Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 153,929 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
(*  Title:      AF_Stream_Exec.thy
    Date:       Dec 2006
    Author:     David Trachtenherz
*)

section \<open>Processing of message streams\<close>

theory AF_Stream_Exec
imports AF_Stream "List-Infinite.ListInf_Prefix" "List-Infinite.SetIntervalStep"
begin

subsection \<open>Executing components with state transition functions\<close>

subsubsection \<open>Basic definitions\<close>

text \<open>
  Function type for functions converting
  an input value to an input port message for a component\<close>
type_synonym ('a, 'in) Port_Input_Value = "'a \<Rightarrow> 'in message_af"

text \<open>
  Function type for functions extracting
  the output value of a single output port from
  a component value\<close>
type_synonym ('comp, 'out) Port_Output_Value = "'comp \<Rightarrow> 'out message_af"

text \<open>
  Function type for functions extracting
  the local state of a component from
  a component value\<close>
type_synonym ('comp, 'state) Comp_Local_State = "'comp \<Rightarrow> 'state"

text \<open>
  Function type for transition functions
  computing the component's value after processing
  an input for a single time unit\<close>
type_synonym ('comp, 'input) Comp_Trans_Fun = "'input \<Rightarrow> 'comp \<Rightarrow> 'comp"


\<comment> \<open>Execute a component for all inputs in the input stream @{typ "'input list"}\<close>
primrec f_Exec_Comp :: "('comp, 'input) Comp_Trans_Fun \<Rightarrow> 'input list \<Rightarrow> 'comp \<Rightarrow> 'comp"
where
  f_Exec_Nil:  "f_Exec_Comp trans_fun [] c = c"
| f_Exec_Cons: "f_Exec_Comp trans_fun (x#xs) c = f_Exec_Comp trans_fun xs (trans_fun x c)"

\<comment> \<open>Execute the component for at most n steps\<close>
definition f_Exec_Comp_N :: "('comp, 'input) Comp_Trans_Fun \<Rightarrow> nat \<Rightarrow> 'input list \<Rightarrow> 'comp \<Rightarrow> 'comp"
  where "f_Exec_Comp_N trans_fun n xs c \<equiv> f_Exec_Comp trans_fun (xs \<down> n) c"

\<comment> \<open>Produce the component stream for all inputs in the input stream\<close>
primrec f_Exec_Comp_Stream :: "('comp, 'input) Comp_Trans_Fun \<Rightarrow> 'input list \<Rightarrow> 'comp \<Rightarrow> 'comp list"
where
  f_Exec_Stream_Nil:  "f_Exec_Comp_Stream trans_fun [] c = []"
| f_Exec_Stream_Cons: "f_Exec_Comp_Stream trans_fun (x # xs) c =
    (trans_fun x c) # ( f_Exec_Comp_Stream trans_fun xs (trans_fun x c) )"

primrec f_Exec_Comp_Stream_Init ::
  "('comp, 'input) Comp_Trans_Fun \<Rightarrow> 'input list \<Rightarrow> 'comp \<Rightarrow> 'comp list"
where
  f_Exec_Stream_Init_Nil:  "f_Exec_Comp_Stream_Init trans_fun [] c = [c]"
| f_Exec_Stream_Init_Cons: "f_Exec_Comp_Stream_Init trans_fun (x # xs) c =
    c # ( f_Exec_Comp_Stream_Init trans_fun xs (trans_fun x c) )"

definition i_Exec_Comp_Stream ::
    "('comp, 'input) Comp_Trans_Fun \<Rightarrow> 'input ilist \<Rightarrow> 'comp \<Rightarrow> 'comp ilist"
  where "i_Exec_Comp_Stream \<equiv> \<lambda>trans_fun input c n. f_Exec_Comp trans_fun (input \<Down> Suc n) c"

definition i_Exec_Comp_Stream_Init ::
    "('comp, 'input) Comp_Trans_Fun \<Rightarrow> 'input ilist \<Rightarrow> 'comp \<Rightarrow> 'comp ilist"
  where "i_Exec_Comp_Stream_Init \<equiv> \<lambda>trans_fun input c n. f_Exec_Comp trans_fun (input \<Down> n) c"


subsubsection \<open>Basic results\<close>

lemma f_Exec_one: "f_Exec_Comp trans_fun [m] c = trans_fun m c"
by simp

lemma f_Exec_Stream_length[rule_format, simp]:"
  \<forall>c. length (f_Exec_Comp_Stream trans_fun xs c) = length xs"
by (induct xs, simp_all)

lemma f_Exec_Stream_empty_conv:"
  (f_Exec_Comp_Stream trans_fun xs c = []) = (xs = [])"
by (simp add: length_0_conv[symmetric] del: length_0_conv)

lemma f_Exec_Stream_not_empty_conv:"
  (f_Exec_Comp_Stream trans_fun xs c \<noteq> []) = (xs \<noteq> [])"
by (simp add: f_Exec_Stream_empty_conv)

lemma f_Exec_eq_f_Exec_Stream_last[rule_format]:"
  \<forall>c. f_Exec_Comp trans_fun xs c = last (c # (f_Exec_Comp_Stream trans_fun xs c))"
by (induct xs, simp_all)

corollary f_Exec_eq_f_Exec_Stream_last2[rule_format]: "
  xs \<noteq> [] \<Longrightarrow>
  f_Exec_Comp trans_fun xs c = last (f_Exec_Comp_Stream trans_fun xs c)"
by (simp add: f_Exec_eq_f_Exec_Stream_last f_Exec_Stream_empty_conv[symmetric, of xs trans_fun c])

corollary f_Exec_eq_f_Exec_Stream_last_if: "
  f_Exec_Comp trans_fun xs c = (if xs = [] then c else last (f_Exec_Comp_Stream trans_fun xs c))"
by (simp add: f_Exec_eq_f_Exec_Stream_last2)

corollary f_Exec_take_eq_last_f_Exec_Stream_take:"
  \<lbrakk> xs \<noteq> []; 0 < n \<rbrakk> \<Longrightarrow>
  f_Exec_Comp trans_fun (xs \<down> n) c =
  last (f_Exec_Comp_Stream trans_fun (xs \<down> n) c)"
by (simp add: f_Exec_eq_f_Exec_Stream_last2 take_not_empty_conv)

corollary f_Exec_N_eq_last_f_Exec_Stream_take:"
  \<lbrakk> xs \<noteq> []; 0 < n \<rbrakk> \<Longrightarrow>
    f_Exec_Comp_N trans_fun n xs c =
    last (f_Exec_Comp_Stream trans_fun (xs \<down> n) c)"
by (simp add: f_Exec_Comp_N_def f_Exec_take_eq_last_f_Exec_Stream_take)

lemma f_Exec_Stream_nth: "
  \<And>n c. n < length xs \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun xs c ! n = f_Exec_Comp trans_fun (xs \<down> Suc n) c"
apply (induct xs, simp)
apply (simp add: nth_Cons')
done

lemma f_Exec_Stream_nth2: "
  n \<le> length xs \<Longrightarrow>
  (c # f_Exec_Comp_Stream trans_fun xs c) ! n = f_Exec_Comp trans_fun (xs \<down> n) c"
by (simp add: nth_Cons' f_Exec_Stream_nth)

lemma f_Exec_N_all:"
  length xs \<le> n \<Longrightarrow>
    f_Exec_Comp_N trans_fun n xs c = f_Exec_Comp trans_fun xs c"
by (simp add: f_Exec_Comp_N_def)

lemma f_Exec_Stream_append[rule_format]:"\<forall>c.
  f_Exec_Comp_Stream trans_fun (xs @ ys) c =
    (f_Exec_Comp_Stream trans_fun xs c) @
    (f_Exec_Comp_Stream trans_fun ys (f_Exec_Comp trans_fun xs c))"
by (induct xs, simp_all)

corollary f_Exec_Stream_append_last_Cons[rule_format]:"
  f_Exec_Comp_Stream trans_fun (xs @ ys) c =
    (f_Exec_Comp_Stream trans_fun xs c) @
    (f_Exec_Comp_Stream trans_fun ys (last (c # (f_Exec_Comp_Stream  trans_fun xs c))))"
by (simp add: f_Exec_Stream_append f_Exec_eq_f_Exec_Stream_last)

corollary f_Exec_Stream_append_last[rule_format]:"
  xs \<noteq> [] \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun (xs @ ys) c =
    (f_Exec_Comp_Stream trans_fun xs c) @
    (f_Exec_Comp_Stream trans_fun ys (last (f_Exec_Comp_Stream  trans_fun xs c)))"
by (simp add: f_Exec_Stream_append_last_Cons f_Exec_Stream_empty_conv)

corollary f_Exec_Stream_append_if:"
  f_Exec_Comp_Stream trans_fun (xs @ ys) c =
    (f_Exec_Comp_Stream trans_fun xs c) @
    (f_Exec_Comp_Stream trans_fun ys (
      if xs = [] then c else last (f_Exec_Comp_Stream trans_fun xs c)))"
by (simp add: f_Exec_Stream_append f_Exec_eq_f_Exec_Stream_last_if)
corollary f_Exec_append:"
  f_Exec_Comp trans_fun (xs @ ys) c =
  f_Exec_Comp trans_fun ys (f_Exec_Comp trans_fun xs c)"
by (simp add: f_Exec_eq_f_Exec_Stream_last f_Exec_Stream_append_if f_Exec_Stream_empty_conv)

corollary f_Exec_Stream_Cons_rev: "
  xs \<noteq> [] \<Longrightarrow>
  (trans_fun (hd xs) c) #
  f_Exec_Comp_Stream trans_fun (tl xs) (trans_fun (hd xs) c) =
  f_Exec_Comp_Stream trans_fun xs c"
by (subst f_Exec_Stream_Cons[symmetric], simp)

lemma f_Exec_Stream_snoc: "
  f_Exec_Comp_Stream trans_fun (xs @ [x]) c =
    f_Exec_Comp_Stream trans_fun xs c @
    [trans_fun x (f_Exec_Comp trans_fun xs c)]"
by (simp add: f_Exec_Stream_append)

lemma f_Exec_snoc: "
  f_Exec_Comp trans_fun (xs @ [x]) c =
  trans_fun x (f_Exec_Comp trans_fun xs c)"
by (simp add: f_Exec_append)


lemma f_Exec_N_append[rule_format]:"
  f_Exec_Comp_N trans_fun (a + b) xs c =
  f_Exec_Comp_N trans_fun b (xs \<up> a) (f_Exec_Comp_N trans_fun a xs c)"
apply (simp add: f_Exec_Comp_N_def f_Exec_append[symmetric])
apply (simp add: take_drop add.commute[of b])
apply (rule subst[of "xs \<down> (a + b) \<down> a" "xs \<down> a" ], simp add: min_eqL)
apply (subst append_take_drop_id, simp)
done

corollary f_Exec_N_Suc[rule_format]:"
  f_Exec_Comp_N trans_fun (Suc n) xs c =
  f_Exec_Comp_N trans_fun (Suc 0) (xs \<up> n) (f_Exec_Comp_N trans_fun n xs c)"
by (simp add: f_Exec_N_append[symmetric])

corollary f_Exec_N_Suc2[rule_format]:"
  n < length xs \<Longrightarrow>
  f_Exec_Comp_N trans_fun (Suc n) xs c =
  trans_fun (xs ! n) (f_Exec_Comp_N trans_fun n xs c)"
by (simp add: f_Exec_Comp_N_def take_Suc_conv_app_nth f_Exec_append)

theorem f_Exec_Stream_take:"
  (f_Exec_Comp_Stream trans_fun xs c) \<down> n =
  f_Exec_Comp_Stream trans_fun (xs \<down> n) c"
apply (case_tac "length xs \<le> n", simp)
apply (rule subst[OF append_take_drop_id, of _ n xs])
apply (simp add: f_Exec_Stream_append del: append_take_drop_id)
done

theorem f_Exec_Stream_drop:"
  (f_Exec_Comp_Stream trans_fun xs c) \<up> n =
  f_Exec_Comp_Stream trans_fun (xs \<up> n)
    (f_Exec_Comp trans_fun (xs \<down> n) c)"
apply (case_tac "length xs \<le> n", simp)
apply (rule subst[OF append_take_drop_id, of _ n xs])
apply (simp add: f_Exec_Stream_append del: append_take_drop_id)
done

lemma i_Exec_Stream_nth: "
  i_Exec_Comp_Stream trans_fun input c n = f_Exec_Comp trans_fun (input \<Down> Suc n) c"
by (simp add: i_Exec_Comp_Stream_def)

lemma i_Exec_Stream_nth_Suc: "
  i_Exec_Comp_Stream trans_fun input c (Suc n) =
  trans_fun (input (Suc n)) (i_Exec_Comp_Stream trans_fun input c n)"
by (simp add: i_Exec_Stream_nth i_take_Suc_conv_app_nth f_Exec_append)

lemma i_Exec_Stream_nth_Suc_first: "
  i_Exec_Comp_Stream trans_fun input c (Suc n) =
  (i_Exec_Comp_Stream trans_fun (input \<Up> Suc 0) (trans_fun (input 0) c) n)"
by (simp add: i_Exec_Stream_nth i_take_Suc)

lemma f_Exec_Stream_nth_eq_i_Exec_Stream_nth: "
  n < n' \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun (input \<Down> n') c ! n =
  i_Exec_Comp_Stream trans_fun input c n"
by (simp add: f_Exec_Stream_nth i_Exec_Stream_nth min_eqR)


lemma i_Exec_Stream_append: "
  i_Exec_Comp_Stream trans_fun (xs \<frown> input) c =
  f_Exec_Comp_Stream trans_fun xs c \<frown>
  i_Exec_Comp_Stream trans_fun input (f_Exec_Comp trans_fun xs c)"
by (simp add: ilist_eq_iff i_Exec_Stream_nth f_Exec_Stream_nth f_Exec_append i_append_nth Suc_diff_le)

lemma i_Exec_Stream_append_last_Cons: "
  i_Exec_Comp_Stream trans_fun (xs \<frown> input) c =
  f_Exec_Comp_Stream trans_fun xs c \<frown>
  i_Exec_Comp_Stream trans_fun input (
    last (c # f_Exec_Comp_Stream trans_fun xs c))"
by (simp add: f_Exec_eq_f_Exec_Stream_last i_Exec_Stream_append)

lemma i_Exec_Stream_append_last: "
  xs \<noteq> [] \<Longrightarrow>
  i_Exec_Comp_Stream trans_fun (xs \<frown> input) c =
  f_Exec_Comp_Stream trans_fun xs c \<frown>
  i_Exec_Comp_Stream trans_fun input (
    last (f_Exec_Comp_Stream trans_fun xs c))"
by (simp add: f_Exec_Stream_empty_conv i_Exec_Stream_append_last_Cons)

lemma i_Exec_Stream_append_if: "
  i_Exec_Comp_Stream trans_fun (xs \<frown> input) c =
  f_Exec_Comp_Stream trans_fun xs c \<frown>
  i_Exec_Comp_Stream trans_fun input (
    if xs = [] then c
    else last (f_Exec_Comp_Stream trans_fun xs c))"
by (simp add: i_Exec_Stream_append_last)

corollary i_Exec_Stream_Cons: "
  i_Exec_Comp_Stream trans_fun ([x] \<frown> input) c =
  [trans_fun x c] \<frown> i_Exec_Comp_Stream trans_fun input (trans_fun x c)"
by (simp add: i_Exec_Stream_append)

corollary i_Exec_Stream_Cons_rev: "
  [trans_fun (input 0) c] \<frown>
  i_Exec_Comp_Stream trans_fun (input \<Up> Suc 0) (trans_fun (input 0) c) =
  i_Exec_Comp_Stream trans_fun input c"
apply (insert i_Exec_Stream_append[of trans_fun "[input 0]" "input \<Up> Suc 0" c])
apply (simp add: i_drop_Suc_conv_tl)
done

theorem i_Exec_Stream_take:"
  (i_Exec_Comp_Stream trans_fun input c) \<Down> n =
  f_Exec_Comp_Stream trans_fun (input \<Down> n) c"
by (simp add: list_eq_iff f_Exec_Stream_nth i_Exec_Stream_nth min_eqR)

theorem i_Exec_Stream_drop:"
  (i_Exec_Comp_Stream trans_fun input c) \<Up> n =
  i_Exec_Comp_Stream trans_fun (input \<Up> n) (f_Exec_Comp trans_fun (input \<Down> n) c)"
apply (rule subst[OF i_append_i_take_i_drop_id, of _ n input])
apply (simp add: i_Exec_Stream_append  i_drop_def del: i_append_i_take_i_drop_id)
done

lemma f_Exec_Stream_expand_aggregate_map_take: "
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) k ag \<down> n =
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun ((xs \<down> n) \<odot>\<^sub>f k) c)) k ag"
by (simp add: f_aggregate_take_mult[symmetric] take_map f_Exec_Stream_take f_expand_take_mult)

corollary f_Exec_Stream_expand_aggregate_take: "
  f_aggregate (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c) k ag \<down> n =
  f_aggregate (f_Exec_Comp_Stream trans_fun ((xs \<down> n) \<odot>\<^sub>f k) c) k ag"
by (insert f_Exec_Stream_expand_aggregate_map_take[of n id trans_fun xs k c ag], simp add: map_id)

lemma i_Exec_Stream_expand_aggregate_map_take: "
  0 < k \<Longrightarrow>
  i_aggregate (f \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c)) k ag \<Down> n =
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun ((input \<Down> n) \<odot>\<^sub>f k) c)) k ag"
by (simp add: i_aggregate_i_take_mult[symmetric] i_Exec_Stream_take i_expand_i_take_mult)

corollary i_Exec_Stream_expand_aggregate_take: "
  0 < k \<Longrightarrow>
  i_aggregate (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) k ag \<Down> n =
  f_aggregate (f_Exec_Comp_Stream trans_fun ((input \<Down> n) \<odot>\<^sub>f k) c) k ag"
by (drule i_Exec_Stream_expand_aggregate_map_take[of k n id trans_fun input c ag], simp add: map_id)

lemma f_Exec_Stream_expand_aggregate_map_drop: "
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) k ag \<up> n =
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun ((xs \<up> n) \<odot>\<^sub>f k) (
    f_Exec_Comp trans_fun ((xs \<down> n) \<odot>\<^sub>f k) c))) k ag"
by (simp add: f_aggregate_drop_mult[symmetric] drop_map f_Exec_Stream_drop f_expand_take_mult f_expand_drop_mult)

corollary f_Exec_Stream_expand_aggregate_drop: "
  f_aggregate (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c) k ag \<up> n =
  f_aggregate (f_Exec_Comp_Stream trans_fun ((xs \<up> n) \<odot>\<^sub>f k) (
    f_Exec_Comp trans_fun ((xs \<down> n) \<odot>\<^sub>f k) c)) k ag"
by (insert f_Exec_Stream_expand_aggregate_map_drop[of n id trans_fun xs k c ag], simp add: map_id)

lemma i_Exec_Stream_expand_aggregate_map_drop: "
  0 < k \<Longrightarrow>
  i_aggregate (f \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c)) k ag \<Up> n =
  i_aggregate (f \<circ> (i_Exec_Comp_Stream trans_fun ((input \<Up> n) \<odot>\<^sub>i k) (
    f_Exec_Comp trans_fun ((input \<Down> n) \<odot>\<^sub>f k) c))) k ag"
by (simp add: i_aggregate_i_drop_mult[symmetric] i_Exec_Stream_drop i_expand_i_take_mult i_expand_i_drop_mult)

corollary i_Exec_Stream_expand_aggregate_drop: "
  0 < k \<Longrightarrow>
  i_aggregate (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) k ag \<Up> n =
  i_aggregate (i_Exec_Comp_Stream trans_fun ((input \<Up> n) \<odot>\<^sub>i k) (
    f_Exec_Comp trans_fun ((input \<Down> n) \<odot>\<^sub>f k) c)) k ag"
by (drule i_Exec_Stream_expand_aggregate_map_drop[of k n id trans_fun input c ag], simp)


lemma f_Exec_Stream_expand_aggregate_map_nth_eq_i_nth: "
  \<lbrakk> 0 < k; n < n' \<rbrakk> \<Longrightarrow>
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun (input \<Down> n' \<odot>\<^sub>f k) c)) k ag ! n =
  i_aggregate (f \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c)) k ag n"
apply (simp add: f_aggregate_nth i_aggregate_nth f_Exec_Stream_take f_Exec_Stream_drop i_Exec_Stream_take i_Exec_Stream_drop drop_map take_map)
apply (simp add: f_expand_take_mod i_expand_i_take_mod f_expand_drop_mod i_expand_i_drop_mod i_drop_i_take_1 drop_take_1 min_eqR)
done

corollary f_Exec_Stream_expand_aggregate_map_nth_eq_i_nth': "
  0 < k \<Longrightarrow>
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun (input \<Down> Suc n \<odot>\<^sub>f k) c)) k ag ! n =
  i_aggregate (f \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c)) k ag n"
by (simp add: f_Exec_Stream_expand_aggregate_map_nth_eq_i_nth)

corollary f_Exec_Stream_expand_aggregate_nth_eq_i_nth: "
  \<lbrakk> 0 < k; n < n' \<rbrakk> \<Longrightarrow>
  f_aggregate (f_Exec_Comp_Stream trans_fun (input \<Down> n' \<odot>\<^sub>f k) c) k ag ! n =
  i_aggregate (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) k ag n"
by (drule f_Exec_Stream_expand_aggregate_map_nth_eq_i_nth[where f=id], simp_all add: map_id)

corollary f_Exec_Stream_expand_aggregate_nth_eq_i_nth': "
  0 < k \<Longrightarrow>
  f_aggregate (f_Exec_Comp_Stream trans_fun (input \<Down> Suc n \<odot>\<^sub>f k) c) k ag ! n =
  i_aggregate (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) k ag n"
by (simp add: f_Exec_Stream_expand_aggregate_nth_eq_i_nth)


lemma f_Exec_Stream_expand_shrink_last_map_nth_eq_f_Exec_Comp: "
  \<lbrakk> 0 < k; n < length xs \<rbrakk> \<Longrightarrow>
  map f (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c) \<div>\<^bsub>fl\<^esub> k ! n =
  f (f_Exec_Comp trans_fun ((xs \<down> Suc n) \<odot>\<^sub>f k) c)"
apply (simp add: f_shrink_last_map f_shrink_last_length f_shrink_last_nth)
apply (subgoal_tac "n * k + k - Suc 0 < length xs * k")
 prefer 2
 apply (drule Suc_leI[of n])
 apply (drule mult_le_mono1[of _ _ k], simp)
apply (simp add: f_Exec_Stream_nth add.commute[of k] f_expand_take_mult[symmetric])
done

corollary f_Exec_Stream_expand_shrink_last_nth_eq_f_Exec_Comp: "
  \<lbrakk> 0 < k; n < length xs \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c \<div>\<^bsub>fl\<^esub> k ! n =
  f_Exec_Comp trans_fun ((xs \<down> Suc n) \<odot>\<^sub>f k) c"
by (drule f_Exec_Stream_expand_shrink_last_map_nth_eq_f_Exec_Comp[where f=id], simp_all add: map_id)

lemma f_Exec_Stream_expand_aggregate_map_nth: "
  \<lbrakk> 0 < k; n < length xs \<rbrakk> \<Longrightarrow>
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) k ag ! n =
  ag (map f (f_Exec_Comp_Stream trans_fun (xs ! n # \<NoMsg>\<^bsup>k - Suc 0\<^esup>)
    (f_Exec_Comp trans_fun (xs \<down> n \<odot>\<^sub>f k) c)))"
apply (simp add: f_aggregate_nth take_map drop_map)
apply (simp add: take_map drop_map f_Exec_Stream_drop f_Exec_Stream_take f_expand_take_mod f_expand_drop_mod drop_take_1)
done

corollary f_Exec_Stream_expand_aggregate_nth: "
  \<lbrakk> 0 < k; n < length xs \<rbrakk> \<Longrightarrow>
  f_aggregate (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c) k ag ! n =
  ag (f_Exec_Comp_Stream trans_fun (xs ! n # \<NoMsg>\<^bsup>k - Suc 0\<^esup>)
    (f_Exec_Comp trans_fun (xs \<down> n \<odot>\<^sub>f k) c))"
by (drule f_Exec_Stream_expand_aggregate_map_nth[where f=id], simp_all add: map_id)

corollary f_Exec_Stream_expand_shrink_map_nth: "
  \<lbrakk> 0 < k; n < length xs \<rbrakk> \<Longrightarrow>
  (map f (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) \<div>\<^sub>f k ! n =
  last_message (map f (f_Exec_Comp_Stream trans_fun (xs ! n # \<NoMsg>\<^bsup>k - Suc 0\<^esup>)
    (f_Exec_Comp trans_fun (xs \<down> n \<odot>\<^sub>f k) c)))"
by (simp add: f_shrink_def f_Exec_Stream_expand_aggregate_map_nth)

lemma i_Exec_Stream_expand_aggregate_map_nth: "
  0 < k \<Longrightarrow>
  i_aggregate (f \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c)) k ag n =
  ag (map f (f_Exec_Comp_Stream trans_fun (input n # \<NoMsg>\<^bsup>k - Suc 0\<^esup>)
    (f_Exec_Comp trans_fun ((input \<Down> n) \<odot>\<^sub>f k) c)))"
by (simp add: i_aggregate_nth i_Exec_Stream_drop i_Exec_Stream_take i_expand_i_take_mod i_expand_i_drop_mod i_drop_i_take_1)

corollary i_Exec_Stream_expand_aggregate_nth: "
  0 < k \<Longrightarrow>
  i_aggregate (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) k ag n =
  ag (f_Exec_Comp_Stream trans_fun (input n # \<NoMsg>\<^bsup>k - Suc 0\<^esup>)
    (f_Exec_Comp trans_fun ((input \<Down> n) \<odot>\<^sub>f k) c))"
by (drule i_Exec_Stream_expand_aggregate_map_nth[where f=id], simp add: map_id)

corollary i_Exec_Stream_expand_shrink_map_nth: "
  0 < k \<Longrightarrow>
  ((f \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c)) \<div>\<^sub>i k) n =
  last_message (map f (f_Exec_Comp_Stream trans_fun (input n # \<NoMsg>\<^bsup>k - Suc 0\<^esup>)
    (f_Exec_Comp trans_fun (input \<Down> n \<odot>\<^sub>f k) c)))"
by (simp add: i_shrink_def i_Exec_Stream_expand_aggregate_map_nth)

lemma f_Exec_Stream_expand_snoc: "
  \<lbrakk> 0 < k; n < length xs \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c \<up> (n * k) \<down> k =
  f_Exec_Comp_Stream trans_fun (xs ! n # \<NoMsg>\<^bsup>k - Suc 0\<^esup>)
    (f_Exec_Comp trans_fun (xs \<down> n \<odot>\<^sub>f k) c)"
by (simp add: f_Exec_Stream_drop f_Exec_Stream_take f_expand_take_mod f_expand_drop_mod drop_take_1)

lemma f_Exec_Stream_expand_map_aggregate_append: "
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun ((xs @ ys) \<odot>\<^sub>f k) c)) k ag =
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) k ag @
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun (ys \<odot>\<^sub>f k) (
    f_Exec_Comp trans_fun (xs \<odot>\<^sub>f k) c))) k ag"
by (simp add: f_Exec_Stream_append f_aggregate_append_mod)

lemma i_Exec_Stream_expand_map_aggregate_append: "
  i_aggregate (f \<circ> (i_Exec_Comp_Stream trans_fun ((xs \<frown> input) \<odot>\<^sub>i k) c)) k ag =
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) k ag \<frown>
  i_aggregate (f \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) (
    f_Exec_Comp trans_fun (xs \<odot>\<^sub>f k) c))) k ag"
by (simp add: i_expand_i_append i_Exec_Stream_append i_aggregate_i_append_mod)

lemma f_Exec_Stream_expand_map_aggregate_Cons: "
  0 < k \<Longrightarrow>
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun ((x # xs) \<odot>\<^sub>f k) c)) k ag =
  ag (map f (f_Exec_Comp_Stream trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c)) #
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) (
    f_Exec_Comp trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c))) k ag"
apply (subst append_eq_Cons[of x xs, symmetric])
apply (subst f_Exec_Stream_expand_map_aggregate_append)
apply (simp add: f_aggregate_one)
done

lemma f_Exec_Stream_expand_map_aggregate_snoc: "
  0 < k \<Longrightarrow>
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun ((xs @ [x]) \<odot>\<^sub>f k) c)) k ag =
  f_aggregate (map f (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) k ag @
  [ag (map f (f_Exec_Comp_Stream trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) (
    f_Exec_Comp trans_fun (xs \<odot>\<^sub>f k) c)))]"
apply (subst f_Exec_Stream_expand_map_aggregate_append)
apply (simp add: f_aggregate_one)
done

lemma i_Exec_Stream_expand_map_aggregate_Cons: "
  0 < k \<Longrightarrow>
  i_aggregate (f \<circ> (i_Exec_Comp_Stream trans_fun (([x] \<frown> input) \<odot>\<^sub>i k) c)) k ag =
  [ag (map f (f_Exec_Comp_Stream trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c))] \<frown>
  i_aggregate (f \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) (
    f_Exec_Comp trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c))) k ag"
apply (subst i_Exec_Stream_expand_map_aggregate_append)
apply (simp add: f_aggregate_one)
done

lemma f_Exec_N_eq_f_Exec_Stream_nth:"
  n \<le> length xs \<Longrightarrow>
  f_Exec_Comp_N trans_fun n xs c = (c # f_Exec_Comp_Stream trans_fun xs c) ! n"
by (simp add: f_Exec_Comp_N_def f_Exec_Stream_nth2)

theorem f_Exec_Stream_causal: "
  xs \<down> n = ys \<down> n \<Longrightarrow>
  (f_Exec_Comp_Stream trans_fun xs c) \<down> n = (f_Exec_Comp_Stream trans_fun ys c) \<down> n"
by (simp add: f_Exec_Stream_take)
theorem i_Exec_Stream_causal: "
  input1 \<Down> n = input2 \<Down> n \<Longrightarrow>
  (i_Exec_Comp_Stream trans_fun input1 c) \<Down> n = (i_Exec_Comp_Stream trans_fun input2 c) \<Down> n"
by (simp add: i_Exec_Stream_take)


text \<open>Results for \<open>f_Exec_Comp_Stream_Init\<close>\<close>

text \<open>
  \<open>f_Exec_Comp_Stream_Init\<close> computes the execution stream of a component
  with the initial value of the component
  at the beginning of the result stream.\<close>

lemma f_Exec_Stream_Init_length[rule_format, simp]:"
  \<forall>c. length (f_Exec_Comp_Stream_Init trans_fun xs c) = Suc (length xs)"
by (induct xs, simp_all)

lemma f_Exec_Stream_Init_not_empty:"
  (f_Exec_Comp_Stream_Init trans_fun xs c \<noteq> [])"
by (simp add: length_0_conv[symmetric] del: length_0_conv)

lemma f_Exec_eq_f_Exec_Stream_Init_last[rule_format]:"
  \<forall>c. f_Exec_Comp trans_fun xs c = last (f_Exec_Comp_Stream_Init trans_fun xs c)"
by (induct xs, simp_all add: f_Exec_Stream_Init_not_empty)

lemma f_Exec_Stream_Init_eq_f_Exec_Stream_Cons[rule_format]: "
  \<forall>c. f_Exec_Comp_Stream_Init trans_fun xs c = c # f_Exec_Comp_Stream trans_fun xs c"
by (induct xs, simp_all)

corollary f_Exec_Stream_Init_eq_f_Exec_Stream_Cons_output: "
  output_fun c = \<NoMsg> \<Longrightarrow>
  map output_fun (f_Exec_Comp_Stream_Init trans_fun xs c) =
  \<NoMsg> # map output_fun (f_Exec_Comp_Stream trans_fun xs c)"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons)

corollary f_Exec_Stream_Init_tl_eq_f_Exec_Stream: "
  tl (f_Exec_Comp_Stream_Init trans_fun xs c) = f_Exec_Comp_Stream trans_fun xs c"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons)

lemma f_Exec_N_eq_last_f_Exec_Stream_Init_take:"
  f_Exec_Comp_N trans_fun n xs c =
  last (f_Exec_Comp_Stream_Init trans_fun (xs \<down> n) c)"
by (simp add: f_Exec_Comp_N_def f_Exec_eq_f_Exec_Stream_Init_last)

lemma f_Exec_Stream_Init_nth: "
  n \<le> length xs \<Longrightarrow>
  f_Exec_Comp_Stream_Init trans_fun xs c ! n = f_Exec_Comp trans_fun (xs \<down> n) c"
apply (subst f_Exec_Stream_Init_eq_f_Exec_Stream_Cons)
apply (case_tac n, simp)
apply (simp add: f_Exec_Stream_nth)
done

lemma f_Exec_Stream_Init_nth_0: "f_Exec_Comp_Stream_Init trans_fun xs c ! 0 = c"
by (simp add: f_Exec_Stream_Init_nth)

lemma f_Exec_Stream_Init_hd: "hd (f_Exec_Comp_Stream_Init trans_fun xs c) = c"
by (simp add: hd_conv_nth f_Exec_Stream_Init_not_empty f_Exec_Stream_Init_nth_0)

lemma f_Exec_Stream_Init_nth_Suc_eq_f_Exec_Stream_nth: "
  f_Exec_Comp_Stream_Init trans_fun xs c ! (Suc n) = f_Exec_Comp_Stream trans_fun xs c ! n"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons)

lemma f_Exec_Stream_Init_append:"
  f_Exec_Comp_Stream_Init trans_fun (xs @ ys) c =
    (f_Exec_Comp_Stream_Init trans_fun xs c) @
    tl (f_Exec_Comp_Stream_Init trans_fun ys (f_Exec_Comp trans_fun xs c))"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons f_Exec_Stream_append)

corollary f_Exec_Stream_Init_append_last:"
  f_Exec_Comp_Stream_Init trans_fun (xs @ ys) c =
    (f_Exec_Comp_Stream_Init trans_fun xs c) @
    tl (f_Exec_Comp_Stream_Init trans_fun ys (last (f_Exec_Comp_Stream_Init trans_fun xs c)))"
by (simp add: f_Exec_Stream_Init_append f_Exec_eq_f_Exec_Stream_Init_last)

lemma f_Exec_Stream_Init_f_Exec_Stream_append:"
  f_Exec_Comp_Stream_Init trans_fun (xs @ ys) c =
    (f_Exec_Comp_Stream_Init trans_fun xs c) @
    (f_Exec_Comp_Stream trans_fun ys (f_Exec_Comp trans_fun xs c))"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons f_Exec_Stream_append)

lemma f_Exec_Stream_Init_take:"
  (f_Exec_Comp_Stream_Init trans_fun xs c) \<down> Suc n =
  f_Exec_Comp_Stream_Init trans_fun (xs \<down> n) c"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons f_Exec_Stream_take)

lemma f_Exec_Stream_Init_drop:"
  n \<le> length xs \<Longrightarrow>
  (f_Exec_Comp_Stream_Init trans_fun xs c) \<up> n =
  f_Exec_Comp_Stream_Init trans_fun (xs \<up> n)
    (f_Exec_Comp trans_fun (xs \<down> n) c)"
apply (case_tac n, simp)
apply (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons f_Exec_Stream_drop)
apply (simp add: take_Suc_conv_app_nth f_Exec_append Cons_nth_drop_Suc[symmetric])
done

lemma f_Exec_Stream_Init_drop_geq_not_valid:"
  length xs \<le> n \<Longrightarrow>
  (f_Exec_Comp_Stream_Init trans_fun xs c) \<up> Suc n \<noteq>
  f_Exec_Comp_Stream_Init trans_fun arbitrary_input arbitrary_comp"
by (simp add: f_Exec_Stream_Init_not_empty[symmetric])

lemma i_Exec_Stream_Init_nth: "
  i_Exec_Comp_Stream_Init trans_fun input c n = f_Exec_Comp trans_fun (input \<Down> n) c"
by (simp add: i_Exec_Comp_Stream_Init_def)

lemma i_Exec_Stream_Init_nth_0: "
  i_Exec_Comp_Stream_Init trans_fun input c 0 = c"
by (simp add: i_Exec_Stream_Init_nth)

lemma i_Exec_Stream_Init_nth_Suc_eq_i_Exec_Stream_nth: "
  i_Exec_Comp_Stream_Init trans_fun input c (Suc n) = i_Exec_Comp_Stream trans_fun input c n"
by (simp add: i_Exec_Stream_Init_nth i_Exec_Stream_nth)

lemma i_Exec_Stream_Init_eq_i_Exec_Stream_Cons: "
  i_Exec_Comp_Stream_Init trans_fun input c = [c] \<frown> i_Exec_Comp_Stream trans_fun input c"
by (simp add: ilist_eq_iff i_Exec_Stream_Init_nth i_append_nth i_Exec_Stream_nth)

corollary i_Exec_Stream_Init_eq_i_Exec_Stream_Cons_output: "
  output_fun c = \<NoMsg> \<Longrightarrow>
  output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun input c =
  [\<NoMsg>] \<frown> (output_fun \<circ> i_Exec_Comp_Stream trans_fun input c)"
by (simp add: i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)

lemma i_Exec_Stream_Init_append:"
  i_Exec_Comp_Stream_Init trans_fun (input1 \<frown> input2) c =
    (f_Exec_Comp_Stream_Init trans_fun input1 c) \<frown>
    ((i_Exec_Comp_Stream_Init trans_fun input2 (f_Exec_Comp trans_fun input1 c)) \<Up> Suc 0)"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons i_Exec_Stream_Init_eq_i_Exec_Stream_Cons i_Exec_Stream_append)

corollary i_Exec_Stream_Init_append_last:"
  i_Exec_Comp_Stream_Init trans_fun (input1 \<frown> input2) c =
    (f_Exec_Comp_Stream_Init trans_fun input1 c) \<frown>
    ((i_Exec_Comp_Stream_Init trans_fun input2 (last (f_Exec_Comp_Stream_Init trans_fun input1 c))) \<Up> Suc 0)"
by (simp add: i_Exec_Stream_Init_append f_Exec_eq_f_Exec_Stream_Init_last)

lemma i_Exec_Stream_Init_i_Exec_Stream_append:"
  i_Exec_Comp_Stream_Init trans_fun (input1 \<frown> input2) c =
    (f_Exec_Comp_Stream_Init trans_fun input1 c) \<frown>
    (i_Exec_Comp_Stream trans_fun input2 (f_Exec_Comp trans_fun input1 c))"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons i_Exec_Stream_Init_eq_i_Exec_Stream_Cons i_Exec_Stream_append)

lemma i_Exec_Stream_Init_take:"
  (i_Exec_Comp_Stream_Init trans_fun input c) \<Down> Suc n =
  f_Exec_Comp_Stream_Init trans_fun (input \<Down> n) c"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons i_Exec_Stream_Init_eq_i_Exec_Stream_Cons i_Exec_Stream_take)
lemma i_Exec_Stream_Init_drop:"
  (i_Exec_Comp_Stream_Init trans_fun input c) \<Up> n =
  i_Exec_Comp_Stream_Init trans_fun (input \<Up> n)
    (f_Exec_Comp trans_fun (input \<Down> n) c)"
apply (case_tac n, simp)
apply (simp add: i_Exec_Stream_Init_eq_i_Exec_Stream_Cons i_Exec_Stream_drop)
apply (simp add: ilist_eq_iff i_take_Suc_conv_app_nth f_Exec_append i_Exec_Stream_nth i_append_nth i_take_first i_take_drop_eq_map)
apply (simp add: upt_conv_Cons)
done

theorem f_Exec_Stream_Init_strictly_causal: "
  xs \<down> n = ys \<down> n \<Longrightarrow>
  (f_Exec_Comp_Stream_Init trans_fun xs c) \<down> Suc n = (f_Exec_Comp_Stream_Init trans_fun ys c) \<down> Suc n"
by (simp add: f_Exec_Stream_Init_take)

theorem i_Exec_Stream_Init_strictly_causal: "
  input1 \<Down> n = input2 \<Down> n \<Longrightarrow>
  (i_Exec_Comp_Stream_Init trans_fun input1 c) \<Down> Suc n = (i_Exec_Comp_Stream_Init trans_fun input2 c) \<Down> Suc n"
by (simp add: i_Exec_Stream_Init_take)

theorem f_Exec_N_eq_f_Exec_Stream_Init_nth:"
  n \<le> length xs \<Longrightarrow>
  f_Exec_Comp_N trans_fun n xs c = f_Exec_Comp_Stream_Init trans_fun xs c ! n"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons f_Exec_N_eq_f_Exec_Stream_nth)


text \<open>Basic results for previous element functions\<close>

text \<open>
  The functions \<open>list_Previous\<close> and \<open>ilist_Previous\<close>
  return the previous element of the list relatively to the specified position @{term n}
  or the initial element if @{term n} is 0,\<close>

definition list_Previous :: "'value list \<Rightarrow> 'value \<Rightarrow> nat \<Rightarrow> 'value"
  where "list_Previous xs init n \<equiv>
    case n of
      0 \<Rightarrow> init
    | Suc n' \<Rightarrow> xs ! n'"

definition ilist_Previous :: "'value ilist \<Rightarrow> 'value \<Rightarrow> nat \<Rightarrow> 'value"
  where "ilist_Previous f init n \<equiv>
    case n of
      0 \<Rightarrow> init
    | Suc n' \<Rightarrow> f n'"

abbreviation "list_Previous'" :: "'value list \<Rightarrow> 'value \<Rightarrow> nat \<Rightarrow> 'value"
    ( "_\<^bsup>\<leftarrow>'' _\<^esup> _" [1000, 10, 100] 100)
  where "xs\<^bsup>\<leftarrow>' init\<^esup> n \<equiv> list_Previous xs init n"

abbreviation "ilist_Previous'" :: "'value ilist \<Rightarrow> 'value \<Rightarrow> nat \<Rightarrow> 'value"
    ( "_\<^bsup>\<leftarrow> _\<^esup> _" [1000, 10, 100] 100)
  where "f\<^bsup>\<leftarrow> init\<^esup> n \<equiv> ilist_Previous f init n"

lemma list_Previous_nth: "xs\<^bsup>\<leftarrow>' init\<^esup> n = (case n of 0 \<Rightarrow> init | Suc n' \<Rightarrow> xs ! n')"
by (simp add: list_Previous_def)

lemma ilist_Previous_nth: "f\<^bsup>\<leftarrow> init\<^esup> n = (case n of 0 \<Rightarrow> init | Suc n' \<Rightarrow> f n')"
by (simp add: ilist_Previous_def)

lemma list_Previous_nth_if: "xs\<^bsup>\<leftarrow>' init\<^esup> n = (if n = 0 then init else xs ! (n - Suc 0))"
by (case_tac n, simp_all add: list_Previous_nth)

lemma ilist_Previous_nth_if: "f\<^bsup>\<leftarrow> init\<^esup> n = (if n = 0 then init else f (n - Suc 0))"
by (case_tac n, simp_all add: ilist_Previous_nth)

lemma list_Previous_Cons: "xs\<^bsup>\<leftarrow>' init\<^esup> n = (init # xs) ! n"
by (case_tac n, simp_all add: list_Previous_nth)

lemma ilist_Previous_Cons: "f\<^bsup>\<leftarrow> init\<^esup> n = ([init] \<frown> f) n"
by (case_tac n, simp_all add: ilist_Previous_nth)

lemma list_Previous_0: "xs\<^bsup>\<leftarrow>' init\<^esup> 0 = init"
by (simp add: list_Previous_def)

lemma ilist_Previous_0: "f\<^bsup>\<leftarrow> init\<^esup> 0 = init"
by (simp add: ilist_Previous_def)

lemma list_Previous_gr0: "0 < n \<Longrightarrow> xs\<^bsup>\<leftarrow>' init\<^esup> n = xs ! (n - Suc 0)"
by (case_tac n, simp_all add: list_Previous_nth)

lemma ilist_Previous_gr0: "0 < n \<Longrightarrow> f\<^bsup>\<leftarrow> init\<^esup> n = f (n - Suc 0)"
by (case_tac n, simp_all add: ilist_Previous_nth)

lemma list_Previous_Suc: "xs\<^bsup>\<leftarrow>' init\<^esup> (Suc n) = xs ! n"
by (simp add: list_Previous_def)

lemma ilist_Previous_Suc: "f\<^bsup>\<leftarrow> init\<^esup> (Suc n) = f n"
by (simp add: ilist_Previous_def)


lemma f_Exec_Stream_Previous_f_Exec_Stream_Init: "
  f_Exec_Comp_Stream_Init trans_fun xs c ! n =
  (f_Exec_Comp_Stream trans_fun xs c)\<^bsup>\<leftarrow>' c\<^esup> n"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons list_Previous_Cons)

lemma i_Exec_Stream_Previous_i_Exec_Stream_Init: "
  i_Exec_Comp_Stream_Init trans_fun input c n =
  (i_Exec_Comp_Stream trans_fun input c)\<^bsup>\<leftarrow> c\<^esup> n"
by (simp add: i_Exec_Stream_Init_eq_i_Exec_Stream_Cons ilist_Previous_Cons)


lemma f_Exec_Stream_hd: "
  0 < length xs \<Longrightarrow> hd (f_Exec_Comp_Stream trans_fun xs c) = trans_fun (hd xs) c"
by (case_tac xs, simp+)

lemma f_Exec_Stream_nth_0: "
  0 < length xs \<Longrightarrow> (f_Exec_Comp_Stream trans_fun xs c) ! 0= trans_fun (xs ! 0) c"
by (case_tac xs, simp+)

text \<open>
  The calculation of the n-th result stream element
  from the previous result stream element and the current input stream element.\<close>
lemma f_Exec_Stream_nth_gr0_calc: "
  \<lbrakk> n < length xs; 0 < n \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun xs c ! n =
  trans_fun (xs ! n) (f_Exec_Comp_Stream trans_fun xs c ! (n - 1))"
by (simp add: f_Exec_Stream_nth take_Suc_conv_app_nth f_Exec_append)

lemma f_Exec_Stream_nth_calc_Previous: "
  n < length xs \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun xs c ! n =
  trans_fun (xs ! n) ((f_Exec_Comp_Stream trans_fun xs c)\<^bsup>\<leftarrow>' c\<^esup> n)"
apply (case_tac n)
 apply (simp add: list_Previous_0 f_Exec_Stream_nth_0)
apply (simp add: list_Previous_def f_Exec_Stream_nth_gr0_calc)
done


lemma i_Exec_Stream_nth_0: "
  (i_Exec_Comp_Stream trans_fun input c) 0 = trans_fun (input 0) c"
by (simp add: i_Exec_Stream_nth i_take_first)

lemma i_Exec_Stream_nth_gr0_calc: "
  0 < n \<Longrightarrow>
  (i_Exec_Comp_Stream trans_fun input c) n =
  trans_fun (input n) ((i_Exec_Comp_Stream trans_fun input c) (n - 1))"
by (simp add: i_Exec_Stream_nth i_take_Suc_conv_app_nth f_Exec_append)

text \<open>
  The component state (and thus its output) at time point @{term "n"}
  is computed from the previous state
  (the state at time @{term "n-1"} for @{term "n > 0"}
  or the initial state for @{term "n = 0"})
  and the input at time @{term "n"}.\<close>
lemma i_Exec_Stream_nth_calc_Previous: "
  i_Exec_Comp_Stream trans_fun input c n =
  trans_fun (input n) ((i_Exec_Comp_Stream trans_fun input c)\<^bsup>\<leftarrow> c\<^esup> n)"
by (simp add: i_Exec_Stream_nth ilist_Previous_nth_if i_take_first i_take_Suc_conv_app_nth f_Exec_append)

lemma f_Exec_Stream_Init_nth_Suc_calc: "
  n < length xs \<Longrightarrow>
  f_Exec_Comp_Stream_Init trans_fun xs c ! Suc n =
  trans_fun (xs ! n) (f_Exec_Comp_Stream_Init trans_fun xs c ! n)"
by (simp add: f_Exec_Stream_Init_eq_f_Exec_Stream_Cons f_Exec_Stream_nth nth_Cons' length_greater_0_conv[THEN iffD1, OF gr_implies_gr0] take_Suc_conv_app_nth f_Exec_append)

lemma f_Exec_Stream_Init_nth_Plus1_calc: "
  n < length xs \<Longrightarrow>
  f_Exec_Comp_Stream_Init trans_fun xs c ! (n + 1)=
  trans_fun (xs ! n) (f_Exec_Comp_Stream_Init trans_fun xs c ! n)"
by (simp add: f_Exec_Stream_Init_nth_Suc_calc)

lemma f_Exec_Stream_Init_nth_gr0_calc: "
  \<lbrakk> n \<le> length xs; 0 < n \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Init trans_fun xs c ! n =
  trans_fun (xs ! (n - 1)) (f_Exec_Comp_Stream_Init trans_fun xs c ! (n - 1))"
by (clarsimp simp: gr0_conv_Suc f_Exec_Stream_Init_nth_Suc_calc)

text \<open>
  At the beginning,
  the component state (and thus its output)
  for the execution stream with initial state
  is represented by the initial state,
  contrary to the @{term "i_Exec_Comp_Stream"}
  that does not contain the initial state.\<close>

text \<open>
  The component state (and thus its output) at time point @{term "n + 1"}
  for the execution stream with initial state
  is computed from the previous state
  (the state at time @{term "n"})
  and the previous input
  (input at time @{term "n"}),
  contrary to the @{term "i_Exec_Comp_Stream"},
  where each state at time @{term "n"}
  represents the resulting state after processing the input at time @{term "n"}.\<close>

lemma i_Exec_Stream_Init_nth_Suc_calc: "
  i_Exec_Comp_Stream_Init trans_fun input c (Suc n) =
  trans_fun (input n) (i_Exec_Comp_Stream_Init trans_fun input c n)"
by (simp add: i_Exec_Stream_Init_nth i_take_Suc_conv_app_nth f_Exec_append)

lemma i_Exec_Stream_Init_nth_Plus1_calc: "
  i_Exec_Comp_Stream_Init trans_fun input c (n + 1) =
  trans_fun (input n) (i_Exec_Comp_Stream_Init trans_fun input c n)"
by (simp add: i_Exec_Stream_Init_nth_Suc_calc)

lemma i_Exec_Stream_Init_nth_gr0_calc: "
  0 < n \<Longrightarrow>
  i_Exec_Comp_Stream_Init trans_fun input c n =
  trans_fun (input (n - 1)) (i_Exec_Comp_Stream_Init trans_fun input c (n - 1))"
by (clarsimp simp: gr0_conv_Suc i_Exec_Stream_Init_nth_Suc_calc)


text \<open>Correlation between Pre/Post-Conditions for
  \<open>f_Exec_Comp_Stream\<close> and \<open>f_Exec_Comp_Stream_Init\<close>\<close>

lemma f_Exec_Stream_Pre_Post1: "
  \<lbrakk> n < length xs;
    c_n = (f_Exec_Comp_Stream trans_fun xs c)\<^bsup>\<leftarrow>' c\<^esup> n; x_n = xs ! n \<rbrakk> \<Longrightarrow>
  (P1 x_n \<and> P2 c_n \<longrightarrow> Q (f_Exec_Comp_Stream trans_fun xs c ! n)) =
  (P1 x_n \<and> P2 c_n \<longrightarrow> Q (trans_fun x_n c_n))"
by (simp add: f_Exec_Stream_nth_calc_Previous)

text \<open>Direct relation between input and result after transition\<close>
lemma f_Exec_Stream_Pre_Post2: "
  \<lbrakk> n < length xs;
    c_n = (f_Exec_Comp_Stream trans_fun xs c)\<^bsup>\<leftarrow>' c\<^esup> n; x_n = xs ! n \<rbrakk> \<Longrightarrow>
  (P c_n \<longrightarrow> Q (xs ! n) (f_Exec_Comp_Stream trans_fun xs c ! n)) =
  (P c_n \<longrightarrow> Q x_n (trans_fun x_n c_n))"
by (simp add: f_Exec_Stream_nth_calc_Previous)

lemma f_Exec_Stream_Pre_Post2_Suc: "
  \<lbrakk> Suc n < length xs;
    c_n = f_Exec_Comp_Stream trans_fun xs c ! n; x_n1 = xs ! Suc n \<rbrakk> \<Longrightarrow>
  (P c_n \<longrightarrow> Q (xs ! Suc n) (f_Exec_Comp_Stream trans_fun xs c ! Suc n)) =
  (P c_n \<longrightarrow> Q x_n1 (trans_fun x_n1 c_n))"
by (simp add: f_Exec_Stream_nth_gr0_calc)

lemma f_Exec_Stream_Init_Pre_Post1: "
  \<lbrakk> n < length xs;
    c_n = f_Exec_Comp_Stream_Init trans_fun xs c ! n; x_n = xs ! n \<rbrakk> \<Longrightarrow>
  (P1 x_n \<and> P2 c_n \<longrightarrow> Q (f_Exec_Comp_Stream_Init trans_fun xs c ! Suc n)) =
  (P1 x_n \<and> P2 c_n \<longrightarrow> Q (trans_fun x_n c_n))"
by (simp add: f_Exec_Stream_Init_nth_Suc_calc)

text \<open>Direct relation between input and state before transition\<close>
lemma f_Exec_Stream_Init_Pre_Post2: "
  \<lbrakk> n < length xs;
    c_n = f_Exec_Comp_Stream_Init trans_fun xs c ! n; x_n = xs ! n \<rbrakk> \<Longrightarrow>
  (P (xs ! n) (f_Exec_Comp_Stream_Init trans_fun xs c ! n) \<longrightarrow>
     Q (f_Exec_Comp_Stream_Init trans_fun xs c ! Suc n)) =
  (P x_n c_n \<longrightarrow> Q (trans_fun x_n c_n))"
by (simp add: f_Exec_Stream_Init_nth_Suc_calc)


lemma i_Exec_Stream_Pre_Post1: "
  \<lbrakk> c_n = (i_Exec_Comp_Stream trans_fun input c)\<^bsup>\<leftarrow> c\<^esup> n; x_n = input n \<rbrakk> \<Longrightarrow>
  (P1 x_n \<and> P2 c_n \<longrightarrow> Q (i_Exec_Comp_Stream trans_fun input c n)) =
  (P1 x_n \<and> P2 c_n \<longrightarrow> Q (trans_fun x_n c_n))"
by (simp add: i_Exec_Stream_nth_calc_Previous)

text \<open>Direct relation between input and result after transition\<close>
lemma i_Exec_Stream_Pre_Post2: "
  \<lbrakk> c_n = (i_Exec_Comp_Stream trans_fun input c)\<^bsup>\<leftarrow> c\<^esup> n; x_n = input n \<rbrakk> \<Longrightarrow>
  (P c_n \<longrightarrow> Q (input n) (i_Exec_Comp_Stream trans_fun input c n)) =
  (P c_n \<longrightarrow> Q x_n (trans_fun x_n c_n))"
by (simp add: i_Exec_Stream_nth_calc_Previous)

lemma i_Exec_Stream_Pre_Post2_Suc: "
  \<lbrakk> c_n = i_Exec_Comp_Stream trans_fun input c n; x_n1 = input (Suc n) \<rbrakk> \<Longrightarrow>
  (P c_n \<longrightarrow> Q (input (Suc n)) (i_Exec_Comp_Stream trans_fun input c (Suc n))) =
  (P c_n \<longrightarrow> Q x_n1 (trans_fun x_n1 c_n))"
by (simp add: i_Exec_Stream_nth_gr0_calc)

lemma i_Exec_Stream_Init_Pre_Post1: "
  \<lbrakk> c_n = i_Exec_Comp_Stream_Init trans_fun input c n; x_n = input n \<rbrakk> \<Longrightarrow>
  (P1 x_n \<and> P2 c_n \<longrightarrow> Q (i_Exec_Comp_Stream_Init trans_fun input c (Suc n))) =
  (P1 x_n \<and> P2 c_n \<longrightarrow> Q (trans_fun x_n c_n))"
by (simp add: i_Exec_Stream_Init_nth_Suc_calc)

text \<open>Direct relation between input and state before transition\<close>
lemma i_Exec_Stream_Init_Pre_Post2: "
  \<lbrakk> c_n = i_Exec_Comp_Stream_Init trans_fun input c n; x_n = input n \<rbrakk> \<Longrightarrow>
  (P (input n) (i_Exec_Comp_Stream_Init trans_fun input c n) \<longrightarrow>
     Q (i_Exec_Comp_Stream_Init trans_fun input c (Suc n))) =
  (P x_n c_n \<longrightarrow> Q (trans_fun x_n c_n))"
by (simp add: i_Exec_Stream_Init_nth_Suc_calc)


text \<open>Basic results for stream prefices\<close>

lemma f_Exec_Stream_prefix: "
  prefix xs ys \<Longrightarrow>
  prefix (f_Exec_Comp_Stream trans_fun xs c)
         (f_Exec_Comp_Stream trans_fun ys c)"
by (clarsimp simp: prefix_def f_Exec_Stream_append)

lemma i_Exec_Stream_prefix: "
 xs \<sqsubseteq> input \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun xs c \<sqsubseteq>
  i_Exec_Comp_Stream trans_fun input c"
by (simp add: iprefix_eq_iprefix_take i_Exec_Stream_take)

lemma f_Exec_N_prefix: "
  \<lbrakk> n \<le> length xs; prefix xs ys \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_N trans_fun n xs c =
  f_Exec_Comp_N trans_fun n ys c"
by (simp add: f_Exec_Comp_N_def prefix_imp_take_eq)

theorem f_Exec_Stream_prefix_causal[rule_format]:"
  n \<le> length (xs \<sqinter> ys) \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun xs c \<down> n =
  f_Exec_Comp_Stream trans_fun ys c \<down> n"
by (rule f_Exec_Stream_causal, rule inf_prefix_take_correct)

lemma f_Exec_Stream_Init_prefix:"
  prefix xs ys \<Longrightarrow>
  prefix (f_Exec_Comp_Stream_Init trans_fun xs c)
         (f_Exec_Comp_Stream_Init trans_fun ys c)"
by (clarsimp simp: prefix_def f_Exec_Stream_Init_append)

lemma i_Exec_Stream_Init_prefix: "
 xs \<sqsubseteq> input \<Longrightarrow>
  f_Exec_Comp_Stream_Init trans_fun xs c \<sqsubseteq>
  i_Exec_Comp_Stream_Init trans_fun input c"
by (simp add: iprefix_eq_iprefix_take i_Exec_Stream_Init_take)

theorem f_Exec_Stream_Init_prefix_strictly_causal[rule_format]:"
  n \<le> length (xs \<sqinter> ys) \<Longrightarrow>
  f_Exec_Comp_Stream_Init trans_fun xs c \<down> Suc n =
  f_Exec_Comp_Stream_Init trans_fun ys c \<down> Suc n"
by (rule f_Exec_Stream_Init_strictly_causal, rule inf_prefix_take_correct)

text \<open>
  A predicate indicating
  whether a component is deterministically dependent
  on the local state extracted by the the given local state function.\<close>
definition Deterministic_Trans_Fun ::
    "('comp, 'input) Comp_Trans_Fun \<Rightarrow> ('comp, 'state) Comp_Local_State \<Rightarrow> bool"
  where "Deterministic_Trans_Fun trans_fun localState \<equiv>
    \<forall>c1 c2 x. localState c1 = localState c2 \<longrightarrow> trans_fun x c1 = trans_fun x c2"

lemma Deterministic_f_Exec: "
  \<lbrakk> Deterministic_Trans_Fun trans_fun localState; localState c1 = localState c2; xs \<noteq> [] \<rbrakk> \<Longrightarrow>
  f_Exec_Comp trans_fun xs c1 = f_Exec_Comp trans_fun xs c2"
apply (unfold Deterministic_Trans_Fun_def)
apply (case_tac xs, simp)
apply (rename_tac y ys)
apply (drule_tac x=c1 in spec)
apply (drule_tac x=c2 in spec)
apply simp
done

lemma Deterministic_f_Exec_Stream: "
  \<lbrakk> Deterministic_Trans_Fun trans_fun localState; localState c1 = localState c2 \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun xs c1 = f_Exec_Comp_Stream trans_fun xs c2"
apply (clarsimp simp: list_eq_iff f_Exec_Stream_nth)
apply (rule Deterministic_f_Exec)
apply (simp add: length_greater_0_conv[THEN iffD1, OF gr_implies_gr0])+
done

lemma Deterministic_i_Exec_Stream: "
  \<lbrakk> Deterministic_Trans_Fun trans_fun localState; localState c1 = localState c2 \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream trans_fun input c1 = i_Exec_Comp_Stream trans_fun input c2"
apply (clarsimp simp: ilist_eq_iff i_Exec_Stream_nth)
apply (rule Deterministic_f_Exec)
apply simp+
done


subsubsection \<open>Connected streams\<close>

text \<open>
  A predicate indicating for two message streams,
  that the ports, they correspond to, are connected.
  The predicate implies strict causality.\<close>

definition f_Streams_Connected :: "'a fstream_af \<Rightarrow> 'a fstream_af \<Rightarrow> bool"
  where "f_Streams_Connected outS inS \<equiv> inS = \<NoMsg> # outS"

definition i_Streams_Connected :: "'a istream_af \<Rightarrow> 'a istream_af \<Rightarrow> bool"
  where "i_Streams_Connected outS inS \<equiv> inS = [\<NoMsg>] \<frown> outS"

lemmas Streams_Connected_defs =
  f_Streams_Connected_def
  i_Streams_Connected_def

lemma f_Streams_Connected_imp_not_empty: "f_Streams_Connected outS inS \<Longrightarrow> inS \<noteq> []"
by (simp add: f_Streams_Connected_def)

lemma f_Streams_Connected_nth_conv: "
  f_Streams_Connected outS inS =
  (length inS = Suc (length outS) \<and>
  (\<forall>i<length inS. inS ! i = (case i of 0 \<Rightarrow> \<NoMsg> | Suc k \<Rightarrow> outS ! k)))"
by (simp add: f_Streams_Connected_def list_eq_iff nth_Cons)

lemma f_Streams_Connected_nth_conv_if: "
  f_Streams_Connected outS inS =
  (length inS = Suc (length outS) \<and>
  (\<forall>i<length inS. inS ! i = (if i = 0 then \<NoMsg> else outS ! (i - Suc 0))))"
apply (subst f_Streams_Connected_nth_conv)
apply (rule conj_cong, simp)
apply (rule all_imp_eqI, simp)
apply (rename_tac i, case_tac i, simp+)
done

lemma i_Streams_Connected_nth_conv: "
  i_Streams_Connected outS inS =
  (\<forall>i. inS i = (case i of 0 \<Rightarrow> \<NoMsg> | Suc k \<Rightarrow> outS k))"
by (simp add: i_Streams_Connected_def ilist_eq_iff i_append_nth_Cons)

lemma i_Streams_Connected_nth_conv_if: "
  i_Streams_Connected outS inS =
  (\<forall>i. inS i = (if i = 0 then \<NoMsg> else outS (i - Suc 0)))"
apply (subst i_Streams_Connected_nth_conv)
apply (rule all_eqI)
apply (rename_tac i, case_tac i, simp+)
done


lemma f_Exec_Stream_Init_eq_output_channel: "
  \<lbrakk> output_fun c = \<NoMsg>;
    f_Streams_Connected
      (map output_fun (f_Exec_Comp_Stream trans_fun xs c))
      channel \<rbrakk> \<Longrightarrow>
  map output_fun (f_Exec_Comp_Stream_Init trans_fun xs c) = channel"
by (simp add: f_Streams_Connected_def f_Exec_Stream_Init_eq_f_Exec_Stream_Cons)

lemma i_Exec_Stream_Init_eq_output_channel: "
  \<lbrakk> output_fun c = \<NoMsg>;
    i_Streams_Connected
      (output_fun \<circ> (i_Exec_Comp_Stream trans_fun input c))
      channel \<rbrakk> \<Longrightarrow>
  output_fun \<circ> (i_Exec_Comp_Stream_Init trans_fun input c) = channel"
by (simp add: i_Streams_Connected_def i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)


lemma f_Exec_Stream_output_causal: "
  \<lbrakk> xs \<down> n = ys \<down> n;
    output1 = map output_fun (f_Exec_Comp_Stream trans_fun xs c);
    output2 = map output_fun (f_Exec_Comp_Stream trans_fun ys c) \<rbrakk> \<Longrightarrow>
  output1 \<down> n = output2 \<down> n"
by (simp add: take_map f_Exec_Stream_causal[of n xs])

lemma f_Exec_Stream_Init_output_strictly_causal: "
  \<lbrakk> xs \<down> n = ys \<down> n;
    output1 = map output_fun (f_Exec_Comp_Stream_Init trans_fun xs c);
    output2 = map output_fun (f_Exec_Comp_Stream_Init trans_fun ys c) \<rbrakk> \<Longrightarrow>
  output1 \<down> Suc n = output2 \<down> Suc n"
by (simp add: take_map f_Exec_Stream_Init_strictly_causal[of n xs])

lemma i_Exec_Stream_output_causal: "
  \<lbrakk> input1 \<Down> n = input2 \<Down> n;
    output1 = output_fun \<circ> i_Exec_Comp_Stream trans_fun input1 c;
    output2 = output_fun \<circ> i_Exec_Comp_Stream trans_fun input2 c \<rbrakk> \<Longrightarrow>
  output1 \<Down> n = output2 \<Down> n"
by (simp add: i_Exec_Stream_causal[of n input1])

lemma i_Exec_Stream_Init_output_strictly_causal: "
  \<lbrakk> input1 \<Down> n = input2 \<Down> n;
    output1 = output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun input1 c;
    output2 = output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun input2 c \<rbrakk> \<Longrightarrow>
  output1 \<Down> Suc n = output2 \<Down> Suc n"
by (simp add: i_Exec_Stream_Init_strictly_causal[of n input1])

lemma f_Exec_Stream_Connected_strictly_causal: "
  \<lbrakk> xs \<down> n = ys \<down> n;
    f_Streams_Connected
      (map output_fun (f_Exec_Comp_Stream trans_fun xs c))
      channel1;
    f_Streams_Connected
      (map output_fun (f_Exec_Comp_Stream trans_fun ys c))
      channel2 \<rbrakk> \<Longrightarrow>
  channel1 \<down> Suc n = channel2 \<down> Suc n"
by (simp add: f_Streams_Connected_def take_map f_Exec_Stream_take)

lemma i_Exec_Stream_Connected_strictly_causal: "
  \<lbrakk> input1 \<Down> n = input2 \<Down> n;
    i_Streams_Connected
      (portOutput \<circ> (i_Exec_Comp_Stream trans_fun input1 c))
      channel1;
    i_Streams_Connected
      (portOutput \<circ> (i_Exec_Comp_Stream trans_fun input2 c))
      channel2 \<rbrakk> \<Longrightarrow>
  channel1 \<Down> Suc n = channel2 \<Down> Suc n"
by (simp add: i_Streams_Connected_def i_take_Suc_Cons i_Exec_Stream_take)


text \<open>
  A predicate for the semantics with initial state in result stream
  indicating for two message streams that the ports, they correspond to, are connected.\<close>
definition f_Streams_Connected_Init :: "'a fstream_af \<Rightarrow> 'a fstream_af \<Rightarrow> bool"
  where "f_Streams_Connected_Init outS inS \<equiv> inS = outS"

definition i_Streams_Connected_Init :: "'a istream_af \<Rightarrow> 'a istream_af \<Rightarrow> bool"
  where "i_Streams_Connected_Init outS inS \<equiv> inS = outS"

lemmas Streams_Connected_Init_defs =
  f_Streams_Connected_Init_def
  i_Streams_Connected_Init_def

lemma f_Streams_Connected_Init_nth_conv: "
  f_Streams_Connected_Init outS inS =
  (length inS = length outS \<and> (\<forall>i<length inS. inS ! i = outS ! i))"
by (simp add: f_Streams_Connected_Init_def list_eq_iff)

lemma i_Streams_Connected_Init_nth_conv: "
  i_Streams_Connected_Init outS inS =
  (\<forall>i. inS i = outS i)"
by (simp add: i_Streams_Connected_Init_def ilist_eq_iff)


lemma f_Exec_Stream_Init_eq_output_channel2: "
  \<lbrakk> output_fun c = \<NoMsg>;
    f_Streams_Connected_Init
      (map output_fun (f_Exec_Comp_Stream_Init trans_fun xs c))
      channel \<rbrakk> \<Longrightarrow>
  map output_fun (f_Exec_Comp_Stream_Init trans_fun xs c) = channel"
by (simp add: f_Streams_Connected_Init_def f_Exec_Stream_Init_eq_f_Exec_Stream_Cons)
lemma i_Exec_Stream_Init_eq_output_channel2: "
  \<lbrakk> output_fun c = \<NoMsg>;
    i_Streams_Connected_Init
      (output_fun \<circ> (i_Exec_Comp_Stream_Init trans_fun input c))
      channel \<rbrakk> \<Longrightarrow>
  output_fun \<circ> (i_Exec_Comp_Stream_Init trans_fun input c) = channel"
by (simp add: i_Streams_Connected_Init_def i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)

lemma f_Exec_Stream_Connected_Init_strictly_causal: "
  \<lbrakk> xs \<down> n = ys \<down> n;
    f_Streams_Connected_Init
      (map output_fun (f_Exec_Comp_Stream_Init trans_fun xs c))
      channel1;
    f_Streams_Connected_Init
      (map output_fun (f_Exec_Comp_Stream_Init trans_fun ys c))
      channel2 \<rbrakk> \<Longrightarrow>
  channel1 \<down> Suc n = channel2 \<down> Suc n"
by (simp add: f_Streams_Connected_Init_def f_Exec_Stream_Init_eq_f_Exec_Stream_Cons take_map f_Exec_Stream_take)

lemma i_Exec_Stream_Connected_Init_strictly_causal: "
  \<lbrakk> input1 \<Down> n = input2 \<Down> n;
    i_Streams_Connected_Init
      (portOutput \<circ> (i_Exec_Comp_Stream_Init trans_fun input1 c))
      channel1;
    i_Streams_Connected_Init
      (portOutput \<circ> (i_Exec_Comp_Stream_Init trans_fun input2 c))
      channel2 \<rbrakk> \<Longrightarrow>
  channel1 \<Down> Suc n = channel2 \<Down> Suc n"
by (simp add: i_Streams_Connected_Init_def i_Exec_Stream_Init_eq_i_Exec_Stream_Cons i_Exec_Stream_take)


subsubsection \<open>Additional auxiliary results\<close>

text \<open>The following lemma shows that,
  if the system state is different at some time points
  with respect to a certain predicate @{term P},
  then there exists a defined time point between these two,
  where the state change has taken place\<close>

lemma f_State_Change_exists_set: "
  \<lbrakk> n1 \<le> n2; n1 \<in> I; n2 \<in> I;
    \<not> P (f_Exec_Comp trans_fun (input \<down> n1) c);
    P (f_Exec_Comp trans_fun (input \<down> n2) c) \<rbrakk> \<Longrightarrow>
  \<exists>n\<in>I. n1 \<le> n \<and> n < n2 \<and>
    \<not> P (f_Exec_Comp trans_fun (input \<down> n) c) \<and>
    P (f_Exec_Comp trans_fun (input \<down> (inext n I)) c)"
by (rule inext_predicate_change_exists)

lemma f_State_Change_exists: "
  \<lbrakk> n1 \<le> n2;
    \<not> P (f_Exec_Comp trans_fun (input \<down> n1) c);
    P (f_Exec_Comp trans_fun (input \<down> n2) c) \<rbrakk> \<Longrightarrow>
  \<exists>n\<ge>n1. n < n2 \<and>
    \<not> P (f_Exec_Comp trans_fun (input \<down> n) c) \<and>
    P (f_Exec_Comp trans_fun (input \<down> (Suc n)) c)"
by (rule nat_Suc_predicate_change_exists)

lemma i_State_Change_exists_set: "
  \<lbrakk> n1 \<le> n2; n1 \<in> I; n2 \<in> I;
    \<not> P (i_Exec_Comp_Stream trans_fun input c n1);
    P (i_Exec_Comp_Stream trans_fun input c n2) \<rbrakk> \<Longrightarrow>
  \<exists>n\<in>I. n1 \<le> n \<and> n < n2 \<and>
    \<not> P (i_Exec_Comp_Stream trans_fun input c n) \<and>
    P (i_Exec_Comp_Stream trans_fun input c (inext n I))"
by (rule inext_predicate_change_exists)

lemma i_State_Change_exists: "
  \<lbrakk> n1 \<le> n2;
    \<not> P (i_Exec_Comp_Stream trans_fun input c n1);
    P (i_Exec_Comp_Stream trans_fun input c n2) \<rbrakk> \<Longrightarrow>
  \<exists>n\<ge>n1. n < n2 \<and>
    \<not> P (i_Exec_Comp_Stream trans_fun input c n) \<and>
    P (i_Exec_Comp_Stream trans_fun input c (Suc n))"
by (rule nat_Suc_predicate_change_exists)

lemma i_State_Change_Init_exists_set: "
  \<lbrakk> n1 \<le> n2; n1 \<in> I; n2 \<in> I;
    \<not> P (i_Exec_Comp_Stream_Init trans_fun input c n1);
    P (i_Exec_Comp_Stream_Init trans_fun input c n2) \<rbrakk> \<Longrightarrow>
  \<exists>n\<in>I. n1 \<le> n \<and> n < n2 \<and>
    \<not> P (i_Exec_Comp_Stream_Init trans_fun input c n) \<and>
    P (i_Exec_Comp_Stream_Init trans_fun input c (inext n I))"
by (rule inext_predicate_change_exists)

lemma i_State_Change_Init_exists: "
  \<lbrakk> n1 \<le> n2;
    \<not> P (i_Exec_Comp_Stream_Init trans_fun input c n1);
    P (i_Exec_Comp_Stream_Init trans_fun input c n2) \<rbrakk> \<Longrightarrow>
  \<exists>n\<ge>n1. n < n2 \<and>
    \<not> P (i_Exec_Comp_Stream_Init trans_fun input c n) \<and>
    P (i_Exec_Comp_Stream_Init trans_fun input c (Suc n))"
by (rule nat_Suc_predicate_change_exists)


subsection \<open>Components with accelerated execution\<close>

text \<open>
  This section deals with variable execution speed components.
  A component accelerated by a (clocking) factor @{term k}
  processes streams expanded by factor @{term k}
  and its output streams are compressed by factor @{term k}.\<close>


subsubsection \<open>Equivalence relation for executions\<close>

text \<open>
  A predicate indicating for
  two components together with transition functions
  and a given equivalence predicate for their local states,
  that the components exhibit equivalent observable behaviour
  after expanding input streams and shrinking output streams
  by a constant factor,
  given that their local states are equivalent
  with respect to the specified equivalence relations.\<close>

definition
  Equiv_Exec :: "
    'input \<Rightarrow>
    ('state1 \<Rightarrow> 'state2 \<Rightarrow> bool) \<Rightarrow> \<comment> \<open>Equivalence predicate for local states\<close>
    ('comp1, 'state1) Comp_Local_State \<Rightarrow>
    ('comp2, 'state2) Comp_Local_State \<Rightarrow>
    ('input, 'input1) Port_Input_Value \<Rightarrow> \<comment> \<open>Input adaptor for first component\<close>
    ('input, 'input2) Port_Input_Value \<Rightarrow> \<comment> \<open>Input adaptor for second component\<close>
    ('comp1, 'output) Port_Output_Value \<Rightarrow>
    ('comp2, 'output) Port_Output_Value \<Rightarrow>
    ('comp1, 'input1 message_af) Comp_Trans_Fun \<Rightarrow>
    ('comp2, 'input2 message_af) Comp_Trans_Fun \<Rightarrow>
    nat \<Rightarrow> nat \<Rightarrow> 'comp1 \<Rightarrow> 'comp2 \<Rightarrow> bool"
where
  "Equiv_Exec
    m equiv_states
      localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
      trans_fun1 trans_fun2 k1 k2 c1 c2 \<equiv>
    equiv_states (localState1 c1) (localState2 c2) \<longrightarrow> (
      last_message (map output_fun1 (
        f_Exec_Comp_Stream trans_fun1 (input_fun1 m # \<NoMsg>\<^bsup>k1 - Suc 0\<^esup>) c1)) =
      last_message (map output_fun2 (
        f_Exec_Comp_Stream trans_fun2 (input_fun2 m # \<NoMsg>\<^bsup>k2 - Suc 0\<^esup>) c2)) \<and>
      equiv_states
        (localState1 (f_Exec_Comp trans_fun1 (input_fun1 m # \<NoMsg>\<^bsup>k1 - Suc 0\<^esup>) c1))
        (localState2 (f_Exec_Comp trans_fun2 (input_fun2 m # \<NoMsg>\<^bsup>k2 - Suc 0\<^esup>) c2)))"

text \<open>
  Predicate indicating for
  two components together with transition functions
  and a given equivalence predicate for their local states,
  that the equivalence predicate is stable
  with respect to component execution,
  i.e., it determines the equivalence
  of components' local states
  both for the initial states and after the components
  have processed an arbitrary input.
  The restricting version @{term "Equiv_Exec_stable_set"}
  guarantees stability only for inputs from a given restriction set,
  the not-restricting version guarantees stability for all inputs.\<close>
definition
  Equiv_Exec_stable_set :: "
    'input set \<Rightarrow>
    ('state1 \<Rightarrow> 'state2 \<Rightarrow> bool) \<Rightarrow> \<comment> \<open>Equivalence predicate for local states\<close>
    ('comp1, 'state1) Comp_Local_State \<Rightarrow>
    ('comp2, 'state2) Comp_Local_State \<Rightarrow>
    ('input, 'input1) Port_Input_Value \<Rightarrow> \<comment> \<open>Input adaptor for first component\<close>
    ('input, 'input2) Port_Input_Value \<Rightarrow> \<comment> \<open>Input adaptor for second component\<close>
    ('comp1, 'output) Port_Output_Value \<Rightarrow>
    ('comp2, 'output) Port_Output_Value \<Rightarrow>
    ('comp1, 'input1 message_af) Comp_Trans_Fun \<Rightarrow>
    ('comp2, 'input2 message_af) Comp_Trans_Fun \<Rightarrow>
    nat \<Rightarrow> nat \<Rightarrow> 'comp1 \<Rightarrow> 'comp2 \<Rightarrow> bool"
where
  "Equiv_Exec_stable_set A
    equiv_states localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
    trans_fun1 trans_fun2 k1 k2 c1 c2 \<equiv>
   \<forall>input m. set input \<subseteq> A \<and> m \<in> A \<longrightarrow>
     Equiv_Exec m
       equiv_states localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
       trans_fun1 trans_fun2 k1 k2
       (f_Exec_Comp trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1)
       (f_Exec_Comp trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2)"

definition
  Equiv_Exec_stable :: "
    ('state1 \<Rightarrow> 'state2 \<Rightarrow> bool) \<Rightarrow> \<comment> \<open>Equivalence predicate for local states\<close>
    ('comp1, 'state1) Comp_Local_State \<Rightarrow>
    ('comp2, 'state2) Comp_Local_State \<Rightarrow>
    ('input, 'input1) Port_Input_Value \<Rightarrow> \<comment> \<open>Input adaptor for first component\<close>
    ('input, 'input2) Port_Input_Value \<Rightarrow> \<comment> \<open>Input adaptor for second component\<close>
    ('comp1, 'output) Port_Output_Value \<Rightarrow>
    ('comp2, 'output) Port_Output_Value \<Rightarrow>
    ('comp1, 'input1 message_af) Comp_Trans_Fun \<Rightarrow>
    ('comp2, 'input2 message_af) Comp_Trans_Fun \<Rightarrow>
    nat \<Rightarrow> nat \<Rightarrow> 'comp1 \<Rightarrow> 'comp2 \<Rightarrow> bool"
where
  "Equiv_Exec_stable
    equiv_states localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
    trans_fun1 trans_fun2 k1 k2 c1 c2 \<equiv>
   \<forall>input m.
     Equiv_Exec m
       equiv_states localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
       trans_fun1 trans_fun2 k1 k2
       (f_Exec_Comp trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1)
       (f_Exec_Comp trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2)"

lemma Equiv_Exec_equiv_statesI: "
  \<lbrakk> equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec
      m equiv_states
        localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
        trans_fun1 trans_fun2 k1 k2 c1 c2 \<rbrakk> \<Longrightarrow>
  equiv_states
    (localState1 (f_Exec_Comp trans_fun1 (input_fun1 m # \<NoMsg>\<^bsup>k1 - Suc 0\<^esup>) c1))
    (localState2 (f_Exec_Comp trans_fun2 (input_fun2 m # \<NoMsg>\<^bsup>k2 - Suc 0\<^esup>) c2))"
by (simp add: Equiv_Exec_def)

lemma Equiv_Exec_output_eqI: "
  \<lbrakk> equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec
      m equiv_states
      localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
        trans_fun1 trans_fun2 k1 k2 c1 c2 \<rbrakk> \<Longrightarrow>
  last_message (map output_fun1 (
    f_Exec_Comp_Stream trans_fun1 (input_fun1 m # \<NoMsg>\<^bsup>k1 - Suc 0\<^esup>) c1)) =
  last_message (map output_fun2 (
    f_Exec_Comp_Stream trans_fun2 (input_fun2 m # \<NoMsg>\<^bsup>k2 - Suc 0\<^esup>) c2))"
by (simp add: Equiv_Exec_def)

lemma Equiv_Exec_equiv_statesI': "
  \<lbrakk> equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec
      m equiv_states
        localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
        trans_fun1 trans_fun2 k1 k2 c1 c2 \<rbrakk> \<Longrightarrow>
  equiv_states
   (localState1 (f_Exec_Comp trans_fun1 NoMsg\<^bsup>k1 - Suc 0\<^esup> (trans_fun1 (input_fun1 m) c1)))
   (localState2 (f_Exec_Comp trans_fun2 NoMsg\<^bsup>k2 - Suc 0\<^esup> (trans_fun2 (input_fun2 m) c2)))"
by (simp add: Equiv_Exec_def)

lemma Equiv_Exec_le1: "
  \<lbrakk> k1 \<le> Suc 0; k2 \<le> Suc 0;
    equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec m
      equiv_states localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
      trans_fun1 trans_fun2 k1 k2 c1 c2 \<rbrakk> \<Longrightarrow>
  output_fun1 (trans_fun1 (input_fun1 m) c1) =
  output_fun2 (trans_fun2 (input_fun2 m) c2) \<and>
  equiv_states
    (localState1 (trans_fun1 (input_fun1 m) c1))
    (localState2 (trans_fun2 (input_fun2 m) c2))"
by (simp add: Equiv_Exec_def)


lemma Equiv_Exec_stable_set_UNIV: "
  Equiv_Exec_stable_set
    UNIV equiv_states
    localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
    trans_fun1 trans_fun2 k1 k2 c1 c2 =
  Equiv_Exec_stable
    equiv_states
    localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
    trans_fun1 trans_fun2 k1 k2 c1 c2"
by (simp add: Equiv_Exec_stable_set_def Equiv_Exec_stable_def)

lemma Equiv_Exec_stable_setI: "
  \<lbrakk> Equiv_Exec_stable_set A
    equiv_states localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
    trans_fun1 trans_fun2 k1 k2 c1 c2;
    set input \<subseteq> A; m \<in> A \<rbrakk> \<Longrightarrow>
  Equiv_Exec
        m equiv_states
        localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
        trans_fun1 trans_fun2 k1 k2
        (f_Exec_Comp trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1)
        (f_Exec_Comp trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2)"
by (simp add: Equiv_Exec_stable_set_def)

lemma Equiv_Exec_stableI: "
  Equiv_Exec_stable
    equiv_states localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
    trans_fun1 trans_fun2 k1 k2 c1 c2 \<Longrightarrow>
  Equiv_Exec m
    equiv_states localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
    trans_fun1 trans_fun2 k1 k2
    (f_Exec_Comp trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1)
    (f_Exec_Comp trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2)"
by (simp add: Equiv_Exec_stable_def)


text \<open>Reflexitity, symmetry and transitivity results for @{term "Equiv_Exec"}\<close>

lemma Equiv_Exec_refl: "
  \<lbrakk> \<And>c. equiv_states (localState c) (localState c) \<rbrakk> \<Longrightarrow>
  Equiv_Exec
    m equiv_states
    localState localState input_fun input_fun output_fun output_fun
    trans_fun trans_fun k k c c"
by (simp add: Equiv_Exec_def)

lemma Equiv_Exec_sym[rule_format]: "
  \<lbrakk> \<forall>c1 c2.
      equiv_states (localState1 c1) (localState2 c2) =
      equiv_states (localState2 c2) (localState1 c1) \<rbrakk> \<Longrightarrow>
  Equiv_Exec
    m equiv_states
    localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
    trans_fun1 trans_fun2 k1 k2 c1 c2 =
  Equiv_Exec
    m equiv_states
    localState2 localState1 input_fun2 input_fun1 output_fun2 output_fun1
    trans_fun2 trans_fun1 k2 k1 c2 c1"
by (fastforce simp: Equiv_Exec_def)

lemma Equiv_Exec_sym2: "
  \<lbrakk> equiv_states_sym = (\<lambda>s1 s2. equiv_states s2 s1) \<rbrakk> \<Longrightarrow>
  Equiv_Exec
    m equiv_states
    localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
    trans_fun1 trans_fun2 k1 k2 c1 c2 =
  Equiv_Exec
    m equiv_states_sym
    localState2 localState1 input_fun2 input_fun1 output_fun2 output_fun1
    trans_fun2 trans_fun1 k2 k1 c2 c1"
by (fastforce simp: Equiv_Exec_def)

lemma Equiv_Exec_sym2_ex: "
  \<exists>equiv_states_sym.
    Equiv_Exec
      m equiv_states
      localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
      trans_fun1 trans_fun2 k1 k2 c1 c2 =
    Equiv_Exec
      m equiv_states_sym
      localState2 localState1 input_fun2 input_fun1 output_fun2 output_fun1
      trans_fun2 trans_fun1 k2 k1 c2 c1"
by (rule exI, rule Equiv_Exec_sym2, simp)

lemma Equiv_Exec_trans: "
  \<lbrakk> Equiv_Exec
      m equiv_states12
      localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
      trans_fun1 trans_fun2 k1 k2 c1 c2;
    Equiv_Exec
      m equiv_states23
      localState2 localState3 input_fun2 input_fun3 output_fun2 output_fun3
      trans_fun2 trans_fun3 k2 k3 c2 c3;
    equiv_states13 = (\<lambda>s1 s3. (
      if s1 = localState1 c1 \<and> s3 = localState3 c3 then
        equiv_states12 s1 (localState2 c2) \<and>
        equiv_states23 (localState2 c2) s3
      else
        equiv_states12 s1 (
          localState2 (f_Exec_Comp trans_fun2 (input_fun2 m # \<NoMsg>\<^bsup>k2 - Suc 0\<^esup>) c2))) \<and>
        equiv_states23 (
          localState2 (f_Exec_Comp trans_fun2 (input_fun2 m # \<NoMsg>\<^bsup>k2 - Suc 0\<^esup>) c2)) s3) \<rbrakk> \<Longrightarrow>
    Equiv_Exec
      m equiv_states13
      localState1 localState3 input_fun1 input_fun3 output_fun1 output_fun3
      trans_fun1 trans_fun3 k1 k3 c1 c3"
by (fastforce simp: Equiv_Exec_def)

lemma Equiv_Exec_trans_ex: "
  \<lbrakk> Equiv_Exec
      m equiv_states12
      localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
      trans_fun1 trans_fun2 k1 k2 c1 c2;
    Equiv_Exec
      m equiv_states23
      localState2 localState3 input_fun2 input_fun3 output_fun2 output_fun3
      trans_fun2 trans_fun3 k2 k3 c2 c3 \<rbrakk> \<Longrightarrow>
    \<exists>equiv_states13. Equiv_Exec
      m equiv_states13
      localState1 localState3 input_fun1 input_fun3 output_fun1 output_fun3
      trans_fun1 trans_fun3 k1 k3 c1 c3"
by (blast intro: Equiv_Exec_trans)


text \<open>A predicate indicating for
  a given local state extraction function and
  a given transition function,
  that components, whose states are equal with regard to the
  local state extraction function,
  are transformed into equal componenents,
  when the transition function is applied with the same input.\<close>
definition Exec_Equal_State ::
    "('comp, 'state) Comp_Local_State \<Rightarrow> ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow> bool"
  where "Exec_Equal_State localState trans_fun \<equiv>
    \<forall>c1 c2 m. localState c1 = localState c2 \<longrightarrow> trans_fun m c1 = trans_fun m c2"

lemma Exec_Equal_StateD: "
  \<lbrakk> Exec_Equal_State localState trans_fun;
    localState c1 = localState c2 \<rbrakk> \<Longrightarrow>
  trans_fun m c1 = trans_fun m c2"
by (unfold Exec_Equal_State_def, blast)

lemma Exec_Equal_StateD': "
  Exec_Equal_State localState trans_fun \<Longrightarrow>
  \<forall>c1 c2 m. localState c1 = localState c2 \<longrightarrow> trans_fun m c1 = trans_fun m c2"
by (unfold Exec_Equal_State_def, blast)

lemma Exec_Equal_StateI: "
  (\<And>c1 c2 m. localState c1 = localState c2 \<Longrightarrow> trans_fun m c1 = trans_fun m c2)
  \<Longrightarrow> Exec_Equal_State localState trans_fun"
by (unfold Exec_Equal_State_def, blast)

lemma f_Exec_Equal_State: "\<And>c1 c2.
  \<lbrakk> Exec_Equal_State localState trans_fun;
    localState c1 = localState c2; xs \<noteq> [] \<rbrakk> \<Longrightarrow>
  f_Exec_Comp trans_fun xs c1 = f_Exec_Comp trans_fun xs c2"
apply (induct xs, simp)
apply (case_tac "xs = []")
 apply simp
 apply (rule Exec_Equal_StateD, assumption+)
apply (drule_tac x="trans_fun a c1" in meta_spec)
apply (drule_tac x="trans_fun a c2" in meta_spec)
apply (drule_tac ?c1.0=c1 and ?c2.0=c2 and m=a in Exec_Equal_StateD, assumption)
apply simp
done

lemma f_Exec_Stream_Equal_State: "
  \<lbrakk> Exec_Equal_State localState trans_fun;
    localState c1 = localState c2 \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream trans_fun xs c1 =
  f_Exec_Comp_Stream trans_fun xs c2"
apply (clarsimp simp: list_eq_iff f_Exec_Stream_nth)
apply (drule gr_implies_gr0)
apply (rule f_Exec_Equal_State)
apply simp+
done

lemma i_Exec_Stream_Equal_State: "
  \<lbrakk> Exec_Equal_State localState trans_fun;
    localState c1 = localState c2 \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream trans_fun input c1 =
  i_Exec_Comp_Stream trans_fun input c2"
apply (clarsimp simp: ilist_eq_iff i_Exec_Stream_nth)
apply (rule f_Exec_Equal_State)
apply simp+
done


subsubsection \<open>Idle states\<close>

definition State_Idle ::
  "('comp, 'state) Comp_Local_State \<Rightarrow> ('comp \<Rightarrow> 'output message_af) \<Rightarrow>
    ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow> 'state \<Rightarrow> bool"
  where "State_Idle localState output_fun trans_fun state \<equiv>
    \<forall>c. localState c = state \<longrightarrow>
      localState (trans_fun \<NoMsg> c) = state \<and>
      output_fun (trans_fun \<NoMsg> c) = \<NoMsg>"

lemma State_IdleD: "
  \<lbrakk> State_Idle localState output_fun trans_fun state;
    localState c = state \<rbrakk> \<Longrightarrow>
  localState (trans_fun \<NoMsg> c) = state \<and>
  output_fun (trans_fun \<NoMsg> c) = \<NoMsg>"
by (unfold State_Idle_def, blast)

lemma State_IdleD': "
  State_Idle localState output_fun trans_fun state \<Longrightarrow>
  \<forall>c. localState c = state \<longrightarrow>
  localState (trans_fun \<NoMsg> c) = state \<and>
  output_fun (trans_fun \<NoMsg> c) = \<NoMsg>"
by (unfold State_Idle_def, blast)

lemma State_IdleI: "
  \<lbrakk> \<And>c. localState c = state \<Longrightarrow>
    localState (trans_fun \<NoMsg> c) = state \<and>
    output_fun (trans_fun \<NoMsg> c) = \<NoMsg> \<rbrakk> \<Longrightarrow>
  State_Idle localState output_fun trans_fun state"
by (unfold State_Idle_def, blast)

lemma State_Idle_step[rule_format]: "
  \<lbrakk> State_Idle localState output_fun trans_fun (localState c) \<rbrakk> \<Longrightarrow>
  State_Idle localState output_fun trans_fun (localState (trans_fun \<NoMsg> c))"
apply (frule State_IdleD[OF _ refl], erule conjE)
apply (rule State_IdleI, rename_tac c0)
apply (drule_tac c=c0 in State_IdleD)
apply simp+
done

lemma f_Exec_State_Idle_replicate_NoMsg_state[rule_format]: "
  \<And>c. State_Idle localState output_fun trans_fun (localState c) \<Longrightarrow>
  localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>n\<^esup> c) = localState c"
apply (induct n, simp)
apply (frule State_Idle_step)
apply (drule_tac c=c in State_IdleD, rule refl)
apply simp
done


lemma f_Exec_State_Idle_replicate_NoMsg_gr0_output[rule_format]: "\<And>c.
  \<lbrakk> State_Idle localState output_fun trans_fun (localState c); 0 < n \<rbrakk> \<Longrightarrow>
  output_fun (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>n\<^esup> c) = \<NoMsg>"
apply (induct n, simp)
apply (case_tac "n = 0")
 apply simp
 apply (rule State_IdleD[THEN conjunct2], assumption, simp)
apply (drule State_Idle_step)
apply simp
done

lemma f_Exec_State_Idle_replicate_NoMsg_output[rule_format]: "
  \<lbrakk> State_Idle localState output_fun trans_fun (localState c);
    output_fun c = \<NoMsg> \<rbrakk> \<Longrightarrow>
  output_fun (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>n\<^esup> c) = \<NoMsg>"
apply (case_tac "n = 0", simp)
apply (simp add: f_Exec_State_Idle_replicate_NoMsg_gr0_output)
done

lemma f_Exec_Stream_State_Idle_replicate_NoMsg_output[rule_format]: "
  \<lbrakk> State_Idle localState output_fun trans_fun (localState c) \<rbrakk> \<Longrightarrow>
  map output_fun (f_Exec_Comp_Stream trans_fun \<NoMsg>\<^bsup>n\<^esup> c) = \<NoMsg>\<^bsup>n\<^esup>"
by (simp add: list_eq_iff f_Exec_Stream_nth min_eqL f_Exec_State_Idle_replicate_NoMsg_gr0_output del: replicate.simps)

corollary f_Exec_State_Idle_append_replicate_NoMsg_state: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun xs c)) \<rbrakk> \<Longrightarrow>
  localState (f_Exec_Comp trans_fun (xs @ \<NoMsg>\<^bsup>n\<^esup>) c) =
  localState (f_Exec_Comp trans_fun xs c)"
by (simp add: f_Exec_append f_Exec_State_Idle_replicate_NoMsg_state)

corollary f_Exec_State_Idle_append_replicate_NoMsg_ge_state: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun (xs @ \<NoMsg>\<^bsup>m\<^esup>) c));
    m \<le> n \<rbrakk> \<Longrightarrow>
  localState (f_Exec_Comp trans_fun (xs @ \<NoMsg>\<^bsup>n\<^esup>) c) =
  localState (f_Exec_Comp trans_fun (xs @ \<NoMsg>\<^bsup>m\<^esup>) c)"
apply (rule_tac t=n and s="m + (n - m)" in subst, simp)
apply (simp only: replicate_add append_assoc[symmetric])
apply (rule f_Exec_State_Idle_append_replicate_NoMsg_state, simp)
done

corollary f_Exec_State_Idle_replicate_NoMsg_ge_state: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>m\<^esup> c));
    m \<le> n \<rbrakk> \<Longrightarrow>
  localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>n\<^esup> c) =
  localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>m\<^esup> c)"
by (cut_tac f_Exec_State_Idle_append_replicate_NoMsg_ge_state[where xs="[]"], simp+)

corollary f_Exec_State_Idle_append_replicate_NoMsg_gr0_output: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun xs c));
    0 < n \<rbrakk> \<Longrightarrow>
  output_fun (f_Exec_Comp trans_fun (xs @ \<NoMsg>\<^bsup>n\<^esup>) c) = \<NoMsg>"
by (simp add: f_Exec_append f_Exec_State_Idle_replicate_NoMsg_gr0_output)

corollary f_Exec_Stream_State_Idle_append_replicate_NoMsg_gr0_output: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun xs c)) \<rbrakk> \<Longrightarrow>
  map output_fun (f_Exec_Comp_Stream trans_fun (xs @ \<NoMsg>\<^bsup>n\<^esup>) c) =
  map output_fun (f_Exec_Comp_Stream trans_fun xs c) @ \<NoMsg>\<^bsup>n\<^esup>"
by (simp add: f_Exec_Stream_append f_Exec_Stream_State_Idle_replicate_NoMsg_output)

corollary f_Exec_State_Idle_append_replicate_NoMsg_gr_output: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun (xs @ \<NoMsg>\<^bsup>m\<^esup>) c));
    m < n \<rbrakk> \<Longrightarrow>
  output_fun (f_Exec_Comp trans_fun (xs @ \<NoMsg>\<^bsup>n\<^esup>) c) = \<NoMsg>"
apply (rule_tac t=n and s="m + (n - m)" in subst, simp)
apply (simp only: replicate_add append_assoc[symmetric])
apply (rule f_Exec_State_Idle_append_replicate_NoMsg_gr0_output, simp+)
done

corollary f_Exec_State_Idle_append_replicate_NoMsg_ge_output: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun (xs @ \<NoMsg>\<^bsup>m\<^esup>) c));
    output_fun (f_Exec_Comp trans_fun (xs @ \<NoMsg>\<^bsup>m\<^esup>) c) = \<NoMsg>; m \<le> n \<rbrakk> \<Longrightarrow>
  output_fun (f_Exec_Comp trans_fun (xs @ \<NoMsg>\<^bsup>n\<^esup>) c) = \<NoMsg>"
by (fastforce simp: order_le_less f_Exec_State_Idle_append_replicate_NoMsg_gr_output)

corollary f_Exec_State_Idle_replicate_NoMsg_gr_output: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>m\<^esup> c));
    m < n \<rbrakk> \<Longrightarrow>
  output_fun (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>n\<^esup> c) = \<NoMsg>"
by (cut_tac xs="[]" in f_Exec_State_Idle_append_replicate_NoMsg_gr_output, simp+)

corollary f_Exec_State_Idle_replicate_NoMsg_ge_output: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>m\<^esup> c));
    output_fun (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>m\<^esup> c) = \<NoMsg>; m \<le> n \<rbrakk> \<Longrightarrow>
  output_fun (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>n\<^esup> c) = \<NoMsg>"
by (fastforce simp: order_le_less f_Exec_State_Idle_replicate_NoMsg_gr_output)


lemma State_Idle_append_replicate_NoMsg_output_last_message: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun xs c)) \<rbrakk> \<Longrightarrow>
  last_message (map output_fun (f_Exec_Comp_Stream trans_fun (xs @ \<NoMsg>\<^bsup>n\<^esup>) c)) =
  last_message (map output_fun (f_Exec_Comp_Stream trans_fun xs c))"
by (simp add: f_Exec_Stream_State_Idle_append_replicate_NoMsg_gr0_output last_message_append_replicate_NoMsg)

lemma State_Idle_append_replicate_NoMsg_output_Msg_eq_last_message: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun xs c));
    output_fun (f_Exec_Comp trans_fun xs c) \<noteq> \<NoMsg>;
    xs \<noteq> [] \<rbrakk> \<Longrightarrow>
  last_message (map output_fun (f_Exec_Comp_Stream trans_fun (xs @ \<NoMsg>\<^bsup>n\<^esup>) c)) =
  output_fun (f_Exec_Comp trans_fun xs c)"
apply (simp add: State_Idle_append_replicate_NoMsg_output_last_message f_Exec_eq_f_Exec_Stream_last2 )
apply (subst last_message_Msg_eq_last)
apply (simp add: map_last f_Exec_Stream_not_empty_conv)+
done

corollary State_Idle_output_Msg_eq_last_message: "
  \<lbrakk> State_Idle localState output_fun trans_fun (
      localState (f_Exec_Comp trans_fun xs c));
    output_fun (f_Exec_Comp trans_fun xs c) \<noteq> \<NoMsg>;
    xs \<noteq> [] \<rbrakk> \<Longrightarrow>
  last_message (map output_fun (f_Exec_Comp_Stream trans_fun xs c)) =
  output_fun (f_Exec_Comp trans_fun xs c)"
by (rule_tac n=0 in subst[OF State_Idle_append_replicate_NoMsg_output_Msg_eq_last_message, rule_format], simp+)

lemma State_Idle_imp_exists_state_change: "
  \<lbrakk> \<not> State_Idle localState output_fun trans_fun (localState c);
    State_Idle localState output_fun trans_fun (localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>n\<^esup> c)) \<rbrakk> \<Longrightarrow>
  \<exists>i<n. (
    \<not> State_Idle localState output_fun trans_fun (localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>i\<^esup> c)) \<and> (
    \<forall>j\<le>n. i < j \<longrightarrow> State_Idle localState output_fun trans_fun (localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>j\<^esup> c))))"
apply (cut_tac
  a=0 and b=n and
  P="\<lambda>x. State_Idle localState output_fun trans_fun (localState (f_Exec_Comp trans_fun NoMsg\<^bsup>x\<^esup> c))"
  in nat_Suc_predicate_change_exists, simp+)
apply (clarify, rename_tac n1)
apply (rule_tac x=n1 in exI)
apply clarsimp
apply (rule_tac t="j" and s="Suc n1 + (j - Suc n1)" in subst, simp)
apply (subst replicate_add)
apply (simp add: replicate_add f_Exec_State_Idle_append_replicate_NoMsg_state)
done

lemma State_Idle_imp_exists_state_change2: "
  \<lbrakk> \<not> State_Idle localState output_fun trans_fun (localState c);
    State_Idle localState output_fun trans_fun (localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>n\<^esup> c)) \<rbrakk> \<Longrightarrow>
  \<exists>i<n. (
    (\<forall>j\<le>i. \<not> State_Idle localState output_fun trans_fun (localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>i\<^esup> c))) \<and>
    (\<forall>j\<le>n. i < j \<longrightarrow> State_Idle localState output_fun trans_fun (localState (f_Exec_Comp trans_fun \<NoMsg>\<^bsup>j\<^esup> c))))"
apply (frule State_Idle_imp_exists_state_change, assumption)
apply (clarify, rename_tac i)
apply (rule_tac x=i in exI)
apply simp
done


subsubsection \<open>Basic definitions for accelerated execution\<close>

text \<open>Stream processing with accelerated components\<close>

definition f_Exec_Comp_Stream_Acc_Output ::
  "nat \<Rightarrow> \<comment> \<open>Acceleration factor\<close>
    ('comp \<Rightarrow> 'output message_af) \<Rightarrow> \<comment> \<open>Output extraction function\<close>
    ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow>
    'input fstream_af \<Rightarrow> 'comp \<Rightarrow>
    'output fstream_af"
  where "f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c \<equiv>
    (map output_fun (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) \<div>\<^sub>f k"

definition f_Exec_Comp_Stream_Acc_LocalState ::
  "nat \<Rightarrow> \<comment> \<open>Acceleration factor\<close>
    ('comp \<Rightarrow> 'state) \<Rightarrow> \<comment> \<open>Local state extraction function\<close>
    ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow>
    'input fstream_af \<Rightarrow> 'comp \<Rightarrow>
    'state list"
  where "f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c \<equiv>
    (map localState (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) \<div>\<^bsub>fl\<^esub> k"

definition i_Exec_Comp_Stream_Acc_Output ::
  "nat \<Rightarrow> \<comment> \<open>Acceleration factor\<close>
    ('comp \<Rightarrow> 'output message_af) \<Rightarrow> \<comment> \<open>Output extraction function\<close>
    ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow>
    'input istream_af \<Rightarrow> 'comp \<Rightarrow>
    'output istream_af"
  where "i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c \<equiv>
    (output_fun \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c)) \<div>\<^sub>i k"

definition i_Exec_Comp_Stream_Acc_LocalState ::
  "nat \<Rightarrow> \<comment> \<open>Acceleration factor\<close>
    ('comp \<Rightarrow> 'state) \<Rightarrow> \<comment> \<open>Local state extraction function\<close>
    ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow>
    'input istream_af \<Rightarrow> 'comp \<Rightarrow>
    'state ilist"
  where "i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c \<equiv>
    (localState \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c)) \<div>\<^bsub>il\<^esub> k"

definition f_Exec_Comp_Stream_Acc_Output_Init ::
  "nat \<Rightarrow> \<comment> \<open>Acceleration factor\<close>
    ('comp \<Rightarrow> 'output message_af) \<Rightarrow> \<comment> \<open>Output extraction function\<close>
    ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow>
    'input fstream_af \<Rightarrow> 'comp \<Rightarrow>
    'output fstream_af"
  where "f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c \<equiv>
    (output_fun c) # f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c"

definition f_Exec_Comp_Stream_Acc_LocalState_Init ::
  "nat \<Rightarrow> \<comment> \<open>Acceleration factor\<close>
    ('comp \<Rightarrow> 'state) \<Rightarrow> \<comment> \<open>Local state extraction function\<close>
    ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow> 'input fstream_af \<Rightarrow> 'comp \<Rightarrow>
    'state list"
  where "f_Exec_Comp_Stream_Acc_LocalState_Init k localState trans_fun xs c \<equiv>
    (localState c) # f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c"

definition i_Exec_Comp_Stream_Acc_Output_Init ::
  "nat \<Rightarrow> \<comment> \<open>Acceleration factor\<close>
    ('comp \<Rightarrow> 'output message_af) \<Rightarrow> \<comment> \<open>Output extraction function\<close>
    ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow>
    'input istream_af \<Rightarrow> 'comp \<Rightarrow>
    'output istream_af"
  where "i_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun input c \<equiv>
    [output_fun c] \<frown> (i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c)"

definition i_Exec_Comp_Stream_Acc_LocalState_Init ::
  "nat \<Rightarrow> \<comment> \<open>Acceleration factor\<close>
    ('comp \<Rightarrow> 'state) \<Rightarrow> \<comment> \<open>Local state extraction function\<close>
    ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow>
    'input istream_af \<Rightarrow> 'comp \<Rightarrow>
    'state ilist"
  where "i_Exec_Comp_Stream_Acc_LocalState_Init k localState trans_fun input c \<equiv>
    [localState c] \<frown> (i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c)"

lemma f_Exec_Stream_Acc_Output_length[simp]: "
  0 < k \<Longrightarrow>
  length (f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c) = length xs"
by (simp add: f_Exec_Comp_Stream_Acc_Output_def f_shrink_length)

lemma f_Exec_Stream_Acc_LocalState_length[simp]: "
  0 < k \<Longrightarrow>
  length (f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c) = length xs"
by (simp add: f_Exec_Comp_Stream_Acc_LocalState_def f_shrink_last_length)

lemmas f_Exec_Stream_Acc_length =
  f_Exec_Stream_Acc_LocalState_length
  f_Exec_Stream_Acc_Output_length


subsubsection \<open>Basic results for accelerated execution\<close>

lemma f_Exec_Stream_Acc_Output_Nil[simp]: "
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun [] c = []"
by (simp add: f_Exec_Comp_Stream_Acc_Output_def)

lemma f_Exec_Stream_Acc_LocalState_Nil[simp]: "
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun [] c = []"
by (simp add: f_Exec_Comp_Stream_Acc_LocalState_def)

lemmas f_Exec_Stream_Acc_Nil =
  f_Exec_Stream_Acc_LocalState_Nil
  f_Exec_Stream_Acc_Output_Nil

lemma f_Exec_Stream_Acc_Output_0[simp]: "
  f_Exec_Comp_Stream_Acc_Output 0 output_fun trans_fun xs c = []"
by (simp add: f_Exec_Comp_Stream_Acc_Output_def)

lemma f_Exec_Stream_Acc_LocalState_0[simp]: "
  f_Exec_Comp_Stream_Acc_LocalState 0 localState trans_fun xs c = []"
by (simp add: f_Exec_Comp_Stream_Acc_LocalState_def)

lemmas f_Exec_Stream_Acc_0 =
  f_Exec_Stream_Acc_LocalState_0
  f_Exec_Stream_Acc_Output_0

lemma f_Exec_Stream_Acc_Output_1[simp]: "
  f_Exec_Comp_Stream_Acc_Output (Suc 0) output_fun trans_fun xs c =
  map output_fun (f_Exec_Comp_Stream trans_fun xs c)"
by (simp add: f_Exec_Comp_Stream_Acc_Output_def)

lemma f_Exec_Stream_Acc_LocalState_1[simp]: "
  f_Exec_Comp_Stream_Acc_LocalState (Suc 0) localState trans_fun xs c =
  map localState (f_Exec_Comp_Stream trans_fun xs c)"
by (simp add: f_Exec_Comp_Stream_Acc_LocalState_def)

lemma i_Exec_Stream_Acc_Output_1[simp]: "
  i_Exec_Comp_Stream_Acc_Output (Suc 0) output_fun trans_fun input c =
  output_fun \<circ> (i_Exec_Comp_Stream trans_fun input c)"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def)

lemma i_Exec_Stream_Acc_LocalState_1[simp]: "
  i_Exec_Comp_Stream_Acc_LocalState (Suc 0) localState trans_fun input c =
  localState \<circ> (i_Exec_Comp_Stream trans_fun input c)"
by (simp add: i_Exec_Comp_Stream_Acc_LocalState_def)

lemma f_Exec_Stream_Acc_Output_eq_last_message_hold: "
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c =
  (map output_fun (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) \<longmapsto>\<^sub>f k \<div>\<^bsub>fl\<^esub> k"
by (simp add: f_Exec_Comp_Stream_Acc_Output_def f_shrink_eq_f_last_message_hold_shrink_last)

lemma i_Exec_Stream_Acc_Output_eq_last_message_hold: "0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c =
  (output_fun \<circ> (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c)) \<longmapsto>\<^sub>i k \<div>\<^bsub>il\<^esub> k"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_i_last_message_hold_shrink_last)

lemma f_Exec_Stream_Acc_Output_take: "
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c \<down> n =
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (xs \<down> n) c"
by (simp add: f_Exec_Comp_Stream_Acc_Output_def f_shrink_def f_Exec_Stream_expand_aggregate_map_take)

lemma f_Exec_Stream_Acc_Output_drop: "
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c \<up> n =
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (xs \<up> n) (
    f_Exec_Comp trans_fun (xs \<down> n \<odot>\<^sub>f k) c)"
by (simp add: f_Exec_Comp_Stream_Acc_Output_def f_shrink_def f_Exec_Stream_expand_aggregate_map_drop)

lemma i_Exec_Stream_Acc_Output_take: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c \<Down> n =
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (input \<Down> n) c"
by (simp add: f_Exec_Comp_Stream_Acc_Output_def i_Exec_Comp_Stream_Acc_Output_def
  f_shrink_def i_shrink_def i_Exec_Stream_expand_aggregate_map_take)

lemma i_Exec_Stream_Acc_Output_drop: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c \<Up> n =
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (input \<Up> n) (
    f_Exec_Comp trans_fun (input \<Down> n \<odot>\<^sub>f k) c)"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_def i_Exec_Stream_expand_aggregate_map_drop)

lemma i_Exec_Stream_Acc_LocalState_take: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c \<Down> n =
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun (input \<Down> n) c"
by (simp add: f_Exec_Comp_Stream_Acc_LocalState_def i_Exec_Comp_Stream_Acc_LocalState_def
  f_shrink_last_def i_shrink_last_def i_Exec_Stream_expand_aggregate_map_take)

lemma i_Exec_Stream_Acc_LocalState_drop: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c \<Up> n =
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun (input \<Up> n) (
    f_Exec_Comp trans_fun (input \<Down> n \<odot>\<^sub>f k) c)"
by (simp add: i_Exec_Comp_Stream_Acc_LocalState_def i_shrink_last_def i_Exec_Stream_expand_aggregate_map_drop)

lemma f_Exec_Stream_Acc_Output_append: "
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (xs @ ys) c =
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c @
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun ys (
    f_Exec_Comp trans_fun (xs \<odot>\<^sub>f k) c)"
by (simp only: f_Exec_Comp_Stream_Acc_Output_def f_shrink_def f_Exec_Stream_expand_map_aggregate_append)

lemma f_Exec_Stream_Acc_Output_Cons: "
  0 < k \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (x # xs) c =
  last_message (map output_fun (f_Exec_Comp_Stream trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c)) #
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs (
    f_Exec_Comp trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c)"
by (simp only: f_Exec_Comp_Stream_Acc_Output_def f_shrink_def f_Exec_Stream_expand_map_aggregate_Cons)

lemma f_Exec_Stream_Acc_Output_one: "
  0 < k \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun [x] c =
  [last_message (map output_fun (f_Exec_Comp_Stream trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c))]"
by (simp add: f_Exec_Stream_Acc_Output_Cons)

lemma f_Exec_Stream_Acc_Output_snoc: "
  0 < k \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (xs @ [x]) c =
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c @
  [last_message (map output_fun (f_Exec_Comp_Stream trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) (
    f_Exec_Comp trans_fun (xs \<odot>\<^sub>f k) c)))]"
by (simp add: f_Exec_Stream_Acc_Output_append f_Exec_Stream_Acc_Output_one)

lemma i_Exec_Stream_Acc_Output_append: "
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (xs \<frown> input) c =
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c \<frown>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input (
    f_Exec_Comp trans_fun (xs \<odot>\<^sub>f k) c)"
by (simp add: f_Exec_Comp_Stream_Acc_Output_def i_Exec_Comp_Stream_Acc_Output_def f_shrink_def i_shrink_def i_Exec_Stream_expand_map_aggregate_append)

lemma i_Exec_Stream_Acc_Output_Cons: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun ([x] \<frown> input) c =
  [last_message (map output_fun (f_Exec_Comp_Stream trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c))] \<frown>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input (
    f_Exec_Comp trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c)"
by (simp add: i_Exec_Stream_Acc_Output_append f_Exec_Stream_Acc_Output_one)

lemma f_Exec_Stream_Acc_LocalState_append: "
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun (xs @ ys) c =
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c @
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun ys (
    f_Exec_Comp trans_fun (xs \<odot>\<^sub>f k) c)"
by (simp only: f_Exec_Comp_Stream_Acc_LocalState_def f_shrink_last_def f_Exec_Stream_expand_map_aggregate_append)

lemma f_Exec_Stream_Acc_LocalState_Cons: "
  0 < k \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun (x # xs) c =
  localState (f_Exec_Comp trans_fun (x #  \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c) #
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs (
    f_Exec_Comp trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c)"
apply (unfold f_Exec_Comp_Stream_Acc_LocalState_def)
apply (simp only: f_shrink_last_map f_expand_Cons append_Cons[symmetric])
apply (simp add: f_Exec_Stream_append replicate_pred_Cons_length f_shrink_last_Cons del: f_Exec_Stream_Cons append_Cons)
apply (simp add: f_Exec_eq_f_Exec_Stream_last2[symmetric] f_Exec_Stream_empty_conv)
done

lemma f_Exec_Stream_Acc_LocalState_one: "
  0 < k \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun [x] c =
  [localState (f_Exec_Comp trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c)]"
by (simp add: f_Exec_Stream_Acc_LocalState_Cons)

lemma f_Exec_Stream_Acc_LocalState_snoc: "
  0 < k \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun (xs @ [x]) c =
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c @
  [localState (f_Exec_Comp trans_fun ((xs @ [x]) \<odot>\<^sub>f k) c)]"
by (simp add: f_Exec_Stream_Acc_LocalState_append f_Exec_Stream_Acc_LocalState_Cons f_Exec_append)

lemma i_Exec_Stream_Acc_LocalState_append: "
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun (xs \<frown> input) c =
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c \<frown>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input (
    f_Exec_Comp trans_fun (xs \<odot>\<^sub>f k) c)"
by (simp add: f_Exec_Comp_Stream_Acc_LocalState_def i_Exec_Comp_Stream_Acc_LocalState_def f_shrink_last_def i_shrink_last_def i_Exec_Stream_expand_map_aggregate_append)

lemma i_Exec_Stream_Acc_LocalState_Cons: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun ([x] \<frown> input) c =
  [localState (f_Exec_Comp trans_fun (x #  \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c)] \<frown>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input (
    f_Exec_Comp trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c)"
by (simp add: i_Exec_Stream_Acc_LocalState_append f_Exec_Stream_Acc_LocalState_one f_expand_one)

lemma f_Exec_Stream_Acc_Output_nth: "
  \<lbrakk> 0 < k; n < length xs \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c ! n =
  last_message (map output_fun (
    f_Exec_Comp_Stream trans_fun (xs ! n # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) (
      f_Exec_Comp trans_fun (xs \<down> n \<odot>\<^sub>f k) c)))"
by (unfold f_Exec_Comp_Stream_Acc_Output_def f_shrink_def, rule f_Exec_Stream_expand_aggregate_map_nth)

lemma f_Exec_Stream_Acc_Output_nth_eq_i_nth: "
  \<lbrakk> 0 < k; n < n' \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (input \<Down> n') c ! n =
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c n"
by (unfold f_Exec_Comp_Stream_Acc_Output_def i_Exec_Comp_Stream_Acc_Output_def f_shrink_def i_shrink_def, rule f_Exec_Stream_expand_aggregate_map_nth_eq_i_nth)

lemma i_Exec_Stream_Acc_Output_nth: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c n =
  last_message (map output_fun (
    f_Exec_Comp_Stream trans_fun (input n # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) (
      f_Exec_Comp trans_fun (input \<Down> n \<odot>\<^sub>f k) c)))"
by (unfold i_Exec_Comp_Stream_Acc_Output_def i_shrink_def, rule i_Exec_Stream_expand_aggregate_map_nth)

corollary i_Exec_Stream_Acc_Output_nth_f_nth: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c n =
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (input \<Down> Suc n) c ! n"
by (simp add: f_Exec_Stream_Acc_Output_nth_eq_i_nth)

corollary i_Exec_Stream_Acc_Output_nth_f_last: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c n =
  last (f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun (input \<Down> Suc n) c)"
by (simp add: i_Exec_Stream_Acc_Output_nth_f_nth last_nth length_greater_0_conv[THEN iffD1])

lemma f_Exec_Stream_Acc_LocalState_nth: "
  \<lbrakk> 0 < k; n < length xs \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c ! n =
  localState (f_Exec_Comp trans_fun (xs \<down> Suc n \<odot>\<^sub>f k) c)"
apply (simp add: f_Exec_Comp_Stream_Acc_LocalState_def f_shrink_last_map)
apply (simp add: f_shrink_last_nth' f_shrink_last_length del: mult_Suc)
apply (simp add: f_Exec_Stream_nth less_imp_Suc_mult_pred_less f_expand_take_mod del: mult_Suc)
done

lemma f_Exec_Stream_Acc_LocalState_nth_eq_i_nth: "
  \<lbrakk> 0 < k; n < n' \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun (input \<Down> n') c ! n =
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c n"
by (unfold f_Exec_Comp_Stream_Acc_LocalState_def i_Exec_Comp_Stream_Acc_LocalState_def f_shrink_last_def i_shrink_last_def, rule f_Exec_Stream_expand_aggregate_map_nth_eq_i_nth)

corollary i_Exec_Stream_Acc_LocalState_nth_f_nth: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_LocalState k output_fun trans_fun input c n =
  f_Exec_Comp_Stream_Acc_LocalState k output_fun trans_fun (input \<Down> Suc n) c ! n"
by (simp add: f_Exec_Stream_Acc_LocalState_nth_eq_i_nth)

corollary i_Exec_Stream_Acc_LocalState_nth_f_last: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c n =
  last (f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun (input \<Down> Suc n) c)"
by (simp add: i_Exec_Stream_Acc_LocalState_nth_f_nth last_nth length_greater_0_conv[THEN iffD1])

lemma i_Exec_Stream_Acc_LocalState_nth: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c n =
  localState (f_Exec_Comp trans_fun (input \<Down> Suc n \<odot>\<^sub>f k) c)"
by (simp add: i_Exec_Stream_Acc_LocalState_nth_f_nth f_Exec_Stream_Acc_LocalState_nth)

lemma f_Exec_Stream_Acc_Output_causal: "
  xs \<down> n = ys \<down> n \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c \<down> n =
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun ys c \<down> n"
by (simp add: f_Exec_Stream_Acc_Output_take)

lemma i_Exec_Stream_Acc_Output_causal: "
  input1 \<Down> n = input2 \<Down> n \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input1 c \<Down> n =
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input2 c \<Down> n"
apply (case_tac "k = 0")
 apply (simp add: i_Exec_Comp_Stream_Acc_Output_def)
apply (simp add: i_Exec_Stream_Acc_Output_take)
done

lemma f_Exec_Stream_Acc_Output_Connected_strictly_causal: "
  \<lbrakk> xs \<down> n = ys \<down> n;
    f_Streams_Connected
      (f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c)
      channel1;
    f_Streams_Connected
      (f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun ys c)
      channel2 \<rbrakk> \<Longrightarrow>
  channel1 \<down> Suc n = channel2 \<down> Suc n"
by (simp add: f_Streams_Connected_def f_Exec_Stream_Acc_Output_take)

lemma i_Exec_Stream_Acc_Output_Connected_strictly_causal: "
  \<lbrakk> input1 \<Down> n = input2 \<Down> n;
    i_Streams_Connected
      (i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input1 c)
      channel1;
    i_Streams_Connected
      (i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input2 c)
      channel2 \<rbrakk> \<Longrightarrow>
  channel1 \<Down> Suc n = channel2 \<Down> Suc n"
apply (unfold i_Streams_Connected_def)
apply (case_tac "k = 0")
 apply (simp add: i_Exec_Comp_Stream_Acc_Output_def)
apply (simp add: i_Exec_Stream_Acc_Output_take)
done


text \<open>Complete execution cycles/steps of accelrated execution\<close>

definition Acc_Trans_Fun_Step ::
  "nat \<Rightarrow> \<comment> \<open>Acceleration factor\<close>
    ('comp, 'input message_af) Comp_Trans_Fun \<Rightarrow>
    ('comp list \<Rightarrow> 'comp) \<Rightarrow> \<comment> \<open>Pointwise output shrink function\<close>
    'input message_af \<Rightarrow> 'comp \<Rightarrow>
    'comp"
  where "Acc_Trans_Fun_Step k trans_fun pointwise_shrink x c \<equiv>
    pointwise_shrink (f_Exec_Comp_Stream trans_fun (x # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) c)"

definition is_Pointwise_Output_Shrink ::
  "('comp list \<Rightarrow> 'comp) \<Rightarrow> \<comment> \<open>Pointwise output shrink function\<close>
    ('comp \<Rightarrow> 'output message_af) \<Rightarrow> \<comment> \<open>Output extraction function for consideration\<close>
    bool"
  where "is_Pointwise_Output_Shrink pointwise_shrink output_fun \<equiv>
    \<forall>cs. output_fun (pointwise_shrink cs) = last_message (map output_fun cs)"

primrec is_Pointwise_Output_Shrink_list ::
  "('comp list \<Rightarrow> 'comp) \<Rightarrow> \<comment> \<open>Pointwise output shrink function\<close>
    ('comp \<Rightarrow> 'output message_af) list \<Rightarrow> \<comment> \<open>List of output extraction functions for consideration\<close>
    bool"
where
  "is_Pointwise_Output_Shrink_list pointwise_shrink [] = True"
| "is_Pointwise_Output_Shrink_list pointwise_shrink (f # fs) =
    (is_Pointwise_Output_Shrink pointwise_shrink f \<and>
     is_Pointwise_Output_Shrink_list pointwise_shrink fs)"

definition is_correct_localState_Pointwise_Output_Shrink ::
  "('comp list \<Rightarrow> 'comp) \<Rightarrow> \<comment> \<open>Pointwise output shrink function\<close>
    ('comp \<Rightarrow> 'state) \<Rightarrow> \<comment> \<open>Local state extraction function\<close>
    bool"
  where "is_correct_localState_Pointwise_Output_Shrink pointwise_shrink localState \<equiv>
    \<forall>cs. cs \<noteq> [] \<longrightarrow> localState (pointwise_shrink cs) = localState (last cs)"

lemma Deterministic_trans_fun_imp_acc_trans_fun:
  "Deterministic_Trans_Fun trans_fun localState \<Longrightarrow>
    Deterministic_Trans_Fun (Acc_Trans_Fun_Step k trans_fun pointwise_shrink) localState"
apply (simp (no_asm) only: Deterministic_Trans_Fun_def Acc_Trans_Fun_Step_def)
apply clarify
apply (subst Deterministic_f_Exec_Stream, simp+)
done

lemma is_Pointwise_Output_Shrink_list_imp_is_Pointwise_Output_Shrink:
  "\<lbrakk> is_Pointwise_Output_Shrink_list pointwise_shrink fs; output_fun \<in> set fs \<rbrakk> \<Longrightarrow>
    is_Pointwise_Output_Shrink pointwise_shrink output_fun"
apply (induct fs, simp)
apply fastforce
done

lemma is_Pointwise_Output_Shrink_list_eq_is_Pointwise_Output_Shrink_all:
  "(is_Pointwise_Output_Shrink_list pointwise_shrink fs) =
    (\<forall>output_fun \<in> set fs. is_Pointwise_Output_Shrink pointwise_shrink output_fun)"
apply (rule iffI)
 apply (rule ballI)
 apply (rule is_Pointwise_Output_Shrink_list_imp_is_Pointwise_Output_Shrink)
 apply (simp add: member_def)+
apply (induct fs, simp)
apply simp
done

lemma is_Pointwise_Output_Shrink_subset:
  "\<lbrakk> is_Pointwise_Output_Shrink_list pointwise_shrink fs; set fs' \<subseteq> set fs \<rbrakk> \<Longrightarrow>
    is_Pointwise_Output_Shrink_list pointwise_shrink fs'"
by (fastforce simp: is_Pointwise_Output_Shrink_list_eq_is_Pointwise_Output_Shrink_all)

lemma f_Exec_Stream_Acc_LocalState_eq_Acc_Trans_Fun_Step_LocalState: "\<And>c.
  \<lbrakk> 0 < k;
    Deterministic_Trans_Fun trans_fun localState;
    is_correct_localState_Pointwise_Output_Shrink pointwise_shrink localState \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c =
  map localState (f_Exec_Comp_Stream (Acc_Trans_Fun_Step k trans_fun pointwise_shrink) xs c)"
apply (drule Deterministic_trans_fun_imp_acc_trans_fun[of trans_fun localState k pointwise_shrink])
apply (clarsimp simp: list_eq_iff)
apply (simp add: f_Exec_Stream_Acc_LocalState_nth f_Exec_Stream_nth)
apply (induct xs, simp)
apply (rename_tac x xs c i)
apply (simp add: Acc_Trans_Fun_Step_def f_expand_Cons f_Exec_append)
apply (case_tac i)
 apply simp
 apply (simp only: is_correct_localState_Pointwise_Output_Shrink_def)
 apply (drule_tac x="f_Exec_Comp_Stream trans_fun (x # NoMsg\<^bsup>k - Suc 0\<^esup>) c" in spec)
 apply (simp add: f_Exec_Stream_not_empty_conv f_Exec_eq_f_Exec_Stream_last)
apply (rename_tac i2)
apply (drule_tac x="f_Exec_Comp trans_fun \<NoMsg>\<^bsup>k - Suc 0\<^esup> (trans_fun x c)" in meta_spec)
apply (drule_tac x=i2 in meta_spec)
apply (simp add: is_correct_localState_Pointwise_Output_Shrink_def)
apply (drule_tac x="f_Exec_Comp_Stream trans_fun (x # NoMsg\<^bsup>k - Suc 0\<^esup>) c" in spec)
apply (simp add: f_Exec_Stream_not_empty_conv)
apply (rule arg_cong[where f=localState])
apply (rule Deterministic_f_Exec)
  apply assumption
 apply (simp add: f_Exec_eq_f_Exec_Stream_last)
apply (simp add: length_greater_0_conv[symmetric] del: length_greater_0_conv)
done

lemma f_Exec_Stream_Acc_Output_eq_Acc_Trans_Fun_Step_Output: "\<And>c.
  \<lbrakk> 0 < k;
    Deterministic_Trans_Fun trans_fun localState;
    is_correct_localState_Pointwise_Output_Shrink pointwise_shrink localState;
    is_Pointwise_Output_Shrink pointwise_shrink output_fun \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c =
  map output_fun (f_Exec_Comp_Stream (Acc_Trans_Fun_Step k trans_fun pointwise_shrink) xs c)"
apply (drule Deterministic_trans_fun_imp_acc_trans_fun[of trans_fun localState k pointwise_shrink])
apply (clarsimp simp: list_eq_iff)
apply (simp add: f_Exec_Stream_Acc_Output_nth f_Exec_Stream_nth del: f_Exec_Stream_Cons)
apply (induct xs, simp)
apply (rename_tac x xs c i)
apply (simp add: Acc_Trans_Fun_Step_def del: f_Exec_Stream_Cons)
apply (case_tac i)
 apply (simp add: is_Pointwise_Output_Shrink_def)
apply (rename_tac i2)
apply (simp add: f_Exec_append)
apply (drule_tac x="f_Exec_Comp trans_fun \<NoMsg>\<^bsup>k - Suc 0\<^esup> (trans_fun x c)" in meta_spec)
apply (drule_tac x=i2 in meta_spec)
apply (simp add: is_correct_localState_Pointwise_Output_Shrink_def)
apply (drule_tac x="f_Exec_Comp_Stream trans_fun (x # NoMsg\<^bsup>k - Suc 0\<^esup>) c" in spec)
apply (simp add: f_Exec_Stream_not_empty_conv)
apply (rule arg_cong[where f=output_fun])
apply (rule Deterministic_f_Exec)
  apply assumption
 apply (simp add: f_Exec_eq_f_Exec_Stream_last)
apply (simp add: length_greater_0_conv[symmetric] del: length_greater_0_conv)
done

lemma i_Exec_Stream_Acc_LocalState_eq_Acc_Trans_Fun_Step_LocalState: "\<And>c.
  \<lbrakk> 0 < k;
    Deterministic_Trans_Fun trans_fun localState;
    is_correct_localState_Pointwise_Output_Shrink pointwise_shrink localState \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c =
  localState \<circ> (i_Exec_Comp_Stream (Acc_Trans_Fun_Step k trans_fun pointwise_shrink) input c)"
apply (rule ilist_i_take_eq_conv[THEN iffD2], rule allI)
apply (simp add: i_Exec_Stream_Acc_LocalState_take i_Exec_Stream_take f_Exec_Stream_Acc_LocalState_eq_Acc_Trans_Fun_Step_LocalState)
done

lemma i_Exec_Stream_Acc_Output_eq_Acc_Trans_Fun_Step_Output: "\<And>c.
  \<lbrakk> 0 < k;
    Deterministic_Trans_Fun trans_fun localState;
    is_correct_localState_Pointwise_Output_Shrink pointwise_shrink localState;
    is_Pointwise_Output_Shrink pointwise_shrink output_fun \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c =
  output_fun \<circ> (i_Exec_Comp_Stream (Acc_Trans_Fun_Step k trans_fun pointwise_shrink) input c)"
apply (rule ilist_i_take_eq_conv[THEN iffD2], rule allI)
apply (simp add: i_Exec_Stream_Acc_Output_take i_Exec_Stream_take f_Exec_Stream_Acc_Output_eq_Acc_Trans_Fun_Step_Output)
done


subsubsection \<open>Basic results for accelerated execution with initial state in the resulting stream\<close>

lemma f_Exec_Stream_Acc_Output_Init_length: "
  0 < k \<Longrightarrow>
  length (f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c) = Suc (length xs)"
by (simp add: f_Exec_Comp_Stream_Acc_Output_Init_def)

lemma f_Exec_Stream_Acc_LocalState_Init_length: "
  0 < k \<Longrightarrow>
  length (f_Exec_Comp_Stream_Acc_LocalState_Init k localState trans_fun xs c) = Suc (length xs)"
by (simp add: f_Exec_Comp_Stream_Acc_LocalState_Init_def)

lemma f_Exec_Stream_Acc_Output_Init_Nil: "
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun [] c = [output_fun c]"
by (simp add: f_Exec_Comp_Stream_Acc_Output_Init_def)

lemma f_Exec_Stream_Acc_LocalState_Init_Nil: "
  f_Exec_Comp_Stream_Acc_LocalState_Init k localState trans_fun [] c = [localState c]"
by (simp add: f_Exec_Comp_Stream_Acc_LocalState_Init_def)

lemma f_Exec_Stream_Acc_Output_Init_1: "
  f_Exec_Comp_Stream_Acc_Output_Init (Suc 0) output_fun trans_fun xs c =
  map output_fun (f_Exec_Comp_Stream_Init trans_fun xs c)"
by (simp add: f_Exec_Comp_Stream_Acc_Output_Init_def f_Exec_Stream_Init_eq_f_Exec_Stream_Cons)

lemma f_Exec_Stream_Acc_LocalState_Init_1: "
  f_Exec_Comp_Stream_Acc_LocalState_Init (Suc 0) localState trans_fun xs c =
  map localState (f_Exec_Comp_Stream_Init trans_fun xs c)"
by (simp add: f_Exec_Comp_Stream_Acc_LocalState_Init_def f_Exec_Stream_Init_eq_f_Exec_Stream_Cons)

lemma i_Exec_Stream_Acc_Output_Init_1: "
  i_Exec_Comp_Stream_Acc_Output_Init (Suc 0) output_fun trans_fun input c =
  output_fun \<circ> (i_Exec_Comp_Stream_Init trans_fun input c)"
by (simp add: i_Exec_Comp_Stream_Acc_Output_Init_def i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)

lemma i_Exec_Stream_Acc_LocalState_Init_1: "
  i_Exec_Comp_Stream_Acc_LocalState_Init (Suc 0) localState trans_fun input c =
  localState \<circ> (i_Exec_Comp_Stream_Init trans_fun input c)"
by (simp add: i_Exec_Comp_Stream_Acc_LocalState_Init_def i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)

lemma f_Exec_Stream_Acc_Output_Init_take: "
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c \<down> (Suc n) =
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun (xs \<down> n) c"
by (simp add: f_Exec_Comp_Stream_Acc_Output_Init_def f_Exec_Stream_Acc_Output_take)

lemma f_Exec_Stream_Acc_Output_Init_drop': "
  \<lbrakk> 0 < k; n < length xs \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c \<up> Suc n =
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c \<up> n"
by (simp add: f_Exec_Comp_Stream_Acc_Output_Init_def)


lemma i_Exec_Stream_Acc_Output_Init_take: "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun input c \<Down> (Suc n) =
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun (input \<Down> n) c"
by (simp add: f_Exec_Comp_Stream_Acc_Output_Init_def i_Exec_Comp_Stream_Acc_Output_Init_def i_Exec_Stream_Acc_Output_take)

lemma i_Exec_Stream_Acc_Output_Init_drop': "
  0 < k \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c \<Up> Suc n =
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c \<Up> n"
by (simp add: i_Exec_Comp_Stream_Acc_Output_Init_def)

lemma f_Exec_Stream_Acc_Output_Init_strictly_causal: "
  xs \<down> n = ys \<down> n \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c \<down> Suc n =
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun ys c \<down> Suc n"
by (simp add: f_Exec_Comp_Stream_Acc_Output_Init_def, rule f_Exec_Stream_Acc_Output_causal)

lemma i_Exec_Stream_Acc_Output_Init_strictly_causal: "
  input1 \<Down> n = input2 \<Down> n \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun input1 c \<Down> Suc n =
  i_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun input2 c \<Down> Suc n"
by (simp add: i_Exec_Comp_Stream_Acc_Output_Init_def, rule i_Exec_Stream_Acc_Output_causal)

lemma f_Exec_Stream_Acc_Output_Init_eq_f_Exec_Stream_Acc_Output_Cons: "
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c =
  output_fun c # f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c"
by (simp add: f_Exec_Comp_Stream_Acc_Output_def f_Exec_Comp_Stream_Acc_Output_Init_def)

lemma f_Exec_Stream_Acc_Output_Init_eq_f_Exec_Stream_Acc_Output_Cons_output: "
  output_fun c = \<NoMsg> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c =
  \<NoMsg> # f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c"
by (simp add: f_Exec_Stream_Acc_Output_Init_eq_f_Exec_Stream_Acc_Output_Cons)

lemma f_Exec_Stream__Acc_OutputInit_tl_eq_f_Exec_Stream_Acc_Output: "
  tl (f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c) =
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c"
by (simp add: f_Exec_Stream_Acc_Output_Init_eq_f_Exec_Stream_Acc_Output_Cons)

lemma f_Exec_Stream_Previous_f_Exec_Stream_Acc_Output_Init: "
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c ! n =
  (f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c)\<^bsup>\<leftarrow>' output_fun c\<^esup> n"
by (simp add: f_Exec_Stream_Acc_Output_Init_eq_f_Exec_Stream_Acc_Output_Cons list_Previous_nth_if nth_Cons')

lemma f_Exec_Stream_Acc_Output_Init_eq_output_channel: "
  \<lbrakk> output_fun c = \<NoMsg>;
    f_Streams_Connected
      (f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c)
      channel \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun xs c = channel"
by (simp add: f_Streams_Connected_def f_Exec_Stream_Acc_Output_Init_eq_f_Exec_Stream_Acc_Output_Cons_output)


lemma i_Exec_Stream_Acc_Output_Init_eq_i_Exec_Stream_Acc_Output_Cons: "
  i_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun input c =
  [output_fun c] \<frown> i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def i_Exec_Comp_Stream_Acc_Output_Init_def)

lemma i_Exec_Stream_Acc_Output_Init_eq_i_Exec_Stream_Acc_Output_Cons_output: "
  output_fun c = \<NoMsg> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun input c =
  [\<NoMsg> ] \<frown> i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c"
by (simp add: i_Exec_Stream_Acc_Output_Init_eq_i_Exec_Stream_Acc_Output_Cons)

lemma i_Exec_Stream_Previous_i_Exec_Stream_Acc_Output_Init: "
  i_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun input c n =
  (i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c)\<^bsup>\<leftarrow> output_fun c\<^esup> n"
by (simp add: i_Exec_Stream_Acc_Output_Init_eq_i_Exec_Stream_Acc_Output_Cons ilist_Previous_nth_if)

lemma i_Exec_Stream_Acc_Output_Init_eq_output_channel: "
  \<lbrakk> output_fun c = \<NoMsg>;
    i_Streams_Connected
      (i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c)
      channel \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output_Init k output_fun trans_fun input c = channel"
by (simp add: i_Streams_Connected_def i_Exec_Stream_Acc_Output_Init_eq_i_Exec_Stream_Acc_Output_Cons_output)


subsubsection \<open>Rules for proving execution equivalence\<close>

text \<open>
  A required precondition is that the @{term equiv_states} relation,
  which indicates whether the local states of @{term c1} and @{term c2}
  are equivalent with respect to observable behaviour,
  is preserved also after executing an input stream,
  because the @{term equiv_states} relation
  should deliver valid results not only at the time point @{term 0}
  but at every time point.\<close>

lemma f_Equiv_Exec_Stream_expand_shrink_equiv_state_set[rule_format]: "
  \<And>c1 c2 i. \<lbrakk>
   0 < k1; 0 < k2;
   equiv_states (localState1 c1) (localState2 c2);
   \<forall>input0. set input0 \<subseteq> A \<longrightarrow> (\<forall>m\<in>A.
      Equiv_Exec m equiv_states
      localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
      trans_fun1 trans_fun2 k1 k2
      (f_Exec_Comp trans_fun1 (map input_fun1 input0 \<odot>\<^sub>f k1) c1)
      (f_Exec_Comp trans_fun2 (map input_fun2 input0 \<odot>\<^sub>f k2) c2));
      \<comment> \<open>\<open>equiv_states\<close> relation implies equivalent executions\<close>
      \<comment> \<open>not only at the beginning but also after processing an input\<close>
   set input \<subseteq> A; i < length input \<rbrakk> \<Longrightarrow>
   equiv_states
     (localState1 ((f_Exec_Comp_Stream trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1) \<div>\<^bsub>fl\<^esub> k1 ! i))
     (localState2 ((f_Exec_Comp_Stream trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2) \<div>\<^bsub>fl\<^esub> k2 ! i))"
apply (induct input, simp)
apply (clarsimp simp: append_Cons[symmetric] f_Exec_Stream_append_if f_shrink_last_Cons nth_Cons simp del: last.simps f_Exec_Stream_Cons append_Cons)
apply (case_tac i)
 apply (drule_tac x="[]" in spec)
 apply (drule mp, simp)
 apply (drule_tac x=a in bspec, assumption)
 apply (simp del: last.simps f_Exec_Stream_Cons)
 apply (subst f_Exec_eq_f_Exec_Stream_last2[symmetric], simp)+
 apply (rule Equiv_Exec_equiv_statesI[of equiv_states localState1 _ localState2 _ _ input_fun1], assumption+)
apply (rename_tac i')
apply (subst f_Exec_eq_f_Exec_Stream_last2[symmetric], simp)+
apply (drule_tac x="f_Exec_Comp trans_fun1 (input_fun1 a # \<NoMsg>\<^bsup>k1 - Suc 0\<^esup>) c1" in meta_spec)
apply (drule_tac x="f_Exec_Comp trans_fun2 (input_fun2 a # \<NoMsg>\<^bsup>k2 - Suc 0\<^esup>) c2" in meta_spec)
apply (drule_tac x=i' in meta_spec)
apply (drule meta_mp, simp)+
 apply (drule_tac x="[]" in spec, simp)
 apply (drule_tac x=a in bspec, assumption)
 apply (rule Equiv_Exec_equiv_statesI'[of equiv_states localState1 _ localState2 _ _ input_fun1], simp+)
apply clarsimp
apply (drule meta_mp)
 apply clarify
 apply (drule_tac x="a # input0" in spec)
 apply (simp add: f_Exec_append)
apply simp
done

corollary f_Equiv_Exec_Stream_expand_shrink_equiv_state: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    \<And>input0 m. Equiv_Exec m
       equiv_states localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
       trans_fun1 trans_fun2 k1 k2
       (f_Exec_Comp trans_fun1 (map input_fun1 input0 \<odot>\<^sub>f k1) c1)
       (f_Exec_Comp trans_fun2 (map input_fun2 input0 \<odot>\<^sub>f k2) c2);
    i<length input \<rbrakk> \<Longrightarrow>
  equiv_states
    (localState1 ((f_Exec_Comp_Stream trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1) \<div>\<^bsub>fl\<^esub> k1 ! i))
    (localState2 ((f_Exec_Comp_Stream trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2) \<div>\<^bsub>fl\<^esub> k2 ! i))"
by (rule f_Equiv_Exec_Stream_expand_shrink_equiv_state_set[of k1 k2 equiv_states localState1 c1 localState2 c2 UNIV input_fun1 input_fun2 output_fun1 output_fun2], simp+)

lemma f_Equiv_Exec_expand_shrink_equiv_state_set:"
  \<lbrakk> 0 < k1; 0 < k2; equiv_states (localState1 c1) (localState2 c2);
    \<And>input0 m. \<lbrakk>set input0 \<subseteq> A; m \<in> A\<rbrakk> \<Longrightarrow>
       Equiv_Exec
         m equiv_states localState1 localState2
         input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2
         (f_Exec_Comp trans_fun1 (map input_fun1 input0 \<odot>\<^sub>f k1) c1)
         (f_Exec_Comp trans_fun2 (map input_fun2 input0 \<odot>\<^sub>f k2) c2);
    set input \<subseteq> A \<rbrakk> \<Longrightarrow>
  equiv_states
    (localState1 (f_Exec_Comp trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1))
    (localState2 (f_Exec_Comp trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2))"
apply (case_tac "input = []", simp)
apply (subgoal_tac "map input_fun1 input \<odot>\<^sub>f k1 \<noteq> [] \<and> map input_fun2 input \<odot>\<^sub>f k2 \<noteq> []")
 prefer 2
 apply (simp add: length_greater_0_conv[symmetric] del: length_greater_0_conv)
apply (simp add: f_Exec_eq_f_Exec_Stream_last2 last_nth f_Exec_Stream_not_empty_conv)
apply (insert f_shrink_last_nth[of "length input - Suc 0" "f_Exec_Comp_Stream trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1" k1, symmetric])
apply (insert f_shrink_last_nth[of "length input - Suc 0" "f_Exec_Comp_Stream trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2" k2, symmetric])
apply (simp add: diff_mult_distrib gr0_imp_self_le_mult2)
apply (rule f_Equiv_Exec_Stream_expand_shrink_equiv_state_set[of k1 k2 equiv_states localState1 _ localState2 _ A input_fun1 input_fun2 output_fun1 output_fun2])
apply simp+
done

lemma f_Equiv_Exec_expand_shrink_equiv_state:"
  \<lbrakk> 0 < k1; 0 < k2; equiv_states (localState1 c1) (localState2 c2);
    \<And>input0 m.
       Equiv_Exec
         m equiv_states localState1 localState2
         input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2
         (f_Exec_Comp trans_fun1 (map input_fun1 input0 \<odot>\<^sub>f k1) c1)
         (f_Exec_Comp trans_fun2 (map input_fun2 input0 \<odot>\<^sub>f k2) c2) \<rbrakk> \<Longrightarrow>
  equiv_states
    (localState1 (f_Exec_Comp trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1))
    (localState2 (f_Exec_Comp trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2))"
by (rule f_Equiv_Exec_expand_shrink_equiv_state_set[of k1 k2 equiv_states localState1 _ localState2 _ UNIV input_fun1 input_fun2 output_fun1 output_fun2], simp+)

lemma i_Equiv_Exec_Stream_expand_shrink_equiv_state_set[rule_format]: "
  \<lbrakk> 0 < k1; 0 < k2; equiv_states (localState1 c1) (localState2 c2);
    \<And>input0 m. \<lbrakk>set input0 \<subseteq> A; m \<in> A\<rbrakk> \<Longrightarrow>
       Equiv_Exec
        m equiv_states localState1 localState2
        input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2
       (f_Exec_Comp trans_fun1 (map input_fun1 input0 \<odot>\<^sub>f k1) c1)
       (f_Exec_Comp trans_fun2 (map input_fun2 input0 \<odot>\<^sub>f k2) c2);
    range input \<subseteq> A \<rbrakk> \<Longrightarrow>
  equiv_states
    (localState1 ((i_Exec_Comp_Stream trans_fun1 ((input_fun1 \<circ> input) \<odot>\<^sub>i k1) c1 \<div>\<^bsub>il\<^esub> k1) i))
    (localState2 ((i_Exec_Comp_Stream trans_fun2 ((input_fun2 \<circ> input) \<odot>\<^sub>i k2) c2 \<div>\<^bsub>il\<^esub> k2) i))"
apply (simp add: i_shrink_last_nth i_Exec_Stream_nth i_expand_i_take_mod)
apply (rule f_Equiv_Exec_expand_shrink_equiv_state_set[of
  k1 k2 equiv_states localState1 c1 localState2 c2 A input_fun1 input_fun2 output_fun1 output_fun2])
apply (simp add: subset_trans[OF set_i_take_subset])+
done

lemma i_Equiv_Exec_Stream_expand_shrink_equiv_state: "
  \<lbrakk> 0 < k1; 0 < k2; equiv_states (localState1 c1) (localState2 c2);
    \<And>input0 m.
       Equiv_Exec
        m equiv_states localState1 localState2
        input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2
       (f_Exec_Comp trans_fun1 (map input_fun1 input0 \<odot>\<^sub>f k1) c1)
       (f_Exec_Comp trans_fun2 (map input_fun2 input0 \<odot>\<^sub>f k2) c2) \<rbrakk> \<Longrightarrow>
  equiv_states
    (localState1 ((i_Exec_Comp_Stream trans_fun1 ((input_fun1 \<circ> input) \<odot>\<^sub>i k1) c1 \<div>\<^bsub>il\<^esub> k1) i))
    (localState2 ((i_Exec_Comp_Stream trans_fun2 ((input_fun2 \<circ> input) \<odot>\<^sub>i k2) c2 \<div>\<^bsub>il\<^esub> k2) i))"
by (rule i_Equiv_Exec_Stream_expand_shrink_equiv_state_set[of k1 k2 equiv_states localState1 c1 localState2 c2 UNIV input_fun1 input_fun2 output_fun1 output_fun2], simp+)

lemma f_Equiv_Exec_Stream_expand_shrink_output_set_eq: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    \<And>input0 m. \<lbrakk> set input0 \<subseteq> A; m \<in> A \<rbrakk> \<Longrightarrow>
       Equiv_Exec
         m equiv_states localState1 localState2
         input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2
         (f_Exec_Comp trans_fun1 (map input_fun1 input0 \<odot>\<^sub>f k1) c1)
         (f_Exec_Comp trans_fun2 (map input_fun2 input0 \<odot>\<^sub>f k2) c2);
    set input \<subseteq> A \<rbrakk> \<Longrightarrow>
  (map output_fun1 (
    f_Exec_Comp_Stream trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1)) \<div>\<^sub>f k1 =
  (map output_fun2 (
    f_Exec_Comp_Stream trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2)) \<div>\<^sub>f k2"
apply (subst list_eq_iff)
apply (clarsimp simp: f_shrink_length)
apply (simp del: last.simps f_Exec_Stream_Cons add: f_shrink_nth take_map drop_map f_Exec_Stream_take f_Exec_Stream_drop f_expand_take_mod f_expand_drop_mod take_first)
apply (frule_tac n=i in subset_trans[OF set_take_subset, rule_format])
apply (unfold atomize_all atomize_imp, intro allI impI)
apply (frule_tac x="take i input" in spec)
apply (drule_tac x="input ! i" in spec)
apply (erule impE, assumption)
apply (erule impE)
 apply (blast intro: nth_mem)
apply (simp del: last.simps f_Exec_Stream_Cons)
apply (rule Equiv_Exec_output_eqI[of equiv_states localState1 _ localState2 _ _ input_fun1 input_fun2])
 apply (case_tac i, simp)
 apply (simp add: take_map[symmetric] f_Exec_Stream_expand_shrink_last_nth_eq_f_Exec_Comp[symmetric])
 apply (frule Suc_lessD)
 apply (simp add: f_Equiv_Exec_Stream_expand_shrink_equiv_state_set[of k1 k2 equiv_states localState1 _ localState2 _ A input_fun1 input_fun2 output_fun1 output_fun2])
apply simp
done

lemma f_Equiv_Exec_Stream_expand_shrink_output_eq: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    \<And>input0 m.
       Equiv_Exec
         m equiv_states localState1 localState2
         input_fun1 input_fun2 output_fun1 output_fun2
         trans_fun1 trans_fun2 k1 k2
         (f_Exec_Comp trans_fun1 (map input_fun1 input0 \<odot>\<^sub>f k1) c1)
         (f_Exec_Comp trans_fun2 (map input_fun2 input0 \<odot>\<^sub>f k2) c2) \<rbrakk> \<Longrightarrow>
  (map output_fun1 (
    f_Exec_Comp_Stream trans_fun1 (map input_fun1 input \<odot>\<^sub>f k1) c1)) \<div>\<^sub>f k1 =
  (map output_fun2 (
    f_Exec_Comp_Stream trans_fun2 (map input_fun2 input \<odot>\<^sub>f k2) c2)) \<div>\<^sub>f k2"
by (rule f_Equiv_Exec_Stream_expand_shrink_output_set_eq[of k1 k2 equiv_states localState1 _ localState2 _ UNIV], simp+)

lemma i_Equiv_Exec_Stream_expand_shrink_output_set_eq: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    \<And>input0 m. \<lbrakk> set input0 \<subseteq> A; m \<in> A \<rbrakk> \<Longrightarrow>
       Equiv_Exec
         m equiv_states localState1 localState2
         input_fun1 input_fun2 output_fun1 output_fun2
         trans_fun1 trans_fun2 k1 k2
         (f_Exec_Comp trans_fun1 (map input_fun1 input0 \<odot>\<^sub>f k1) c1)
         (f_Exec_Comp trans_fun2 (map input_fun2 input0 \<odot>\<^sub>f k2) c2);
    range input \<subseteq> A \<rbrakk> \<Longrightarrow>
  (output_fun1 \<circ>
    i_Exec_Comp_Stream trans_fun1 ((input_fun1 \<circ> input) \<odot>\<^sub>i k1) c1) \<div>\<^sub>i k1 =
  (output_fun2 \<circ>
    i_Exec_Comp_Stream trans_fun2 ((input_fun2 \<circ> input) \<odot>\<^sub>i k2) c2) \<div>\<^sub>i k2"
apply (clarsimp simp: ilist_eq_iff, rename_tac i)
apply (simp del: last.simps f_Exec_Stream_Cons add: i_shrink_nth i_Exec_Stream_take i_Exec_Stream_drop i_expand_i_take_mod i_expand_i_drop_mod i_take_first map_one f_expand_one)
apply (rule Equiv_Exec_output_eqI[of
  equiv_states localState1 _ localState2 _ _
  input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2])
apply (rule f_Equiv_Exec_expand_shrink_equiv_state_set[of
  k1 k2 equiv_states localState1 _ localState2 _ A
  input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2])
apply (simp add: subset_trans[OF set_i_take_subset] subsetD[OF _ rangeI])+
done

lemma i_Equiv_Exec_Stream_expand_shrink_output_eq: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    \<And>input0 m.
       Equiv_Exec
         m equiv_states localState1 localState2
         input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2
         (f_Exec_Comp trans_fun1 (map input_fun1 input0 \<odot>\<^sub>f k1) c1)
         (f_Exec_Comp trans_fun2 (map input_fun2 input0 \<odot>\<^sub>f k2) c2) \<rbrakk> \<Longrightarrow>
  (output_fun1 \<circ>
    i_Exec_Comp_Stream trans_fun1 ((input_fun1 \<circ> input) \<odot>\<^sub>i k1) c1) \<div>\<^sub>i k1 =
  (output_fun2 \<circ>
    i_Exec_Comp_Stream trans_fun2 ((input_fun2 \<circ> input) \<odot>\<^sub>i k2) c2) \<div>\<^sub>i k2"
apply (rule i_Equiv_Exec_Stream_expand_shrink_output_set_eq[of
  k1 k2 equiv_states localState1 c1 localState2 c2 UNIV
  input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2])
apply simp+
done


lemma f_Equiv_Exec_Stream_Acc_LocalState_set: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec_stable_set A
      equiv_states localState1 localState2
      input_fun1 input_fun2 output_fun1 output_fun2
      trans_fun1 trans_fun2 k1 k2 c1 c2;
      \<comment> \<open>\<open>equiv_states\<close> relation implies equivalent executions\<close>
      \<comment> \<open>not only at the beginning but also after processing an input\<close>
    set input \<subseteq> A;
    i < length input \<rbrakk> \<Longrightarrow>
  equiv_states
    (f_Exec_Comp_Stream_Acc_LocalState k1 localState1 trans_fun1 (map input_fun1 input) c1 ! i)
    (f_Exec_Comp_Stream_Acc_LocalState k2 localState2 trans_fun2 (map input_fun2 input) c2 ! i)"
apply (unfold f_Exec_Comp_Stream_Acc_LocalState_def Equiv_Exec_stable_set_def)
apply (simp add: f_shrink_last_map f_shrink_last_length)
apply (rule f_Equiv_Exec_Stream_expand_shrink_equiv_state_set[of
  k1 k2 equiv_states localState1 c1 localState2 c2 A
  input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 input, rule_format])
apply simp+
done

lemma f_Equiv_Exec_Stream_Acc_LocalState: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec_stable
      equiv_states localState1 localState2
      input_fun1 input_fun2 output_fun1 output_fun2
      trans_fun1 trans_fun2 k1 k2 c1 c2;
      \<comment> \<open>\<open>equiv_states\<close> relation implies equivalent executions\<close>
      \<comment> \<open>not only at the beginning but also after processing an input\<close>
    i < length input \<rbrakk> \<Longrightarrow>
  equiv_states
    (f_Exec_Comp_Stream_Acc_LocalState k1 localState1 trans_fun1 (map input_fun1 input) c1 ! i)
    (f_Exec_Comp_Stream_Acc_LocalState k2 localState2 trans_fun2 (map input_fun2 input) c2 ! i)"
apply (rule f_Equiv_Exec_Stream_Acc_LocalState_set[where A=UNIV])
apply (simp add: Equiv_Exec_stable_set_UNIV)+
done

lemma f_Equiv_Exec_Stream_Acc_Output_set_eq: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec_stable_set A
      equiv_states localState1 localState2
      input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2 c1 c2;
    set input \<subseteq> A \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k1 output_fun1 trans_fun1 (map input_fun1 input) c1 =
  f_Exec_Comp_Stream_Acc_Output k2 output_fun2 trans_fun2 (map input_fun2 input) c2"
apply (unfold f_Exec_Comp_Stream_Acc_Output_def Equiv_Exec_stable_set_def)
apply (rule f_Equiv_Exec_Stream_expand_shrink_output_set_eq[of
  k1 k2 equiv_states localState1 c1 localState2 c2
  A input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 input])
apply simp+
done

lemma f_Equiv_Exec_Stream_Acc_Output_eq: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec_stable
      equiv_states localState1 localState2
      input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2 c1 c2 \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k1 output_fun1 trans_fun1 (map input_fun1 input) c1 =
  f_Exec_Comp_Stream_Acc_Output k2 output_fun2 trans_fun2 (map input_fun2 input) c2"
apply (rule f_Equiv_Exec_Stream_Acc_Output_set_eq[of k1 k2 equiv_states localState1 c1 localState2 c2 UNIV])
apply (simp add: Equiv_Exec_stable_set_UNIV)+
done


lemma i_Equiv_Exec_Stream_Acc_LocalState_set: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec_stable_set A
      equiv_states localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
      trans_fun1 trans_fun2 k1 k2 c1 c2;
    range input \<subseteq> A \<rbrakk> \<Longrightarrow>
  equiv_states
    (i_Exec_Comp_Stream_Acc_LocalState k1 localState1 trans_fun1 (input_fun1 \<circ> input) c1 i)
    (i_Exec_Comp_Stream_Acc_LocalState k2 localState2 trans_fun2 (input_fun2 \<circ> input) c2 i)"
apply (simp add: i_Exec_Stream_Acc_LocalState_nth_f_nth)
apply (rule f_Equiv_Exec_Stream_Acc_LocalState_set)
apply (simp add:  subset_trans[OF set_i_take_subset])+
done

lemma i_Equiv_Exec_Stream_Acc_LocalState: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec_stable
      equiv_states localState1 localState2
      input_fun1 input_fun2 output_fun1 output_fun2
      trans_fun1 trans_fun2 k1 k2 c1 c2 \<rbrakk> \<Longrightarrow>
  equiv_states
    (i_Exec_Comp_Stream_Acc_LocalState k1 localState1 trans_fun1 (input_fun1 \<circ> input) c1 i)
    (i_Exec_Comp_Stream_Acc_LocalState k2 localState2 trans_fun2 (input_fun2 \<circ> input) c2 i)"
apply (rule i_Equiv_Exec_Stream_Acc_LocalState_set[where A=UNIV])
apply (simp add: Equiv_Exec_stable_set_UNIV)+
done

lemma i_Equiv_Exec_Stream_Acc_Output_set_eq: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec_stable_set A
      equiv_states localState1 localState2
      input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2 c1 c2;
    range input \<subseteq> A \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k1 output_fun1 trans_fun1 (input_fun1 \<circ> input) c1 =
  i_Exec_Comp_Stream_Acc_Output k2 output_fun2 trans_fun2 (input_fun2 \<circ> input) c2"
apply (clarsimp simp: ilist_eq_iff i_Exec_Stream_Acc_Output_nth_f_nth, rename_tac i)
apply (drule_tac n="Suc i" in subset_trans[OF set_i_take_subset, rule_format])
apply (simp add: f_Equiv_Exec_Stream_Acc_Output_set_eq[where equiv_states=equiv_states])
done

lemma i_Equiv_Exec_Stream_Acc_Output_eq: "
  \<lbrakk> 0 < k1; 0 < k2;
    equiv_states (localState1 c1) (localState2 c2);
    Equiv_Exec_stable
      equiv_states localState1 localState2
      input_fun1 input_fun2 output_fun1 output_fun2 trans_fun1 trans_fun2 k1 k2 c1 c2 \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k1 output_fun1 trans_fun1 (input_fun1 \<circ> input) c1 =
  i_Exec_Comp_Stream_Acc_Output k2 output_fun2 trans_fun2 (input_fun2 \<circ> input) c2"
apply (rule i_Equiv_Exec_Stream_Acc_Output_set_eq[of k1 k2 equiv_states localState1 c1 localState2 c2 UNIV])
apply (simp add: Equiv_Exec_stable_set_UNIV)+
done


subsubsection \<open>Idle states and accelerated execution\<close>

lemma f_Exec_Stream_Acc_LocalState__State_Idle_nth[rule_format]: "
  \<And>c i.
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    \<forall>n\<le>i. State_Idle localState output_fun trans_fun (
      f_Exec_Comp_Stream_Acc_LocalState l localState trans_fun xs c ! n);
    i < length xs \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c ! i =
  f_Exec_Comp_Stream_Acc_LocalState l localState trans_fun xs c ! i"
apply (frule length_greater_0_conv[THEN iffD1, OF gr_implies_gr0])
apply (simp only: f_Exec_Stream_Acc_LocalState_nth take_Suc_conv_app_nth)
apply (simp only: f_expand_snoc f_Exec_append)
apply (rule_tac s="\<NoMsg>\<^bsup>l - Suc 0\<^esup> @ \<NoMsg>\<^bsup>k-l\<^esup>" and t="\<NoMsg>\<^bsup>k - Suc 0\<^esup>" in subst)
 apply (simp add: replicate_le_diff2)
apply (subst append_Cons[symmetric])
apply (induct xs, simp)
apply (case_tac i)
 apply (simp add: f_Exec_Stream_Acc_LocalState_Cons f_Exec_State_Idle_append_replicate_NoMsg_state)
apply (rename_tac n)
apply (drule_tac x="f_Exec_Comp trans_fun (a # \<NoMsg>\<^bsup>l - Suc 0\<^esup>) c" in meta_spec)
apply (drule_tac x=n in meta_spec)
apply (simp del: f_Exec_Cons)
apply (frule length_greater_imp_not_empty)
apply (drule meta_mp)
 apply (simp add: f_Exec_Stream_Acc_LocalState_nth f_Exec_append)
apply (simp add: append_Cons[symmetric] f_expand_Cons f_Exec_append del: append_Cons)
apply (subgoal_tac "
  localState (f_Exec_Comp trans_fun (a # NoMsg\<^bsup>k - Suc 0\<^esup>) c) =
  localState (f_Exec_Comp trans_fun (a # NoMsg\<^bsup>l - Suc 0\<^esup>) c)")
 prefer 2
 apply (drule_tac x=0 in spec)
 apply (simp add: f_Exec_Stream_Acc_LocalState_Cons)
 apply (subst replicate_le_diff2[OF Suc_leI, symmetric], assumption+)
 apply (simp add: append_Cons[symmetric] f_Exec_append del: append_Cons)
 apply (rule f_Exec_State_Idle_replicate_NoMsg_state, assumption)
apply (case_tac "n = 0")
 apply (frule_tac
   ?c1.0="f_Exec_Comp trans_fun (a # NoMsg\<^bsup>k - Suc 0\<^esup>) c" and
   xs = "xs ! 0 # NoMsg\<^bsup>l - Suc 0\<^esup>" in f_Exec_Equal_State)
 apply simp+
apply (frule_tac
  ?c1.0="f_Exec_Comp trans_fun (a # NoMsg\<^bsup>k - Suc 0\<^esup>) c" and
  xs = "xs \<down> n \<odot>\<^sub>f k" in f_Exec_Equal_State)
apply (simp add: f_expand_not_empty_conv)+
done

corollary f_Exec_Stream_Acc_LocalState__State_Idle_eq[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    \<forall>n<length xs. State_Idle localState output_fun trans_fun (
      f_Exec_Comp_Stream_Acc_LocalState l localState trans_fun xs c ! n) \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c =
  f_Exec_Comp_Stream_Acc_LocalState l localState trans_fun xs c"
apply (clarsimp simp: list_eq_iff)
apply (rule f_Exec_Stream_Acc_LocalState__State_Idle_nth)
apply simp_all
apply (drule_tac x=n in spec)
apply simp
done

lemma i_Exec_Stream_Acc_LocalState__State_Idle_nth[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    \<forall>n\<le>i. State_Idle localState output_fun trans_fun (
      i_Exec_Comp_Stream_Acc_LocalState l localState trans_fun input c n) \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c i =
  i_Exec_Comp_Stream_Acc_LocalState l localState trans_fun input c i"
apply (simp only: f_Exec_Stream_Acc_LocalState_nth_eq_i_nth[of _ _ "Suc i", symmetric])
apply (rule f_Exec_Stream_Acc_LocalState__State_Idle_nth)
apply simp_all
apply (drule_tac x=n in spec)
apply (simp add: f_Exec_Stream_Acc_LocalState_nth_eq_i_nth)
done

corollary i_Exec_Stream_Acc_LocalState__State_Idle_eq[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    \<forall>n. State_Idle localState output_fun trans_fun (
      i_Exec_Comp_Stream_Acc_LocalState l localState trans_fun input c n) \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c =
  i_Exec_Comp_Stream_Acc_LocalState l localState trans_fun input c"
apply (clarsimp simp: ilist_eq_iff)
apply (rule i_Exec_Stream_Acc_LocalState__State_Idle_nth)
apply simp_all
apply (drule_tac x=n in spec)
apply simp
done

lemma f_Exec_Stream_Acc_Output__State_Idle_nth[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    \<forall>n\<le>i. State_Idle localState output_fun trans_fun (
      f_Exec_Comp_Stream_Acc_LocalState l localState trans_fun xs c ! n);
    i < length xs \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c ! i =
  f_Exec_Comp_Stream_Acc_Output l output_fun trans_fun xs c ! i"
apply (drule order_le_less[THEN iffD1], erule disjE)
 prefer 2
 apply simp
apply (frule zero_less_diff[of k l, THEN iffD2])
apply (frule length_greater_imp_not_empty)
apply (simp add: f_Exec_Stream_Acc_Output_nth del: f_Exec_Stream_Cons)
apply (subst replicate_le_diff2[OF Suc_leI, symmetric])
 apply (simp del: f_Exec_Stream_Cons)+
apply (subst append_Cons[symmetric])
apply (case_tac i)
 apply (drule_tac x=0 in spec)
 apply (simp add: f_Exec_Stream_Acc_LocalState_nth take_first f_expand_one del: last.simps f_Exec_Cons f_Exec_Stream_Cons append_Cons replicate.simps)
 apply (simp only: f_Exec_Stream_append map_append last_message_append)
 apply (rule if_P')
  apply (clarsimp simp: last_message_NoMsg_conv f_Exec_Stream_nth min_eqL simp del: last.simps f_Exec_Comp.simps append_Cons replicate.simps)
  apply (rule f_Exec_State_Idle_replicate_NoMsg_gr0_output)
  apply (simp del: last.simps f_Exec_Comp_Stream.simps append_Cons)+
apply (rename_tac n)
apply (simp only: f_Exec_Stream_append map_append last_message_append)
apply (subgoal_tac "
  localState (f_Exec_Comp trans_fun (xs \<down> Suc n \<odot>\<^sub>f k) c) =
  localState (f_Exec_Comp trans_fun (xs \<down> Suc n \<odot>\<^sub>f l) c)")
 prefer 2
 apply (simp add: f_Exec_Stream_Acc_LocalState_nth[symmetric])
 apply (rule f_Exec_Stream_Acc_LocalState__State_Idle_nth)
 apply simp+
 apply (rename_tac n, drule_tac x=n in spec, simp)
 apply simp
apply (rule if_P')
 apply (simp add: last_message_NoMsg_conv f_Exec_Stream_nth min_eqL del: f_Exec_Comp.simps replicate.simps)
 apply (clarify, rename_tac j)
 apply (frule_tac x="Suc n" in spec)
 apply (simp only: f_Exec_Stream_Acc_LocalState_nth)
 apply (rule_tac
   ?c1.0="f_Exec_Comp trans_fun (xs \<down> Suc n \<odot>\<^sub>f l) c"
   and ?c2.0="f_Exec_Comp trans_fun (xs \<down> Suc n \<odot>\<^sub>f k) c"
   in subst[OF f_Exec_Equal_State, rule_format])
  apply (simp del: f_Exec_Comp.simps replicate.simps)+
 apply (simp only: take_Suc_conv_app_nth f_expand_snoc f_Exec_append)
 apply (rule f_Exec_State_Idle_replicate_NoMsg_gr0_output, assumption)
 apply simp
apply (rule arg_cong[where f="\<lambda>x. last_message (map output_fun x)"])
apply (rule f_Exec_Stream_Equal_State, assumption+)
done

lemma f_Exec_Stream_Acc_Output__State_Idle_eq[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    \<forall>n<length xs. State_Idle localState output_fun trans_fun (
      f_Exec_Comp_Stream_Acc_LocalState l localState trans_fun xs c ! n) \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c =
  f_Exec_Comp_Stream_Acc_Output l output_fun trans_fun xs c"
apply (clarsimp simp: list_eq_iff)
apply (rule f_Exec_Stream_Acc_Output__State_Idle_nth)
apply simp_all
apply (drule_tac x=n in spec)
apply simp
done

lemma i_Exec_Stream_Acc_Output__State_Idle_nth[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    \<forall>n\<le>i. State_Idle localState output_fun trans_fun (
      i_Exec_Comp_Stream_Acc_LocalState l localState trans_fun input c n) \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c i =
  i_Exec_Comp_Stream_Acc_Output l output_fun trans_fun input c i"
apply (simp only: i_Exec_Stream_Acc_Output_nth_f_nth)
apply (rule f_Exec_Stream_Acc_Output__State_Idle_nth)
apply simp_all
apply (drule_tac x=n in spec)
apply (simp add: f_Exec_Stream_Acc_LocalState_nth_eq_i_nth)
done

lemma i_Exec_Stream_Acc_Output__State_Idle_eq[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    \<forall>n. State_Idle localState output_fun trans_fun (
      i_Exec_Comp_Stream_Acc_LocalState l localState trans_fun input c n) \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c =
  i_Exec_Comp_Stream_Acc_Output l output_fun trans_fun input c"
apply (clarsimp simp: ilist_eq_iff)
apply (rule i_Exec_Stream_Acc_Output__State_Idle_nth)
apply simp_all
apply (drule_tac x=n in spec)
apply simp
done


text \<open>
  When a certain number @{term l} of steps suffices to reach
  an idle state from any other idle state,
  than for any acceleration factor @{term "k \<ge> l"}
  the accelerated processing of every input message
  will be finished in an idle state.\<close>
lemma f_Exec_Stream_Acc_LocalState__State_Idle_all[rule_format]: "
  \<And>c xs. \<lbrakk> 0 < l; l \<le> k;
    State_Idle localState output_fun trans_fun (localState c);
    \<forall>c m. State_Idle localState output_fun trans_fun (localState c) \<longrightarrow>
      State_Idle localState output_fun trans_fun (
        localState (f_Exec_Comp trans_fun (m # \<NoMsg>\<^bsup>l - Suc 0\<^esup>) c));
    i < length xs \<rbrakk> \<Longrightarrow>
  State_Idle localState output_fun trans_fun (
    f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c ! i)"
apply (frule length_greater_imp_not_empty)
apply (subgoal_tac "
  State_Idle localState output_fun trans_fun (
    localState (f_Exec_Comp trans_fun (hd xs # NoMsg\<^bsup>k - Suc 0\<^esup>) c))")
 prefer 2
 apply (drule_tac x=c in spec, drule_tac x="hd xs" in spec)
 apply (rule subst[OF replicate_le_diff2[OF Suc_leI], of 0 l k], assumption+)
 apply (simp add: f_Exec_append f_Exec_State_Idle_replicate_NoMsg_state)
apply (induct i)
 apply (simp add: f_Exec_Stream_Acc_LocalState_nth take_first hd_eq_first)
apply (drule_tac x="f_Exec_Comp trans_fun (hd xs # NoMsg\<^bsup>k - Suc 0\<^esup>) c" in meta_spec)
apply (drule_tac x="tl xs" in meta_spec)
apply (subgoal_tac "i < length (tl xs) \<and> tl xs \<noteq> []", elim conjE)
 prefer 2
 apply (simp add: length_greater_0_conv[symmetric] del: length_greater_0_conv)
apply (simp add: f_Exec_Stream_Acc_LocalState_nth)
apply (rule_tac n="Suc i" in ssubst[OF take_Suc, rule_format], assumption)
apply (simp add: append_Cons[symmetric] f_Exec_append del: append_Cons)
apply (drule meta_mp)
 apply (drule_tac x="f_Exec_Comp trans_fun (hd xs # NoMsg\<^bsup>k - Suc 0\<^esup>) c" in spec)
 apply (drule mp, simp)
 apply (drule_tac x="hd (tl xs)" in spec)
 apply (subst replicate_le_diff2[OF Suc_leI, of 0 l k, symmetric], simp+)
 apply (simp add: f_Exec_append f_Exec_State_Idle_replicate_NoMsg_state)
apply (simp add: f_Exec_Stream_Acc_LocalState_nth)
done

lemma i_Exec_Stream_Acc_LocalState__State_Idle_all[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k;
    State_Idle localState output_fun trans_fun (localState c);
    \<forall>c m. State_Idle localState output_fun trans_fun (localState c) \<longrightarrow>
      State_Idle localState output_fun trans_fun (
        localState (f_Exec_Comp trans_fun (m # \<NoMsg>\<^bsup>l - Suc 0\<^esup>) c)) \<rbrakk> \<Longrightarrow>
  State_Idle localState output_fun trans_fun (
    i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c i)"
apply (simp only: i_Exec_Stream_Acc_LocalState_nth_f_nth)
apply (rule f_Exec_Stream_Acc_LocalState__State_Idle_all)
apply simp_all
apply (rename_tac c' m, drule_tac x=c' in spec)
apply simp
done

lemma f_Exec_Stream_Acc_Output__State_Idle_all_imp_eq[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    State_Idle localState output_fun trans_fun (localState c);
    \<forall>c m. State_Idle localState output_fun trans_fun (localState c) \<longrightarrow>
      State_Idle localState output_fun trans_fun (
        localState (f_Exec_Comp trans_fun (m # \<NoMsg>\<^bsup>l - Suc 0\<^esup>) c)) \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_Output k output_fun trans_fun xs c =
  f_Exec_Comp_Stream_Acc_Output l output_fun trans_fun xs c"
apply (rule f_Exec_Stream_Acc_Output__State_Idle_eq, assumption+)
apply (simp add: f_Exec_Stream_Acc_LocalState__State_Idle_all)
done

lemma i_Exec_Stream_Acc_Output__State_Idle_all_imp_eq[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    State_Idle localState output_fun trans_fun (localState c);
    \<forall>c m. State_Idle localState output_fun trans_fun (localState c) \<longrightarrow>
      State_Idle localState output_fun trans_fun (
        localState (f_Exec_Comp trans_fun (m # \<NoMsg>\<^bsup>l - Suc 0\<^esup>) c)) \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c =
  i_Exec_Comp_Stream_Acc_Output l output_fun trans_fun input c"
apply (rule i_Exec_Stream_Acc_Output__State_Idle_eq, assumption+)
apply (simp add: i_Exec_Stream_Acc_LocalState__State_Idle_all)
done

lemma f_Exec_Stream_Acc_LocalState__State_Idle_all_imp_eq[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    State_Idle localState output_fun trans_fun (localState c);
    \<forall>c m. State_Idle localState output_fun trans_fun (localState c) \<longrightarrow>
      State_Idle localState output_fun trans_fun (
        localState (f_Exec_Comp trans_fun (m # \<NoMsg>\<^bsup>l - Suc 0\<^esup>) c)) \<rbrakk> \<Longrightarrow>
  f_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c =
  f_Exec_Comp_Stream_Acc_LocalState l localState trans_fun xs c"
apply (rule f_Exec_Stream_Acc_LocalState__State_Idle_eq, assumption+)
apply (rule f_Exec_Stream_Acc_LocalState__State_Idle_all)
apply simp+
done

lemma i_Exec_Stream_Acc_LocalState__State_Idle_all_imp_eq[rule_format]: "
  \<lbrakk> 0 < l; l \<le> k; Exec_Equal_State localState trans_fun;
    State_Idle localState output_fun trans_fun (localState c);
    \<forall>c m. State_Idle localState output_fun trans_fun (localState c) \<longrightarrow>
      State_Idle localState output_fun trans_fun (
        localState (f_Exec_Comp trans_fun (m # \<NoMsg>\<^bsup>l - Suc 0\<^esup>) c)) \<rbrakk> \<Longrightarrow>
  i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun xs c =
  i_Exec_Comp_Stream_Acc_LocalState l localState trans_fun xs c"
apply (rule i_Exec_Stream_Acc_LocalState__State_Idle_eq, assumption+)
apply (rule i_Exec_Stream_Acc_LocalState__State_Idle_all)
apply simp+
done


text \<open>Converting inputs\<close>

lemma f_Exec_input_map: "\<And>c.
  f_Exec_Comp trans_fun (map f xs) c = f_Exec_Comp (trans_fun \<circ> f) xs c"
by (induct xs, simp+)
lemma f_Exec_Stream_input_map: "
  f_Exec_Comp_Stream trans_fun (map f xs) c =
  f_Exec_Comp_Stream (trans_fun \<circ> f) xs c"
by (simp add: list_eq_iff f_Exec_Stream_nth take_map f_Exec_input_map)
lemma i_Exec_Stream_input_map: "
  i_Exec_Comp_Stream trans_fun (f \<circ> input) c =
  i_Exec_Comp_Stream (trans_fun \<circ> f) input c"
by (simp add: ilist_eq_iff i_Exec_Stream_nth f_Exec_input_map)

end