Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 15,448 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
(* ========================================================================= *)
(* Specific formulas for evaluating Jacobian coordinate point operations. *)
(* ========================================================================= *)
needs "EC/jacobian.ml";;
(* ------------------------------------------------------------------------- *)
(* Point doubling in Jacobian coordinates. *)
(* *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *)
(* ------------------------------------------------------------------------- *)
(***
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/doubling/dbl-2007-bl.op3
***)
let ja_dbl_2007_bl = new_definition
`ja_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) =
let xx = ring_pow f x1 2 in
let yy = ring_pow f y1 2 in
let yyyy = ring_pow f yy 2 in
let zz = ring_pow f z1 2 in
let t0 = ring_add f x1 yy in
let t1 = ring_pow f t0 2 in
let t2 = ring_sub f t1 xx in
let t3 = ring_sub f t2 yyyy in
let s = ring_mul f (ring_of_num f 2) t3 in
let t4 = ring_pow f zz 2 in
let t5 = ring_mul f a t4 in
let t6 = ring_mul f (ring_of_num f 3) xx in
let m = ring_add f t6 t5 in
let t7 = ring_pow f m 2 in
let t8 = ring_mul f (ring_of_num f 2) s in
let t = ring_sub f t7 t8 in
let x3 = t in
let t9 = ring_sub f s t in
let t10 = ring_mul f (ring_of_num f 8) yyyy in
let t11 = ring_mul f m t9 in
let y3 = ring_sub f t11 t10 in
let t12 = ring_add f y1 z1 in
let t13 = ring_pow f t12 2 in
let t14 = ring_sub f t13 yy in
let z3 = ring_sub f t14 zz in
(x3,y3,z3)`;;
let JA_DBL_2007_BL = prove
(`!f a b x1 y1 z1:A.
field f /\
a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_point f (x1,y1,z1)
==> jacobian_eq f (ja_dbl_2007_bl (f,a,b) (x1,y1,z1))
(jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN STRIP_TAC THEN
REWRITE_TAC[ja_dbl_2007_bl; jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0] THEN
ASM_CASES_TAC `z1:A = ring_0 f` THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0] THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let JA_DBL_2007_BL' = prove
(`!f a b x1 y1 z1:A.
field f /\
a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_point f (x1,y1,z1) /\
(z1 = ring_0 f ==> (x1,y1,z1) = jacobian_0 (f,a,b))
==> ja_dbl_2007_bl (f,a,b) (x1,y1,z1) =
jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1)`,
REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN
ASM_CASES_TAC `z1:A = ring_0 f` THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_0; PAIR_EQ;
jacobian_neg; jacobian_0; ja_dbl_2007_bl] THEN
STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0] THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
(* ------------------------------------------------------------------------- *)
(* Point doubling in Jacobian coordinates assuming a = -3. *)
(* *)
(* Source: Bernstein [2001] "A software implementation of NIST P-224". *)
(* ------------------------------------------------------------------------- *)
(***
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-3/doubling/dbl-2001-b.op3
***)
let j3_dbl_2001_b = new_definition
`j3_dbl_2001_b (f:A ring,a:A,b:A) (x1,y1,z1) =
let delta = ring_pow f z1 2 in
let gamma = ring_pow f y1 2 in
let beta = ring_mul f x1 gamma in
let t0 = ring_sub f x1 delta in
let t1 = ring_add f x1 delta in
let t2 = ring_mul f t0 t1 in
let alpha = ring_mul f (ring_of_num f 3) t2 in
let t3 = ring_pow f alpha 2 in
let t4 = ring_mul f (ring_of_num f 8) beta in
let x3 = ring_sub f t3 t4 in
let t5 = ring_add f y1 z1 in
let t6 = ring_pow f t5 2 in
let t7 = ring_sub f t6 gamma in
let z3 = ring_sub f t7 delta in
let t8 = ring_mul f (ring_of_num f 4) beta in
let t9 = ring_sub f t8 x3 in
let t10 = ring_pow f gamma 2 in
let t11 = ring_mul f (ring_of_num f 8) t10 in
let t12 = ring_mul f alpha t9 in
let y3 = ring_sub f t12 t11 in
(x3,y3,z3)`;;
let J3_DBL_2001_B = prove
(`!f a b x1 y1 z1:A.
field f /\
a = ring_of_int f (-- &3) /\ b IN ring_carrier f /\
jacobian_point f (x1,y1,z1)
==> jacobian_eq f (j3_dbl_2001_b (f,a,b) (x1,y1,z1))
(jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN STRIP_TAC THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN
REWRITE_TAC[j3_dbl_2001_b; jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0] THEN
ASM_CASES_TAC `z1:A = ring_0 f` THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0] THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let J3_DBL_2001_B' = prove
(`!f a b x1 y1 z1:A.
field f /\
a = ring_of_int f (-- &3) /\ b IN ring_carrier f /\
jacobian_point f (x1,y1,z1) /\
(z1 = ring_0 f ==> (x1,y1,z1) = jacobian_0 (f,a,b))
==> j3_dbl_2001_b (f,a,b) (x1,y1,z1) =
jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1)`,
REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN
ASM_CASES_TAC `z1:A = ring_0 f` THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_0; PAIR_EQ;
jacobian_neg; jacobian_0; j3_dbl_2001_b] THEN
STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0] THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
(* ------------------------------------------------------------------------- *)
(* Point doubling in Jacobian coordinates assuming a = 0. *)
(* *)
(* Source: Lange [2009]. *)
(* ------------------------------------------------------------------------- *)
(***
*** https://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
***)
let j0_dbl_2009_l = new_definition
`j0_dbl_2009_l (f:A ring,a:A,b:A) (x1,y1,z1) =
let a = ring_pow f x1 2 in
let b = ring_pow f y1 2 in
let c = ring_pow f b 2 in
let t0 = ring_add f x1 b in
let t1 = ring_pow f t0 2 in
let t2 = ring_sub f t1 a in
let t3 = ring_sub f t2 c in
let d = ring_mul f (ring_of_num f 2) t3 in
let e = ring_mul f (ring_of_num f 3) a in
let g = ring_pow f e 2 in
let t4 = ring_mul f (ring_of_num f 2) d in
let x3 = ring_sub f g t4 in
let t5 = ring_sub f d x3 in
let t6 = ring_mul f (ring_of_num f 8) c in
let t7 = ring_mul f e t5 in
let y3 = ring_sub f t7 t6 in
let t8 = ring_mul f y1 z1 in
let z3 = ring_mul f (ring_of_num f 2) t8 in
(x3,y3,z3)`;;
let J0_DBL_2009_L = prove
(`!f a b x1 y1 z1:A.
field f /\
a = ring_0 f /\ b IN ring_carrier f /\
jacobian_point f (x1,y1,z1)
==> jacobian_eq f (j0_dbl_2009_l (f,a,b) (x1,y1,z1))
(jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN STRIP_TAC THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN
REWRITE_TAC[j0_dbl_2009_l; jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0] THEN
ASM_CASES_TAC `z1:A = ring_0 f` THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0] THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let J0_DBL_2009_L' = prove
(`!f a b x1 y1 z1:A.
field f /\
a = ring_0 f /\ b IN ring_carrier f /\
jacobian_point f (x1,y1,z1) /\
(z1 = ring_0 f ==> (x1,y1,z1) = jacobian_0 (f,a,b))
==> j0_dbl_2009_l (f,a,b) (x1,y1,z1) =
jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1)`,
REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN
ASM_CASES_TAC `z1:A = ring_0 f` THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_0; PAIR_EQ;
jacobian_neg; jacobian_0; j0_dbl_2009_l] THEN
STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0] THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
(* ------------------------------------------------------------------------- *)
(* Pure point addition in Jacobian coordinates. This sequence never uses *)
(* the value of "a" so there's no special optimized version for special "a". *)
(* *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *)
(* *)
(* Note the correctness is not proved in cases where the points are equal *)
(* (or projectively equivalent), or either input is 0 (point at infinity). *)
(* ------------------------------------------------------------------------- *)
(***
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/addition/add-2007-bl.op3
***)
let ja_add_2007_bl = new_definition
`ja_add_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) =
let z1z1 = ring_pow f z1 2 in
let z2z2 = ring_pow f z2 2 in
let u1 = ring_mul f x1 z2z2 in
let u2 = ring_mul f x2 z1z1 in
let t0 = ring_mul f z2 z2z2 in
let s1 = ring_mul f y1 t0 in
let t1 = ring_mul f z1 z1z1 in
let s2 = ring_mul f y2 t1 in
let h = ring_sub f u2 u1 in
let t2 = ring_mul f (ring_of_num f 2) h in
let i = ring_pow f t2 2 in
let j = ring_mul f h i in
let t3 = ring_sub f s2 s1 in
let r = ring_mul f (ring_of_num f 2) t3 in
let v = ring_mul f u1 i in
let t4 = ring_pow f r 2 in
let t5 = ring_mul f (ring_of_num f 2) v in
let t6 = ring_sub f t4 j in
let x3 = ring_sub f t6 t5 in
let t7 = ring_sub f v x3 in
let t8 = ring_mul f s1 j in
let t9 = ring_mul f (ring_of_num f 2) t8 in
let t10 = ring_mul f r t7 in
let y3 = ring_sub f t10 t9 in
let t11 = ring_add f z1 z2 in
let t12 = ring_pow f t11 2 in
let t13 = ring_sub f t12 z1z1 in
let t14 = ring_sub f t13 z2z2 in
let z3 = ring_mul f t14 h in
(x3,y3,z3)`;;
let JA_ADD_2007_BL = prove
(`!f a b x1 y1 z1 x2 y2 z2:A.
field f /\ ~(ring_char f = 2) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_point f (x1,y1,z1) /\ jacobian_point f (x2,y2,z2) /\
~(z1 = ring_0 f) /\ ~(z2 = ring_0 f) /\
~(jacobian_eq f (x1,y1,z1) (x2,y2,z2))
==> jacobian_eq f (ja_add_2007_bl (f,a,b) (x1,y1,z1) (x2,y2,z2))
(jacobian_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`,
REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC[jacobian_eq; ja_add_2007_bl; jacobian_add] THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0; LET_DEF; LET_END_DEF]) THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN
FIELD_TAC);;
(* ------------------------------------------------------------------------- *)
(* Mixed point addition in Jacobian coordinates. Here "mixed" means *)
(* assuming z2 = 1, which holds if the second point was directly injected *)
(* from the Weierstrass coordinates via (x,y) |-> (x,y,1). This never uses *)
(* the value of "a" so there's no special optimized version for special "a". *)
(* *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *)
(* *)
(* Note the correctness is not proved in the case where the points are equal *)
(* or projectively equivalent, nor where the first is the group identity *)
(* (i.e. the point at infinity, anything with z1 = 0 in projective coords). *)
(* ------------------------------------------------------------------------- *)
(***
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-3/addition/add-2007-bl.op3
***)
let ja_madd_2007_bl = new_definition
`ja_madd_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) =
let z1z1 = ring_pow f z1 2 in
let u2 = ring_mul f x2 z1z1 in
let t0 = ring_mul f z1 z1z1 in
let s2 = ring_mul f y2 t0 in
let h = ring_sub f u2 x1 in
let hh = ring_pow f h 2 in
let i = ring_mul f (ring_of_num f 4) hh in
let j = ring_mul f h i in
let t1 = ring_sub f s2 y1 in
let r = ring_mul f (ring_of_num f 2) t1 in
let v = ring_mul f x1 i in
let t2 = ring_pow f r 2 in
let t3 = ring_mul f (ring_of_num f 2) v in
let t4 = ring_sub f t2 j in
let x3 = ring_sub f t4 t3 in
let t5 = ring_sub f v x3 in
let t6 = ring_mul f y1 j in
let t7 = ring_mul f (ring_of_num f 2) t6 in
let t8 = ring_mul f r t5 in
let y3 = ring_sub f t8 t7 in
let t9 = ring_add f z1 h in
let t10 = ring_pow f t9 2 in
let t11 = ring_sub f t10 z1z1 in
let z3 = ring_sub f t11 hh in
(x3,y3,z3)`;;
let JA_MADD_2007_BL = prove
(`!f a b x1 y1 z1 x2 y2 z2:A.
field f /\ ~(ring_char f = 2) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_point f (x1,y1,z1) /\ jacobian_point f (x2,y2,z2) /\
z2 = ring_1 f /\
~(z1 = ring_0 f) /\ ~(jacobian_eq f (x1,y1,z1) (x2,y2,z2))
==> jacobian_eq f (ja_madd_2007_bl (f,a,b) (x1,y1,z1) (x2,y2,z2))
(jacobian_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`,
REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC[jacobian_eq; ja_madd_2007_bl; jacobian_add] THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
jacobian_neg; jacobian_0; LET_DEF; LET_END_DEF]) THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;
|