Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 15,448 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
(* ========================================================================= *)
(* Specific formulas for evaluating Jacobian coordinate point operations.    *)
(* ========================================================================= *)

needs "EC/jacobian.ml";;

(* ------------------------------------------------------------------------- *)
(* Point doubling in Jacobian coordinates.                                   *)
(*                                                                           *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..."          *)
(* ------------------------------------------------------------------------- *)

(***
 *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/doubling/dbl-2007-bl.op3
 ***)

let ja_dbl_2007_bl = new_definition
 `ja_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) =
      let xx = ring_pow f x1 2 in
      let yy = ring_pow f y1 2 in
      let yyyy = ring_pow f yy 2 in
      let zz = ring_pow f z1 2 in
      let t0 = ring_add f x1 yy in
      let t1 = ring_pow f t0 2 in
      let t2 = ring_sub f t1 xx in
      let t3 = ring_sub f t2 yyyy in
      let s = ring_mul f (ring_of_num f 2) t3 in
      let t4 = ring_pow f zz 2 in
      let t5 = ring_mul f a t4 in
      let t6 = ring_mul f (ring_of_num f 3) xx in
      let m = ring_add f t6 t5 in
      let t7 = ring_pow f m 2 in
      let t8 = ring_mul f (ring_of_num f 2) s in
      let t = ring_sub f t7 t8 in
      let x3 = t in
      let t9 = ring_sub f s t in
      let t10 = ring_mul f (ring_of_num f 8) yyyy in
      let t11 = ring_mul f m t9 in
      let y3 = ring_sub f t11 t10 in
      let t12 = ring_add f y1 z1 in
      let t13 = ring_pow f t12 2 in
      let t14 = ring_sub f t13 yy in
      let z3 = ring_sub f t14 zz in
      (x3,y3,z3)`;;

let JA_DBL_2007_BL = prove
 (`!f a b x1 y1 z1:A.
        field f /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        jacobian_point f (x1,y1,z1)
        ==> jacobian_eq f (ja_dbl_2007_bl (f,a,b) (x1,y1,z1))
                          (jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN STRIP_TAC THEN
  REWRITE_TAC[ja_dbl_2007_bl; jacobian_add; jacobian_eq;
              jacobian_neg; jacobian_0] THEN
  ASM_CASES_TAC `z1:A = ring_0 f` THEN
  ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
                  jacobian_neg; jacobian_0] THEN
  ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
  FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;

let JA_DBL_2007_BL' = prove
 (`!f a b x1 y1 z1:A.
        field f /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        jacobian_point f (x1,y1,z1) /\
        (z1 = ring_0 f ==> (x1,y1,z1) = jacobian_0 (f,a,b))
        ==> ja_dbl_2007_bl (f,a,b) (x1,y1,z1) =
            jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN
  ASM_CASES_TAC `z1:A = ring_0 f` THEN
  ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_0; PAIR_EQ;
                  jacobian_neg; jacobian_0; ja_dbl_2007_bl] THEN
  STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
  ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
                  jacobian_neg; jacobian_0] THEN
  ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
  FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;

(* ------------------------------------------------------------------------- *)
(* Point doubling in Jacobian coordinates assuming a = -3.                   *)
(*                                                                           *)
(* Source: Bernstein [2001] "A software implementation of NIST P-224".       *)
(* ------------------------------------------------------------------------- *)

(***
 *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-3/doubling/dbl-2001-b.op3
 ***)

let j3_dbl_2001_b = new_definition
 `j3_dbl_2001_b (f:A ring,a:A,b:A) (x1,y1,z1) =
      let delta = ring_pow f z1 2 in
      let gamma = ring_pow f y1 2 in
      let beta = ring_mul f x1 gamma in
      let t0 = ring_sub f x1 delta in
      let t1 = ring_add f x1 delta in
      let t2 = ring_mul f t0 t1 in
      let alpha = ring_mul f (ring_of_num f 3) t2 in
      let t3 = ring_pow f alpha 2 in
      let t4 = ring_mul f (ring_of_num f 8) beta in
      let x3 = ring_sub f t3 t4 in
      let t5 = ring_add f y1 z1 in
      let t6 = ring_pow f t5 2 in
      let t7 = ring_sub f t6 gamma in
      let z3 = ring_sub f t7 delta in
      let t8 = ring_mul f (ring_of_num f 4) beta in
      let t9 = ring_sub f t8 x3 in
      let t10 = ring_pow f gamma 2 in
      let t11 = ring_mul f (ring_of_num f 8) t10 in
      let t12 = ring_mul f alpha t9 in
      let y3 = ring_sub f t12 t11 in
      (x3,y3,z3)`;;

let J3_DBL_2001_B = prove
 (`!f a b x1 y1 z1:A.
        field f /\
        a = ring_of_int f (-- &3) /\ b IN ring_carrier f /\
        jacobian_point f (x1,y1,z1)
        ==> jacobian_eq f (j3_dbl_2001_b (f,a,b) (x1,y1,z1))
                          (jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN STRIP_TAC THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN
  REWRITE_TAC[j3_dbl_2001_b; jacobian_add; jacobian_eq;
              jacobian_neg; jacobian_0] THEN
  ASM_CASES_TAC `z1:A = ring_0 f` THEN
  ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
                  jacobian_neg; jacobian_0] THEN
  ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
  FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;

let J3_DBL_2001_B' = prove
 (`!f a b x1 y1 z1:A.
        field f /\
        a = ring_of_int f (-- &3) /\ b IN ring_carrier f /\
        jacobian_point f (x1,y1,z1) /\
        (z1 = ring_0 f ==> (x1,y1,z1) = jacobian_0 (f,a,b))
        ==> j3_dbl_2001_b (f,a,b) (x1,y1,z1) =
            jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN
  ASM_CASES_TAC `z1:A = ring_0 f` THEN
  ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_0; PAIR_EQ;
                  jacobian_neg; jacobian_0; j3_dbl_2001_b] THEN
  STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
  ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
                  jacobian_neg; jacobian_0] THEN
  ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
  FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;

(* ------------------------------------------------------------------------- *)
(* Point doubling in Jacobian coordinates assuming a = 0.                    *)
(*                                                                           *)
(* Source: Lange [2009].                                                     *)
(* ------------------------------------------------------------------------- *)

(***
 *** https://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
 ***)

let j0_dbl_2009_l = new_definition
 `j0_dbl_2009_l (f:A ring,a:A,b:A) (x1,y1,z1) =
      let a = ring_pow f x1 2 in
      let b = ring_pow f y1 2 in
      let c = ring_pow f b 2 in
      let t0 = ring_add f x1 b in
      let t1 = ring_pow f t0 2 in
      let t2 = ring_sub f t1 a in
      let t3 = ring_sub f t2 c in
      let d = ring_mul f (ring_of_num f 2) t3 in
      let e = ring_mul f (ring_of_num f 3) a in
      let g = ring_pow f e 2 in
      let t4 = ring_mul f (ring_of_num f 2) d in
      let x3 = ring_sub f g t4 in
      let t5 = ring_sub f d x3 in
      let t6 = ring_mul f (ring_of_num f 8) c in
      let t7 = ring_mul f e t5 in
      let y3 = ring_sub f t7 t6 in
      let t8 = ring_mul f y1 z1 in
      let z3 = ring_mul f (ring_of_num f 2) t8 in
      (x3,y3,z3)`;;

let J0_DBL_2009_L = prove
 (`!f a b x1 y1 z1:A.
        field f /\
        a = ring_0 f /\ b IN ring_carrier f /\
        jacobian_point f (x1,y1,z1)
        ==> jacobian_eq f (j0_dbl_2009_l (f,a,b) (x1,y1,z1))
                          (jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN STRIP_TAC THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN
  REWRITE_TAC[j0_dbl_2009_l; jacobian_add; jacobian_eq;
              jacobian_neg; jacobian_0] THEN
  ASM_CASES_TAC `z1:A = ring_0 f` THEN
  ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
                  jacobian_neg; jacobian_0] THEN
  ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
  FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;

let J0_DBL_2009_L' = prove
 (`!f a b x1 y1 z1:A.
        field f /\
        a = ring_0 f /\ b IN ring_carrier f /\
        jacobian_point f (x1,y1,z1) /\
        (z1 = ring_0 f ==> (x1,y1,z1) = jacobian_0 (f,a,b))
        ==> j0_dbl_2009_l (f,a,b) (x1,y1,z1) =
            jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN
  ASM_CASES_TAC `z1:A = ring_0 f` THEN
  ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_0; PAIR_EQ;
                  jacobian_neg; jacobian_0; j0_dbl_2009_l] THEN
  STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
  ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
                  jacobian_neg; jacobian_0] THEN
  ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN
  FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;

(* ------------------------------------------------------------------------- *)
(* Pure point addition in Jacobian coordinates. This sequence never uses     *)
(* the value of "a" so there's no special optimized version for special "a". *)
(*                                                                           *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..."          *)
(*                                                                           *)
(* Note the correctness is not proved in cases where the points are equal    *)
(* (or projectively equivalent), or either input is 0 (point at infinity).   *)
(* ------------------------------------------------------------------------- *)

(***
 *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/addition/add-2007-bl.op3
 ***)

let ja_add_2007_bl = new_definition
 `ja_add_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) =
      let z1z1 = ring_pow f z1 2 in
      let z2z2 = ring_pow f z2 2 in
      let u1 = ring_mul f x1 z2z2 in
      let u2 = ring_mul f x2 z1z1 in
      let t0 = ring_mul f z2 z2z2 in
      let s1 = ring_mul f y1 t0 in
      let t1 = ring_mul f z1 z1z1 in
      let s2 = ring_mul f y2 t1 in
      let h = ring_sub f u2 u1 in
      let t2 = ring_mul f (ring_of_num f 2) h in
      let i = ring_pow f t2 2 in
      let j = ring_mul f h i in
      let t3 = ring_sub f s2 s1 in
      let r = ring_mul f (ring_of_num f 2) t3 in
      let v = ring_mul f u1 i in
      let t4 = ring_pow f r 2 in
      let t5 = ring_mul f (ring_of_num f 2) v in
      let t6 = ring_sub f t4 j in
      let x3 = ring_sub f t6 t5 in
      let t7 = ring_sub f v x3 in
      let t8 = ring_mul f s1 j in
      let t9 = ring_mul f (ring_of_num f 2) t8 in
      let t10 = ring_mul f r t7 in
      let y3 = ring_sub f t10 t9 in
      let t11 = ring_add f z1 z2 in
      let t12 = ring_pow f t11 2 in
      let t13 = ring_sub f t12 z1z1 in
      let t14 = ring_sub f t13 z2z2 in
      let z3 = ring_mul f t14 h in
      (x3,y3,z3)`;;

let JA_ADD_2007_BL = prove
 (`!f a b x1 y1 z1 x2 y2 z2:A.
        field f /\ ~(ring_char f = 2) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        jacobian_point f (x1,y1,z1) /\ jacobian_point f (x2,y2,z2) /\
        ~(z1 = ring_0 f) /\ ~(z2 = ring_0 f) /\
        ~(jacobian_eq f (x1,y1,z1) (x2,y2,z2))
        ==> jacobian_eq f (ja_add_2007_bl (f,a,b) (x1,y1,z1) (x2,y2,z2))
                          (jacobian_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
  REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
  ASM_REWRITE_TAC[jacobian_eq; ja_add_2007_bl; jacobian_add] THEN
  REPEAT(COND_CASES_TAC THEN
   ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
                   jacobian_neg; jacobian_0; LET_DEF; LET_END_DEF]) THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN
  FIELD_TAC);;

(* ------------------------------------------------------------------------- *)
(* Mixed point addition in Jacobian coordinates. Here "mixed" means          *)
(* assuming z2 = 1, which holds if the second point was directly injected    *)
(* from the Weierstrass coordinates via (x,y) |-> (x,y,1). This never uses   *)
(* the value of "a" so there's no special optimized version for special "a". *)
(*                                                                           *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..."          *)
(*                                                                           *)
(* Note the correctness is not proved in the case where the points are equal *)
(* or projectively equivalent, nor where the first is the group identity     *)
(* (i.e. the point at infinity, anything with z1 = 0 in projective coords).  *)
(* ------------------------------------------------------------------------- *)

(***
 *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-3/addition/add-2007-bl.op3
 ***)

let ja_madd_2007_bl = new_definition
 `ja_madd_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) =
      let z1z1 = ring_pow f z1 2 in
      let u2 = ring_mul f x2 z1z1 in
      let t0 = ring_mul f z1 z1z1 in
      let s2 = ring_mul f y2 t0 in
      let h = ring_sub f u2 x1 in
      let hh = ring_pow f h 2 in
      let i = ring_mul f (ring_of_num f 4) hh in
      let j = ring_mul f h i in
      let t1 = ring_sub f s2 y1 in
      let r = ring_mul f (ring_of_num f 2) t1 in
      let v = ring_mul f x1 i in
      let t2 = ring_pow f r 2 in
      let t3 = ring_mul f (ring_of_num f 2) v in
      let t4 = ring_sub f t2 j in
      let x3 = ring_sub f t4 t3 in
      let t5 = ring_sub f v x3 in
      let t6 = ring_mul f y1 j in
      let t7 = ring_mul f (ring_of_num f 2) t6 in
      let t8 = ring_mul f r t5 in
      let y3 = ring_sub f t8 t7 in
      let t9 = ring_add f z1 h in
      let t10 = ring_pow f t9 2 in
      let t11 = ring_sub f t10 z1z1 in
      let z3 = ring_sub f t11 hh in
      (x3,y3,z3)`;;

let JA_MADD_2007_BL = prove
 (`!f a b x1 y1 z1 x2 y2 z2:A.
        field f /\ ~(ring_char f = 2) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        jacobian_point f (x1,y1,z1) /\ jacobian_point f (x2,y2,z2) /\
        z2 = ring_1 f /\
        ~(z1 = ring_0 f) /\ ~(jacobian_eq f (x1,y1,z1) (x2,y2,z2))
        ==> jacobian_eq f (ja_madd_2007_bl (f,a,b) (x1,y1,z1) (x2,y2,z2))
                          (jacobian_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
  REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
  ASM_REWRITE_TAC[jacobian_eq; ja_madd_2007_bl; jacobian_add] THEN
  REPEAT(COND_CASES_TAC THEN
   ASM_REWRITE_TAC[jacobian_add; jacobian_eq;
                   jacobian_neg; jacobian_0; LET_DEF; LET_END_DEF]) THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN
  FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;