Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 63,335 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 |
(* Title: BDD
Author: Veronika Ortner and Norbert Schirmer, 2004
Maintainer: Norbert Schirmer, norbert.schirmer at web de
License: LGPL
*)
(*
General.thy
Copyright (C) 2004-2008 Veronika Ortner and Norbert Schirmer
Some rights reserved, TU Muenchen
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA
*)
section \<open>General Lemmas on BDD Abstractions\<close>
theory General imports BinDag begin
definition subdag_eq:: "dag \<Rightarrow> dag \<Rightarrow> bool" where
"subdag_eq t\<^sub>1 t\<^sub>2 = (t\<^sub>1 = t\<^sub>2 \<or> subdag t\<^sub>1 t\<^sub>2)"
(*"subtree_eq Tip t = (if t = Tip then True else False)"
"subtree_eq (Node l a r) t = (t=(Node l a r) \<or> subtree_eq l t \<or> subtree_eq r t)"*)
primrec root :: "dag \<Rightarrow> ref"
where
"root Tip = Null" |
"root (Node l a r) = a"
fun isLeaf :: "dag \<Rightarrow> bool" where
"isLeaf Tip = False"
| "isLeaf (Node Tip v Tip) = True"
| "isLeaf (Node (Node l v\<^sub>1 r) v\<^sub>2 Tip) = False"
| "isLeaf (Node Tip v\<^sub>1 (Node l v\<^sub>2 r)) = False"
datatype bdt = Zero | One | Bdt_Node bdt nat bdt
fun bdt_fn :: "dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bdt option" where
"bdt_fn Tip = (\<lambda>bdtvar . None)"
| "bdt_fn (Node Tip vref Tip) =
(\<lambda>bdtvar .
(if (bdtvar vref = 0)
then Some Zero
else (if (bdtvar vref = 1)
then Some One
else None)))"
| "bdt_fn (Node Tip vref (Node l vref1 r)) = (\<lambda>bdtvar . None)"
| "bdt_fn (Node (Node l vref1 r) vref Tip) = (\<lambda>bdtvar . None)"
| "bdt_fn (Node (Node l1 vref1 r1) vref (Node l2 vref2 r2)) =
(\<lambda>bdtvar .
(if (bdtvar vref = 0 \<or> bdtvar vref = 1)
then None
else
(case (bdt_fn (Node l1 vref1 r1) bdtvar) of
None \<Rightarrow> None
|(Some b1) \<Rightarrow>
(case (bdt_fn (Node l2 vref2 r2) bdtvar) of
None \<Rightarrow> None
|(Some b2) \<Rightarrow> Some (Bdt_Node b1 (bdtvar vref) b2)))))"
(*
Kongruenzregeln sind das Feintuning für den Simplifier (siehe Kapitel 9 im Isabelle
Tutorial). Im Fall von case wird standardmäßig nur die case bedingung nicht
aber die einzelnen Fälle simplifiziert, analog dazu beim if. Dies simuliert die
Auswertungsstrategie einer Programmiersprache, da wird auch zunächst nur die
Bedingung vereinfacht. Will man mehr so kann man die entsprechenden Kongruenz
regeln dazunehmen.
*)
abbreviation "bdt == bdt_fn"
primrec eval :: "bdt \<Rightarrow> bool list \<Rightarrow> bool"
where
"eval Zero env = False" |
"eval One env = True" |
"eval (Bdt_Node l v r) env = (if (env ! v) then eval r env else eval l env)"
(*A given bdt is ordered if it is a One or Zero or its value is smaller than
its parents value*)
fun ordered_bdt:: "bdt \<Rightarrow> bool" where
"ordered_bdt Zero = True"
| "ordered_bdt One = True"
| "ordered_bdt (Bdt_Node (Bdt_Node l1 v1 r1) v (Bdt_Node l2 v2 r2)) =
((v1 < v) \<and> (v2 < v) \<and>
(ordered_bdt (Bdt_Node l1 v1 r1)) \<and> (ordered_bdt (Bdt_Node l2 v2 r2)))"
| "ordered_bdt (Bdt_Node (Bdt_Node l1 v1 r1) v r) =
((v1 < v) \<and> (ordered_bdt (Bdt_Node l1 v1 r1)))"
| "ordered_bdt (Bdt_Node l v (Bdt_Node l2 v2 r2)) =
((v2 < v) \<and> (ordered_bdt (Bdt_Node l2 v2 r2)))"
| "ordered_bdt (Bdt_Node l v r) = True"
(*In case t = (Node Tip v Tip) v should have the values 0 or 1. This is not checked by this function*)
fun ordered:: "dag \<Rightarrow> (ref\<Rightarrow>nat) \<Rightarrow> bool" where
"ordered Tip = (\<lambda> var. True)"
| "ordered (Node (Node l\<^sub>1 v\<^sub>1 r\<^sub>1) v (Node l\<^sub>2 v\<^sub>2 r\<^sub>2)) =
(\<lambda> var. (var v\<^sub>1 < var v \<and> var v\<^sub>2 < var v) \<and>
(ordered (Node l\<^sub>1 v\<^sub>1 r\<^sub>1) var) \<and> (ordered (Node l\<^sub>2 v\<^sub>2 r\<^sub>2) var))"
| "ordered (Node Tip v Tip) = (\<lambda> var. (True))"
| "ordered (Node Tip v r) =
(\<lambda> var. (var (root r) < var v) \<and> (ordered r var))"
| "ordered (Node l v Tip) =
(\<lambda> var. (var (root l) < var v) \<and> (ordered l var))"
(*Calculates maximal value in a non ordered bdt. Does not test parents of the
given bdt*)
primrec max_var :: "bdt \<Rightarrow> nat"
where
"max_var Zero = 0" |
"max_var One = 1" |
"max_var (Bdt_Node l v r) = max v (max (max_var l) (max_var r))"
lemma eval_zero: "\<lbrakk>bdt (Node l v r) var = Some x;
var (root (Node l v r)) = (0::nat)\<rbrakk> \<Longrightarrow> x = Zero"
apply (cases l)
apply (cases r)
apply simp
apply simp
apply (cases r)
apply simp
apply simp
done
lemma bdt_Some_One_iff [simp]:
"(bdt t var = Some One) = (\<exists> p. t = Node Tip p Tip \<and> var p = 1)"
apply (induct t rule: bdt_fn.induct)
apply (auto split: option.splits) (*in order to split the cases Zero and One*)
done
lemma bdt_Some_Zero_iff [simp]:
"(bdt t var = Some Zero) = (\<exists> p. t = Node Tip p Tip \<and> var p = 0)"
apply (induct t rule: bdt_fn.induct)
apply (auto split: option.splits)
done
lemma bdt_Some_Node_iff [simp]:
"(bdt t var = Some (Bdt_Node bdt1 v bdt2)) =
(\<exists> p l r. t = Node l p r \<and> bdt l var = Some bdt1 \<and> bdt r var = Some bdt2 \<and>
1 < v \<and> var p = v )"
apply (induct t rule: bdt_fn.induct)
prefer 5
apply (fastforce split: if_splits option.splits)
apply auto
done
lemma balanced_bdt:
"\<And> p bdt1. \<lbrakk> Dag p low high t; bdt t var = Some bdt1; no \<in> set_of t\<rbrakk>
\<Longrightarrow> (low no = Null) = (high no = Null)"
proof (induct t)
case Tip
then show ?case by simp
next
case (Node lt a rt)
note NN= this
have bdt1: "bdt (Node lt a rt) var = Some bdt1" by fact
have no_in_t: " no \<in> set_of (Node lt a rt)" by fact
have p_tree: "Dag p low high (Node lt a rt)" by fact
from Node.prems obtain
lt: "Dag (low p) low high lt" and
rt: "Dag (high p) low high rt"
by auto
show ?case
proof (cases lt)
case (Node llt l rlt)
note Nlt=this
show ?thesis
proof (cases rt)
case (Node lrt r rrt)
note Nrt=this
from Nlt Nrt bdt1 obtain lbdt rbdt where
lbdt_def: "bdt lt var = Some lbdt" and
rbdt_def: "bdt rt var = Some rbdt" and
bdt1_def: "bdt1 = Bdt_Node lbdt (var a) rbdt"
by (auto split: if_split_asm option.splits)
from no_in_t show ?thesis
proof (simp, elim disjE)
assume " no = a"
with p_tree Nlt Nrt show ?thesis
by auto
next
assume "no \<in> set_of lt"
with Node.hyps lbdt_def lt show ?thesis
by simp
next
assume "no \<in> set_of rt"
with Node.hyps rbdt_def rt show ?thesis
by simp
qed
next
case Tip
with Nlt bdt1 show ?thesis
by simp
qed
next
case Tip
note ltTip=this
show ?thesis
proof (cases rt)
case Tip
with ltTip bdt1 no_in_t p_tree show ?thesis
by auto
next
case (Node rlt r rrt)
with bdt1 ltTip show ?thesis
by simp
qed
qed
qed
primrec dag_map :: "(ref \<Rightarrow> ref) \<Rightarrow> dag \<Rightarrow> dag"
where
"dag_map f Tip = Tip" |
"dag_map f (Node l a r) = (Node (dag_map f l) (f a) (dag_map f r))"
definition wf_marking :: "dag \<Rightarrow> (ref \<Rightarrow> bool) \<Rightarrow> (ref \<Rightarrow> bool) \<Rightarrow> bool \<Rightarrow> bool"
where
"wf_marking t mark_old mark_new marked =
(case t of Tip \<Rightarrow> mark_new = mark_old
| (Node lt p rt) \<Rightarrow>
(\<forall> n. n \<notin> set_of t \<longrightarrow> mark_new n = mark_old n) \<and>
(\<forall> n. n \<in> set_of t \<longrightarrow> mark_new n = marked))"
definition dag_in_levellist:: "dag \<Rightarrow> (ref list list) \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool"
where "dag_in_levellist t levellist var = (t \<noteq> Tip \<longrightarrow>
(\<forall> st. subdag_eq t st \<longrightarrow> root st \<in> set (levellist ! (var (root st)))))"
lemma set_of_nn: "\<lbrakk> Dag p low high t; n \<in> set_of t\<rbrakk> \<Longrightarrow> n \<noteq> Null"
apply (induct t)
apply simp
apply auto
done
lemma subnodes_ordered [rule_format]:
"\<forall>p. n \<in> set_of t \<longrightarrow> Dag p low high t \<longrightarrow> ordered t var \<longrightarrow> var n <= var p"
apply (induct t)
apply simp
apply (intro allI)
apply (erule_tac x="low p" in allE)
apply (erule_tac x="high p" in allE)
apply clarsimp
apply (case_tac t1)
apply (case_tac t2)
apply simp
apply fastforce
apply (case_tac t2)
apply fastforce
apply fastforce
done
lemma ordered_set_of:
"\<And> x. \<lbrakk>ordered t var; x \<in> set_of t\<rbrakk> \<Longrightarrow> var x <= var (root t)"
apply (induct t)
apply simp
apply simp
apply (elim disjE)
apply simp
apply (case_tac t1)
apply simp
apply (case_tac t2)
apply fastforce
apply fastforce
apply (case_tac t2)
apply simp
apply (case_tac t1)
apply fastforce
apply fastforce
done
lemma dag_setofD: "\<And> p low high n. \<lbrakk> Dag p low high t; n \<in> set_of t \<rbrakk> \<Longrightarrow>
(\<exists> nt. Dag n low high nt) \<and> (\<forall> nt. Dag n low high nt \<longrightarrow> set_of nt \<subseteq> set_of t)"
apply (induct t)
apply simp
apply auto
apply fastforce
apply (fastforce dest: Dag_unique)
apply (fastforce dest: Dag_unique)
apply blast
apply blast
done
lemma dag_setof_exD: "\<lbrakk>Dag p low high t; n \<in> set_of t\<rbrakk> \<Longrightarrow> \<exists> nt. Dag n low high nt"
apply (simp add: dag_setofD)
done
lemma dag_setof_subsetD: "\<lbrakk>Dag p low high t; n \<in> set_of t; Dag n low high nt\<rbrakk> \<Longrightarrow> set_of nt \<subseteq> set_of t"
apply (simp add: dag_setofD)
done
lemma subdag_parentdag_low: "not <= lt \<Longrightarrow> not <= (Node lt p rt)" for not
apply (cases "not = lt")
apply (cases lt)
apply simp
apply (cases rt)
apply simp
apply (simp add: le_dag_def less_dag_def)
apply (simp add: le_dag_def less_dag_def)
apply (simp add: le_dag_def less_dag_def)
apply (simp add: le_dag_def less_dag_def)
done
lemma subdag_parentdag_high: "not <= rt \<Longrightarrow> not <= (Node lt p rt)" for not
apply (cases "not = rt")
apply (cases lt)
apply simp
apply (cases rt)
apply simp
apply (simp add: le_dag_def less_dag_def)
apply (simp add: le_dag_def less_dag_def)
apply (simp add: le_dag_def less_dag_def)
apply (simp add: le_dag_def less_dag_def)
done
lemma set_of_subdag: "\<And> p not no.
\<lbrakk>Dag p low high t; Dag no low high not; no \<in> set_of t\<rbrakk> \<Longrightarrow> not <= t"
proof (induct t)
case Tip
then show ?case by simp
next
case (Node lt po rt)
note rtNode=this
from Node.prems have ppo: "p=po"
by simp
show ?case
proof (cases "no = p")
case True
with ppo Node.prems have "not = (Node lt po rt)"
by (simp add: Dag_unique del: Dag_Ref)
with Node.prems ppo show ?thesis by (simp add: subdag_eq_def)
next
assume " no \<noteq> p"
with Node.prems have no_in_ltorrt: "no \<in> set_of lt \<or> no \<in> set_of rt"
by simp
show ?thesis
proof (cases "no \<in> set_of lt")
case True
from Node.prems ppo have "Dag (low po) low high lt"
by simp
with Node.prems ppo True have "not <= lt"
apply -
apply (rule Node.hyps)
apply assumption+
done
with Node.prems no_in_ltorrt show ?thesis
apply -
apply (rule subdag_parentdag_low)
apply simp
done
next
assume "no \<notin> set_of lt"
with no_in_ltorrt have no_in_rt: "no \<in> set_of rt"
by simp
from Node.prems ppo have "Dag (high po) low high rt"
by simp
with Node.prems ppo no_in_rt have "not <= rt"
apply -
apply (rule Node.hyps)
apply assumption+
done
with Node.prems no_in_rt show ?thesis
apply -
apply (rule subdag_parentdag_high)
apply simp
done
qed
qed
qed
lemma children_ordered: "\<lbrakk>ordered (Node lt p rt) var\<rbrakk> \<Longrightarrow>
ordered lt var \<and> ordered rt var"
proof (cases lt)
case Tip
note ltTip=this
assume orderedNode: "ordered (Node lt p rt) var"
show ?thesis
proof (cases rt)
case Tip
note rtTip = this
with ltTip show ?thesis
by simp
next
case (Node lrt r rrt)
with orderedNode ltTip show ?thesis
by simp
qed
next
case (Node llt l rlt)
note ltNode=this
assume orderedNode: "ordered (Node lt p rt) var"
show ?thesis
proof (cases rt)
case Tip
note rtTip = this
with orderedNode ltNode show ?thesis by simp
next
case (Node lrt r rrt)
note rtNode = this
with orderedNode ltNode show ?thesis by simp
qed
qed
lemma ordered_subdag: "\<lbrakk>ordered t var; not <= t\<rbrakk> \<Longrightarrow> ordered not var" for not
proof (induct t)
case Tip
then show ?thesis by (simp add: less_dag_def le_dag_def)
next
case (Node lt p rt)
show ?case
proof (cases "not = Node lt p rt")
case True
with Node.prems show ?thesis by simp
next
assume notnt: "not \<noteq> Node lt p rt"
with Node.prems have notstltorrt: "not <= lt \<or> not <= rt"
apply -
apply (simp add: less_dag_def le_dag_def)
apply fastforce
done
from Node.prems have ord_lt: "ordered lt var"
apply -
apply (drule children_ordered)
apply simp
done
from Node.prems have ord_rt: "ordered rt var"
apply -
apply (drule children_ordered)
apply simp
done
show ?thesis
proof (cases "not <= lt")
case True
with ord_lt show ?thesis
apply -
apply (rule Node.hyps)
apply assumption+
done
next
assume "\<not> not \<le> lt"
with notstltorrt have notinrt: "not <= rt"
by simp
from Node.hyps have hyprt: "\<lbrakk>ordered rt var; not \<le> rt\<rbrakk> \<Longrightarrow> ordered not var" by simp
from notinrt ord_rt show ?thesis
apply -
apply (rule hyprt)
apply assumption+
done
qed
qed
qed
lemma subdag_ordered:
"\<And> not no p. \<lbrakk>ordered t var; Dag p low high t; Dag no low high not;
no \<in> set_of t\<rbrakk> \<Longrightarrow> ordered not var"
proof (induct t)
case Tip
from Tip.prems show ?case by simp
next
case (Node lt po rt)
note nN=this
show ?case
proof (cases lt)
case Tip
note ltTip=this
show ?thesis
proof (cases rt)
case Tip
from Node.prems have ppo: "p=po"
by simp
from Tip ltTip Node.prems have "no=p"
by simp
with ppo Node.prems have "not=(Node lt po rt)"
by (simp del: Dag_Ref add: Dag_unique)
with Node.prems show ?thesis by simp
next
case (Node lrnot rn rrnot)
from Node.prems ltTip Node have ord_rt: "ordered rt var"
by simp
from Node.prems have ppo: "p=po"
by simp
from Node.prems have ponN: "po \<noteq> Null"
by auto
with ppo ponN ltTip Node.prems have *: "Dag (high po) low high rt"
by auto
show ?thesis
proof (cases "no=po")
case True
with ppo Node.prems have "not = Node lt po rt"
by (simp del: Dag_Ref add: Dag_unique)
with Node.prems show ?thesis
by simp
next
case False
with Node.prems ltTip have "no \<in> set_of rt"
by simp
with ord_rt * \<open>Dag no low high not\<close> show ?thesis
by (rule Node.hyps)
qed
qed
next
case (Node llt l rlt)
note ltNode=this
show ?thesis
proof (cases rt)
case Tip
from Node.prems Tip ltNode have ord_lt: "ordered lt var"
by simp
from Node.prems have ppo: "p=po"
by simp
from Node.prems have ponN: "po \<noteq> Null"
by auto
with ppo ponN Tip Node.prems ltNode have *: "Dag (low po) low high lt"
by auto
show ?thesis
proof (cases "no=po")
case True
with ppo Node.prems have "not = (Node lt po rt)"
by (simp del: Dag_Ref add: Dag_unique)
with Node.prems show ?thesis by simp
next
case False
with Node.prems Tip have "no \<in> set_of lt"
by simp
with ord_lt * \<open>Dag no low high not\<close> show ?thesis
by (rule Node.hyps)
qed
next
case (Node lrt r rrt)
from Node.prems have ppo: "p=po"
by simp
from Node.prems Node ltNode have ord_lt: "ordered lt var"
by simp
from Node.prems Node ltNode have ord_rt: "ordered rt var"
by simp
from Node.prems have ponN: "po \<noteq> Null"
by auto
with ppo ponN Node Node.prems ltNode have lt_Dag: "Dag (low po) low high lt"
by auto
with ppo ponN Node Node.prems ltNode have rt_Dag: "Dag (high po) low high rt"
by auto
show ?thesis
proof (cases "no = po")
case True
with ppo Node.prems have "not = (Node lt po rt)"
by (simp del: Dag_Ref add: Dag_unique)
with Node.prems show ?thesis by simp
next
assume "no \<noteq> po"
with Node.prems have no_in_lt_or_rt: "no \<in> set_of lt \<or> no \<in> set_of rt"
by simp
show ?thesis
proof (cases "no \<in> set_of lt")
case True
with ord_lt lt_Dag Node.prems show ?thesis
apply -
apply (rule Node.hyps)
apply assumption+
done
next
assume " no \<notin> set_of lt"
with no_in_lt_or_rt have no_in_rt: "no \<in> set_of rt"
by simp
from Node.hyps have hyp2:
"\<And>p no not. \<lbrakk>ordered rt var; Dag p low high rt; Dag no low high not; no \<in> set_of rt\<rbrakk>
\<Longrightarrow> ordered not var"
apply -
apply assumption
done
from no_in_rt ord_rt rt_Dag Node.prems show ?thesis
apply -
apply (rule hyp2)
apply assumption+
done
qed
qed
qed
qed
qed
lemma elem_set_of: "\<And> x st. \<lbrakk>x \<in> set_of st; set_of st \<subseteq> set_of t\<rbrakk> \<Longrightarrow> x \<in> set_of t"
by blast
(*procedure Levellist converts a dag with root p in a ref list list (levellist) with nodes of var = i in
levellist ! i.
In order to convert the two datastructures a dag traversal is required using a mark on nodes. m indicates
the value which is assumed for a node to be marked.
(\<exists> nt. Dag n \<^bsup>\<sigma>\<^esup>low \<^bsup>\<sigma>\<^esup>high nt \<and>
{\<^bsup>\<sigma>\<^esup>m} = set_of (dag_map \<^bsup>\<sigma>\<^esup>mark nt))*)
definition wf_ll :: "dag \<Rightarrow> ref list list \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool"
where
"wf_ll t levellist var =
((\<forall>p. p \<in> set_of t \<longrightarrow> p \<in> set (levellist ! var p)) \<and>
(\<forall>k < length levellist. \<forall>p \<in> set (levellist ! k). p \<in> set_of t \<and> var p = k))"
definition cong_eval :: "bdt \<Rightarrow> bdt \<Rightarrow> bool" (infix "\<sim>" 60)
where "cong_eval bdt\<^sub>1 bdt\<^sub>2 = (eval bdt\<^sub>1 = eval bdt\<^sub>2)"
lemma cong_eval_sym: "l \<sim> r = r \<sim> l"
by (auto simp add: cong_eval_def)
lemma cong_eval_trans: "\<lbrakk> l \<sim> r; r \<sim> t\<rbrakk> \<Longrightarrow> l \<sim> t"
by (simp add: cong_eval_def)
lemma cong_eval_child_high: " l \<sim> r \<Longrightarrow> r \<sim> (Bdt_Node l v r)"
apply (simp add: cong_eval_def )
apply (rule ext)
apply auto
done
lemma cong_eval_child_low: " l \<sim> r \<Longrightarrow> l \<sim> (Bdt_Node l v r)"
apply (simp add: cong_eval_def )
apply (rule ext)
apply auto
done
definition null_comp :: "(ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref)" (infix "\<propto>" 60)
where "null_comp a b = (\<lambda> p. (if (b p) = Null then Null else ((a \<circ> b) p)))"
lemma null_comp_not_Null [simp]: "h q \<noteq> Null \<Longrightarrow> (g \<propto> h) q = g (h q)"
by (simp add: null_comp_def)
lemma id_trans: "(a \<propto> id) (b (c p)) = (a \<propto> b) (c p)"
by (simp add: null_comp_def)
definition Nodes :: "nat \<Rightarrow> ref list list \<Rightarrow> ref set"
where "Nodes i levellist = (\<Union>k\<in>{k. k < i} . set (levellist ! k))"
inductive_set Dags :: "ref set \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> dag set"
for "nodes" "low" "high"
where
DagsI: "\<lbrakk> set_of t \<subseteq> nodes; Dag p low high t; t \<noteq> Tip\<rbrakk>
\<Longrightarrow> t \<in> Dags nodes low high"
lemma empty_Dags [simp]: "Dags {} low high = {}"
apply rule
apply rule
apply (erule Dags.cases)
apply (case_tac t)
apply simp
apply simp
apply rule
done
definition isLeaf_pt :: "ref \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> bool"
where "isLeaf_pt p low high = (low p = Null \<and> high p = Null)"
definition repNodes_eq :: "ref \<Rightarrow> ref \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> bool"
where
"repNodes_eq p q low high rep ==
(rep \<propto> high) p = (rep \<propto> high) q \<and> (rep \<propto> low) p = (rep \<propto> low) q"
definition isomorphic_dags_eq :: "dag \<Rightarrow> dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool"
where
"isomorphic_dags_eq st\<^sub>1 st\<^sub>2 var =
(\<forall>bdt\<^sub>1 bdt\<^sub>2. (bdt st\<^sub>1 var = Some bdt\<^sub>1 \<and> bdt st\<^sub>2 var = Some bdt\<^sub>2 \<and> (bdt\<^sub>1 = bdt\<^sub>2))
\<longrightarrow> st\<^sub>1 = st\<^sub>2)"
lemma isomorphic_dags_eq_sym: "isomorphic_dags_eq st\<^sub>1 st\<^sub>2 var = isomorphic_dags_eq st\<^sub>2 st\<^sub>1 var"
by (auto simp add: isomorphic_dags_eq_def)
(*consts subdags_shared :: "dag \<Rightarrow> dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool"
defs subdags_shared_def : "subdags_shared t1 t2 var == \<forall> st1 st2. (st1 <= t1 \<and> st2 <= t2) \<longrightarrow> shared_prop st1 st2 var"
consts shared :: " dag \<Rightarrow> dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool"
defs shared_def: "shared t1 t2 var == subdags_shared t1 t1 var \<and> subdags_shared t2 t2 var \<and> subdags_shared t1 t2 var"*)
definition shared :: "dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool"
where "shared t var = (\<forall>st\<^sub>1 st\<^sub>2. (st\<^sub>1 <= t \<and> st\<^sub>2 <= t) \<longrightarrow> isomorphic_dags_eq st\<^sub>1 st\<^sub>2 var)"
(* shared returns True if the Dag has no different subdags which represent the same
bdts.
Note: The two subdags can have different references and code the same bdt nevertheless!
consts shared :: "dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool"
defs shared_def: "shared t bdtvar \<equiv> \<forall> st1 st2. (subdag t st1 \<and> subdag t st2 \<and>
(bdt st1 bdtvar = bdt st2 bdtvar \<longrightarrow> st1 = st2))"
consts shared_lower_levels :: "dag \<Rightarrow> nat \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool"
defs shared_lower_levels_def : "shared_lower_levels t i bdtvar == \<forall> st1 st2. (st1 < t \<and> st2 < t \<and> bdtvar (root st1) < i \<and> bdtvar (root st2) < i \<and>
(bdt st1 bdtvar = bdt st2 bdtvar \<longrightarrow> st1 = st2))"
*)
fun reduced :: "dag \<Rightarrow> bool" where
"reduced Tip = True"
| "reduced (Node Tip v Tip) = True"
| "reduced (Node l v r) = (l \<noteq> r \<and> reduced l \<and> reduced r)"
primrec reduced_bdt :: "bdt \<Rightarrow> bool"
where
"reduced_bdt Zero = True"
| "reduced_bdt One = True"
| "reduced_bdt (Bdt_Node lbdt v rbdt) =
(if lbdt = rbdt then False
else (reduced_bdt lbdt \<and> reduced_bdt rbdt))"
lemma replicate_elem: "i < n ==> (replicate n x !i) = x"
apply (induct n)
apply simp
apply (cases i)
apply auto
done
lemma no_in_one_ll:
"\<lbrakk>wf_ll pret levellista var; i<length levellista; j < length levellista;
no \<in> set (levellista ! i); i\<noteq>j\<rbrakk>
\<Longrightarrow> no \<notin> set (levellista ! j) "
apply (unfold wf_ll_def)
apply (erule conjE)
apply (rotate_tac 5)
apply (frule_tac x = i and ?R= "no \<in> set_of pret \<and> var no = i" in allE)
apply (erule impE)
apply simp
apply (rotate_tac 6)
apply (erule_tac x=no in ballE)
apply assumption
apply simp
apply (cases "no \<notin> set (levellista ! j)")
apply assumption
apply (erule_tac x=j in allE)
apply (erule impE)
apply assumption
apply (rotate_tac 7)
apply (erule_tac x=no in ballE)
prefer 2
apply assumption
apply (elim conjE)
apply (thin_tac "\<forall>q. q \<in> set_of pret \<longrightarrow> q \<in> set (levellista ! var q)")
apply fastforce
done
lemma nodes_in_wf_ll:
"\<lbrakk>wf_ll pret levellista var; i < length levellista; no \<in> set (levellista ! i)\<rbrakk>
\<Longrightarrow> var no = i \<and> no \<in> set_of pret"
apply (simp add: wf_ll_def)
done
lemma subelem_set_of_low:
"\<And> p. \<lbrakk> x \<in> set_of t; x \<noteq> Null; low x \<noteq> Null; Dag p low high t \<rbrakk>
\<Longrightarrow> (low x) \<in> set_of t"
proof (induct t)
case Tip
then show ?case by simp
next
case (Node lt po rt)
note tNode=this
then have ppo: "p=po" by simp
show ?case
proof (cases "x=p")
case True
with Node.prems have lxrootlt: "low x = root lt"
proof (cases lt)
case Tip
with True Node.prems show ?thesis
by auto
next
case (Node llt l rlt)
with Node.prems True show ?thesis
by auto
qed
with True Node.prems have "low x \<in> set_of (Node lt p rt)"
proof (cases lt)
case Tip
with lxrootlt Node.prems show ?thesis
by simp
next
case (Node llt l rlt)
with lxrootlt Node.prems show ?thesis
by simp
qed
with ppo show ?thesis
by simp
next
assume xnp: " x \<noteq> p"
with Node.prems have "x \<in> set_of lt \<or> x \<in> set_of rt"
by simp
show ?thesis
proof (cases "x \<in> set_of lt")
case True
note xinlt=this
from Node.prems have "Dag (low p) low high lt"
by fastforce
with Node.prems True have "low x \<in> set_of lt"
apply -
apply (rule Node.hyps)
apply assumption+
done
with Node.prems show ?thesis
by auto
next
assume xnotinlt: " x \<notin> set_of lt"
with xnp Node.prems have xinrt: "x \<in> set_of rt"
by simp
from Node.prems have "Dag (high p) low high rt"
by fastforce
with Node.prems xinrt have "low x \<in> set_of rt"
apply -
apply (rule Node.hyps)
apply assumption+
done
with Node.prems show ?thesis
by auto
qed
qed
qed
lemma subelem_set_of_high:
"\<And> p. \<lbrakk> x \<in> set_of t; x \<noteq> Null; high x \<noteq> Null; Dag p low high t \<rbrakk>
\<Longrightarrow> (high x) \<in> set_of t"
proof (induct t)
case Tip
then show ?case by simp
next
case (Node lt po rt)
note tNode=this
then have ppo: "p=po" by simp
show ?case
proof (cases "x=p")
case True
with Node.prems have lxrootlt: "high x = root rt"
proof (cases rt)
case Tip
with True Node.prems show ?thesis
by auto
next
case (Node lrt l rrt)
with Node.prems True show ?thesis
by auto
qed
with True Node.prems have "high x \<in> set_of (Node lt p rt)"
proof (cases rt)
case Tip
with lxrootlt Node.prems show ?thesis
by simp
next
case (Node lrt l rrt)
with lxrootlt Node.prems show ?thesis
by simp
qed
with ppo show ?thesis
by simp
next
assume xnp: " x \<noteq> p"
with Node.prems have "x \<in> set_of lt \<or> x \<in> set_of rt"
by simp
show ?thesis
proof (cases "x \<in> set_of lt")
case True
note xinlt=this
from Node.prems have "Dag (low p) low high lt"
by fastforce
with Node.prems True have "high x \<in> set_of lt"
apply -
apply (rule Node.hyps)
apply assumption+
done
with Node.prems show ?thesis
by auto
next
assume xnotinlt: " x \<notin> set_of lt"
with xnp Node.prems have xinrt: "x \<in> set_of rt"
by simp
from Node.prems have "Dag (high p) low high rt"
by fastforce
with Node.prems xinrt have "high x \<in> set_of rt"
apply -
apply (rule Node.hyps)
apply assumption+
done
with Node.prems show ?thesis
by auto
qed
qed
qed
lemma set_split: "{k. k<(Suc n)} = {k. k<n} \<union> {n}"
apply auto
done
lemma Nodes_levellist_subset_t:
"\<lbrakk>wf_ll t levellist var; i<= length levellist\<rbrakk> \<Longrightarrow> Nodes i levellist \<subseteq> set_of t"
proof (induct i)
case 0
show ?case by (simp add: Nodes_def)
next
case (Suc n)
from Suc.prems Suc.hyps have Nodesn_in_t: "Nodes n levellist \<subseteq> set_of t"
by simp
from Suc.prems have "\<forall> x \<in> set (levellist ! n). x \<in> set_of t"
apply -
apply (rule ballI)
apply (simp add: wf_ll_def)
apply (erule conjE)
apply (thin_tac " \<forall>q. q \<in> set_of t \<longrightarrow> q \<in> set (levellist ! var q)")
apply (erule_tac x=n in allE)
apply (erule impE)
apply simp
apply fastforce
done
with Suc.prems have "set (levellist ! n) \<subseteq> set_of t"
apply blast
done
with Suc.prems Nodesn_in_t show ?case
apply (simp add: Nodes_def)
apply (simp add: set_split)
done
qed
lemma bdt_child:
"\<lbrakk> bdt (Node (Node llt l rlt) p (Node lrt r rrt)) var = Some bdt1\<rbrakk>
\<Longrightarrow> \<exists> lbdt rbdt. bdt (Node llt l rlt) var = Some lbdt \<and>
bdt (Node lrt r rrt) var = Some rbdt"
by (simp split: option.splits)
lemma subbdt_ex_dag_def:
"\<And> bdt1 p. \<lbrakk>Dag p low high t; bdt t var = Some bdt1; Dag no low high not;
no \<in> set_of t\<rbrakk> \<Longrightarrow> \<exists> bdt2. bdt not var = Some bdt2" for not
proof (induct t)
case Tip
then show ?case by simp
next
case (Node lt po rt)
note pNode=this
with Node.prems have p_po: "p=po" by simp
show ?case
proof (cases "no = po")
case True
note no_eq_po=this
from p_po Node.prems no_eq_po have "not = (Node lt po rt)" by (simp add: Dag_unique del: Dag_Ref)
with Node.prems have "bdt not var = Some bdt1" by (simp add: le_dag_def)
then show ?thesis by simp
next
assume "no \<noteq> po"
with Node.prems have no_in_lt_or_rt: "no \<in> set_of lt \<or> no \<in> set_of rt" by simp
show ?thesis
proof (cases "no \<in> set_of lt")
case True
note no_in_lt=this
from Node.prems p_po have lt_dag: "Dag (low po) low high lt" by simp
from Node.prems have lbdt_def: "\<exists> lbdt. bdt lt var = Some lbdt"
proof (cases lt)
case Tip
with Node.prems no_in_lt show ?thesis by (simp add: le_dag_def)
next
case (Node llt l rlt)
note lNode=this
show ?thesis
proof (cases rt)
case Tip
note rNode=this
with lNode Node.prems show ?thesis by simp
next
case (Node lrt r rrt)
note rNode=this
with lNode Node.prems show ?thesis by (simp split: option.splits)
qed
qed
then obtain lbdt where "bdt lt var = Some lbdt"..
with Node.prems lt_dag no_in_lt show ?thesis
apply -
apply (rule Node.hyps)
apply assumption+
done
next
assume "no \<notin> set_of lt"
with no_in_lt_or_rt have no_in_rt: "no \<in> set_of rt" by simp
from Node.prems p_po have rt_dag: "Dag (high po) low high rt" by simp
from Node.hyps have hyp2: "\<And> rbdt. \<lbrakk>Dag (high po) low high rt; bdt rt var = Some rbdt; Dag no low high not; no \<in> set_of rt\<rbrakk> \<Longrightarrow> \<exists>bdt2. bdt not var = Some bdt2"
by simp
from Node.prems have lbdt_def: "\<exists> rbdt. bdt rt var = Some rbdt"
proof (cases rt)
case Tip
with Node.prems no_in_rt show ?thesis by (simp add: le_dag_def)
next
case (Node lrt l rrt)
note rNode=this
show ?thesis
proof (cases lt)
case Tip
note lTip=this
with rNode Node.prems show ?thesis by simp
next
case (Node llt r rlt)
note lNode=this
with rNode Node.prems show ?thesis by (simp split: option.splits)
qed
qed
then obtain rbdt where "bdt rt var = Some rbdt"..
with Node.prems rt_dag no_in_rt show ?thesis
apply -
apply (rule hyp2)
apply assumption+
done
qed
qed
qed
lemma subbdt_ex:
"\<And> bdt1. \<lbrakk> (Node lst stp rst) <= t; bdt t var = Some bdt1\<rbrakk>
\<Longrightarrow> \<exists> bdt2. bdt (Node lst stp rst) var = Some bdt2"
proof (induct t)
case Tip
then show ?case by (simp add: le_dag_def)
next
case (Node lt p rt)
note pNode=this
show ?case
proof (cases "Node lst stp rst = Node lt p rt")
case True
with Node.prems show ?thesis by simp
next
assume " Node lst stp rst \<noteq> Node lt p rt"
with Node.prems have "Node lst stp rst < Node lt p rt" apply (simp add: le_dag_def) apply auto done
then have in_ltrt: "Node lst stp rst <= lt \<or> Node lst stp rst <= rt"
by (simp add: less_dag_Node)
show ?thesis
proof (cases "Node lst stp rst <= lt")
case True
note in_lt=this
from Node.prems have lbdt_def: "\<exists> lbdt. bdt lt var = Some lbdt"
proof (cases lt)
case Tip
with Node.prems in_lt show ?thesis by (simp add: le_dag_def)
next
case (Node llt l rlt)
note lNode=this
show ?thesis
proof (cases rt)
case Tip
note rNode=this
with lNode Node.prems show ?thesis by simp
next
case (Node lrt r rrt)
note rNode=this
with lNode Node.prems show ?thesis by (simp split: option.splits)
qed
qed
then obtain lbdt where "bdt lt var = Some lbdt"..
with Node.prems in_lt show ?thesis
apply -
apply (rule Node.hyps)
apply assumption+
done
next
assume " \<not> Node lst stp rst \<le> lt"
with in_ltrt have in_rt: "Node lst stp rst <= rt" by simp
from Node.hyps have hyp2: "\<And> rbdt. \<lbrakk>Node lst stp rst <= rt; bdt rt var = Some rbdt\<rbrakk> \<Longrightarrow> \<exists>bdt2. bdt (Node lst stp rst) var = Some bdt2"
by simp
from Node.prems have rbdt_def: "\<exists> rbdt. bdt rt var = Some rbdt"
proof (cases rt)
case Tip
with Node.prems in_rt show ?thesis by (simp add: le_dag_def)
next
case (Node lrt l rrt)
note rNode=this
show ?thesis
proof (cases lt)
case Tip
note lNode=this
with rNode Node.prems show ?thesis by simp
next
case (Node lrt r rrt)
note lNode=this
with rNode Node.prems show ?thesis by (simp split: option.splits)
qed
qed
then obtain rbdt where "bdt rt var = Some rbdt"..
with Node.prems in_rt show ?thesis
apply -
apply (rule hyp2)
apply assumption+
done
qed
qed
qed
lemma var_ordered_children:
"\<And> p. \<lbrakk> Dag p low high t; ordered t var; no \<in> set_of t;
low no \<noteq> Null; high no \<noteq> Null\<rbrakk>
\<Longrightarrow> var (low no) < var no \<and> var (high no) < var no"
proof (induct t)
case Tip
then show ?case by simp
next
case (Node lt po rt)
then have ppo: "p=po" by simp
show ?case
proof (cases "no = po")
case True
note no_po=this
from Node.prems have "var (low po) < var po \<and> var (high po) < var po"
proof (cases lt)
case Tip
note ltTip=this
with Node.prems no_po ppo show ?thesis by simp
next
case (Node llt l rlt)
note lNode=this
show ?thesis
proof (cases rt)
case Tip
note rTip=this
with Node.prems no_po ppo show ?thesis by simp
next
case (Node lrt r rrt)
note rNode=this
with Node.prems ppo no_po lNode show ?thesis by (simp del: Dag_Ref)
qed
qed
with no_po show ?thesis by simp
next
assume " no \<noteq> po"
with Node.prems have no_in_ltrt: "no \<in> set_of lt \<or> no \<in> set_of rt"
by simp
show ?thesis
proof (cases "no \<in> set_of lt")
case True
note no_in_lt=this
from Node.prems ppo have lt_dag: "Dag (low po) low high lt"
by simp
from Node.prems have ord_lt: "ordered lt var"
apply -
apply (drule children_ordered)
apply simp
done
from no_in_lt lt_dag ord_lt Node.prems show ?thesis
apply -
apply (rule Node.hyps)
apply assumption+
done
next
assume " no \<notin> set_of lt"
with no_in_ltrt have no_in_rt: "no \<in> set_of rt" by simp
from Node.prems ppo have rt_dag: "Dag (high po) low high rt" by simp
from Node.hyps have hyp2: " \<lbrakk>Dag (high po) low high rt; ordered rt var; no \<in> set_of rt; low no \<noteq> Null; high no \<noteq> Null\<rbrakk>
\<Longrightarrow> var (low no) < var no \<and> var (high no) < var no"
by simp
from Node.prems have ord_rt: "ordered rt var"
apply -
apply (drule children_ordered)
apply simp
done
from rt_dag ord_rt no_in_rt Node.prems show ?thesis
apply -
apply (rule hyp2)
apply assumption+
done
qed
qed
qed
lemma nort_null_comp:
assumes pret_dag: "Dag p low high pret" and
prebdt_pret: "bdt pret var = Some prebdt" and
nort_dag: "Dag (repc no) (repb \<propto> low) (repb \<propto> high) nort" and
ord_pret: "ordered pret var" and
wf_llb: "wf_ll pret levellistb var" and
nbsll: "nb < length levellistb" and
repbc_nc: "\<forall> nt. nt \<notin> set (levellistb ! nb) \<longrightarrow> repb nt = repc nt" and
xsnb_in_pret: "\<forall> x \<in> set_of nort. var x < nb \<and> x \<in> set_of pret"
shows "\<forall> x \<in> set_of nort. ((repc \<propto> low) x = (repb \<propto> low) x \<and>
(repc \<propto> high) x = (repb \<propto> high) x)"
proof (rule ballI)
fix x
assume x_in_nort: "x \<in> set_of nort"
with nort_dag have xnN: "x \<noteq> Null"
apply -
apply (rule set_of_nn [rule_format])
apply auto
done
from x_in_nort xsnb_in_pret have xsnb: "var x <nb"
by simp
from x_in_nort xsnb_in_pret have x_in_pret: "x \<in> set_of pret"
by blast
show " (repc \<propto> low) x = (repb \<propto> low) x \<and> (repc \<propto> high) x = (repb \<propto> high) x"
proof (cases "(low x) \<noteq> Null")
case True
with pret_dag prebdt_pret x_in_pret have highnN: "(high x) \<noteq> Null"
apply -
apply (drule balanced_bdt)
apply assumption+
apply simp
done
from x_in_pret ord_pret highnN True have children_var_smaller: "var (low x) < var x \<and> var (high x) < var x"
apply -
apply (rule var_ordered_children)
apply (rule pret_dag)
apply (rule ord_pret)
apply (rule x_in_pret)
apply (rule True)
apply (rule highnN)
done
with xsnb have lowxsnb: "var (low x) < nb"
by arith
from children_var_smaller xsnb have highxsnb: "var (high x) < nb"
by arith
from x_in_pret xnN True pret_dag have lowxinpret: "(low x) \<in> set_of pret"
apply -
apply (drule subelem_set_of_low)
apply assumption
apply (thin_tac "x \<noteq> Null")
apply assumption+
done
with wf_llb have "low x \<in> set (levellistb ! (var (low x)))"
by (simp add: wf_ll_def)
with wf_llb nbsll lowxsnb have "low x \<notin> set (levellistb ! nb)"
apply -
apply (rule_tac ?i="(var (low x))" and ?j=nb in no_in_one_ll)
apply auto
done
with repbc_nc have repclow: "repc (low x) = repb (low x)"
by auto
from x_in_pret xnN highnN pret_dag have highxinpret: "(high x) \<in> set_of pret"
apply -
apply (drule subelem_set_of_high)
apply assumption
apply (thin_tac "x \<noteq> Null")
apply assumption+
done
with wf_llb have "high x \<in> set (levellistb ! (var (high x)))"
by (simp add: wf_ll_def)
with wf_llb nbsll highxsnb have "high x \<notin> set (levellistb ! nb)"
apply -
apply (rule_tac ?i="(var (high x))" and ?j=nb in no_in_one_ll)
apply auto
done
with repbc_nc have repchigh: "repc (high x) = repb (high x)"
by auto
with repclow show ?thesis
by (simp add: null_comp_def)
next
assume " \<not> low x \<noteq> Null"
then have lowxNull: "low x = Null" by simp
with pret_dag x_in_pret prebdt_pret have highxNull: "high x =Null"
apply -
apply (drule balanced_bdt)
apply simp
apply simp
apply simp
done
from lowxNull have repclowNull: "(repc \<propto> low) x = Null"
by (simp add: null_comp_def)
from lowxNull have repblowNull: "(repb \<propto> low) x = Null"
by (simp add: null_comp_def)
with repclowNull have lowxrepbc: "(repc \<propto> low) x = (repb \<propto> low) x"
by simp
from highxNull have repchighNull: "(repc \<propto> high) x = Null"
by (simp add: null_comp_def)
from highxNull have "(repb \<propto> high) x = Null"
by (simp add: null_comp_def)
with repchighNull have highxrepbc: "(repc \<propto> high) x = (repb \<propto> high) x"
by simp
with lowxrepbc show ?thesis
by simp
qed
qed
lemma wf_ll_Nodes_pret:
"\<lbrakk>wf_ll pret levellista var; nb < length levellista; x \<in> Nodes nb levellista\<rbrakk>
\<Longrightarrow> x \<in> set_of pret \<and> var x < nb"
apply (simp add: wf_ll_def Nodes_def)
apply (erule conjE)
apply (thin_tac " \<forall>q. q \<in> set_of pret \<longrightarrow> q \<in> set (levellista ! var q)")
apply (erule exE)
apply (elim conjE)
apply (erule_tac x=xa in allE)
apply (erule impE)
apply arith
apply (erule_tac x=x in ballE)
apply auto
done
lemma bdt_Some_var1_One:
"\<And> x. \<lbrakk> bdt t var = Some x; var (root t) = 1\<rbrakk>
\<Longrightarrow> x = One \<and> t = (Node Tip (root t) Tip)"
proof (induct t)
case Tip
then show ?case by simp
next
case (Node lt p rt)
note tNode = this
show ?case
proof (cases lt)
case Tip
note ltTip=this
show ?thesis
proof (cases rt)
case Tip
note rtTip = this
with ltTip Node.prems show ?thesis by auto
next
case (Node lrt r rrt)
note rtNode=this
with Node.prems ltTip show ?thesis by auto
qed
next
case (Node llt l rlt)
note ltNode=this
show ?thesis
proof (cases rt)
case Tip
with ltNode Node.prems show ?thesis by auto
next
case (Node lrt r rrt)
note rtNode=this
with ltNode Node.prems show ?thesis by auto
qed
qed
qed
lemma bdt_Some_var0_Zero:
"\<And> x. \<lbrakk> bdt t var = Some x; var (root t) = 0\<rbrakk>
\<Longrightarrow> x = Zero \<and> t = (Node Tip (root t) Tip)"
proof (induct t)
case Tip
then show ?case by simp
next
case (Node lt p rt)
note tNode = this
show ?case
proof (cases lt)
case Tip
note ltTip=this
show ?thesis
proof (cases rt)
case Tip
note rtTip = this
with ltTip Node.prems show ?thesis by auto
next
case (Node lrt r rrt)
note rtNode=this
with Node.prems ltTip show ?thesis by auto
qed
next
case (Node llt l rlt)
note ltNode=this
show ?thesis
proof (cases rt)
case Tip
with ltNode Node.prems show ?thesis by auto
next
case (Node lrt r rrt)
note rtNode=this
with ltNode Node.prems show ?thesis by auto
qed
qed
qed
lemma reduced_children_parent:
"\<lbrakk> reduced l; l= (Node llt lp rlt); reduced r; r=(Node lrt rp rrt);
lp \<noteq> rp \<rbrakk>
\<Longrightarrow> reduced (Node l p r)"
by simp
(*Die allgemeine Form mit i <=j \<Longrightarrow> Nodes i levellista \<subseteq> Nodes j levellista wäre schöner, aber wie beweist man das? *)
lemma Nodes_subset: "Nodes i levellista \<subseteq> Nodes (Suc i) levellista"
apply (simp add: Nodes_def)
apply (simp add: set_split)
done
lemma Nodes_levellist:
"\<lbrakk> wf_ll pret levellista var; nb < length levellista; p \<in> Nodes nb levellista\<rbrakk>
\<Longrightarrow> p \<notin> set (levellista ! nb)"
apply (simp add: Nodes_def)
apply (erule exE)
apply (rule_tac i=x and j=nb in no_in_one_ll)
apply auto
done
lemma Nodes_var_pret:
"\<lbrakk>wf_ll pret levellista var; nb < length levellista; p \<in> Nodes nb levellista\<rbrakk>
\<Longrightarrow> var p < nb \<and> p \<in> set_of pret"
apply (simp add: Nodes_def wf_ll_def)
apply (erule conjE)
apply (thin_tac "\<forall>q. q \<in> set_of pret \<longrightarrow> q \<in> set (levellista ! var q)")
apply (erule exE)
apply (erule_tac x=x in allE)
apply (erule impE)
apply arith
apply (erule_tac x=p in ballE)
apply arith
apply simp
done
lemma Dags_root_in_Nodes:
assumes t_in_DagsSucnb: "t \<in> Dags (Nodes (Suc nb) levellista) low high"
shows "\<exists> p . Dag p low high t \<and> p \<in> Nodes (Suc nb) levellista"
proof -
from t_in_DagsSucnb obtain p where t_dag: "Dag p low high t" and t_subset_Nodes: "set_of t \<subseteq> Nodes (Suc nb) levellista" and t_nTip: "t\<noteq> Tip"
by (fastforce elim: Dags.cases)
from t_dag t_nTip have "p\<noteq>Null" by (cases t) auto
with t_subset_Nodes t_dag have "p \<in> Nodes (Suc nb) levellista"
by (cases t) auto
with t_dag show ?thesis
by auto
qed
lemma subdag_dag:
"\<And> p. \<lbrakk>Dag p low high t; st <= t\<rbrakk> \<Longrightarrow> \<exists> stp. Dag stp low high st"
proof (induct t)
case Tip
then show ?case
by (simp add: less_dag_def le_dag_def)
next
case (Node lt po rt)
note t_Node=this
with Node.prems have p_po: "p=po"
by simp
show ?case
proof (cases "st = Node lt po rt")
case True
note st_t=this
with Node.prems show ?thesis
by auto
next
assume st_nt: "st \<noteq> Node lt po rt"
with Node.prems p_po have st_subdag_lt_rt: "st<=lt \<or> st <=rt"
by (auto simp add:le_dag_def less_dag_def)
from Node.prems p_po obtain lp rp where lt_dag: "Dag lp low high lt" and rt_dag: "Dag rp low high rt"
by auto
show ?thesis
proof (cases "st<=lt")
case True
note st_lt=this
with lt_dag show ?thesis
apply-
apply (rule Node.hyps)
apply auto
done
next
assume "\<not> st \<le> lt"
with st_subdag_lt_rt have st_rt: "st <= rt"
by simp
from Node.hyps have rhyp: "\<lbrakk>Dag rp low high rt; st \<le> rt\<rbrakk> \<Longrightarrow> \<exists>stp. Dag stp low high st"
by simp
from st_rt rt_dag show ?thesis
apply -
apply (rule rhyp)
apply auto
done
qed
qed
qed
lemma Dags_subdags:
assumes t_in_Dags: "t \<in> Dags nodes low high" and
st_t: "st <= t" and
st_nTip: "st \<noteq> Tip"
shows "st \<in> Dags nodes low high"
proof -
from t_in_Dags obtain p where t_dag: "Dag p low high t" and t_subset_Nodes: "set_of t \<subseteq> nodes" and t_nTip: "t\<noteq> Tip"
by (fastforce elim: Dags.cases)
from st_t have "set_of st \<subseteq> set_of t"
by (simp add: le_dag_set_of)
with t_subset_Nodes have st_subset_fnctNodes: "set_of st \<subseteq> nodes"
by blast
from st_t t_dag obtain stp where "Dag stp low high st"
apply -
apply (drule subdag_dag)
apply auto
done
with st_subset_fnctNodes st_nTip show ?thesis
apply -
apply (rule DagsI)
apply auto
done
qed
lemma Dags_Nodes_cases:
assumes P_sym: "\<And> t1 t2. P t1 t2 var = P t2 t1 var" and
dags_in_lower_levels:
"\<And> t1 t2. \<lbrakk>t1 \<in> Dags (fnct `(Nodes n levellista)) low high;
t2 \<in> Dags (fnct `(Nodes n levellista)) low high\<rbrakk>
\<Longrightarrow> P t1 t2 var" and
dags_in_mixed_levels:
"\<And> t1 t2. \<lbrakk>t1 \<in> Dags (fnct `(Nodes n levellista)) low high;
t2 \<in> Dags (fnct `(Nodes (Suc n) levellista)) low high;
t2 \<notin> Dags (fnct `(Nodes n levellista)) low high\<rbrakk>
\<Longrightarrow> P t1 t2 var" and
dags_in_high_level:
"\<And> t1 t2. \<lbrakk>t1 \<in> Dags (fnct `(Nodes (Suc n) levellista)) low high;
t1 \<notin> Dags (fnct `(Nodes n levellista)) low high;
t2 \<in> Dags (fnct `(Nodes (Suc n) levellista)) low high;
t2 \<notin> Dags (fnct `(Nodes n levellista)) low high\<rbrakk>
\<Longrightarrow> P t1 t2 var"
shows "\<forall> t1 t2. t1 \<in> Dags (fnct `(Nodes (Suc n) levellista)) low high \<and>
t2 \<in> Dags (fnct `(Nodes (Suc n) levellista)) low high
\<longrightarrow> P t1 t2 var"
proof (intro allI impI , elim conjE)
fix t1 t2
assume t1_in_higher_levels: "t1 \<in> Dags (fnct ` Nodes (Suc n) levellista) low high"
assume t2_in_higher_levels: "t2 \<in> Dags (fnct ` Nodes (Suc n) levellista) low high"
show "P t1 t2 var"
proof (cases "t1 \<in> Dags (fnct ` Nodes n levellista) low high")
case True
note t1_in_ll = this
show ?thesis
proof (cases "t2 \<in> Dags (fnct ` Nodes n levellista) low high")
case True
note t2_in_ll=this
with t1_in_ll dags_in_lower_levels show ?thesis
by simp
next
assume t2_notin_ll: "t2 \<notin> Dags (fnct ` Nodes n levellista) low high"
with t1_in_ll t2_in_higher_levels dags_in_mixed_levels show ?thesis
by simp
qed
next
assume t1_notin_ll: "t1 \<notin> Dags (fnct ` Nodes n levellista) low high"
show ?thesis
proof (cases "t2 \<in> Dags (fnct ` Nodes n levellista) low high")
case True
note t2_in_ll=this
with dags_in_mixed_levels t1_in_higher_levels t1_notin_ll P_sym show ?thesis
by auto
next
assume t2_notin_ll: "t2 \<notin> Dags (fnct ` Nodes n levellista) low high"
with t1_notin_ll t1_in_higher_levels t2_in_higher_levels dags_in_high_level show ?thesis
by simp
qed
qed
qed
lemma Null_notin_Nodes: "\<lbrakk>Dag p low high t; nb <= length levellista; wf_ll t levellista var\<rbrakk> \<Longrightarrow> Null \<notin> Nodes nb levellista"
apply (simp add: Nodes_def wf_ll_def del: Dag_Ref)
apply (rule allI)
apply (rule impI)
apply (elim conjE)
apply (thin_tac "\<forall>q. P q" for P)
apply (erule_tac x=x in allE)
apply (erule impE)
apply simp
apply (erule_tac x=Null in ballE)
apply (erule conjE)
apply (drule set_of_nn [rule_format])
apply auto
done
lemma Nodes_in_pret: "\<lbrakk>wf_ll t levellista var; nb <= length levellista\<rbrakk> \<Longrightarrow> Nodes nb levellista \<subseteq> set_of t"
apply -
apply rule
apply (simp add: wf_ll_def Nodes_def)
apply (erule exE)
apply (elim conjE)
apply (thin_tac "\<forall>q. q \<in> set_of t \<longrightarrow> q \<in> set (levellista ! var q)")
apply (erule_tac x=xa in allE)
apply (erule impE)
apply simp
apply (erule_tac x=x in ballE)
apply auto
done
lemma restrict_root_Node:
"\<lbrakk>t \<in> Dags (repc `Nodes (Suc nb) levellista) (repc \<propto> low) (repc \<propto> high); t \<notin> Dags (repc `Nodes nb levellista) (repc \<propto> low) (repc \<propto> high);
ordered t var; \<forall> no \<in> Nodes (Suc nb) levellista. var (repc no) <= var no \<and> repc (repc no) = repc no; wf_ll pret levellista var; nb < length levellista;repc `Nodes (Suc nb) levellista \<subseteq> Nodes (Suc nb) levellista\<rbrakk>
\<Longrightarrow> \<exists> q. Dag (repc q) (repc \<propto> low) (repc \<propto> high) t \<and> q \<in> set (levellista ! nb)"
proof (elim Dags.cases)
fix p and ta :: "dag"
assume t_notin_DagsNodesnb: "t \<notin> Dags (repc ` Nodes nb levellista) (repc \<propto> low) (repc \<propto> high)"
assume t_ta: "t = ta"
assume ta_in_repc_NodesSucnb: "set_of ta \<subseteq> repc ` Nodes (Suc nb) levellista"
assume ta_dag: "Dag p (repc \<propto> low) (repc \<propto> high) ta"
assume ta_nTip: "ta \<noteq> Tip"
assume ord_t: "ordered t var"
assume varrep_prop: "\<forall> no \<in> Nodes (Suc nb) levellista. var (repc no) <= var no \<and> repc (repc no) = repc no"
assume wf_lla: "wf_ll pret levellista var"
assume nbslla: "nb < length levellista"
assume repcNodes_in_Nodes: "repc `Nodes (Suc nb) levellista \<subseteq> Nodes (Suc nb) levellista"
from ta_nTip ta_dag have p_nNull: "p\<noteq> Null"
by auto
with ta_nTip ta_dag obtain lt rt where ta_Node: " ta = Node lt p rt"
by auto
with ta_nTip ta_dag have p_in_ta: "p \<in> set_of ta"
by auto
with ta_in_repc_NodesSucnb have p_in_repcNodes_Sucnb: "p \<in> repc `Nodes (Suc nb) levellista"
by auto
show ?thesis
proof (cases "p \<in> repc `(set (levellista ! nb))")
case True
then obtain q where
p_repca: "p=repc q" and
a_in_llanb: "q \<in> set (levellista ! nb)"
by auto
with ta_dag t_ta show ?thesis
apply -
apply (rule_tac x=q in exI)
apply simp
done
next
assume p_notin_repc_llanb: "p \<notin> repc ` set (levellista ! nb)"
with p_in_repcNodes_Sucnb have p_in_repc_Nodesnb: "p \<in> repc `Nodes nb levellista"
apply -
apply (erule imageE)
apply rule
apply (simp add: Nodes_def)
apply (simp add: Nodes_def)
apply (erule exE conjE)
apply (case_tac "xa=nb")
apply simp
apply (rule_tac x=xa in exI)
apply auto
done
have "t \<in> Dags (repc `Nodes nb levellista) (repc \<propto> low) (repc \<propto> high)"
proof -
have "set_of t \<subseteq> repc `Nodes nb levellista"
proof (rule)
fix x :: ref
assume x_in_t: "x \<in> set_of t"
with ord_t have "var x <= var (root t)"
apply -
apply (rule ordered_set_of)
apply auto
done
with t_ta ta_Node have varx_varp: "var x <= var p"
by auto
from p_in_repc_Nodesnb obtain k where ksnb: "k < nb" and p_in_repc_llak: "p \<in> repc `(set (levellista ! k))"
by (auto simp add: Nodes_def ImageE)
then obtain q where p_repcq: "p=repc q" and q_in_llak: "q \<in> set (levellista ! k)"
by auto
from q_in_llak wf_lla nbslla ksnb have varqk: "var q = k"
by (simp add: wf_ll_def)
have Nodesnb_in_NodesSucnb: "Nodes nb levellista \<subseteq> Nodes (Suc nb) levellista"
by (rule Nodes_subset)
from q_in_llak ksnb have "q \<in> Nodes nb levellista"
by (auto simp add: Nodes_def)
with varrep_prop Nodesnb_in_NodesSucnb have "var (repc q) <= var q"
by auto
with varqk ksnb p_repcq have "var p < nb"
by auto
with varx_varp have varx_snb: "var x < nb"
by auto
from x_in_t t_ta ta_in_repc_NodesSucnb obtain a where
x_repca: "x= repc a" and
a_in_NodesSucnb: "a \<in> Nodes (Suc nb) levellista"
by auto
with varrep_prop have rx_x: "repc x = x"
by auto
have "x \<in> set_of pret"
proof -
from wf_lla nbslla have "Nodes (Suc nb) levellista \<subseteq> set_of pret"
apply -
apply (rule Nodes_in_pret)
apply auto
done
with x_in_t t_ta ta_in_repc_NodesSucnb repcNodes_in_Nodes show ?thesis
by auto
qed
with wf_lla have "x \<in> set (levellista ! (var x))"
by (auto simp add: wf_ll_def)
with varx_snb have "x \<in> Nodes nb levellista"
by (auto simp add: Nodes_def)
with rx_x show "x \<in> repc `Nodes nb levellista"
apply -
apply rule
apply (subgoal_tac "x=repc x")
apply auto
done
qed
with ta_nTip ta_dag t_ta show ?thesis
apply -
apply (rule DagsI)
apply auto
done
qed
with t_notin_DagsNodesnb show ?thesis
by auto
qed
qed
lemma same_bdt_var: "\<lbrakk>bdt (Node lt1 p1 rt1) var = Some bdt1; bdt (Node lt2 p2 rt2) var = Some bdt1\<rbrakk>
\<Longrightarrow> var p1 = var p2"
proof (induct bdt1)
case Zero
then obtain var_p1: "var p1 = 0" and var_p2: "var p2 = 0"
by simp
then show ?case
by simp
next
case One
then obtain var_p1: "var p1 = 1" and var_p2: "var p2 = 1"
by simp
then show ?case
by simp
next
case (Bdt_Node lbdt v rbdt)
then obtain var_p1: "var p1 = v" and var_p2: "var p2 = v"
by simp
then show ?case by simp
qed
lemma bdt_Some_Leaf_var_le_1:
"\<lbrakk>Dag p low high t; bdt t var = Some x; isLeaf_pt p low high\<rbrakk>
\<Longrightarrow> var p <= 1"
proof (induct t)
case Tip
thus ?case by simp
next
case (Node lt p rt)
note tNode=this
from Node.prems tNode show ?case
apply (simp add: isLeaf_pt_def)
apply (case_tac "var p = 0")
apply simp
apply (case_tac "var p = Suc 0")
apply simp
apply simp
done
qed
lemma subnode_dag_cons:
"\<And> p. \<lbrakk>Dag p low high t; no \<in> set_of t\<rbrakk> \<Longrightarrow> \<exists> not. Dag no low high not"
proof (induct t)
case Tip
thus ?case by simp
next
case (Node lt q rt)
with Node.prems have q_p: "p = q"
by simp
from Node.prems have lt_dag: "Dag (low p) low high lt"
by auto
from Node.prems have rt_dag: "Dag (high p) low high rt"
by auto
show ?case
proof (cases "no \<in> set_of lt")
case True
with Node.hyps lt_dag show ?thesis
by simp
next
assume no_notin_lt: "no \<notin> set_of lt"
show ?thesis
proof (cases "no=p")
case True
with Node.prems q_p show ?thesis
by auto
next
assume no_neq_p: "no \<noteq> p"
with Node.prems no_notin_lt have no_in_rt: "no \<in> set_of rt"
by simp
with rt_dag Node.hyps show ?thesis
by auto
qed
qed
qed
(*theorems for the proof of share_reduce_rep_list*)
lemma nodes_in_taken_in_takeSucn: "no \<in> set (take n nodeslist) \<Longrightarrow> no \<in> set (take (Suc n) nodeslist) "
proof -
assume no_in_taken: "no \<in> set (take n nodeslist)"
have "set (take n nodeslist) \<subseteq> set (take (Suc n) nodeslist)"
apply -
apply (rule set_take_subset_set_take)
apply simp
done
with no_in_taken show ?thesis
by blast
qed
lemma ind_in_higher_take: "\<And>n k. \<lbrakk>n < k; n < length xs\<rbrakk>
\<Longrightarrow> xs ! n \<in> set (take k xs)"
apply (induct xs)
apply simp
apply simp
apply (case_tac n)
apply simp
apply (case_tac k)
apply simp
apply simp
apply simp
apply (case_tac k)
apply simp
apply simp
done
lemma take_length_set: "\<And>n. n=length xs \<Longrightarrow> set (take n xs) = set xs"
apply (induct xs)
apply (auto simp add: take_Cons split: nat.splits)
done
lemma repNodes_eq_ext_rep: "\<lbrakk>low no \<noteq> nodeslist! n; high no \<noteq> nodeslist ! n;
low sn \<noteq> nodeslist ! n; high sn \<noteq> nodeslist ! n\<rbrakk>
\<Longrightarrow> repNodes_eq sn no low high repa = repNodes_eq sn no low high (repa(nodeslist ! n := repa (low (nodeslist ! n))))"
by (simp add: repNodes_eq_def null_comp_def)
lemma filter_not_empty: "\<lbrakk>x \<in> set xs; P x\<rbrakk> \<Longrightarrow> filter P xs \<noteq> []"
by (induct xs) auto
lemma "x \<in> set (filter P xs) \<Longrightarrow> P x"
by auto
lemma hd_filter_in_list: "filter P xs \<noteq> [] \<Longrightarrow> hd (filter P xs) \<in> set xs"
by (induct xs) auto
lemma hd_filter_in_filter: "filter P xs \<noteq> [] \<Longrightarrow> hd (filter P xs) \<in> set (filter P xs)"
by (induct xs) auto
lemma hd_filter_prop:
assumes non_empty: "filter P xs \<noteq> []"
shows "P (hd (filter P xs))"
proof -
from non_empty have "hd (filter P xs) \<in> set (filter P xs)"
by (rule hd_filter_in_filter)
thus ?thesis
by auto
qed
lemma index_elem: "x \<in> set xs \<Longrightarrow> \<exists>i<length xs. x = xs ! i"
apply (induct xs)
apply simp
apply (case_tac "x=a")
apply auto
done
lemma filter_hd_P_rep_indep:
"\<lbrakk>\<forall>x. P x x; \<forall>a b. P x a \<longrightarrow> P a b \<longrightarrow> P x b; filter (P x) xs \<noteq> []\<rbrakk> \<Longrightarrow>
hd (filter (P (hd (filter (P x) xs))) xs) = hd (filter (P x) xs)"
apply (induct xs)
apply simp
apply (case_tac "P x a")
using [[simp_depth_limit=2]]
apply (simp)
apply clarsimp
apply (fastforce dest: hd_filter_prop)
done
lemma take_Suc_not_last:
"\<And>n. \<lbrakk>x \<in> set (take (Suc n) xs); x\<noteq>xs!n; n < length xs\<rbrakk> \<Longrightarrow> x \<in> set (take n xs)"
apply (induct xs)
apply simp
apply (case_tac n)
apply simp
using [[simp_depth_limit=2]]
apply fastforce
done
lemma P_eq_list_filter: "\<forall>x \<in> set xs. P x = Q x \<Longrightarrow> filter P xs = filter Q xs"
apply (induct xs)
apply auto
done
lemma hd_filter_take_more: "\<And>n m.\<lbrakk>filter P (take n xs) \<noteq> []; n \<le> m\<rbrakk> \<Longrightarrow>
hd (filter P (take n xs)) = hd (filter P (take m xs))"
apply (induct xs)
apply simp
apply (case_tac n)
apply simp
apply (case_tac m)
apply simp
apply clarsimp
done
(*
consts wf_levellist :: "dag \<Rightarrow> ref list list \<Rightarrow> ref list list \<Rightarrow>
(ref \<Rightarrow> nat) \<Rightarrow> bool"
defs wf_levellist_def: "wf_levellist t levellist_old levellist_new var \<equiv>
case t of Tip \<Rightarrow> levellist_old = levellist_new
| (Node lt p rt) \<Rightarrow>
(\<forall> q. q \<in> set_of t \<longrightarrow> q \<in> set (levellist_new ! (var q))) \<and>
(\<forall> i \<le> var p. (\<exists> prx. (levellist_new ! i) = prx@(levellist_old ! i)
\<and> (\<forall> pt \<in> set prx. pt \<in> set_of t \<and> var pt = i))) \<and>
(\<forall> i. (var p) < i \<longrightarrow> (levellist_new ! i) = (levellist_old ! i)) \<and>
(length levellist_new = length levellist_old)"
*)
end
|