Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 42,452 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
(* ========================================================================= *)
(* Rob Arthan's "Descartes's Rule of Signs by an Easy Induction".            *)
(* ========================================================================= *)

needs "Multivariate/realanalysis.ml";;

(* ------------------------------------------------------------------------- *)
(* A couple of handy lemmas.                                                 *)
(* ------------------------------------------------------------------------- *)

let OPPOSITE_SIGNS = prove
 (`!a b:real. a * b < &0 <=> &0 < a /\ b < &0 \/ a < &0 /\ &0 < b`,
  REWRITE_TAC[REAL_ARITH `a * b < &0 <=> &0 < a * --b`; REAL_MUL_POS_LT] THEN
  REAL_ARITH_TAC);;

let VARIATION_SET_FINITE = prove
 (`FINITE s ==> FINITE {p,q | p IN s /\ q IN s /\ P p q}`,
  REWRITE_TAC[SET_RULE
   `{p,q | p IN s /\ q IN t /\ R p q} =
    {p,q | p IN s /\ q IN {q | q IN t /\ R p q}}`] THEN
  SIMP_TAC[FINITE_PRODUCT_DEPENDENT; FINITE_RESTRICT]);;

(* ------------------------------------------------------------------------- *)
(* Variation in a sequence of coefficients.                                  *)
(* ------------------------------------------------------------------------- *)

let variation = new_definition
 `variation s (a:num->real) =
     CARD {(p,q) | p IN s /\ q IN s /\ p < q /\
                   a(p) * a(q) < &0 /\
                   !i. i IN s /\ p < i /\ i < q ==> a(i) = &0 }`;;

let VARIATION_EQ = prove
 (`!a b s. (!i. i IN s ==> a i = b i) ==> variation s a = variation s b`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[variation] THEN AP_TERM_TAC THEN
  REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
  ASM_MESON_TAC[]);;

let VARIATION_SUBSET = prove
 (`!a s t. t SUBSET s /\ (!i. i IN (s DIFF t) ==> a i = &0)
           ==> variation s a = variation t a`,
  REWRITE_TAC[IN_DIFF; SUBSET] THEN REPEAT STRIP_TAC THEN
  REWRITE_TAC[variation] THEN AP_TERM_TAC THEN
  REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
  ASM_MESON_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_LT_REFL]);;

let VARIATION_SPLIT = prove
 (`!a s n.
        FINITE s /\ n IN s /\ ~(a n = &0)
        ==> variation s a = variation {i | i IN s /\ i <= n} a +
                            variation {i | i IN s /\ n <= i} a`,
  REWRITE_TAC[variation] THEN REPEAT STRIP_TAC THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_UNION_EQ THEN
  ASM_SIMP_TAC[VARIATION_SET_FINITE; FINITE_RESTRICT] THEN
  REWRITE_TAC[EXTENSION; FORALL_PAIR_THM] THEN CONJ_TAC THENL
   [REWRITE_TAC[IN_INTER; NOT_IN_EMPTY; IN_ELIM_PAIR_THM; IN_NUMSEG] THEN
    REWRITE_TAC[IN_ELIM_THM] THEN ARITH_TAC;
    REWRITE_TAC[IN_UNION; IN_ELIM_PAIR_THM; IN_NUMSEG] THEN
    REPEAT GEN_TAC THEN EQ_TAC THENL
     [STRIP_TAC;
      STRIP_TAC THEN FIRST_X_ASSUM(fun th ->
        MP_TAC(SPEC `n:num` th) THEN ASM_REWRITE_TAC[] THEN ASSUME_TAC th) THEN
      SIMP_TAC[TAUT `~(a /\ b) <=> ~b \/ ~a`] THEN MATCH_MP_TAC MONO_OR] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN
    ASM_REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN
    TRY(FIRST_ASSUM MATCH_MP_TAC) THEN
    FIRST_ASSUM(fun th -> MP_TAC(SPEC `n:num` th) THEN ASM_REWRITE_TAC[]) THEN
    ASM_ARITH_TAC]);;

let VARIATION_SPLIT_NUMSEG = prove
 (`!a m n p. n IN m..p /\ ~(a n = &0)
             ==> variation(m..p) a = variation(m..n) a + variation(n..p) a`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP
   (REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> b /\ c ==> a ==> d`]
     VARIATION_SPLIT)) THEN
  REWRITE_TAC[FINITE_NUMSEG] THEN DISCH_THEN SUBST1_TAC THEN
  BINOP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[IN_NUMSEG]) THEN ASM_ARITH_TAC);;

let VARIATION_1 = prove
 (`!a n. variation {n} a = 0`,
  REWRITE_TAC[variation; IN_SING] THEN
  REWRITE_TAC[ARITH_RULE `p:num = n /\ q = n /\ p < q /\ X <=> F`] THEN
  MATCH_MP_TAC(MESON[CARD_CLAUSES] `s = {} ==> CARD s = 0`) THEN
  REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; NOT_IN_EMPTY]);;

let VARIATION_2 = prove
 (`!a m n. variation {m,n} a = if a(m) * a(n) < &0 then 1 else 0`,
  GEN_TAC THEN MATCH_MP_TAC WLOG_LT THEN REPEAT CONJ_TAC THENL
   [REWRITE_TAC[INSERT_AC; VARIATION_1; GSYM REAL_NOT_LE; REAL_LE_SQUARE];
    REWRITE_TAC[INSERT_AC; REAL_MUL_SYM];
    REPEAT STRIP_TAC THEN REWRITE_TAC[variation; IN_INSERT; NOT_IN_EMPTY] THEN
    ONCE_REWRITE_TAC[TAUT
     `a /\ b /\ c /\ d /\ e <=> (a /\ b /\ c) /\ d /\ e`] THEN
    ASM_SIMP_TAC[ARITH_RULE
     `m:num < n
      ==> ((p = m \/ p = n) /\ (q = m \/ q = n) /\ p < q <=>
           p = m /\ q = n)`] THEN
    REWRITE_TAC[MESON[] `(p = m /\ q = n) /\ X p q <=>
                         (p = m /\ q = n) /\ X m n`] THEN
    REWRITE_TAC[ARITH_RULE `(i:num = m \/ i = n) /\ m < i /\ i < n <=> F`] THEN
    ASM_CASES_TAC `a m * a(n:num) < &0` THEN ASM_REWRITE_TAC[] THENL
     [REWRITE_TAC[SET_RULE `{p,q | p = a /\ q = b} = {(a,b)}`] THEN
      SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; ARITH];
      MATCH_MP_TAC(MESON[CARD_CLAUSES] `s = {} ==> CARD s = 0`) THEN
      SIMP_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; NOT_IN_EMPTY]]]);;

let VARIATION_3 = prove
 (`!a m n p.
        m < n /\ n < p
        ==> variation {m,n,p} a = if a(n) = &0 then variation{m,p} a
                                  else variation {m,n} a + variation{n,p} a`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
   [MATCH_MP_TAC VARIATION_SUBSET THEN ASM SET_TAC[];
    MP_TAC(ISPECL [`a:num->real`; `{m:num,n,p}`; `n:num`] VARIATION_SPLIT) THEN
    ASM_SIMP_TAC[FINITE_INSERT; FINITE_EMPTY; IN_INSERT; NOT_IN_EMPTY] THEN
    DISCH_THEN SUBST1_TAC THEN BINOP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
    ASM_ARITH_TAC]);;

let VARIATION_OFFSET = prove
 (`!p m n a. variation(m+p..n+p) a = variation(m..n) (\i. a(i + p))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[variation] THEN
  MATCH_MP_TAC BIJECTIONS_CARD_EQ THEN MAP_EVERY EXISTS_TAC
   [`\(i:num,j). i - p,j - p`; `\(i:num,j). i + p,j + p`] THEN
  REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_PAIR_THM] THEN
  SIMP_TAC[VARIATION_SET_FINITE; FINITE_NUMSEG] THEN
  REWRITE_TAC[IN_NUMSEG; PAIR_EQ] THEN
  REPEAT STRIP_TAC THEN TRY ASM_ARITH_TAC THENL
   [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
     `y < &0 ==> x = y ==> x < &0`)) THEN
    BINOP_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC;
    FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
    FIRST_X_ASSUM(MP_TAC o SPEC `i - p:num`) THEN
    ANTS_TAC THENL [ASM_ARITH_TAC; MATCH_MP_TAC EQ_IMP] THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* The crucial lemma (roughly Lemma 2 in the paper).                         *)
(* ------------------------------------------------------------------------- *)

let ARTHAN_LEMMA = prove
 (`!n a b.
        ~(a n = &0) /\ (b n = &0) /\ (!m. sum(0..m) a = b m)
        ==> ?d. ODD d /\ variation (0..n) a = variation (0..n) b + d`,
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN
  DISCH_THEN(LABEL_TAC "*") THEN
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [FIRST_X_ASSUM(MP_TAC o SPEC `0`) THEN
    ASM_REWRITE_TAC[SUM_SING_NUMSEG] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
   `~(n = 0) ==> n = 1 \/ 2 <= n`))
  THENL
   [FIRST_X_ASSUM SUBST_ALL_TAC THEN EXISTS_TAC `1` THEN
    CONV_TAC NUM_REDUCE_CONV THEN
    CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN
    REWRITE_TAC[VARIATION_2; OPPOSITE_SIGNS] THEN
    FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `0` th) THEN MP_TAC(SPEC `1` th)) THEN
    SIMP_TAC[num_CONV `1`; SUM_CLAUSES_NUMSEG] THEN
    CONV_TAC NUM_REDUCE_CONV THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN
    ASM_ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `?p. 1 < p /\ p <= n /\ ~(a p = &0)` MP_TAC THENL
   [ASM_MESON_TAC[ARITH_RULE `2 <= n ==> 1 < n`; LE_REFL];
    GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
    REWRITE_TAC[TAUT `a ==> ~(b /\ c /\ ~d) <=> a /\ b /\ c ==> d`] THEN
    STRIP_TAC] THEN
  REMOVE_THEN "*" (MP_TAC o SPEC `n - 1`) THEN
  ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPECL
   [`(\i. if i + 1 = 1 then a 0 + a 1 else a(i + 1)):num->real`;
    `(\i. b(i + 1)):num->real`]) THEN
  ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n = 1) /\ n - 1 + 1 = n`] THEN
  REWRITE_TAC[GSYM(SPEC `1` VARIATION_OFFSET)] THEN ANTS_TAC THENL
   [X_GEN_TAC `m:num` THEN MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `sum(0..m+1) a` THEN CONJ_TAC THENL
     [SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; ARITH_RULE `0 + 1 <= n + 1`] THEN
      CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[REAL_ADD_ASSOC] THEN
      AP_TERM_TAC THEN REWRITE_TAC[ARITH_RULE `2 = 1 + 1`; SUM_OFFSET] THEN
      MATCH_MP_TAC SUM_EQ_NUMSEG THEN ARITH_TAC;
      ASM_REWRITE_TAC[]];
    ABBREV_TAC `a':num->real = \m. if m = 1 then a 0 + a 1 else a m` THEN
    ASM_SIMP_TAC[ARITH_RULE
     `2 <= n ==> n - 1 + 1 = n /\ n - 1 - 1 + 1 = n - 1`] THEN
    CONV_TAC NUM_REDUCE_CONV] THEN
  SUBGOAL_THEN
   `variation (1..n) a' = variation {1,p} a' + variation (p..n) a /\
    variation (0..n) a = variation {0,1,p} a + variation (p..n) a`
   (CONJUNCTS_THEN SUBST1_TAC)
  THENL
   [CONJ_TAC THEN MATCH_MP_TAC EQ_TRANS THENL
     [EXISTS_TAC `variation(1..p) a' + variation(p..n) a'`;
      EXISTS_TAC `variation(0..p) a + variation(p..n) a`] THEN
    (CONJ_TAC THENL
      [MATCH_MP_TAC VARIATION_SPLIT_NUMSEG THEN EXPAND_TAC "a'" THEN
       REWRITE_TAC[IN_NUMSEG] THEN ASM_ARITH_TAC;
       BINOP_TAC THENL
        [MATCH_MP_TAC VARIATION_SUBSET; MATCH_MP_TAC VARIATION_EQ] THEN
       EXPAND_TAC "a'" THEN REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
       REWRITE_TAC[IN_NUMSEG] THEN TRY(GEN_TAC THEN ASM_ARITH_TAC) THEN
       (CONJ_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[IN_DIFF]]) THEN
       REWRITE_TAC[IN_NUMSEG; IN_INSERT; NOT_IN_EMPTY] THEN
       REPEAT STRIP_TAC THEN TRY COND_CASES_TAC THEN
       TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN ASM_ARITH_TAC]);
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  REWRITE_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_ADD] THEN
  DISCH_THEN(ASSUME_TAC o MATCH_MP (INT_ARITH
   `a + b:int = c + d ==> c = (a + b) - d`)) THEN
  REWRITE_TAC[INT_ARITH `a + b:int = c + d <=> d = (a + b) - c`] THEN
  ASM_CASES_TAC `a 0 + a 1 = &0` THENL
   [SUBGOAL_THEN `!i. 0 < i /\ i < p ==> b i = &0` ASSUME_TAC THENL
     [REPEAT STRIP_TAC THEN
      FIRST_X_ASSUM(SUBST1_TAC o SYM o SPEC `i:num`) THEN
      ASM_SIMP_TAC[SUM_CLAUSES_LEFT; LE_0;
                   ARITH_RULE `0 < i ==> 0 + 1 <= i`] THEN
      CONV_TAC NUM_REDUCE_CONV THEN
      ASM_REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LID] THEN
      MATCH_MP_TAC SUM_EQ_0_NUMSEG THEN REPEAT STRIP_TAC THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN `(b:num->real) p = a p` ASSUME_TAC THENL
     [FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [GSYM th]) THEN
      SIMP_TAC[SUM_CLAUSES_RIGHT; ASSUME `1 < p`;
                 ARITH_RULE `1 < p ==> 0 < p /\ 0 <= p`] THEN
      ASM_REWRITE_TAC[REAL_EQ_ADD_RCANCEL_0] THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN `variation(0..n) b = variation {0,p} b + variation(1..n) b`
    SUBST1_TAC THENL
     [MATCH_MP_TAC EQ_TRANS THEN
      EXISTS_TAC `variation(0..p) b + variation(p..n) b` THEN CONJ_TAC THENL
       [MATCH_MP_TAC VARIATION_SPLIT_NUMSEG THEN REWRITE_TAC[IN_NUMSEG] THEN
        CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
        FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `p:num`) THEN
        SIMP_TAC[SUM_CLAUSES_RIGHT; ASSUME `1 < p`;
                 ARITH_RULE `1 < p ==> 0 < p /\ 0 <= p`] THEN
        ASM_REWRITE_TAC[] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
         `~(ap = &0) ==> s = &0 ==> ~(s + ap = &0)`)) THEN
        FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
        BINOP_TAC THENL [ALL_TAC; CONV_TAC SYM_CONV] THEN
        MATCH_MP_TAC VARIATION_SUBSET THEN
        REWRITE_TAC[SUBSET; IN_DIFF; IN_NUMSEG; IN_INSERT; NOT_IN_EMPTY] THEN
        (CONJ_TAC THENL [ASM_ARITH_TAC; REPEAT STRIP_TAC]) THEN
        FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC];
      ALL_TAC];
    SUBGOAL_THEN `variation(0..n) b = variation {0,1} b + variation(1..n) b`
    SUBST1_TAC THENL
     [MATCH_MP_TAC EQ_TRANS THEN
      EXISTS_TAC `variation(0..1) b + variation(1..n) b` THEN CONJ_TAC THENL
       [MATCH_MP_TAC VARIATION_SPLIT_NUMSEG THEN REWRITE_TAC[IN_NUMSEG] THEN
        CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
        FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `1`) THEN
        SIMP_TAC[SUM_CLAUSES_NUMSEG; num_CONV `1`] THEN
        CONV_TAC NUM_REDUCE_CONV THEN ASM_REWRITE_TAC[];
        AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC VARIATION_SUBSET THEN
        REWRITE_TAC[SUBSET; IN_DIFF; IN_NUMSEG; IN_INSERT; NOT_IN_EMPTY] THEN
        ARITH_TAC];
      SUBGOAL_THEN `(b:num->real) 1 = a 0 + a 1` ASSUME_TAC THENL
       [FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [GSYM th]) THEN
        SIMP_TAC[num_CONV `1`; SUM_CLAUSES_NUMSEG] THEN
        CONV_TAC NUM_REDUCE_CONV;
        ALL_TAC]]] THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `0`)) THEN CONV_TAC NUM_REDUCE_CONV THEN
  REWRITE_TAC[SUM_SING_NUMSEG] THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[GSYM INT_OF_NUM_ADD] THEN
  ASM_SIMP_TAC[VARIATION_3; ARITH; OPPOSITE_SIGNS] THEN COND_CASES_TAC THEN
  REWRITE_TAC[VARIATION_2; OPPOSITE_SIGNS; REAL_LT_REFL] THEN
  EXPAND_TAC "a'" THEN CONV_TAC NUM_REDUCE_CONV THEN
  ASM_SIMP_TAC[ARITH_RULE `1 < p ==> ~(p = 1)`; REAL_LT_REFL] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
  CONV_TAC NUM_REDUCE_CONV THEN
  CONV_TAC(BINDER_CONV(RAND_CONV(RAND_CONV INT_POLY_CONV))) THEN
  REWRITE_TAC[INT_ARITH `x:int = y + --z <=> x + z = y`] THEN
  REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_EQ] THEN
  ONCE_REWRITE_TAC[CONJ_SYM] THEN ASM_REWRITE_TAC[UNWIND_THM2] THEN
  ASM_REWRITE_TAC[ODD_ADD; ARITH_ODD; ARITH_EVEN] THEN ASM_REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Relate even-ness or oddity of variation to signs of end coefficients.     *)
(* ------------------------------------------------------------------------- *)

let VARIATION_OPPOSITE_ENDS = prove
 (`!a m n.
    m <= n /\ ~(a m = &0) /\ ~(a n = &0)
    ==> (ODD(variation(m..n) a) <=> a m * a n < &0)`,
  REPEAT GEN_TAC THEN WF_INDUCT_TAC `n - m:num` THEN REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `!i:num. m < i /\ i < n ==> a i = &0` THENL
   [MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `ODD(variation {m,n} a)` THEN
    CONJ_TAC THENL
     [AP_TERM_TAC THEN MATCH_MP_TAC VARIATION_SUBSET THEN
      ASM_REWRITE_TAC[INSERT_SUBSET; IN_NUMSEG; IN_DIFF; EMPTY_SUBSET] THEN
      REWRITE_TAC[LE_REFL; IN_INSERT; NOT_IN_EMPTY] THEN
      REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
      REWRITE_TAC[VARIATION_2] THEN COND_CASES_TAC THEN
      ASM_REWRITE_TAC[ARITH]];
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN
    REWRITE_TAC[NOT_IMP] THEN
    DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
    FIRST_X_ASSUM(fun th ->
        MP_TAC(SPECL [`n:num`; `p:num`] th) THEN
        MP_TAC(SPECL [`p:num`; `m:num`] th)) THEN
    ASM_SIMP_TAC[LT_IMP_LE] THEN
    REPEAT(ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_TAC]) THEN
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `ODD(variation(m..p) a + variation(p..n) a)` THEN CONJ_TAC THENL
     [AP_TERM_TAC THEN MATCH_MP_TAC VARIATION_SPLIT_NUMSEG THEN
      ASM_SIMP_TAC[LT_IMP_LE; IN_NUMSEG];
      ASM_REWRITE_TAC[ODD_ADD; OPPOSITE_SIGNS] THEN ASM_REAL_ARITH_TAC]]);;

(* ------------------------------------------------------------------------- *)
(* Polynomial with odd variation has at least one positive root.             *)
(* This is the only "analytical" part of the proof.                          *)
(* ------------------------------------------------------------------------- *)

let REAL_POLYFUN_SGN_AT_INFINITY = prove
 (`!a n. ~(a n = &0)
         ==> ?B. &0 < B /\
                 !x. B <= abs x
                     ==> real_sgn(sum(0..n) (\i. a i * x pow i)) =
                         real_sgn(a n * x pow n)`,
  let lemma = prove
   (`abs(x) < abs(y) ==> real_sgn(x + y) = real_sgn y`,
    REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC) in
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[REAL_LT_01; SUM_SING_NUMSEG];
    ALL_TAC] THEN
  ABBREV_TAC `B = sum (0..n-1) (\i. abs(a i)) / abs(a n)` THEN
  SUBGOAL_THEN `&0 <= B` ASSUME_TAC THENL
   [EXPAND_TAC "B" THEN SIMP_TAC[REAL_LE_DIV; REAL_ABS_POS; SUM_POS_LE_NUMSEG];
    ALL_TAC] THEN
  EXISTS_TAC `&1 + B` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  X_GEN_TAC `x:real` THEN STRIP_TAC THEN
  ASM_SIMP_TAC[SUM_CLAUSES_RIGHT; LE_0; LE_1] THEN MATCH_MP_TAC lemma THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `sum(0..n-1) (\i. abs(a i)) * abs x pow (n - 1)` THEN
  CONJ_TAC THENL
   [REWRITE_TAC[GSYM SUM_RMUL] THEN MATCH_MP_TAC SUM_ABS_LE THEN
    REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
    X_GEN_TAC `i:num` THEN STRIP_TAC THEN REWRITE_TAC[REAL_ABS_MUL] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS; REAL_ABS_POW] THEN
    MATCH_MP_TAC REAL_POW_MONO THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC;
    SUBGOAL_THEN `(x:real) pow n = x * x pow (n - 1)` SUBST1_TAC THENL
     [SIMP_TAC[GSYM(CONJUNCT2 real_pow)] THEN AP_TERM_TAC THEN ASM_ARITH_TAC;
      REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_MUL_ASSOC] THEN
      MATCH_MP_TAC REAL_LT_RMUL THEN CONJ_TAC THENL
       [ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
        ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; GSYM REAL_ABS_NZ] THEN
        ASM_REAL_ARITH_TAC;
        MATCH_MP_TAC REAL_POW_LT THEN ASM_REAL_ARITH_TAC]]]);;

let REAL_POLYFUN_HAS_POSITIVE_ROOT = prove
 (`!a n. a 0 < &0 /\ &0 < a n
         ==> ?x. &0 < x /\ sum(0..n) (\i. a i * x pow i) = &0`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?x. &0 < x /\ &0 <= sum(0..n) (\i. a i * x pow i)`
  STRIP_ASSUME_TAC THENL
   [MP_TAC(ISPECL [`a:num->real`; `n:num`] REAL_POLYFUN_SGN_AT_INFINITY) THEN
    ASM_SIMP_TAC[REAL_LT_IMP_NZ] THEN MATCH_MP_TAC MONO_EXISTS THEN
    X_GEN_TAC `x:real` THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:real`)) THEN
    ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    SUBGOAL_THEN `real_sgn(a n * x pow n) = &1` SUBST1_TAC THEN
    ASM_SIMP_TAC[REAL_SGN_EQ; REAL_LT_MUL; REAL_POW_LT; real_gt] THEN
    REWRITE_TAC[REAL_LT_IMP_LE];
    MP_TAC(ISPECL [`\x. sum(0..n) (\i. a i * x pow i)`;
                   `&0`; `x:real`; `&0`] REAL_IVT_INCREASING) THEN
    ASM_SIMP_TAC[REAL_LT_IMP_LE; IN_REAL_INTERVAL;
                 REAL_POW_ZERO; COND_RAND] THEN
    REWRITE_TAC[REAL_MUL_RID; REAL_MUL_RZERO; SUM_DELTA; IN_NUMSEG; LE_0] THEN
    ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN ANTS_TAC THENL
     [MATCH_MP_TAC REAL_CONTINUOUS_ON_SUM THEN
      REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
      MATCH_MP_TAC REAL_CONTINUOUS_ON_LMUL THEN
      MATCH_MP_TAC REAL_CONTINUOUS_ON_POW THEN
      REWRITE_TAC[REAL_CONTINUOUS_ON_ID];
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real` THEN
      SIMP_TAC[REAL_LT_LE] THEN ASM_CASES_TAC `y:real = &0` THEN
      ASM_SIMP_TAC[REAL_POW_ZERO; COND_RAND; REAL_MUL_RZERO; REAL_MUL_RID] THEN
      REWRITE_TAC[SUM_DELTA; IN_NUMSEG; LE_0] THEN ASM_REAL_ARITH_TAC]]);;

let ODD_VARIATION_POSITIVE_ROOT = prove
 (`!a n. ODD(variation(0..n) a)
         ==> ?x. &0 < x /\ sum(0..n) (\i. a i * x pow i) = &0`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?M. !i. i IN 0..n /\ ~(a i = &0) ==> i <= M` MP_TAC THENL
   [EXISTS_TAC `n:num` THEN SIMP_TAC[IN_NUMSEG]; ALL_TAC] THEN
  SUBGOAL_THEN `?i. i IN 0..n /\ ~(a i = &0)` MP_TAC THENL
   [MATCH_MP_TAC(MESON[] `((!i. P i ==> Q i) ==> F) ==> ?i. P i /\ ~Q i`) THEN
    DISCH_TAC THEN SUBGOAL_THEN `variation (0..n) a = variation {0} a`
     (fun th -> SUBST_ALL_TAC th THEN ASM_MESON_TAC[VARIATION_1; ODD]) THEN
    MATCH_MP_TAC VARIATION_SUBSET THEN
    ASM_SIMP_TAC[IN_DIFF] THEN REWRITE_TAC[IN_NUMSEG; SING_SUBSET; LE_0];
    ALL_TAC] THEN
  ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> a ==> a /\ b ==> c`] THEN
  GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN REWRITE_TAC[num_MAX] THEN
  REWRITE_TAC[TAUT `p ==> ~(q /\ r) <=> p /\ q ==> ~r`; IN_NUMSEG] THEN
  DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
  ONCE_REWRITE_TAC[TAUT `p /\ ~q ==> r <=> p /\ ~r ==> q`] THEN
  DISCH_THEN(X_CHOOSE_THEN `q:num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `p:num <= q` ASSUME_TAC THENL
   [ASM_MESON_TAC[NOT_LT]; ALL_TAC] THEN
  SUBGOAL_THEN `(a:num->real) p * a q < &0` ASSUME_TAC THENL
   [ASM_SIMP_TAC[GSYM VARIATION_OPPOSITE_ENDS] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[]
     `ODD p ==> p = q ==> ODD q`)) THEN
    MATCH_MP_TAC VARIATION_SUBSET THEN
    REWRITE_TAC[SUBSET_NUMSEG; IN_NUMSEG; IN_DIFF; DE_MORGAN_THM] THEN
    CONJ_TAC THENL [ASM_ARITH_TAC; REPEAT STRIP_TAC] THEN
    FIRST_X_ASSUM(fun th -> MATCH_MP_TAC th THEN ASM_ARITH_TAC);
    ALL_TAC] THEN
  MP_TAC(ISPECL [`\i. (a:num->real)(p + i) / a q`; `q - p:num`]
        REAL_POLYFUN_HAS_POSITIVE_ROOT) THEN
  ASM_SIMP_TAC[ADD_CLAUSES; ARITH_RULE `p:num <= q ==> p + q - p = q`] THEN
  ANTS_TAC THENL
   [REWRITE_TAC[real_div; OPPOSITE_SIGNS; REAL_MUL_POS_LT] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPPOSITE_SIGNS]) THEN
    REWRITE_TAC[REAL_ARITH `x < &0 <=> &0 < --x`; GSYM REAL_INV_NEG] THEN
    REWRITE_TAC[REAL_LT_INV_EQ] THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real` THEN
  MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_RING
   `!a. y = a * x ==> x = &0 ==> y = &0`) THEN
  EXISTS_TAC `(a:num->real) q * x pow p` THEN
  REWRITE_TAC[GSYM SUM_LMUL; REAL_ARITH
   `(aq * xp) * api / aq * xi:real = (aq / aq) * api * (xp * xi)`] THEN
  ASM_CASES_TAC `(a:num->real) q = &0` THENL
   [ASM_MESON_TAC[REAL_MUL_LZERO; REAL_LT_REFL]; ALL_TAC] THEN
  ASM_SIMP_TAC[GSYM REAL_POW_ADD; REAL_DIV_REFL; REAL_MUL_LID] THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN MP_TAC(SPEC `p:num` SUM_OFFSET) THEN
  DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN
  MATCH_MP_TAC SUM_SUPERSET THEN
  REWRITE_TAC[SUBSET_NUMSEG; IN_NUMSEG; IN_DIFF; DE_MORGAN_THM] THEN
  CONJ_TAC THENL [ASM_ARITH_TAC; REPEAT STRIP_TAC] THEN
  REWRITE_TAC[REAL_ENTIRE] THEN DISJ1_TAC THEN
  FIRST_X_ASSUM(fun th -> MATCH_MP_TAC th THEN ASM_ARITH_TAC));;

(* ------------------------------------------------------------------------- *)
(* Define root multiplicities.                                               *)
(* ------------------------------------------------------------------------- *)

let multiplicity = new_definition
 `multiplicity f r =
        @k. ?a n. ~(sum(0..n) (\i. a i * r pow i) = &0) /\
                  !x. f(x) = (x - r) pow k * sum(0..n) (\i. a i * x pow i)`;;

let MULTIPLICITY_UNIQUE = prove
 (`!f a r b m k.
        (!x. f(x) = (x - r) pow k * sum(0..m) (\j. b j * x pow j)) /\
        ~(sum(0..m) (\j. b j * r pow j) = &0)
        ==> k = multiplicity f r`,
  let lemma = prove
   (`!i j f g. f real_continuous_on (:real) /\ g real_continuous_on (:real) /\
               ~(f r = &0) /\ ~(g r = &0)
               ==> (!x. (x - r) pow i * f(x) = (x - r) pow j * g(x))
                   ==> j = i`,
    MATCH_MP_TAC WLOG_LT THEN
    REWRITE_TAC[] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC(TAUT `F ==> p`) THEN
    MP_TAC(ISPECL [`atreal r`; `f:real->real`;
                   `(f:real->real) r`; `&0`]
          REALLIM_UNIQUE) THEN
    ASM_REWRITE_TAC[TRIVIAL_LIMIT_ATREAL] THEN CONJ_TAC THENL
     [REWRITE_TAC[GSYM REAL_CONTINUOUS_ATREAL] THEN
      ASM_MESON_TAC[REAL_CONTINUOUS_ON_EQ_REAL_CONTINUOUS_AT; REAL_OPEN_UNIV;
                    IN_UNIV];
      MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN
      EXISTS_TAC `\x:real. (x - r) pow (j - i) * g x` THEN
      REWRITE_TAC[] THEN CONJ_TAC THENL
       [REWRITE_TAC[EVENTUALLY_ATREAL] THEN EXISTS_TAC `&1` THEN
        REWRITE_TAC[REAL_LT_01; REAL_ARITH `&0 < abs(x - r) <=> ~(x = r)`] THEN
        X_GEN_TAC `x:real` THEN STRIP_TAC THEN MATCH_MP_TAC(REAL_RING
         `!a. a * x = a * y /\ ~(a = &0) ==> x = y`) THEN
        EXISTS_TAC `(x - r:real) pow i` THEN
        ASM_REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_ADD; REAL_POW_EQ_0] THEN
        ASM_SIMP_TAC[REAL_SUB_0; ARITH_RULE `i:num < j ==> i + j - i = j`];
        SUBST1_TAC(REAL_ARITH `&0 = &0 * (g:real->real) r`) THEN
        MATCH_MP_TAC REALLIM_MUL THEN CONJ_TAC THENL
         [REWRITE_TAC[] THEN MATCH_MP_TAC REALLIM_NULL_POW THEN
          REWRITE_TAC[GSYM REALLIM_NULL; REALLIM_ATREAL_ID] THEN ASM_ARITH_TAC;
          REWRITE_TAC[GSYM REAL_CONTINUOUS_ATREAL] THEN
          ASM_MESON_TAC[REAL_CONTINUOUS_ON_EQ_REAL_CONTINUOUS_AT;
                        REAL_OPEN_UNIV; IN_UNIV]]]]) in
  REPEAT STRIP_TAC THEN REWRITE_TAC[multiplicity] THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  X_GEN_TAC `j:num` THEN EQ_TAC THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THENL
   [REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    MATCH_MP_TAC lemma THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN
    MATCH_MP_TAC REAL_CONTINUOUS_ON_SUM THEN
    REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC REAL_CONTINUOUS_ON_LMUL THEN
    MATCH_MP_TAC REAL_CONTINUOUS_ON_POW THEN
    REWRITE_TAC[REAL_CONTINUOUS_ON_ID];
    DISCH_THEN SUBST1_TAC THEN
    MAP_EVERY EXISTS_TAC [`b:num->real`; `m:num`] THEN ASM_REWRITE_TAC[]]);;

let MULTIPLICITY_WORKS = prove
 (`!r n a.
    (?i. i IN 0..n /\ ~(a i = &0))
    ==> ?b m.
        ~(sum(0..m) (\i. b i * r pow i) = &0) /\
        !x. sum(0..n) (\i. a i * x pow i) =
            (x - r) pow multiplicity (\x. sum(0..n) (\i. a i * x pow i)) r *
            sum(0..m) (\i. b i * x pow i)`,
  REWRITE_TAC[multiplicity] THEN CONV_TAC(ONCE_DEPTH_CONV SELECT_CONV) THEN
  GEN_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN
  DISCH_TAC THEN X_GEN_TAC `a:num->real` THEN
  ASM_CASES_TAC `(a:num->real) n = &0` THENL
   [ASM_CASES_TAC `n = 0` THEN
    ASM_REWRITE_TAC[NUMSEG_SING; IN_SING; UNWIND_THM2]
    THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN
    ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
    DISCH_THEN(MP_TAC o SPEC `a:num->real`) THEN
    ASM_SIMP_TAC[SUM_CLAUSES_RIGHT; LE_0; LE_1] THEN
    REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN
    DISCH_THEN MATCH_MP_TAC THEN
    FIRST_X_ASSUM(X_CHOOSE_THEN `i:num` MP_TAC) THEN
    REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN
    EXISTS_TAC `i:num` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `i:num = n` THENL [ASM_MESON_TAC[]; ASM_ARITH_TAC];
    ALL_TAC] THEN
  DISCH_THEN(K ALL_TAC) THEN
  ASM_CASES_TAC `sum(0..n) (\i. a i * r pow i) = &0` THENL
   [ASM_CASES_TAC `n = 0` THENL
     [UNDISCH_TAC `sum (0..n) (\i. a i * r pow i) = &0` THEN
      ASM_REWRITE_TAC[NUMSEG_SING; IN_SING; UNWIND_THM2; SUM_SING] THEN
      REWRITE_TAC[real_pow; REAL_MUL_RID] THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    MP_TAC(GEN `x:real` (ISPECL [`a:num->real`; `x:real`; `r:real`; `n:num`]
        REAL_SUB_POLYFUN)) THEN ASM_SIMP_TAC[LE_1; REAL_SUB_RZERO] THEN
    ABBREV_TAC `b j = sum (j + 1..n) (\i. a i * r pow (i - j - 1))` THEN
    DISCH_THEN(K ALL_TAC) THEN
    FIRST_X_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [GSYM FUN_EQ_THM]) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN
    ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
    DISCH_THEN(MP_TAC o SPEC `b:num->real`) THEN ANTS_TAC THENL
     [EXISTS_TAC `n - 1` THEN REWRITE_TAC[IN_NUMSEG; LE_REFL; LE_0] THEN
      EXPAND_TAC "b" THEN REWRITE_TAC[] THEN
      ASM_SIMP_TAC[SUB_ADD; LE_1; SUM_SING_NUMSEG; real_pow; REAL_MUL_RID;
                   ARITH_RULE `n - (n - 1) - 1 = 0`];
      ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `k:num` (fun th ->
        EXISTS_TAC `SUC k` THEN MP_TAC th)) THEN
    REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[real_pow; GSYM REAL_MUL_ASSOC];
    MAP_EVERY EXISTS_TAC [`0`; `a:num->real`; `n:num`] THEN
    ASM_REWRITE_TAC[real_pow; REAL_MUL_LID]]);;

let MULTIPLICITY_OTHER_ROOT = prove
 (`!a n r s.
    ~(r = s) /\ (?i. i IN 0..n /\ ~(a i = &0))
     ==> multiplicity (\x. (x - r) pow m * sum(0..n) (\i. a i * x pow i)) s =
         multiplicity (\x.  sum(0..n) (\i. a i * x pow i)) s`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC MULTIPLICITY_UNIQUE THEN
  REWRITE_TAC[] THEN
  MP_TAC(ISPECL [`s:real`; `n:num`; `a:num->real`]
        MULTIPLICITY_WORKS) THEN
  ASM_REWRITE_TAC[] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`c:num->real`; `p:num`] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o GSYM)) THEN
  SUBGOAL_THEN
   `?b q. !x. sum(0..q) (\j. b j * x pow j) =
              (x - r) pow m * sum (0..p) (\i. c i * x pow i)`
  MP_TAC THENL
   [ALL_TAC;
    REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
    STRIP_TAC THEN
    ASM_REWRITE_TAC[REAL_RING `r * x = s * r * y <=> r = &0 \/ s * y = x`] THEN
    ASM_REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_SUB_0]] THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`c:num->real`; `p:num`; `m:num`] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN INDUCT_TAC THEN REPEAT GEN_TAC THENL
   [MAP_EVERY EXISTS_TAC [`c:num->real`; `p:num`] THEN
    ASM_REWRITE_TAC[real_pow; REAL_MUL_LID];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`p:num`; `c:num->real`]) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`a:num->real`; `n:num`] THEN
  DISCH_THEN(ASSUME_TAC o GSYM) THEN
  ASM_REWRITE_TAC[real_pow; GSYM REAL_MUL_ASSOC] THEN
  EXISTS_TAC `\i. (if 0 < i then a(i - 1) else &0) -
                  (if i <= n then r * a i else &0)` THEN
  EXISTS_TAC `n + 1` THEN
  REWRITE_TAC[REAL_SUB_RDISTRIB; SUM_SUB_NUMSEG] THEN X_GEN_TAC `x:real` THEN
  BINOP_TAC THENL
   [MP_TAC(ARITH_RULE `0 <= n + 1`) THEN SIMP_TAC[SUM_CLAUSES_LEFT] THEN
    DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[SUM_OFFSET; LT_REFL] THEN
    REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID; ARITH_RULE `0 < i + 1`] THEN
    REWRITE_TAC[GSYM SUM_LMUL; ADD_SUB; REAL_POW_ADD; REAL_POW_1];
    SIMP_TAC[SUM_CLAUSES_RIGHT; LE_0; ARITH_RULE `0 < n + 1`] THEN
    REWRITE_TAC[ADD_SUB; ARITH_RULE `~(n + 1 <= n)`] THEN
    SIMP_TAC[REAL_MUL_LZERO; REAL_ADD_RID; GSYM SUM_LMUL]] THEN
  MATCH_MP_TAC SUM_EQ_NUMSEG THEN REWRITE_TAC[REAL_MUL_AC]);;

(* ------------------------------------------------------------------------- *)
(* The main lemmas to be applied iteratively.                                *)
(* ------------------------------------------------------------------------- *)

let VARIATION_POSITIVE_ROOT_FACTOR = prove
 (`!a n r.
    ~(a n = &0) /\ &0 < r /\ sum(0..n) (\i. a i * r pow i) = &0
    ==> ?b. ~(b(n - 1) = &0) /\
            (!x. sum(0..n) (\i. a i * x pow i) =
                 (x - r) * sum(0..n-1) (\i. b i * x pow i)) /\
            ?d. ODD d /\ variation(0..n) a = variation(0..n-1) b + d`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; real_pow; REAL_MUL_RID] THEN MESON_TAC[];
    STRIP_TAC] THEN
  ABBREV_TAC `b = \j. sum (j + 1..n) (\i. a i * r pow (i - j - 1))` THEN
  EXISTS_TAC `b:num->real` THEN REPEAT CONJ_TAC THENL
   [EXPAND_TAC "b" THEN REWRITE_TAC[] THEN ASM_SIMP_TAC[SUB_ADD; LE_1] THEN
    ASM_SIMP_TAC[SUM_SING_NUMSEG; ARITH_RULE `n - (n - 1) - 1 = 0`] THEN
    ASM_REWRITE_TAC[real_pow; REAL_MUL_RID];
    MP_TAC(GEN `x:real` (SPECL [`a:num->real`; `x:real`; `r:real`; `n:num`]
        REAL_SUB_POLYFUN)) THEN
    ASM_SIMP_TAC[LE_1; REAL_SUB_RZERO] THEN DISCH_THEN(K ALL_TAC) THEN
    EXPAND_TAC "b" THEN REWRITE_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `(b:num->real) n = &0` ASSUME_TAC THENL
   [EXPAND_TAC "b" THEN REWRITE_TAC[] THEN MATCH_MP_TAC SUM_EQ_0_NUMSEG THEN
    ARITH_TAC;
    ALL_TAC] THEN
  MP_TAC(ISPECL
   [`n:num`; `\i. if i <= n then a i * (r:real) pow i else &0`;
    `\i. if i <= n then --b i * (r:real) pow (i + 1) else &0`]
   ARTHAN_LEMMA) THEN
  ASM_SIMP_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_LT_IMP_NZ; REAL_NEG_0;
               LE_REFL] THEN
  ANTS_TAC THENL
   [X_GEN_TAC `j:num` THEN EXPAND_TAC "b" THEN REWRITE_TAC[] THEN
    ASM_CASES_TAC `j:num <= n` THEN ASM_REWRITE_TAC[] THENL
     [SUBGOAL_THEN `!i:num. i <= j ==> i <= n` MP_TAC THENL
       [ASM_ARITH_TAC; SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC)] THEN
      REWRITE_TAC[REAL_ARITH `a:real = --b * c <=> a + b * c = &0`] THEN
      REWRITE_TAC[GSYM SUM_RMUL; GSYM REAL_POW_ADD; GSYM REAL_MUL_ASSOC] THEN
      SIMP_TAC[ARITH_RULE `j + 1 <= k ==> k - j - 1 + j + 1 = k`] THEN
      ASM_SIMP_TAC[SUM_COMBINE_R; LE_0];
      REWRITE_TAC[GSYM SUM_RESTRICT_SET; IN_NUMSEG] THEN
      ASM_SIMP_TAC[ARITH_RULE
      `~(j <= n) ==> ((0 <= i /\ i <= j) /\ i <= n <=> 0 <= i /\ i <= n)`] THEN
      ASM_REWRITE_TAC[GSYM numseg]];
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:num` THEN
    MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC(ARITH_RULE
     `x':num = x /\ y' = y ==> x' = y' + d ==> x = y + d`) THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC EQ_TRANS THEN
      EXISTS_TAC `variation(0..n) (\i. a i * r pow i)` THEN CONJ_TAC THENL
       [MATCH_MP_TAC VARIATION_EQ THEN SIMP_TAC[IN_NUMSEG];
        ALL_TAC];
      MATCH_MP_TAC EQ_TRANS THEN
      EXISTS_TAC `variation(0..n) (\i. --b i * r pow (i + 1))` THEN
      CONJ_TAC THENL
       [MATCH_MP_TAC VARIATION_EQ THEN SIMP_TAC[IN_NUMSEG];
        ALL_TAC] THEN
      MATCH_MP_TAC EQ_TRANS THEN
      EXISTS_TAC `variation(0..n-1) (\i. --b i * r pow (i + 1))` THEN
      CONJ_TAC THENL
       [MATCH_MP_TAC VARIATION_SUBSET THEN
        REWRITE_TAC[SUBSET_NUMSEG; IN_DIFF; IN_NUMSEG] THEN
        CONJ_TAC THENL [ARITH_TAC; X_GEN_TAC `i:num` THEN STRIP_TAC] THEN
        SUBGOAL_THEN `i:num = n` SUBST_ALL_TAC THENL
         [ASM_ARITH_TAC; ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC];
        ALL_TAC]] THEN
    REWRITE_TAC[variation] THEN
    ONCE_REWRITE_TAC[REAL_ARITH
      `(a * x) * (b * x'):real = (x * x') * a * b`] THEN
    SIMP_TAC[NOT_IMP; GSYM CONJ_ASSOC; GSYM REAL_POW_ADD;
             REAL_ARITH `--x * --y:real = x * y`] THEN
    ONCE_REWRITE_TAC[REAL_ARITH `x * y < &0 <=> &0 < x * --y`] THEN
    ASM_SIMP_TAC[REAL_LT_MUL_EQ; REAL_POW_LT] THEN
    ASM_SIMP_TAC[REAL_MUL_RNEG; REAL_ENTIRE; REAL_NEG_EQ_0; REAL_POW_EQ_0] THEN
    ASM_SIMP_TAC[REAL_LT_IMP_NZ]]);;

let VARIATION_POSITIVE_ROOT_MULTIPLE_FACTOR = prove
 (`!r n a.
    ~(a n = &0) /\ &0 < r /\ sum(0..n) (\i. a i * r pow i) = &0
    ==> ?b k m. 0 < k /\ m < n /\ ~(b m = &0) /\
                (!x. sum(0..n) (\i. a i * x pow i) =
                     (x - r) pow k * sum(0..m) (\i. b i * x pow i)) /\
                ~(sum(0..m) (\j. b j * r pow j) = &0) /\
                ?d. EVEN d /\ variation(0..n) a = variation(0..m) b + k + d`,
  GEN_TAC THEN MATCH_MP_TAC num_WF THEN
  X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `a:num->real` THEN
  ASM_CASES_TAC `n = 0` THENL
   [ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; real_pow; REAL_MUL_RID] THEN MESON_TAC[];
    STRIP_TAC] THEN
  MP_TAC(ISPECL [`a:num->real`; `n:num`; `r:real`]
        VARIATION_POSITIVE_ROOT_FACTOR) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `c:num->real` MP_TAC) THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN
  ASM_CASES_TAC `sum(0..n-1) (\i. c i * r pow i) = &0` THENL
   [FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN
    ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `c:num->real`)] THEN
    ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num->real` THEN
    ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN
    DISCH_THEN(X_CHOOSE_THEN `k:num` MP_TAC) THEN
    REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(X_CHOOSE_THEN `e:num` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `SUC k` THEN ASM_REWRITE_TAC[real_pow; REAL_MUL_ASSOC] THEN
    REPEAT(CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN
    REWRITE_TAC[ADD1; ADD_ASSOC] THEN EXISTS_TAC `d - 1 + e`;
    MAP_EVERY EXISTS_TAC [`c:num->real`; `1`; `n - 1`] THEN
    ASM_REWRITE_TAC[REAL_POW_1] THEN
    REPEAT(CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN
    EXISTS_TAC `d - 1`] THEN
  UNDISCH_TAC `ODD d` THEN GEN_REWRITE_TAC LAND_CONV [ODD_EXISTS] THEN
  DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC) THEN
  ASM_REWRITE_TAC[SUC_SUB1; EVEN_ADD; EVEN_MULT; ARITH] THEN ARITH_TAC);;

let VARIATION_POSITIVE_ROOT_MULTIPLICITY_FACTOR = prove
 (`!r n a.
    ~(a n = &0) /\ &0 < r /\ sum(0..n) (\i. a i * r pow i) = &0
    ==> ?b m. m < n /\ ~(b m = &0) /\
              (!x. sum(0..n) (\i. a i * x pow i) =
                   (x - r) pow
                   (multiplicity (\x. sum(0..n) (\i. a i * x pow i)) r) *
                   sum(0..m) (\i. b i * x pow i)) /\
              ~(sum(0..m) (\j. b j * r pow j) = &0) /\
              ?d. EVEN d /\
                  variation(0..n) a = variation(0..m) b +
                     multiplicity (\x. sum(0..n) (\i. a i * x pow i)) r + d`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(MP_TAC o MATCH_MP VARIATION_POSITIVE_ROOT_MULTIPLE_FACTOR) THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num->real` THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num` MP_TAC) THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN
  DISCH_TAC THEN
  SUBGOAL_THEN `multiplicity (\x. sum(0..n) (\i. a i * x pow i)) r = k`
   (fun th -> ASM_REWRITE_TAC[th]) THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC MULTIPLICITY_UNIQUE THEN
  MAP_EVERY EXISTS_TAC [`b:num->real`; `m:num`] THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Hence the main theorem.                                                   *)
(* ------------------------------------------------------------------------- *)

let DESCARTES_RULE_OF_SIGNS = prove
 (`!f a n. f = (\x. sum(0..n) (\i. a i * x pow i)) /\
           (?i. i IN 0..n /\ ~(a i = &0))
           ==> ?d. EVEN d /\
                   variation(0..n) a =
                   nsum {r | &0 < r /\ f(r) = &0} (\r. multiplicity f r) + d`,
  REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`a:num->real`; `n:num`] THEN
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  X_GEN_TAC `a:num->real` THEN ASM_CASES_TAC `(a:num->real) n = &0` THENL
   [ASM_CASES_TAC `n = 0` THEN
    ASM_REWRITE_TAC[NUMSEG_SING; IN_SING; UNWIND_THM2]
    THENL [ASM_MESON_TAC[]; DISCH_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN ANTS_TAC THENL
     [ASM_ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `a:num->real`)] THEN
    ANTS_TAC THENL
     [ASM_MESON_TAC[IN_NUMSEG; ARITH_RULE `i <= n ==> i <= n - 1 \/ i = n`];
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:num` THEN
      ASM_SIMP_TAC[LE_0; LE_1; SUM_CLAUSES_RIGHT] THEN
      REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN
      DISCH_THEN(SUBST1_TAC o SYM o CONJUNCT2) THEN
      MATCH_MP_TAC VARIATION_SUBSET THEN
      REWRITE_TAC[SUBSET_NUMSEG; IN_DIFF; IN_NUMSEG] THEN
      CONJ_TAC THENL [ASM_ARITH_TAC; X_GEN_TAC `i:num` THEN STRIP_TAC] THEN
      SUBGOAL_THEN `i:num = n` (fun th -> ASM_REWRITE_TAC[th]) THEN
      ASM_ARITH_TAC];
    DISCH_THEN(K ALL_TAC)] THEN
  ASM_CASES_TAC `{r | &0 < r /\ sum(0..n) (\i. a i * r pow i) = &0} = {}` THENL
   [ASM_REWRITE_TAC[NSUM_CLAUSES; ADD_CLAUSES] THEN
    ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM1] THEN
    ONCE_REWRITE_TAC[GSYM NOT_ODD] THEN
    DISCH_THEN(MP_TAC o MATCH_MP ODD_VARIATION_POSITIVE_ROOT) THEN
    ASM SET_TAC[];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
  REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `r:real` THEN STRIP_TAC THEN
  MP_TAC(ISPECL [`r:real`; `n:num`; `a:num->real`]
    VARIATION_POSITIVE_ROOT_MULTIPLICITY_FACTOR) THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`b:num->real`; `m:num`] THEN
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
  ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o SPEC `b:num->real`) THEN ANTS_TAC THENL
   [EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[IN_NUMSEG; LE_REFL; LE_0];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `d1:num`
    (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `d2:num`
    (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
  EXISTS_TAC `d1 + d2:num` THEN
  CONJ_TAC THENL [ASM_REWRITE_TAC[EVEN_ADD]; ALL_TAC] THEN
  MATCH_MP_TAC(ARITH_RULE
   `x + y = z ==> (x + d1) + (y + d2):num = z + d1 + d2`) THEN
  SUBGOAL_THEN
   `{r | &0 < r /\ sum(0..n) (\i. a i * r pow i) = &0} =
    r INSERT {r | &0 < r /\ sum(0..m) (\i. b i * r pow i) = &0}`
  SUBST1_TAC THENL
   [MATCH_MP_TAC(SET_RULE `x IN s /\ s DELETE x = t ==> s = x INSERT t`) THEN
    CONJ_TAC THENL
     [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[];
      ONCE_ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_SUB_0] THEN
      REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_DELETE] THEN
      X_GEN_TAC `s:real` THEN
      FIRST_X_ASSUM(K ALL_TAC o SPEC_VAR) THEN
      ASM_CASES_TAC `s:real = r` THEN ASM_REWRITE_TAC[]];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `FINITE {r | &0 < r /\ sum(0..m) (\i. b i * r pow i) = &0}`
  MP_TAC THENL
   [MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC `{r | sum(0..m) (\i. b i * r pow i) = &0}` THEN
    SIMP_TAC[SUBSET; IN_ELIM_THM; REAL_POLYFUN_FINITE_ROOTS] THEN
    EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[IN_NUMSEG; LE_0; LE_REFL];
    SIMP_TAC[NSUM_CLAUSES; IN_ELIM_THM] THEN DISCH_TAC] THEN
  FIRST_X_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [GSYM FUN_EQ_THM]) THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(ARITH_RULE `s1:num = s2 ==> s1 + m = m + s2`) THEN
  MATCH_MP_TAC NSUM_EQ THEN
  X_GEN_TAC `s:real` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(fun t -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [t]) THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC MULTIPLICITY_OTHER_ROOT THEN
  REWRITE_TAC[MESON[] `(?i. P i /\ Q i) <=> ~(!i. P i ==> ~Q i)`] THEN
  REPEAT STRIP_TAC THEN
  UNDISCH_TAC `~(sum (0..m) (\j. b j * r pow j) = &0)` THEN ASM_SIMP_TAC[] THEN
  REWRITE_TAC[REAL_MUL_LZERO; SUM_0]);;