Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 28,898 Bytes
18b1f9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
{\bf Problem.} Compute \[\sum_{n=1}^{1000} \frac{1}{n^2 + n}.\] {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $$p(x,y) = a_0 + a_1x + a_2y + a_3x^2 + a_4xy + a_5y^2 + a_6x^3 + a_7x^2y + a_8xy^2 + a_9y^3.$$Suppose that \begin{align*} p(0,0) &=p(1,0) = p( - 1,0) = p(0,1) = p(0, - 1)= p(1,1) = p(1, - 1) = p(2,2) = 0. \end{align*}There is a point $(r,s)$ for which $p(r,s) = 0$ for all such polynomials, where $r$ and $s$ are not integers. Find the point $(r,s).$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $x,$ $y,$ $z$ be positive real numbers such that $x + y + z = 1.$ Find the minimum value of \[\frac{1}{x + y} + \frac{1}{x + z} + \frac{1}{y + z}.\] {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find \[\min_{y \in \mathbb{R}} \max_{0 \le x \le 1} |x^2 - xy|.\] {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} If $f(x) = \frac{1 + x}{1 - 3x}, f_1(x) = f(f(x)), f_2(x) = f(f_1(x)),$ and in general $f_n(x) = f(f_{n-1}(x)),$ then $f_{1993}(3)=$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} A circle is tangent to the lines $4x - 3y = 30$ and $4x - 3y = -10.$ The center of the circle lies on the line $2x + y = 0.$ Find the center of the circle. {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $f_0(x)=x+|x-100|-|x+100|$, and for $n\geq 1$, let $f_n(x)=|f_{n-1}(x)|-1$. For how many values of $x$ is $f_{100}(x)=0$? {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the maximum value of \[f(x) = 3x - x^3\]for $0 \le x \le \sqrt{3}.$ {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Compute \[\sum_{j = 0}^\infty \sum_{k = 0}^\infty 2^{-3k - j - (k + j)^2}.\] {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} For polynomial $P(x)=1-\dfrac{1}{3}x+\dfrac{1}{6}x^{2}$, define \[Q(x)=P(x)P(x^{3})P(x^{5})P(x^{7})P(x^{9})=\sum_{i=0}^{50} a_ix^{i}.\]Find $\sum_{i=0}^{50} |a_i|.$ {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $f$ be a function taking the positive integers to the positive integers, such that (i) $f$ is increasing (i.e. $f(n + 1) > f(n)$ for all positive integers $n$) (ii) $f(mn) = f(m) f(n)$ for all positive integers $m$ and $n,$ and (iii) if $m \neq n$ and $m^n = n^m,$ then $f(m) = n$ or $f(n) = m.$ Find the sum of all possible values of $f(30).$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} A polynomial product of the form \[(1 - z)^{b_1} (1 - z^2)^{b_2} (1 - z^3)^{b_3} (1 - z^4)^{b_4} (1 - z^5)^{b_5} \dotsm (1 - z^{32})^{b_{32}},\]where the $b_k$ are positive integers, has the surprising property that if we multiply it out and discard all terms involving $z$ to a power larger than 32, what is left is just $1 - 2z.$ Determine $b_{32}.$ You can enter your answer using exponential notation. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $0 \le a,$ $b,$ $c,$ $d \le 1.$ Find the possible values of the expression \[\sqrt{a^2 + (1 - b)^2} + \sqrt{b^2 + (1 - c)^2} + \sqrt{c^2 + (1 - d)^2} + \sqrt{d^2 + (1 - a)^2}.\] {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $a,b,c$ be the roots of $x^3-9x^2+11x-1=0$, and let $s=\sqrt{a}+\sqrt{b}+\sqrt{c}$. Find $s^4-18s^2-8s$. {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $a$ and $b$ be real numbers such that $a + 4i$ and $b + 5i$ are the roots of \[z^2 - (10 + 9i) z + (4 + 46i) = 0.\]Enter the ordered pair $(a,b).$ {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} What is the value of $\left(1 - \frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right) \dotsm \left(1-\frac{1}{50}\right)$? Express your answer as a common fraction. {\bf Level.} Level 1 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the value of $x,$ if \[|x-20| + |x-18| = |2x-36|.\] {\bf Level.} Level 2 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} For some real numbers $a$ and $b$, the equation $9x^3 + 5ax^2 + 4bx + a = 0$ has three distinct positive roots. If the sum of the base-2 logarithms of the roots is 4, what is the value of $a$? {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Solve the inequality \[\frac{(x - 2)(x - 3)(x - 4)}{(x - 1)(x - 5)(x - 6)} > 0.\] {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $x,$ $y,$ and $z$ be real numbers such that \[x^3 + y^3 + z^3 - 3xyz = 1.\]Find the minimum value of $x^2 + y^2 + z^2.$ {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the smallest solution to the equation \[\frac{2x}{x-2} + \frac{2x^2-24}{x} = 11.\] {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Evaluate \[\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}},\]giving your answer as a fraction in lowest terms. {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Multiply $(x^4 +18 x^2 + 324) (x^2-18)$. {\bf Level.} Level 1 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Solve the inequality \[\frac{x^2 - 25}{x + 5} < 0.\] {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The graph of the equation \[\sqrt{x^2+y^2} + |y-1| = 3\]consists of portions of two different parabolas. Compute the distance between the vertices of the parabolas. {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} For a positive integer $n,$ let \[H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.\]Compute \[\sum_{n = 1}^\infty \frac{1}{(n + 1) H_n H_{n + 1}}.\] {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Write $x^{10} + x^5 + 1$ as the product of two polynomials with integer coefficients. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the sum of the $2007$ roots of $(x-1)^{2007}+2(x-2)^{2006}+3(x-3)^{2005}+\cdots+2006(x-2006)^2+2007(x-2007)$. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find all the solutions to \[\sqrt{(2 + \sqrt{3})^x} + \sqrt{(2 - \sqrt{3})^x} = 4.\]Enter all the solutions, separated by commas. {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The region between the graph of $y = f (x)$ and the $x$-axis, shaded in this figure, has an area of 10 square units. What will be the area between the graph of $y = 3f (x -2)$ and the $x$-axis? [asy] defaultpen(linewidth(0.75)); fill((10,0)..(30,20)..(40,15)--(50,40)..(58,39)--(70,0)--cycle,gray(.7)); draw((10,0)..(30,20)..(40,15)--(50,40)..(58,39)--(70,0)--cycle); draw((-15,0)--(80,0),Arrow); draw((0,-10)--(0,50),Arrow); draw((10,0)--(8.5,-7),Arrow); draw((70,0)--(72,-7),Arrow); label("$y = f(x)$",(5,65),S); label("$x$",(80,-8)); [/asy] {\bf Level.} Level 2 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $a,$ $b,$ $c$ be three distinct positive real numbers such that $a,$ $b,$ $c$ form a geometric sequence, and \[\log_c a, \ \log_b c, \ \log_a b\]form an arithmetic sequence. Find the common difference of the arithmetic sequence. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $f(x) = \frac{3}{9^x + 3}.$ Find \[f \left( \frac{1}{1001} \right) + f \left( \frac{2}{1001} \right) + f \left( \frac{3}{1001} \right) + \dots + f \left( \frac{1000}{1001} \right).\] {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the product of the nonreal roots of $x^4-4x^3+6x^2-4x=2005.$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $a$ and $b$ be real numbers. One of the roots of $x^3 + ax + b = 0$ is $1 + i \sqrt{3}.$ Find $a + b.$ {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find a monic polynomial of degree $4,$ in $x,$ with rational coefficients such that $\sqrt{2} +\sqrt{3}$ is a root of the polynomial. {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} There exists a constant $c,$ so that among all chords $\overline{AB}$ of the parabola $y = x^2$ passing through $C = (0,c),$ \[t = \frac{1}{AC} + \frac{1}{BC}\]is a fixed constant. Find the constant $t.$ [asy] unitsize(1 cm); real parab (real x) { return(x^2); } pair A, B, C; A = (1.7,parab(1.7)); B = (-1,parab(-1)); C = extension(A,B,(0,0),(0,1)); draw(graph(parab,-2,2)); draw(A--B); draw((0,0)--(0,4)); dot("$A$", A, E); dot("$B$", B, SW); dot("$(0,c)$", C, NW); [/asy] {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $f(x)$ be an odd function. Is $f(f(f(x)))$ even, odd, or neither? Enter "odd", "even", or "neither". {\bf Level.} Level 1 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find all values of $k$ so that \[x^2 - (k - 3) x - k + 6 > 0\]for all $x.$ {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The polynomial $f(x) = x^3 + x^2 + 2x + 3$ has three distinct roots. Let $g(x) = x^3+bx^2+cx+d$ be a cubic polynomial with leading coefficient $1$ such that the roots of $g(x)$ are the squares of the roots of $f(x)$. Find the ordered triple $(b,c,d)$. {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Given positive integers $x$ and $y$ such that $\frac{1}{x} + \frac{1}{2y} = \frac{1}{7}$, what is the least possible value of $xy$? {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the greatest constant $M,$ so that \[\frac{a^2 + b^2}{c^2} > M\]whenever $a,$ $b,$ and $c$ are the sides of a triangle. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The function $f(x)$ satisfies \[f(x + f(x)) = 4f(x)\]for all $x,$ and $f(1) = 4.$ Find $f(21).$ {\bf Level.} Level 2 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $k$ be a real number such that $k > 1$ and \[\sum_{n=1}^{\infty} \frac{5n-1}{k^n} = \frac{13}{4}.\]Find $k.$ {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the minimum value of \[2x^2 + 2xy + y^2 - 2x + 2y + 4\]over all real numbers $x$ and $y.$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Consider a sequence $x_1,$ $x_2,$ $x_3,$ $\dots$ defined by \begin{align*} x_1 &= \sqrt[3]{3}, \\ x_2 &= (\sqrt[3]{3})^{\sqrt[3]{3}}, \end{align*}and in general, \[x_n = (x_{n - 1})^{\sqrt[3]{3}}\]for $n > 1.$ What is the smallest value of $n$ for which $x_n$ is an integer? {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} There are integers $b,c$ for which both roots of the polynomial $x^2-x-1$ are also roots of the polynomial $x^5-bx-c$. Determine the product $bc$. {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} During the car ride home, Michael looks back at his recent math exams. A problem on Michael's calculus mid-term gets him starting thinking about a particular quadratic,\[x^2-sx+p,\]with roots $r_1$ and $r_2$. He notices that\[r_1+r_2=r_1^2+r_2^2=r_1^3+r_2^3=\cdots=r_1^{2007}+r_2^{2007}.\]He wonders how often this is the case, and begins exploring other quantities associated with the roots of such a quadratic. He sets out to compute the greatest possible value of\[\dfrac1{r_1^{2008}}+\dfrac1{r_2^{2008}}.\]Help Michael by computing this maximum. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Given that $x - \frac{1}{x} = 4$, what is $x^3 - \frac{1}{x^3}$? {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} $\zeta_1, \zeta_2,$ and $\zeta_3$ are complex numbers such that \[\zeta_1+\zeta_2+\zeta_3=1\]\[\zeta_1^2+\zeta_2^2+\zeta_3^2=3\]\[\zeta_1^3+\zeta_2^3+\zeta_3^3=7\] Compute $\zeta_1^{7} + \zeta_2^{7} + \zeta_3^{7}$. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} If $\log (xy^3)= 1$ and $\log (x^2y) = 1$, what is $\log (xy)$? {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $A = (-3, 0),$ $B=(-2,1),$ $C=(2,1),$ and $D=(3,0).$ Suppose that point $P$ satisfies \[PA + PD = PB + PC = 8.\]Then the $y-$coordinate of $P,$ when simplified, can be expressed in the form $\frac{-a + b \sqrt{c}}{d},$ where $a,$ $b,$ $c,$ $d$ are positive integers. Find $a + b + c + d.$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Compute $$\sum_{n=1}^{\infty} \frac{3n-1}{2^n}.$$ {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The first four terms in an arithmetic sequence are $x + y, x - y, xy,$ and $x/y,$ in that order. What is the fifth term? {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The vertices $V$ of a centrally symmetric hexagon in the complex plane are given by \[V=\left\{ \sqrt{2}i,-\sqrt{2}i, \frac{1}{\sqrt{8}}(1+i),\frac{1}{\sqrt{8}}(-1+i),\frac{1}{\sqrt{8}}(1-i),\frac{1}{\sqrt{8}}(-1-i) \right\}.\]For each $j$, $1\leq j\leq 12$, an element $z_j$ is chosen from $V$ at random, independently of the other choices. Let $P={\prod}_{j=1}^{12}z_j$ be the product of the $12$ numbers selected. The probability that $P=-1$ can be expressed in the form \[\frac{a}{p^b},\]where $a,$ $b,$ $p$ are positive integers, $p$ is prime, and $a$ is not divisible by $p.$ Find $a + b + p.$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $\mathcal{P}$ be the parabola in the plane determined by the equation $y = x^2.$ Suppose a circle $\mathcal{C}$ intersects $\mathcal{P}$ at four distinct points. If three of these points are $(-28,784),$ $(-2,4),$ and $(13,169),$ find the sum of the distances from the focus of $\mathcal{P}$ to all four of the intersection points. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The planet Xavier follows an elliptical orbit with its sun at one focus. At its nearest point (perigee), it is 2 astronomical units (AU) from the sun, while at its furthest point (apogee) it is 12 AU away. When Xavier is midway along its orbit, as shown, how far is it from the sun, in AU? [asy] unitsize(1 cm); path ell = xscale(2)*arc((0,0),1,-85,265); filldraw(Circle((0,-1),0.1)); filldraw(Circle((-1.4,0),0.2),yellow); draw(ell,Arrow(6)); [/asy] {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The coefficients of the polynomial \[x^4 + bx^3 + cx^2 + dx + e = 0\]are all integers. Let $n$ be the exact number of integer roots of the polynomial, counting multiplicity. For example, the polynomial $(x + 3)^2 (x^2 + 4x + 11) = 0$ has two integer roots counting multiplicity, because the root $-3$ is counted twice. Enter all possible values of $n,$ separated by commas. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Compute \[\dfrac{2^3-1}{2^3+1}\cdot\dfrac{3^3-1}{3^3+1}\cdot\dfrac{4^3-1}{4^3+1}\cdot\dfrac{5^3-1}{5^3+1}\cdot\dfrac{6^3-1}{6^3+1}.\] {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Evaluate $|\omega^2+6\omega+58|$ if $\omega=9+2i$. {\bf Level.} Level 2 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $ a$, $ b$, $ c$ be nonzero real numbers such that $ a+b+c=0$ and $ a^3+b^3+c^3=a^5+b^5+c^5$. Find the value of $ a^2+b^2+c^2$. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Given that $a-b=5$ and $a^2+b^2=35$, find $a^3-b^3$. {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} If $x$ is a number between 0 and 1, which of the following represents the smallest value? A). $x$ B). $x^2$ C). $2x$ D). $\sqrt{x}$ E). $\frac{1}{x}$ Express your answer as A, B, C, D, or E. {\bf Level.} Level 1 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The sum of the terms in an infinite geometric series is 15, and the sum of their squares is 45. Find the first term. {\bf Level.} Level 2 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} When a polynomial is divided by $2x^2 - 7x + 18,$ what are the possible degrees of the remainder? Enter all the possible values, separated by commas. {\bf Level.} Level 2 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $k$ and $m$ be real numbers, and suppose that the roots of the equation \[x^3 - 7x^2 + kx - m = 0\]are three distinct positive integers. Compute $k + m.$ {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $a,b,c,d,e,f,g$ and $h$ be distinct elements in the set \[ \{-7,-5,-3,-2,2,4,6,13\}. \]What is the minimum possible value of \[ (a+b+c+d)^{2} + (e+f+g+h)^{2}? \] {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $z$ and $w$ be complex numbers such that $|z + 1 + 3i| = 1$ and $|w - 7 - 8i| = 3.$ Find the smallest possible value of $|z - w|.$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the last three digits of $9^{105}.$ {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} An ellipse has its foci at $(-1, -1)$ and $(-1, -3).$ Given that it passes through the point $(4, -2),$ its equation can be written in the form \[\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1\]where $a, b, h, k$ are constants, and $a$ and $b$ are positive. Find $a+k.$ {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} If $2x+7$ is a factor of $6x^3+19x^2+cx+35$, find $c$. {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the domain of the rational function $g(x) = \frac{x^3-2x^2+4x+3}{x^2-4x+3}$. Express your answer as a union of intervals. {\bf Level.} Level 2 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that \[f(f(x - y)) = f(x) f(y) - f(x) + f(y) - xy\]for all $x,$ $y.$ Find the sum of all possible values of $f(1).$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Given any two positive real numbers $x$ and $y$, then $x \, \Diamond \, y$ is a positive real number defined in terms of $x$ and $y$ by some fixed rule. Suppose the operation $x \, \Diamond \, y$ satisfies the equations $(xy) \, \Diamond \, y=x(y \, \Diamond \, y)$ and $(x \, \Diamond \, 1) \, \Diamond \, x = x \, \Diamond \, 1$ for all $x,y>0$. Given that $1 \, \Diamond \, 1=1$, find $19 \, \Diamond \, 98$. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} What is the value of the sum \[ \sum_z \frac{1}{{\left|1 - z\right|}^2} \, , \]where $z$ ranges over all 7 solutions (real and nonreal) of the equation $z^7 = -1$? {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $f(x) = x^2 + ax + b$ and $g(x) = x^2 + cx + d$ be two distinct polynomials with real coefficients such that the $x$-coordinate of the vertex of $f$ is a root of $g,$ and the $x$-coordinate of the vertex of $g$ is a root of $f,$ and both $f$ and $g$ have the same minimum value. If the graphs of the two polynomials intersect at the point $(100,-100),$ what is the value of $a + c$? {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the remainder when $x^5-x^4-x^3+x^2+x$ is divided by $(x^2-4)(x+1)$. {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The value of \[\frac{n}{2} + \frac{18}{n}\]is smallest for which positive integer $n$? {\bf Level.} Level 1 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $a,$ $b,$ $c$ be the roots of the cubic polynomial $x^3 - x - 1 = 0.$ Find \[a(b - c)^2 + b(c - a)^2 + c(a - b)^2.\] {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find $|3-2i|\cdot |3+2i|$. {\bf Level.} Level 1 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the ordered pair $(a,b)$ of positive integers, with $a < b,$ for which \[\sqrt{1 + \sqrt{21 + 12 \sqrt{3}}} = \sqrt{a} + \sqrt{b}.\] {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Assume that $x_1,x_2,\ldots,x_7$ are real numbers such that \[\begin{aligned} x_1+4x_2+9x_3+16x_4+25x_5+36x_6+49x_7 &= 1 \\ 4x_1+9x_2+16x_3+25x_4+36x_5+49x_6+64x_7 &= 12 \\ 9x_1+16x_2+25x_3+36x_4+49x_5+64x_6+81x_7 &= 123. \end{aligned}\]Find the value of $16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7$. {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} If $1+2x+3x^2 + \dotsb=9$, find $x$. {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $f(x)$ be a third-degree polynomial with real coefficients satisfying \[|f(1)|=|f(2)|=|f(3)|=|f(5)|=|f(6)|=|f(7)|=12.\]Find $|f(0)|$. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Three real numbers $a,b,$ and $c$ satisfy the equations $a+b+c=2$, $ab+ac+bc=-7$ and $abc=-14$. What is the largest of the three numbers? Express your answer in simplest radical form. {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $a$ and $b$ be positive real numbers such that each of the equations $x^2 + ax + 2b = 0$ and $x^2 + 2bx + a = 0$ has real roots. Find the smallest possible value of $a + b.$ {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $f(x)=ax^2+bx+c$, where $a$, $b$, and $c$ are integers. Suppose that $f(1)=0$, $50<f(7)<60$, $70<f(8)<80$, $5000k<f(100)<5000(k+1)$ for some integer $k$. What is $k$? {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Suppose that $x,$ $y,$ and $z$ are three positive numbers that satisfy the equations $xyz = 1,$ $x + \frac {1}{z} = 5,$ and $y + \frac {1}{x} = 29.$ Find $z + \frac {1}{y}.$ {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find all real numbers $x$ so that the product $(x + i)((x + 1) + i)((x + 2) + i)$ is pure imaginary. Enter all the solutions, separated by commas. {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Suppose that there exist nonzero complex numbers $a,$ $b,$ $c,$ and $d$ such that $k$ is a root of both the equations $ax^3 + bx^2 + cx + d = 0$ and $bx^3 + cx^2 + dx + a = 0.$ Enter all possible values of $k,$ separated by commas. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The sequence $(a_n)$ satisfies \[a_1 + a_2 + a_3 + \dots + a_n = n^2 a_n\]for all $n \ge 2.$ If $a_{63} = 1,$ find $a_1.$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $a$ and $b$ be positive real numbers. Find the minimum value of \[a^2 + b^2 + \frac{1}{(a + b)^2}.\] {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let \[z = \frac{-\sqrt{3} + i}{2}.\]Compute $z^6.$ {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} The function $f(x)$ satisfies \[f(x - y) = f(x) f(y)\]for all real numbers $x$ and $y,$ and $f(x) \neq 0$ for all real numbers $x.$ Find $f(3).$ {\bf Level.} Level 3 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $x$ and $y$ be positive real numbers such that $3x + 4y < 72.$ Find the maximum value of \[xy (72 - 3x - 4y).\] {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find a monic cubic polynomial $P(x)$ with integer coefficients such that \[P(\sqrt[3]{2} + 1) = 0.\](A polynomial is monic if its leading coefficient is 1.) {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Find the number of functions $f(n),$ taking the integers to the integers, such that \[f(a + b) + f(ab) = f(a) f(b) + 1\]for all integers $a$ and $b.$ {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $a,$ $b,$ and $c$ be complex numbers such that $|a| = |b| = |c| = 1$ and \[\frac{a^2}{bc} + \frac{b^2}{ac} + \frac{c^2}{ab} = -1.\]Find all possible values of $|a + b + c|.$ Enter all the possible values, separated by commas. {\bf Level.} Level 5 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Express the following sum as a simple fraction in lowest terms. $$\frac{1}{1\times2} + \frac{1}{2\times3} + \frac{1}{3\times4} + \frac{1}{4\times5} + \frac{1}{5\times6}$$ {\bf Level.} Level 1 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} When a polynomial $p(x)$ is divided by $x + 1,$ the remainder is 5. When $p(x)$ is divided by $x + 5,$ the remainder is $-7.$ Find the remainder when $p(x)$ is divided by $(x + 1)(x + 5).$ {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra<|endoftext|> {\bf Problem.} Let $x$ and $y$ be two positive real numbers such that $x + y = 35.$ Enter the ordered pair $(x,y)$ for which $x^5 y^2$ is maximized. {\bf Level.} Level 4 {\bf Type.} Intermediate Algebra {\bf Solution.} Intermediate Algebra |