case we defined, previously, $i_n(\north_n) \equiv \north_{n+1}$
and $i_n(\south_{n}) \equiv \south_{n+1}$. So we can prove the equalities using
$\refl{\north_{n+1}}$ and $(\merid_{n+1}(\north_n))^{-1}$.
Then we have to prove that the function respects $\merid_n$:
\[ \prd{x:\Sn^{n-1}} \dpath {x\mapsto (i_n(x) = \north_{n+1})} {\merid_n(x)} {\refl{\north_{n+1}}} {(\merid_{n+1}(\north_n))^{-1}} \]
By \cref{thm:transport-path} (and some straightforward computation) this reduces to:
\[ i_n(\merid_n(x)) = \merid_{n+1}(\north_{n}) \]
But, by our definition of $i_{\blank}$, and the computation rule of the
suspension induction $i_n(\merid_n(x))$ equals $\merid_{n+1} (i_{n-1}(x))$.
And, by inductive hypothesis, $i_{n-1}(x) = \north_n$, which gives us the
desired result.
Composing the two proofs we just gave we get a function:
\[ J_n(x) \defeq \glue_n(x)\ct \apfunc{j_{n+1}}{H_n(x)}\ct D_{n+1}
: \prd{n:\nat}{x:\Sn^n} j_n(x) = j_0(\north_0). \]
We use this function and induction on $\Sn^{\infty}$ to derive
the contractibility of the space.
Now it remains to show that our function respects the gluing:
\[ \prd{n:\nat}{x:\Sn^n} \dpath {x\mapsto (x = j_0(\north_0))}
{\glue_n(x)} {J_n(x)} {J_{n+1}(i_n (x))} \]
By definition this is:
\[ \prd{n:\nat}{x:\Sn^n}
\transfib{x\mapsto (x = j_0(\north_0))}{\glue_n(x)}{J_n(x)}
= {J_{n+1}(i_n (x))} \]
The LHS is equal to $\glue_{n}(x)^{-1}\ct J_n(x)$, which, by definition of
$J_n(x)$, is:
\[ \glue_n(x)^{-1}\ct\glue_n(x)\ct\apfunc{j_{n+1}}{H_n(x)}\ct D_{n+1} \]
Cancelling we get:
\[ \apfunc{j_{n+1}}{H_n(x)}\ct D_{n+1} \]
We also use the definition of $J_{\blank}$ in the RHS, and then the computation
rule of $D_{\blank}$, giving us the equalities:
\begin{align*}
& J_{n+1}(i_n(x))\\
&= \glue_{n+1}(i_n(x))\ct\apfunc{j_{n+2}}{H_{n+1}(i_n(x))}\ct D_{n+2}\\
&= \glue_{n+1}(i_n(x))\ct\apfunc{j_{n+2}}{H_{n+1}(i_n(x))}\ct
\glue_{n+1}(\north_{n+1})^{-1}\ct D_{n+1}.
\end{align*}
So it suffices to show:
\[ \apfunc{j_{n+1}}{H_n(x)} = \glue_{n+1}(i_n(x))\ct\apfunc{j_{n+2}}{H_{n+1}(i_n(x))}
\ct\glue_{n+1}(\north_{n+1})^{-1} \]
Or equivalently:
\[ \apfunc{j_{n+1}}{H_n(x)} \ct\glue_{n+1}(\north_{n+1}) =
\glue_{n+1}(i_n(x))\ct\apfunc{j_{n+2}}{H_{n+1}(i_n(x))} \]
But we remember that we have the homotopy
$\glue_{n+1} : j_{n+1} = j_{n+2}\circ i_{n+1}$, so, by a simple application
of \cref{lem:htpy-natural} and the functoriality of $\apfunc{}{}$, we get
a proof of the equality:
\[ \apfunc{j_{n+1}}{H_n(x)} \ct\glue_{n+1}(\north_{n+1}) =
\glue_{n+1}(i_n(x))\ct\apfunc{j_{n+2}}{\apfunc{i_{n+1}}{H_n(x)}} \]
So we reduced the goal to showing:
\[ \apfunc{i_{n+1}}{H_n(x)} = H_{n+1}(i_n(x)) \]
This can be done easily by induction in $\Sn^n$ using the definition of $H_{\blank}$.
\subsection*{Solution to \cref{ex:contr-infinity-sphere-susp}}
First we write down the type of the induction principle explicitly:
\[ \ind{\Sn^\infty} : \prd{C:\Sn^\infty \to \UU}{n:C(\north)}{s:C(\south)}
\Parens{\prd{x:\Sn^\infty} C(x) \to \dpath C {\merid(x)} {n}{s}} \to \prd{x:\Sn^\infty} C(x) . \]
We take $\north$ as center of contraction. So we have to prove
$\prd{x:\Sn^\infty} \north = x$. For this we use induction on $\Sn^\infty$ taking:
\[C \defeq (\lambda x. \north = x) : \Sn^\infty \to \UU .\]
When $x$ is $\north$ we just use $\refl{\north} : \north = \north$. When $x$
is $\south$ we use $\merid(\north) : \north = \south$.
When $x$ varies along $\merid$ we have to give a function of type:
\[\prd{x:\Sn^\infty} \Parens{\north = x} \to \Parens{\dpath C {\merid(x)} {\refl{\north}}{\merid(\north)}}. \]
So, given $x : \Sn^\infty$ and $p : \north = x$, we have to prove:
\[\transfib{x \mapsto (\north = x)}{\merid(x)}{\refl{\north}} = \merid(\north).\]
By \cref{cor:transport-path-prepost} it suffices to show
$\refl{\north}\ct \merid(x) = \merid(\north)$. Canceling $\refl{\north}$ and
applying $\merid$ to $p$ gets us the desired result.
\subsection*{Solution to \cref{ex:unique-fiber}}
We know that every two points $y_1,y_2 : Y$ are merely equal, because $Y$ is
is connected. That is, we have a function
$c : \prd{y_1,y_2:Y}\trunc {} {y_1 = y_2}$. To prove this we can use the remark
after \cref{thm:connected-pointed}. If we want to show that any pair of
points $y_1,y_2 : Y$ are merely equal we can use the first point $y_1$ to get
a pointed space $(Y,y_1)$, and then use the remark.
We note that it suffices to show that for any $y_1,y_2:Y$ we have
$\trunc {} {\hfib{f}{y_1} = \hfib{f}{y_2}}$ because
$\hfib{f}{y_1} = \hfib{f}{y_2}$ implies (using $\idtoeqv$)
$\hfib{f}{y_1}\simeq \hfib{f}{y_2}$
and thus, by recursion on the truncation of $\hfib{f}{y_1} = \hfib{f}{y_2}$,
we get that $\trunc {} {\hfib{f}{y_1} = \hfib{f}{y_2}}$ implies
$\trunc {} {\hfib{f}{y_1} \simeq \hfib{f}{y_2}}$.
The type of $c(y_1,y_2)$ is a truncation, so we can use its recursion to
prove the desired result.
By recursion we can assume that $y_1 = y_2$, and in that case we obviously have
$\trunc {} {\hfib{f}{y_1} = \hfib{f}{y_2}}$. We also have to show that
the proposition we want to prove is $-1$-truncated, but that is straightforward
because it is a $-1$-truncation.
\section*{Exercises from \cref{cha:category-theory}}
\subsection*{Solution to \cref{ex:stack}}
Define $K$ to be the precategory with $K_0 \defeq Y$ and $\hom_K(y_1,y_2) \defeq (p(y_1)=p(y_2))$.
Then $\mathrm{Desc}(A,p)\defeq A^K$ is a good definition.
Moreover, the obvious functor $K\to X$ (where $X$ denotes the discrete category on itself) is a weak equivalence, so \cref{ct:esofull-precomp-ff,ct:cat-weq-eq} yield the second and third parts.
Finally, $K$ is a strict category, so if it is a stack, then $p$ has a section, while conversely if $p$ has a section then $K\to X$ is a (strong) equivalence.
\section*{Exercises from \cref{cha:set-math}}
\subsection*{Solution to \cref{ex:prop-ord}}
Define $A<B$ iff $B \land \neg A$.
\subsection*{Solution to \cref{ex:ninf-ord}}
Define $a<b$ iff $\exis{n:\nat} (b_n < a_n)$.
\end{document}
|