Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 47,924 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 |
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum matrix.
From mathcomp Require Import interval rat.
Require Import mathcomp_extra boolp reals ereal nsatz_realtype classical_sets.
Require Import signed functions topology normedtype landau sequences derive.
Require Import realfun exp.
(******************************************************************************)
(* Theory of trigonometric functions *)
(* *)
(* This file provides the definitions of basic trigonometric functions and *)
(* develops their theories. *)
(* *)
(* periodic f T == f is a periodic function of period T *)
(* alternating f T == f is an alternating function of period T *)
(* sin_coeff x == the sequence of coefficients of sin x *)
(* sin x == the sine function, i.e., lim (series (sin_coeff x)) *)
(* sin_coeff' x == the sequence of odd coefficients of sin x *)
(* cos_coeff x == the sequence of coefficients of cos x *)
(* cos x == the cosine function, i.e., lim (series (cos_coeff x)) *)
(* cos_coeff' x == the sequence of even coefficients of cos x *)
(* pi == pi *)
(* tan x == the tangent function *)
(* acos x == the arccos function *)
(* asin x == the arcsin function *)
(* atan x == the arctangent function *)
(* *)
(* Acknowledgments: the proof of cos 2 < 0 is inspired from HOL-light, some *)
(* proofs of trigonometric relations are taken from *)
(* https://github.com/affeldt-aist/coq-robot. *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldNormedType.Exports.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
(* NB: backport to mathcomp in progress *)
Lemma sqrtrV (R : rcfType) (x : R) : 0 <= x -> Num.sqrt (x^-1) = (Num.sqrt x)^-1.
Proof.
move=> x_ge0.
case: (x =P 0) => [->|/eqP xD0]; first by rewrite invr0 sqrtr0 invr0.
rewrite -[LHS]mul1r -(mulVf (_ : Num.sqrt x != 0)); last first.
by rewrite sqrtr_eq0 -ltNge; case: ltrgt0P x_ge0 xD0.
by rewrite -mulrA -sqrtrM // divff // sqrtr1 mulr1.
Qed.
Lemma eqr_div (R : numFieldType) (x y z t : R):
y != 0 -> t != 0 -> (x / y == z / t) = (x * t == z * y).
Proof.
move=> yD0 tD0.
rewrite -[x in RHS](divfK yD0) -[z in RHS](divfK tD0) mulrAC.
by apply/eqP/eqP=> [->//|xyty]; exact/(mulIf tD0)/(mulIf yD0).
Qed.
Lemma big_nat_mul (R : zmodType) (f : R ^nat) (n k : nat) :
\sum_(0 <= i < n * k) f i =
\sum_(0 <= i < n) \sum_(i * k <= j < i.+1 * k) f j.
Proof.
elim: n => [|n ih]; first by rewrite mul0n 2!big_nil.
rewrite [in RHS]big_nat_recr//= -ih mulSn addnC [in LHS]/index_iota subn0 iotaD.
rewrite big_cat /= [in X in _ = X _]/index_iota subn0; congr (_ + _).
by rewrite add0n /index_iota (addnC _ k) addnK.
Qed.
(* /NB: backport to mathcomp in progress *)
Lemma cvg_series_cvg_series_group (R : realFieldType) (f : R ^nat) k :
cvg (series f) -> (0 < k)%N ->
[series \sum_(n * k <= i < n.+1 * k) f i]_n --> lim (series f).
Proof.
move=> /cvg_ballP cf k0; apply/cvg_ballP => _/posnumP[e].
have := !! cf _ (gt0 e); rewrite near_map => -[n _ nl].
rewrite near_map; near=> m.
rewrite /ball /= [in X in `|_ - X|]/series [in X in `|_ - X|]/= -big_nat_mul.
have /nl : (n <= m * k)%N.
by near: m; exists n.+1 => //= p /ltnW /leq_trans /(_ (leq_pmulr _ k0)).
by rewrite /ball /= distrC.
Unshelve. all: by end_near. Qed.
Lemma lt_sum_lim_series (R : realFieldType) (f : R ^nat) n : cvg (series f) ->
(forall d, 0 < f (n + d.*2)%N + f (n + d.*2.+1)%N) ->
\sum_(0 <= i < n) f i < lim (series f).
Proof.
move=> /cvg_ballP cf fn.
have fn0 : 0 < f n + f n.+1 by have := fn 0%N; rewrite double0 addn0 addn1.
rewrite ltNge; apply: contraPN cf => ffn /(_ _ fn0).
rewrite near_map /ball /=.
have nf_ub N : \sum_(0 <= i < n.+2) f i <= \sum_(0 <= i < N.+1.*2 + n) f i.
elim: N => // N /le_trans ->//; rewrite -(addn1 (N.+1)) doubleD addnAC.
rewrite [in leRHS]/index_iota subn0 iotaD big_cat.
rewrite -[in X in _ <= X + _](subn0 (N.+1.*2 + n)%N) ler_addl /= add0n.
by rewrite 2!big_cons big_nil addr0 -(addnC n) ltW// -addnS fn.
case=> N _ Nfn; have /Nfn/ltr_distlC_addr : (N.+1.*2 + n >= N)%N.
by rewrite doubleS -addn2 -addnn -2!addnA leq_addr.
rewrite addrA => ffnfn.
have : lim (series f) + f n + f n.+1 <= \sum_(0 <= i < N.+1.*2 + n) f i.
apply: (le_trans _ (nf_ub N)).
by do 2 rewrite big_nat_recr //=; by rewrite -2!addrA ler_add2r.
by move/(lt_le_trans ffnfn); rewrite ltxx.
Qed.
Section periodic.
Variables U V : zmodType.
Implicit Type f : U -> V.
Definition periodic f (T : U) := forall u, f (u + T) = f u.
Lemma periodicn f (T : U) : periodic f T -> forall n a, f (a + T *+ n) = f a.
Proof.
by move=> fT; elim=> [|n ih] a;[rewrite mulr0n addr0|rewrite mulrS addrA ih fT].
Qed.
End periodic.
Section alternating.
Variables (U : zmodType) (V : ringType).
Implicit Type f : U -> V.
Definition alternating f (T : U) := forall x, f (x + T) = - f x.
Lemma alternatingn f (T : U) : alternating f T ->
forall n a, f (a + T *+ n) = (- 1) ^+ n * f a.
Proof.
move=> fT; elim => [a|n ih a]; first by rewrite mulr0n expr0 addr0 mul1r.
by rewrite mulrS addrA ih fT exprS mulrN mulN1r mulNr.
Qed.
End alternating.
Section CosSin.
Variable R : realType.
Implicit Types x y : R.
Definition sin_coeff x :=
[sequence (odd n)%:R * (-1) ^+ n.-1./2 * x ^+ n / n`!%:R]_n.
Lemma sin_coeffE x : sin_coeff x =
(fun n => (fun n => (odd n)%:R * (-1) ^+ n.-1./2 * (n`!%:R)^-1) n * x ^+ n).
Proof. by apply/funext => i; rewrite /sin_coeff /= -!mulrA [_ / _]mulrC. Qed.
Lemma sin_coeff_even n x : sin_coeff x n.*2 = 0.
Proof. by rewrite /sin_coeff /= odd_double /= !mul0r. Qed.
Lemma is_cvg_series_sin_coeff x : cvg (series (sin_coeff x)).
Proof.
apply: normed_cvg.
apply: series_le_cvg; last exact: (@is_cvg_series_exp_coeff _ `|x|).
- by move=> n; rewrite normr_ge0.
- by move=> n; rewrite divr_ge0.
- move=> n /=; rewrite /exp_coeff /sin_coeff /=.
rewrite !normrM normfV !normr_nat !normrX normrN normr1 expr1n mulr1.
by case: odd; [rewrite mul1r| rewrite !mul0r].
Qed.
Definition sin x : R := lim (series (sin_coeff x)).
Lemma sinE : sin = fun x =>
lim (pseries (fun n => (odd n)%:R * (-1) ^+ n.-1./2 * (n`!%:R)^-1) x).
Proof. by apply/funext => x; rewrite /pseries -sin_coeffE. Qed.
Definition sin_coeff' x (n : nat) := (-1)^n * x ^+ n.*2.+1 / n.*2.+1`!%:R.
Lemma sin_coeff'E x n : sin_coeff' x n = sin_coeff x n.*2.+1.
Proof.
by rewrite /sin_coeff' /sin_coeff /= odd_double mul1r -2!mulrA doubleK.
Qed.
Lemma cvg_sin_coeff' x : series (sin_coeff' x) --> sin x.
Proof.
have /(@cvg_series_cvg_series_group _ _ 2) := @is_cvg_series_sin_coeff x.
move=> /(_ isT); apply: cvg_trans.
rewrite [X in _ --> series X](_ : _ = (fun n => sin_coeff x n.*2.+1)).
rewrite [X in series X --> _](_ : _ = (fun n => sin_coeff x n.*2.+1)) //.
by rewrite funeqE => n; exact: sin_coeff'E.
rewrite funeqE=> n; rewrite /= 2!muln2 big_nat_recl //= sin_coeff_even add0r.
by rewrite big_nat_recl // big_geq // addr0.
Qed.
Lemma diffs_sin :
pseries_diffs (fun n => (odd n)%:R * (-1) ^+ n.-1./2 * (n`!%:R)^-1) =
(fun n => (~~(odd n))%:R * (-1) ^+ n./2 * (n`!%:R)^-1 : R).
Proof.
apply/funext => i; rewrite /pseries_diffs /= factS natrM invfM.
by rewrite [_.+1%:R * _]mulrC -!mulrA [_.+1%:R^-1 * _]mulrC mulfK.
Qed.
Lemma series_sin_coeff0 n : series (sin_coeff 0) n.+1 = 0.
Proof.
rewrite /series /= big_nat_recl //= /sin_coeff /= expr0n divr1 !mulr1.
by rewrite big1 ?addr0 // => i _; rewrite expr0n !(mul0r, mulr0).
Qed.
Lemma sin0 : sin 0 = 0.
Proof.
apply: lim_near_cst => //; near=> m; rewrite -[m]prednK; last by near: m.
rewrite -addn1 series_addn series_sin_coeff0 big_add1 big1 ?addr0//.
by move=> i _; rewrite /sin_coeff /= expr0n !(mulr0, mul0r).
Unshelve. all: by end_near. Qed.
Definition cos_coeff x :=
[sequence (~~ odd n)%:R * (-1)^n./2 * x ^+ n / n`!%:R]_n.
Lemma cos_coeff_odd n x : cos_coeff x n.*2.+1 = 0.
Proof. by rewrite /cos_coeff /= odd_double /= !mul0r. Qed.
Lemma cos_coeff_2_0 : cos_coeff 2 0%N = 1 :> R.
Proof. by rewrite /cos_coeff /= mul1r expr0 mulr1 expr0z divff. Qed.
Lemma cos_coeff_2_2 : cos_coeff 2 2%N = - 2%:R :> R.
Proof.
by rewrite /cos_coeff /= mul1r expr1z mulN1r expr2 mulNr -mulrA divff// mulr1.
Qed.
Lemma cos_coeff_2_4 : cos_coeff 2 4%N = 2%:R / 3%:R :> R.
Proof.
rewrite /cos_coeff /= mul1r -exprnP sqrrN expr1n mul1r 2!factS mulnCA mulnC.
by rewrite 3!exprS expr1 2!mulrA natrM -mulf_div -2!natrM divff// mul1r.
Qed.
Lemma cos_coeffE x :
cos_coeff x = (fun n => (fun n => (~~(odd n))%:R * (-1) ^+ n./2 *
(n`!%:R)^-1) n * x ^+ n).
Proof.
by apply/funext => i; rewrite /cos_coeff /= -!mulrA [_ / _]mulrC.
Qed.
Lemma is_cvg_series_cos_coeff x : cvg (series (cos_coeff x)).
Proof.
apply: normed_cvg.
apply: series_le_cvg; last exact: (@is_cvg_series_exp_coeff _ `|x|).
- by move=> n; rewrite normr_ge0.
- by move=> n; rewrite divr_ge0.
- move=> n /=; rewrite /exp_coeff /cos_coeff /=.
rewrite !normrM normfV !normr_nat !normrX normrN normr1 expr1n mulr1.
by case: odd; [rewrite !mul0r | rewrite mul1r].
Qed.
Definition cos x : R := lim (series (cos_coeff x)).
Lemma cosE : cos = fun x =>
lim (series (fun n =>
(fun n => (~~(odd n))%:R * (-1)^+ n./2 * (n`!%:R)^-1) n
* x ^+ n)).
Proof. by apply/funext => x; rewrite -cos_coeffE. Qed.
Definition cos_coeff' x (n : nat) := (-1)^n * x ^+ n.*2 / n.*2`!%:R.
Lemma cos_coeff'E x n : cos_coeff' x n = cos_coeff x n.*2.
Proof.
rewrite /cos_coeff' /cos_coeff /= odd_double /= mul1r -2!mulrA; congr (_ * _).
by rewrite (half_bit_double n false).
Qed.
Lemma cvg_cos_coeff' x : series (cos_coeff' x) --> cos x.
Proof.
have /(@cvg_series_cvg_series_group _ _ 2) := @is_cvg_series_cos_coeff x.
move=> /(_ isT); apply: cvg_trans.
rewrite [X in _ --> series X](_ : _ = (fun n => cos_coeff x n.*2)); last first.
rewrite funeqE=> n; rewrite /= 2!muln2 big_nat_recr //= cos_coeff_odd addr0.
by rewrite big_nat_recl//= /index_iota subnn big_nil addr0.
rewrite [X in series X --> _](_ : _ = (fun n => cos_coeff x n.*2)) //.
by rewrite funeqE => n; exact: cos_coeff'E.
Qed.
Lemma diffs_cos :
pseries_diffs (fun n => (~~(odd n))%:R * (-1) ^+ n./2 * (n`!%:R)^-1) =
(fun n => - ((odd n)%:R * (-1) ^+ n.-1./2 * (n`!%:R)^-1): R).
Proof.
apply/funext => [] [|i] /=.
by rewrite /pseries_diffs /= !mul0r mulr0 oppr0.
rewrite /pseries_diffs /= negbK exprS mulN1r !(mulNr, mulrN).
rewrite factS natrM invfM.
by rewrite [_.+1%:R * _]mulrC -!mulrA [_.+1%:R^-1 * _]mulrC mulfK.
Qed.
Lemma series_cos_coeff0 n : series (cos_coeff 0) n.+1 = 1.
Proof.
rewrite /series /= big_nat_recl //= /cos_coeff /= expr0n divr1 !mulr1.
by rewrite big1 ?addr0 // => i _; rewrite expr0n !(mul0r, mulr0).
Qed.
Lemma cos0 : cos 0 = 1.
Proof.
apply: lim_near_cst => //; near=> m; rewrite -[m]prednK; last by near: m.
rewrite -addn1 series_addn series_cos_coeff0 big_add1 big1 ?addr0//.
by move=> i _; rewrite /cos_coeff /= expr0n !(mulr0, mul0r).
Unshelve. all: by end_near. Qed.
Global Instance is_derive_sin x : is_derive x 1 sin (cos x).
Proof.
rewrite sinE /=.
pose s : R^nat := fun n => (odd n)%:R * (-1) ^+ (n.-1)./2 / n`!%:R.
pose s1 n := pseries_diffs s n * x ^+ n.
rewrite cosE /= /pseries (_ : (fun _ => _) = s1); last first.
by apply/funext => i; rewrite /s1 diffs_sin.
apply: (@pseries_snd_diffs _ _ (`|x| + 1)); rewrite /pseries.
- by rewrite -sin_coeffE; apply: is_cvg_series_sin_coeff.
- rewrite (_ : (fun _ => _) = cos_coeff (`|x| + 1)).
exact: is_cvg_series_cos_coeff.
by apply/funext => i; rewrite diffs_sin cos_coeffE.
- rewrite /pseries (_ : (fun _ => _) = - sin_coeff (`|x| + 1)).
by rewrite is_cvg_seriesN; exact: is_cvg_series_sin_coeff.
by apply/funext => i; rewrite diffs_sin diffs_cos sin_coeffE !fctE !mulNr.
- by rewrite [ltRHS]ger0_norm// addrC -subr_gt0 addrK.
Qed.
Lemma derivable_sin x : derivable sin x 1.
Proof. by apply: ex_derive; apply: is_derive_sin. Qed.
Lemma continuous_sin : continuous sin.
Proof.
by move=> x; apply/differentiable_continuous/derivable1_diffP/derivable_sin.
Qed.
Global Instance is_derive_cos x : is_derive x 1 cos (- (sin x)).
Proof.
rewrite cosE /=.
pose s : R^nat := fun n => (~~ odd n)%:R * (-1) ^+ n./2 / n`!%:R.
pose s1 n := pseries_diffs s n * x ^+ n.
rewrite sinE /= /pseries.
rewrite (_ : (fun _ => _) = - s1); last first.
by apply/funext => i; rewrite /s1 diffs_cos !fctE mulNr opprK.
rewrite lim_seriesN ?opprK; last first.
rewrite (_ : s1 = - sin_coeff x).
by rewrite is_cvg_seriesN; exact: is_cvg_series_sin_coeff.
by apply/funext => i; rewrite /s1 diffs_cos sin_coeffE !fctE mulNr.
apply: (@pseries_snd_diffs _ _ (`|x| + 1)).
- by rewrite /pseries -cos_coeffE; apply: is_cvg_series_cos_coeff.
- rewrite /pseries (_ : (fun _ => _) = - sin_coeff (`|x| + 1)).
by rewrite is_cvg_seriesN; exact: is_cvg_series_sin_coeff.
by apply/funext => i; rewrite diffs_cos sin_coeffE !fctE mulNr.
- rewrite /pseries (_ : (fun _=> _) = - cos_coeff (`|x| + 1)).
by rewrite is_cvg_seriesN; exact: is_cvg_series_cos_coeff.
apply/funext => i; rewrite diffs_cos pseries_diffsN.
by rewrite diffs_sin cos_coeffE mulNr.
- by rewrite [ltRHS]ger0_norm// addrC -subr_gt0 addrK.
Qed.
Lemma derivable_cos x : derivable cos x 1.
Proof. by apply: ex_derive; apply: is_derive_cos. Qed.
Lemma continuous_cos : continuous cos.
Proof.
by move=> x; exact/differentiable_continuous/derivable1_diffP/derivable_cos.
Qed.
Lemma cos2Dsin2 x : (cos x) ^+ 2 + (sin x) ^+ 2 = 1.
Proof.
set v := LHS; pattern x in v; move: @v; set f := (X in let _ := X x in _) => /=.
apply: (@eq_trans _ _ (f 0)); last by rewrite /f sin0 cos0 expr1n expr0n addr0.
apply: is_derive_0_is_cst => {}x.
apply: trigger_derive; rewrite /GRing.scale /=.
by rewrite mulrN ![sin x * _]mulrC -opprD addrC subrr.
Qed.
Lemma cos_max x : `| cos x | <= 1.
Proof.
rewrite -(expr_le1 (_ : 0 < 2)%nat) // -normrX ger0_norm ?exprn_even_ge0 //.
by rewrite -(cos2Dsin2 x) ler_addl ?sqr_ge0.
Qed.
Lemma cos_geN1 x : -1 <= cos x.
Proof. by rewrite ler_oppl; have /ler_normlP[] := cos_max x. Qed.
Lemma cos_le1 x : cos x <= 1.
Proof. by have /ler_normlP[] := cos_max x. Qed.
Lemma sin_max x : `| sin x | <= 1.
Proof.
rewrite -(expr_le1 (_ : 0 < 2)%nat) // -normrX ger0_norm ?exprn_even_ge0 //.
by rewrite -(cos2Dsin2 x) ler_addr ?sqr_ge0.
Qed.
Lemma sin_geN1 x : -1 <= sin x.
Proof. by rewrite ler_oppl; have /ler_normlP[] := sin_max x. Qed.
Lemma sin_le1 x : sin x <= 1.
Proof. by have /ler_normlP[] := sin_max x. Qed.
Fact sinD_cosD x y :
(sin (x + y) - (sin x * cos y + cos x * sin y)) ^+ 2 +
(cos (x + y) - (cos x * cos y - sin x * sin y)) ^+ 2 = 0.
Proof.
set v := LHS; pattern x in v; move: @v; set f := (X in let _ := X x in _) => /=.
apply: (@eq_trans _ _ (f 0)); last first.
by rewrite /f cos0 sin0 !(mul1r, mul0r, add0r, subr0, subrr, expr0n).
apply: is_derive_0_is_cst => {}x.
by apply: trigger_derive; rewrite /GRing.scale /=; nsatz.
Qed.
Lemma sinD x y : sin (x + y) = sin x * cos y + cos x * sin y.
Proof.
have /eqP := sinD_cosD x y.
rewrite paddr_eq0 => [/andP[]||]; try exact: sqr_ge0.
by rewrite sqrf_eq0 subr_eq0 => /eqP.
Qed.
Lemma cosD x y : cos (x + y) = cos x * cos y - sin x * sin y.
Proof.
have /eqP := sinD_cosD x y.
rewrite paddr_eq0 => [/andP[_]||]; try exact: sqr_ge0.
by rewrite sqrf_eq0 subr_eq0 => /eqP.
Qed.
Lemma sin2cos2 x : sin x ^+ 2 = 1 - cos x ^+ 2.
Proof. by move/eqP: (cos2Dsin2 x); rewrite eq_sym addrC -subr_eq => /eqP. Qed.
Lemma cos2sin2 x : cos x ^+ 2 = 1 - sin x ^+ 2.
Proof. by move/eqP: (cos2Dsin2 x); rewrite eq_sym -subr_eq => /eqP. Qed.
Lemma sin_mulr2n x : sin (x *+ 2) = (cos x * sin x) *+ 2.
Proof. by rewrite mulr2n sinD mulrC -mulr2n. Qed.
Lemma cos_mulr2n x : cos (x *+ 2) = cos x ^+2 *+ 2 - 1.
Proof. by rewrite mulr2n cosD -!expr2 sin2cos2 opprB addrA mulr2n. Qed.
Fact sinN_cosN x :
(sin (- x) + sin x) ^+ 2 + (cos (- x) - cos x) ^+ 2 = 0.
Proof.
set v := LHS; pattern x in v; move: @v; set f := (X in let _ := X x in _) => /=.
apply: (@eq_trans _ _ (f 0)); last first.
by rewrite /f oppr0 cos0 sin0 !(addr0, subrr, expr0n).
apply: is_derive_0_is_cst => {}x.
by apply: trigger_derive; rewrite /GRing.scale /=; nsatz.
Qed.
Lemma sinN x : sin (- x) = - sin x.
Proof.
have /eqP := sinN_cosN x.
rewrite paddr_eq0 => [/andP[]||]; try exact: sqr_ge0.
by rewrite sqrf_eq0 addr_eq0 => /eqP.
Qed.
Lemma cosN x : cos (- x) = cos x.
Proof.
have /eqP := sinN_cosN x.
rewrite paddr_eq0 => [/andP[_]||]; try exact: sqr_ge0.
by rewrite sqrf_eq0 subr_eq0 => /eqP.
Qed.
Lemma sin_sg x y : sin (Num.sg x * y) = Num.sg x * sin y.
Proof. by case: sgrP; rewrite ?mul1r ?mulN1r ?sinN // !mul0r sin0. Qed.
Lemma cos_sg x y : x != 0 -> cos (Num.sg x * y) = cos y.
Proof. by case: sgrP; rewrite ?mul1r ?mulN1r ?cosN. Qed.
Lemma cosB x y : cos (x - y) = cos x * cos y + sin x * sin y.
Proof. by rewrite cosD cosN sinN mulrN opprK. Qed.
Lemma sinB x y : sin (x - y) = sin x * cos y - cos x * sin y.
Proof. by rewrite sinD cosN sinN mulrN. Qed.
Lemma norm_cos_eq1 x : (`|cos x| == 1) = (sin x == 0).
Proof.
rewrite -sqrf_eq0 -sqrp_eq1 // -normrX ger0_norm ?exprn_even_ge0 //.
by rewrite [X in _ = (X == _)]sin2cos2 subr_eq0 eq_sym.
Qed.
Lemma norm_sin_eq1 x : (`|sin x| == 1) = (cos x == 0).
Proof.
rewrite -sqrf_eq0 -sqrp_eq1 // -normrX ger0_norm ?exprn_even_ge0 //.
by rewrite [X in _ = (X == _)]cos2sin2 subr_eq0 eq_sym.
Qed.
Lemma cos1sin0 x : `|cos x| = 1 -> sin x = 0.
Proof. by move/eqP; rewrite norm_cos_eq1 => /eqP. Qed.
Lemma sin1cos0 x : `|sin x| = 1 -> cos x = 0.
Proof. by move/eqP; rewrite norm_sin_eq1 => /eqP. Qed.
Lemma sin0cos1 x : sin x = 0 -> `|cos x| = 1.
Proof. by move/eqP; rewrite -norm_cos_eq1 => /eqP. Qed.
Lemma cos_norm x : cos `|x| = cos x.
Proof. by case: (ler0P x); rewrite ?cosN. Qed.
End CosSin.
Arguments sin {R}.
Arguments cos {R}.
Section Pi.
Variable R : realType.
Implicit Types (x y : R) (n k : nat).
Definition pi : R := get [set x | 0 <= x <= 2 /\ cos x = 0] *+ 2.
Lemma pihalfE : pi / 2 = get [set x | 0 <= x <= 2 /\ cos x = 0].
Proof. by rewrite /pi -(mulr_natr (get _)) -mulrA divff ?mulr1. Qed.
Lemma cos2_lt0 : cos 2 < 0 :> R.
Proof.
rewrite -(opprK (cos _)) oppr_lt0; have /cvgN h := @cvg_cos_coeff' R 2.
rewrite -(cvg_lim (@Rhausdorff R) h).
apply: (@lt_trans _ _ (\sum_(0 <= i < 3) - cos_coeff' 2 i)).
do 3 rewrite big_nat_recl//; rewrite big_nil addr0 3!cos_coeff'E double0.
rewrite cos_coeff_2_0 cos_coeff_2_2 -muln2 cos_coeff_2_4 addrA -(opprD 1).
rewrite opprB -(@natrB _ 2 1)// subn1/= -[in X in X - _](@divff _ 3%:R)//.
by rewrite -mulrBl divr_gt0// -natrB// -[(_ - _)%N]/_.+1.
rewrite -seriesN lt_sum_lim_series //.
by move/cvgP in h; by rewrite seriesN.
move=> d.
rewrite /cos_coeff' 2!exprzD_nat (exprSz _ d.*2) -[in (-1) ^ d.*2](muln2 d).
rewrite -(exprnP _ (d * 2)) (exprM (-1)) sqrr_sign 2!mulr1 -exprSzr.
rewrite (_ : 4 = 2 * 2)%N // -(exprnP _ (2 * 2)) (exprM (-1)) sqrr_sign.
rewrite mul1r [(-1) ^ 3](_ : _ = -1) ?mulN1r ?mulNr ?opprK; last first.
by rewrite -exprnP 2!exprS expr1 mulrN1 opprK mulr1.
rewrite subr_gt0.
rewrite addnS doubleS -[X in 2 ^+ X]addn2 exprD -mulrA ltr_pmul2l//.
rewrite factS factS 2!natrM mulrA invfM !mulrA.
rewrite ltr_pdivr_mulr ?ltr0n ?fact_gt0// mulVf ?pnatr_eq0 ?gtn_eqF ?fact_gt0//.
rewrite ltr_pdivr_mulr ?mul1r //.
by rewrite expr2 -!natrM ltr_nat !mulSn !add2n mul0n !addnS.
Qed.
Lemma sin2_gt0 x : 0 < x < 2 -> 0 < sin x.
Proof.
move=> /andP[x_gt0 x_lt2].
have sinx := @cvg_sin_coeff' _ x.
rewrite -(cvg_lim (@Rhausdorff R) sinx).
rewrite [ltLHS](_ : 0 = \sum_(0 <= i < 0) sin_coeff' x i :> R); last first.
by rewrite big_nil.
rewrite lt_sum_lim_series //; first by move/cvgP in sinx.
move=> d.
rewrite /sin_coeff' 2!exprzD_nat (exprSz _ d.*2) -[in (-1) ^ d.*2](muln2 d).
rewrite -(exprnP _ (d * 2)) (exprM (-1)) sqrr_sign 2!mulr1 -exprSzr.
rewrite !add0n!mul1r mulN1r -[d.*2.+1]addn1 doubleD -addSn exprD.
rewrite -(ffact_fact (leq_addl _ _)) addnK.
rewrite mulNr -!mulrA -mulrBr mulr_gt0 ?exprn_gt0 //.
set u := _.+1.
rewrite natrM invfM.
rewrite -[X in _ < X - _]mul1r !mulrA -mulrBl divr_gt0 //; last first.
by rewrite (ltr_nat _ 0) fact_gt0.
rewrite subr_gt0.
set v := _ ^_ _; rewrite -[ltRHS](divff (_ : v%:R != 0)); last first.
by rewrite lt0r_neq0 // (ltr_nat _ 0) ffact_gt0 leq_addl.
rewrite ltr_pmul2r; last by rewrite invr_gt0 (ltr_nat _ 0) ffact_gt0 leq_addl.
rewrite {}/v !addnS addn0 !ffactnS ffactn0 muln1 /= natrM.
by rewrite (ltr_pmul (ltW _ ) (ltW _)) // (lt_le_trans x_lt2) // ler_nat.
Qed.
Lemma cos1_gt0 : cos 1 > 0 :> R.
Proof.
have h := @cvg_cos_coeff' R 1; rewrite -(cvg_lim (@Rhausdorff R) h).
apply: (@lt_trans _ _ (\sum_(0 <= i < 2) cos_coeff' 1 i)).
rewrite big_nat_recr//= big_nat_recr//= big_nil add0r.
rewrite /cos_coeff' expr0z expr1n fact0 !mul1r expr1n expr1z.
by rewrite !mulNr subr_gt0 mul1r div1r ltf_pinv ?posrE ?ltr0n// ltr_nat.
rewrite lt_sum_lim_series //; [by move/cvgP in h|move=> d].
rewrite /cos_coeff' !(expr1n,mulr1).
rewrite -muln2 -mulSn muln2 -exprnP -signr_odd odd_double expr0.
rewrite -exprnP -signr_odd oddD/= muln2 odd_double/= expr1 add2n.
rewrite mulNr subr_gt0 2!div1r ltf_pinv ?posrE ?ltr0n ?fact_gt0//.
by rewrite ltr_nat ltn_pfact//ltn_double doubleS.
Qed.
Lemma cos_exists : exists2 pih : R, 1 <= pih <= 2 & cos pih = 0.
Proof.
have /IVT[] : minr (cos 1) (cos 2) <= (0 : R) <= maxr (cos 1) (cos 2).
- rewrite /minr /maxr ltNge (ltW (lt_trans cos2_lt0 cos1_gt0))/=.
by rewrite (ltW cos2_lt0)/= (ltW cos1_gt0).
- by rewrite ler1n.
- by move=> *; apply/continuous_subspaceT=> ? _; exact: continuous_cos.
by move=> pih /itvP pihI chpi_eq0; exists pih; rewrite ?pihI.
Qed.
Lemma cos_02_uniq x y :
0 <= x <= 2 -> cos x = 0 -> 0 <= y <= 2 -> cos y = 0 -> x = y.
Proof.
wlog xLy : x y / x <= y => [H xB cx0 yB cy0|].
by case: (lerP x y) => [/H //| /ltW /H H1]; [exact|exact/esym/H1].
move=> /andP[x_ge0 x_le2] cx0 /andP[y_ge0 y_le2] cy0.
case: (x =P y) => // /eqP xDy.
have xLLs : x < y by rewrite le_eqVlt (negPf xDy) in xLy.
have /(Rolle xLLs)[x1 _|x1|x1 x1I [_ x1D]] : cos x = cos y by rewrite cy0.
- exact: derivable_cos.
- by apply/continuous_subspaceT=> ? _; exact: continuous_cos.
- have [_ /esym/eqP] := is_derive_cos x1; rewrite x1D oppr_eq0 => /eqP Hs.
suff : 0 < sin x1 by rewrite Hs ltxx.
apply/sin2_gt0/andP; split.
+ by rewrite (le_lt_trans x_ge0)// (itvP x1I).
+ by rewrite (lt_le_trans _ y_le2)// (itvP x1I).
Qed.
Lemma pihalf_02_cos_pihalf : 0 <= pi / 2 <= 2 /\ cos (pi / 2) = 0.
Proof.
have [x /andP[x1 x2] cs0] := cos_exists; rewrite pihalfE.
case: xgetP => [_->[]//|/(_ x)/=].
by rewrite cs0 (le_trans _ x1)// x2 => /not_andP[].
Qed.
#[deprecated(note="Use pihalf_ge1 and pihalf_lt2 instead")]
Lemma pihalf_02 : 0 < pi / 2 < 2.
Proof.
have [pih02 cpih] := pihalf_02_cos_pihalf.
rewrite 2!lt_neqAle andbCA -andbA pih02 andbT; apply/andP; split.
by apply/eqP => pih2; have := cos2_lt0; rewrite -pih2 cpih ltxx.
apply/eqP => pih0; have := @cos0 R.
by rewrite pih0 cpih; apply/eqP; rewrite eq_sym oner_eq0.
Qed.
Let pihalf_12 : 1 <= pi / 2 < 2.
Proof.
have [/andP[pih0 pih2] cpih] := pihalf_02_cos_pihalf.
rewrite lt_neqAle andbA andbAC pih2 andbT; apply/andP; split; last first.
by apply/eqP => hpi2; have := cos2_lt0; rewrite -hpi2 cpih ltxx.
rewrite leNgt; apply/negP => hpi1; have [x /andP[x1 x2] cs0] := cos_exists.
have := @cos_02_uniq (pi / 2) x.
rewrite pih0 pih2 cpih (le_trans _ x1)// x2 cs0 => /(_ erefl erefl erefl erefl).
by move=> pih; move: hpi1; rewrite pih => /lt_le_trans/(_ x1); rewrite ltxx.
Qed.
Lemma pihalf_ge1 : 1 <= pi / 2.
Proof. by have /andP[] := pihalf_12. Qed.
Lemma pihalf_lt2 : pi / 2 < 2.
Proof. by have /andP[] := pihalf_12. Qed.
Lemma pi_ge2 : 2 <= pi.
Proof. by have := pihalf_ge1; rewrite ler_pdivl_mulr// mul1r. Qed.
Lemma pi_gt0 : 0 < pi. Proof. by rewrite (lt_le_trans _ pi_ge2). Qed.
Lemma pi_ge0 : 0 <= pi. Proof. exact: (ltW pi_gt0). Qed.
Lemma sin_gt0_pihalf x : 0 < x < pi / 2 -> 0 < sin x.
Proof.
move=> /andP[x_gt0 xLpi]; apply: sin2_gt0; rewrite x_gt0 /=.
by apply: lt_trans xLpi _; exact: pihalf_lt2.
Qed.
Lemma cos_gt0_pihalf x : -(pi / 2) < x < pi / 2 -> 0 < cos x.
Proof.
wlog : x / 0 <= x => [Hw|x_ge0].
case: (leP 0 x) => [/Hw//| x_lt_0].
rewrite -{-1}[x]opprK ltr_oppl andbC [-- _ < _]ltr_oppl cosN.
by apply: Hw => //; rewrite oppr_cp0 ltW.
move=> /andP[x_gt0 xLpi2]; case: (ler0P (cos x)) => // cx_le0.
have /IVT[]// : minr (cos 0) (cos x) <= 0 <= maxr (cos 0) (cos x).
by rewrite cos0 /minr /maxr !ifN ?cx_le0 //= -leNgt (le_trans cx_le0).
- by move=> *; apply/continuous_subspaceT=> ? _; apply: continuous_cos.
move=> x1 /itvP Hx1 cx1_eq0.
suff x1E : x1 = pi/2.
have : x1 < pi / 2 by apply: le_lt_trans xLpi2; rewrite Hx1.
by rewrite x1E ltxx.
apply: cos_02_uniq=> //; last by case pihalf_02_cos_pihalf => _ ->.
by rewrite Hx1 ltW // (lt_trans _ pihalf_lt2) // (le_lt_trans _ xLpi2) // Hx1.
by rewrite divr_ge0 ?(ltW pihalf_lt2)// pi_ge0.
Qed.
Lemma cos_pihalf : cos (pi / 2) = 0. Proof. exact: pihalf_02_cos_pihalf.2. Qed.
Lemma sin_pihalf : sin (pi / 2) = 1.
Proof.
have := cos2Dsin2 (pi / 2); rewrite cos_pihalf expr0n add0r.
rewrite -[in X in _ = X -> _](expr1n _ 2%N) => /eqP; rewrite -subr_eq0 subr_sqr.
rewrite mulf_eq0=> /orP[|]; first by rewrite subr_eq0=> /eqP.
rewrite addr_eq0 => /eqP spi21; have /sin2_gt0: 0 < pi / 2 < 2.
by rewrite pihalf_lt2 andbT (lt_le_trans _ pihalf_ge1).
by rewrite spi21 ltr0N1.
Qed.
Lemma cos_ge0_pihalf x : -(pi / 2) <= x <= pi / 2 -> 0 <= cos x.
Proof.
rewrite le_eqVlt; case: (_ =P x) => /= [<-|_].
by rewrite cosN cos_pihalf.
rewrite le_eqVlt; case: (x =P _) => /= [->|_ H]; first by rewrite cos_pihalf.
by rewrite ltW //; apply: cos_gt0_pihalf.
Qed.
Lemma cospi : cos pi = - 1.
Proof.
by rewrite /pi mulr2n cosD -pihalfE sin_pihalf mulr1 cos_pihalf mulr0 add0r.
Qed.
Lemma sinpi : sin pi = 0.
Proof.
have := sinD (pi / 2) (pi / 2); rewrite cos_pihalf mulr0 mul0r.
by rewrite -mulrDl -mulr2n -mulr_natr -mulrA divff// mulr1 addr0.
Qed.
Lemma cos2pi : cos (pi *+ 2) = 1.
Proof. by rewrite mulr2n cosD cospi sinpi !mulrN1 mulr0 subr0 opprK. Qed.
Lemma sin2pi : sin (pi *+ 2) = 0.
Proof. by rewrite mulr2n sinD sinpi cospi !mulrN1 mulr0 oppr0 addr0. Qed.
Lemma sinDpi : alternating sin pi.
Proof. by move=> a; rewrite sinD cospi mulrN1 sinpi mulr0 addr0. Qed.
Lemma cosDpi : alternating cos pi.
Proof. by move=> a; rewrite cosD cospi mulrN1 sinpi mulr0 subr0. Qed.
Lemma sinD2pi : periodic sin (pi *+ 2).
Proof. by move=> a; rewrite sinD cos2pi sin2pi mulr0 mulr1 addr0. Qed.
Lemma cosD2pi : periodic cos (pi *+ 2).
Proof. by move=> a; rewrite cosD cos2pi mulr1 sin2pi mulr0 subr0. Qed.
Lemma cosDpihalf a : cos (a + pi / 2) = - sin a.
Proof. by rewrite cosD cos_pihalf mulr0 add0r sin_pihalf mulr1. Qed.
Lemma cosBpihalf a : cos (a - pi / 2) = sin a.
Proof. by rewrite cosB cos_pihalf mulr0 add0r sin_pihalf mulr1. Qed.
Lemma sinDpihalf a : sin (a + pi / 2) = cos a.
Proof. by rewrite sinD cos_pihalf mulr0 add0r sin_pihalf mulr1. Qed.
Lemma sinBpihalf a : sin (a - pi / 2) = - cos a.
Proof. by rewrite sinB cos_pihalf mulr0 add0r sin_pihalf mulr1. Qed.
Lemma sin_ge0_pi x : 0 <= x <= pi -> 0 <= sin x.
Proof.
move=> xI; rewrite -cosBpihalf cos_ge0_pihalf //.
by rewrite ler_subr_addl subrr ler_sub_addr -mulr2n -[_ *+ 2]mulr_natr divfK.
Qed.
Lemma sin_gt0_pi x : 0 < x < pi -> 0 < sin x.
Proof.
move=> xI; rewrite -cosBpihalf cos_gt0_pihalf //.
by rewrite ltr_subr_addl subrr ltr_sub_addr -mulr2n -[_ *+ 2]mulr_natr divfK.
Qed.
Lemma ltr_cos : {in `[0, pi] &, {mono cos : x y /~ y < x}}.
Proof.
move=> x y; rewrite !in_itv/= le_eqVlt; case: eqP => [<- _|_] /=.
rewrite cos0 le_eqVlt; case: eqP => /= [<- _|_ /andP[y_gt0 gLpi]].
by rewrite cos0 !ltxx.
rewrite y_gt0; apply/idP.
suff : cos y != 1 by case: ltrgtP (cos_le1 y).
rewrite -cos0 eq_sym; apply/eqP => /Rolle [||x1|x1 /itvP x1I [_ x1D]] //.
by apply/continuous_subspaceT=> ? _; exact: continuous_cos.
case: (is_derive_cos x1) => _ /eqP; rewrite x1D eq_sym oppr_eq0 => /eqP s_eq0.
suff : 0 < sin x1 by rewrite s_eq0 ltxx.
by apply: sin_gt0_pi; rewrite x1I /= (lt_le_trans (_ : _ < y)) ?x1I // yI.
rewrite le_eqVlt; case: eqP => [-> _ /andP[y_ge0]|/= _ /andP[x_gt0 x_ltpi]] /=.
rewrite cospi le_eqVlt; case: eqP => /= [-> _|/eqP yDpi y_ltpi].
by rewrite cospi ltxx.
by rewrite ltNge cos_geN1 ltNge ltW.
rewrite le_eqVlt; case: eqP => [<- _|_] /=.
rewrite cos0 [_ < 0]ltNge ltW //=.
by apply/idP/negP; rewrite -leNgt cos_le1.
rewrite le_eqVlt; case: eqP => /= [-> _ | _ /andP[y_gt0 y_ltpi]].
rewrite cospi x_ltpi; apply/idP.
suff : cos x != -1 by case: ltrgtP (cos_geN1 x).
rewrite -cospi; apply/eqP => /Rolle [||x1|x1 /itvP x1I [_ x1D]] //.
by apply/continuous_subspaceT=> ? _; exact: continuous_cos.
case: (is_derive_cos x1) => _ /eqP; rewrite x1D eq_sym oppr_eq0 => /eqP s_eq0.
suff : 0 < sin x1 by rewrite s_eq0 ltxx.
by apply: sin_gt0_pi; rewrite x1I /= (lt_le_trans (_ : _ < x)) ?x1I.
wlog xLy : x y x_gt0 x_ltpi y_gt0 y_ltpi / x <= y => [H | ].
case: (lerP x y) => [/H //->//|yLx].
by rewrite !ltNge ltW ?(ltW yLx) // H // ltW.
case: (x =P y) => [->| /eqP xDy]; first by rewrite ltxx.
have xLLs : x < y by rewrite le_eqVlt (negPf xDy) in xLy.
rewrite xLLs -subr_gt0 -opprB; rewrite -subr_gt0 in xLLs; apply/idP.
have [x1|z /itvP zI ->] := @MVT_segment _ cos (-sin) _ _ xLy.
by apply/continuous_subspaceT=> ? _; exact: continuous_cos.
rewrite -mulNr opprK mulr_gt0 //; apply: sin_gt0_pi.
by rewrite (lt_le_trans x_gt0) ?zI //= (le_lt_trans _ y_ltpi) ?zI.
Qed.
Lemma ltr_sin : {in `[ (- (pi/2)), pi/2] &, {mono sin : x y / x < y}}.
Proof.
move=> x y /itvP xpi /itvP ypi; rewrite -[sin x]opprK ltr_oppl.
rewrite -!cosDpihalf -[x < y](ltr_add2r (pi /2)) ltr_cos// !in_itv/=.
- by rewrite -ler_subl_addr sub0r xpi/= [leRHS]splitr ler_add2r xpi.
- by rewrite -ler_subl_addr sub0r ypi/= [leRHS]splitr ler_add2r ypi.
Qed.
Lemma cos_inj : {in `[0,pi] &, injective (@cos R)}.
Proof.
move=> x y x0pi y0pi xy; apply/eqP; rewrite eq_le; apply/andP; split.
- by have := ltr_cos y0pi x0pi; rewrite xy ltxx => /esym/negbT; rewrite -leNgt.
- by have := ltr_cos x0pi y0pi; rewrite xy ltxx => /esym/negbT; rewrite -leNgt.
Qed.
Lemma sin_inj : {in `[(- (pi/2)), (pi/2)] &, injective sin}.
Proof.
move=> x y /itvP xpi /itvP ypi sinE; have : - sin x = - sin y by rewrite sinE.
rewrite -!cosDpihalf => /cos_inj h; apply/(addIr (pi/2))/h; rewrite !in_itv/=.
- by rewrite -ler_subl_addr sub0r xpi/= [leRHS]splitr ler_add2r xpi.
- by rewrite -ler_subl_addr sub0r ypi/= [leRHS]splitr ler_add2r ypi.
Qed.
End Pi.
Arguments pi {R}.
Section Tan.
Variable R : realType.
Definition tan (x : R) := sin x / cos x.
Lemma tan0 : tan 0 = 0 :> R.
Proof. by rewrite /tan sin0 cos0 mul0r. Qed.
Lemma tanpi : tan pi = 0.
Proof. by rewrite /tan sinpi mul0r. Qed.
Lemma tanN x : tan (- x) = - tan x.
Proof. by rewrite /tan sinN cosN mulNr. Qed.
Lemma tanD x y : cos x != 0 -> cos y != 0 ->
tan (x + y) = (tan x + tan y) / (1 - tan x * tan y).
Proof.
move=> cxNZ cyNZ.
rewrite /tan sinD cosD !addf_div // [sin y * cos x]mulrC -!mulrA -invfM.
congr (_ / _).
rewrite mulrBr mulr1 !mulrA.
rewrite -[_ * _ * sin x]mulrA [cos x * (_ * _)]mulrC mulfK //.
by rewrite -[_ * _ * sin y]mulrA [cos y * (_ * _)]mulrC mulfK.
Qed.
Lemma tan_mulr2n x :
cos x != 0 -> tan (x *+ 2) = tan x *+ 2 / (1 - tan x ^+ 2).
Proof.
move=> cxNZ.
rewrite /tan cos_mulr2n sin_mulr2n.
rewrite !mulr2n exprMn exprVn -[in RHS](divff (_ : 1 != 0)) //.
rewrite -mulNr !addf_div ?sqrf_eq0 //.
rewrite mul1r mulr1 -!mulrA -invfM -expr2; congr (_ / _).
by rewrite [cos x * _]mulrC.
rewrite mulrCA mulrA mulfK ?sqrf_eq0 // [X in _ = _ - X]sin2cos2.
by rewrite opprB addrA.
Qed.
Lemma cos2_tan2 x : cos x != 0 -> (cos x) ^- 2 = 1 + (tan x) ^+ 2.
Proof.
move=> cosx.
rewrite /tan exprMn [X in _ = 1 + X * _]sin2cos2 mulrBl -exprMn divff //.
by rewrite expr1n addrCA subrr addr0 mul1r exprVn.
Qed.
Lemma tan_pihalf : tan (pi / 2) = 0.
Proof. by rewrite /tan cos_pihalf invr0 mulr0. Qed.
Lemma tan_piquarter : tan (pi / 4%:R) = 1.
Proof.
rewrite /tan -cosBpihalf (splitr (pi / 2)) opprD addrA -mulrA -invfM -natrM.
rewrite subrr sub0r cosN divff// gt_eqF// cos_gt0_pihalf//.
rewrite ltr_pmul2l ?pi_gt0// ltf_pinv ?qualifE// ltr_nat andbT.
by rewrite (@lt_trans _ _ 0)// ?oppr_lt0 ?divr_gt0 ?pi_gt0.
Qed.
Lemma tanDpi x : tan (x + pi) = tan x.
Proof. by rewrite /tan cosDpi sinDpi mulNr invrN mulrN opprK. Qed.
Lemma continuous_tan x : cos x != 0 -> {for x, continuous tan}.
Proof.
move=> cxNZ.
apply: continuousM; first exact: continuous_sin.
exact/(continuousV cxNZ)/continuous_cos.
Qed.
Lemma is_derive_tan x :
cos x != 0 -> is_derive x 1 tan ((cos x)^-2).
Proof.
move=> cxNZ; apply: trigger_derive.
rewrite /= ![_ *: - _]mulrN mulNr mulrN opprK [_^-1 *: _]mulVf //.
rewrite mulrCA -expr2 [X in _ * X + _ = _]sin2cos2.
by rewrite mulrBr mulr1 mulVf ?sqrf_eq0 // subrK.
Qed.
Lemma derivable_tan x : cos x != 0 -> derivable tan x 1.
Proof. by move=> /is_derive_tan[]. Qed.
Lemma ltr_tan : {in `](- (pi/2)), (pi/2)[ &, {mono tan : x y / x < y}}.
Proof.
move=> x y.
wlog xLy : x y / x <= y => [H | ] xB yB.
case: (lerP x y) => [/H //->//|yLx].
by rewrite !ltNge ltW ?(ltW yLx) // H // ltW.
case: (x =P y) => [->| /eqP xDy]; first by rewrite ltxx.
have xLLs : x < y by rewrite le_eqVlt (negPf xDy) in xLy.
rewrite -subr_gt0 xLLs; rewrite -subr_gt0 in xLLs; apply/idP.
have [x1 /itvP x1I|z |] := @MVT_segment _ tan (fun x => (cos x) ^-2) _ _ xLy.
- apply: is_derive_tan.
rewrite gt_eqF // cos_gt0_pihalf // (@lt_le_trans _ _ x) ?x1I ?(itvP xB)//=.
by rewrite (@le_lt_trans _ _ y) ?x1I ?(itvP yB).
- apply/continuous_subspaceT=> ? inI; apply: continuous_tan.
rewrite /= inE /<=%O/= in inI; move/andP: inI => /= [? ?].
rewrite gt_eqF // cos_gt0_pihalf // (@lt_le_trans _ _ x) ?zI ?(itvP xB)//=.
rewrite (@le_lt_trans _ _ y) ?zI ?(itvP yB) //.
- move=> x1 /itvP x1I ->.
rewrite mulr_gt0 // invr_gt0 // exprn_gte0 // cos_gt0_pihalf //.
rewrite (@lt_le_trans _ _ x) ?x1I ?(itvP xB)//=.
by rewrite (@le_lt_trans _ _ y) ?x1I ?(itvP yB).
Qed.
Lemma tan_inj : {in `](- (pi/2)), (pi/2)[ &, injective tan}.
Proof.
move=> x y xB yB tanE.
by case: (ltrgtP x y); rewrite // -ltr_tan ?tanE ?ltxx.
Qed.
End Tan.
Arguments tan {R}.
#[global] Hint Extern 0 (is_derive _ _ tan _) =>
(eapply is_derive_tan; first by []) : typeclass_instances.
Section Acos.
Variable R : realType.
Definition acos (x : R) : R := get [set y | 0 <= y <= pi /\ cos y = x].
Lemma acos_def x :
-1 <= x <= 1 -> 0 <= acos x <= pi /\ cos (acos x) = x.
Proof.
move=> xB; rewrite /acos; case: xgetP => //= He.
pose f y := cos y - x.
have /(IVT (@pi_ge0 _))[] // : minr (f 0) (f pi) <= 0 <= maxr (f 0) (f pi).
rewrite /f cos0 cospi /minr /maxr ltr_add2r -subr_lt0 opprK (_ : 1 + 1 = 2)//.
by rewrite ltrn0 subr_le0 subr_ge0.
- move=> y y0pi.
by apply: continuousB; apply/continuous_subspaceT=> ? ?;
[exact: continuous_cos|exact: cst_continuous].
- rewrite /f => x1 /itvP x1I /eqP; rewrite subr_eq0 => /eqP cosx1E.
by case: (He x1); rewrite !x1I.
Qed.
Lemma acos_ge0 x : -1 <= x <= 1 -> 0 <= acos x.
Proof. by move=> /acos_def[/andP[]]. Qed.
Lemma acos_lepi x : -1 <= x <= 1 -> acos x <= pi.
Proof. by move=> /acos_def[/andP[]]. Qed.
Lemma acosK : {in `[(-1),1], cancel acos cos}.
Proof. by move=> x; rewrite in_itv/==> /acos_def[/andP[]]. Qed.
Lemma acos_gt0 x : -1 <= x < 1 -> 0 < acos x.
Proof.
move=> /andP[x_geN1 x_lt1]; move: (x_lt1).
have : 0 <= acos x by rewrite acos_ge0 // x_geN1 ltW.
have : cos (acos x) = x by rewrite acosK// in_itv/= x_geN1/= ltW.
by case: ltrgt0P => // ->; rewrite cos0 => ->; rewrite ltxx.
Qed.
Lemma acos_ltpi x : -1 < x <= 1 -> acos x < pi.
Proof.
move=> /andP[x_gtN1 x_le1]; move: (x_gtN1).
have : acos x <= pi by rewrite acos_lepi // x_le1 ltW.
have : cos (acos x) = x by rewrite acosK// in_itv/= x_le1 ltW.
by case: (ltrgtP (acos x) pi) => // ->; rewrite cospi => ->; rewrite ltxx.
Qed.
Lemma cosK : {in `[0, pi], cancel cos acos}.
Proof.
move=> x xB; apply: cos_inj => //; rewrite ?acosK//; last first.
by move: xB; rewrite !in_itv/= => /andP[? ?];rewrite cos_geN1 cos_le1.
move: xB; rewrite !in_itv/= => /andP[? ?].
by rewrite acos_ge0 ?acos_lepi ?cos_geN1 ?cos_le1.
Qed.
Lemma acos1 : acos (1 : R) = 0.
Proof.
by have := @cosK 0; rewrite cos0 => -> //; rewrite in_itv //= lexx pi_ge0.
Qed.
Lemma acos0 : acos (0 : R) = pi / 2%:R.
Proof.
have := @cosK (pi / 2%:R).
rewrite cos_pihalf => -> //; rewrite in_itv//= divr_ge0 ?ler0n ?pi_ge0//=.
by rewrite ler_pdivr_mulr ?ltr0n// ler_pemulr ?pi_ge0// ler1n.
Qed.
Lemma acosN a : -1 <= a <= 1 -> acos (- a) = pi - acos a.
Proof.
move=> a1; have ? : -1 <= - a <= 1 by rewrite ler_oppl opprK ler_oppl andbC.
apply: cos_inj; first by rewrite in_itv/= acos_ge0//= acos_lepi.
- by rewrite in_itv/= subr_ge0 acos_lepi//= ler_subl_addl ler_addr acos_ge0.
- by rewrite addrC cosDpi cosN !acosK.
Qed.
Lemma acosN1 : acos (- 1) = (pi : R).
Proof. by rewrite acosN ?acos1 ?subr0 ?lexx// -subr_ge0 opprK addr_ge0. Qed.
Lemma cosKN a : - pi <= a <= 0 -> acos (cos a) = - a.
Proof.
by move=> pia0; rewrite -(cosN a) cosK// in_itv/= ler_oppr oppr0 ler_oppl andbC.
Qed.
Lemma sin_acos x : -1 <= x <= 1 -> sin (acos x) = Num.sqrt (1 - x^+2).
Proof.
move=> xB.
rewrite -[LHS]ger0_norm; last by rewrite sin_ge0_pi // acos_ge0 ?acos_lepi.
by rewrite -sqrtr_sqr sin2cos2 acosK.
Qed.
Lemma continuous_acos x : -1 < x < 1 -> {for x, continuous acos}.
Proof.
move=> /andP[x_gtN1 x_lt1]; rewrite -[x]acosK; first last.
by have : -1 <= x <= 1 by rewrite !ltW //; case/andP: xB.
apply: nbhs_singleton (near_can_continuous _ _); last first.
by near=> z; apply: continuous_cos.
have /near_in_itv aI : acos x \in `]0, pi[.
suff : 0 < acos x < pi by [].
by rewrite acos_gt0 ?ltW //= acos_ltpi // ltW ?andbT.
near=> z; apply: cosK.
suff /itvP zI : z \in `]0, pi[ by have : 0 <= z <= pi by rewrite ltW ?zI.
by near: z.
Unshelve. all: by end_near. Qed.
Lemma is_derive1_acos (x : R) :
-1 < x < 1 -> is_derive x 1 acos (- (Num.sqrt (1 - x ^+ 2))^-1).
Proof.
move=> /andP[x_gtN1 x_lt1]; rewrite -sin_acos ?ltW // -invrN.
rewrite -{1}[x]acosK; last by have : -1 <= x <= 1 by rewrite ltW // ltW.
have /near_in_itv aI : acos x \in `]0, pi[.
suff : 0 < acos x < pi by [].
by rewrite acos_gt0 ?ltW //= acos_ltpi // ltW ?andbT.
apply: (@is_derive_inverse R cos).
- near=> z; apply: cosK.
suff /itvP zI : z \in `]0, pi[ by have : 0 <= z <= pi by rewrite ltW ?zI.
by near: z.
- by near=> z; apply: continuous_cos.
- rewrite oppr_eq0 sin_acos ?ltW // sqrtr_eq0 // -ltNge subr_gt0.
rewrite -real_normK ?qualifE; last by case: ltrgt0P.
by rewrite exprn_cp1 // ltr_norml x_gtN1.
Unshelve. all: by end_near. Qed.
End Acos.
#[global] Hint Extern 0 (is_derive _ 1 (@acos _) _) =>
(eapply is_derive1_acos; first by []) : typeclass_instances.
Section Asin.
Variable R : realType.
Definition asin (x : R) : R := get [set y | -(pi / 2) <= y <= pi / 2 /\ sin y = x].
Lemma asin_def x :
-1 <= x <= 1 -> -(pi / 2) <= asin x <= pi / 2 /\ sin (asin x) = x.
Proof.
move=> xB; rewrite /asin; case: xgetP => //= He.
pose f y := sin y - x.
have /IVT[] // :
minr (f (-(pi/2))) (f (pi/2)) <= 0 <= maxr (f (-(pi/2))) (f (pi/2)).
rewrite /f sinN sin_pihalf /minr /maxr ltr_add2r -subr_gt0 opprK.
by rewrite (_ : 1 + 1 = 2)// ltr0n/= subr_le0 subr_ge0.
- by rewrite -subr_ge0 opprK -splitr pi_ge0.
- by move=> *; apply: continuousB; apply/continuous_subspaceT=> ? ?;
[exact: continuous_sin| exact: cst_continuous].
- rewrite /f => x1 /itvP x1I /eqP; rewrite subr_eq0 => /eqP sinx1E.
by case: (He x1); rewrite !x1I.
Qed.
Lemma asin_geNpi2 x : -1 <= x <= 1 -> -(pi / 2) <= asin x.
Proof. by move=> /asin_def[/andP[]]. Qed.
Lemma asin_lepi2 x : -1 <= x <= 1 -> asin x <= pi / 2.
Proof. by move=> /asin_def[/andP[]]. Qed.
Lemma asinK : {in `[(-1),1], cancel asin sin}.
Proof. by move=> x; rewrite in_itv/= => /asin_def[/andP[]]. Qed.
Lemma asin_ltpi2 x : -1 <= x < 1 -> asin x < pi/2.
Proof.
move=> /andP[x_geN1 x_lt1]; move: (x_lt1).
have : asin x <= pi / 2 by rewrite asin_lepi2 // x_geN1 ltW.
have : sin (asin x) = x by rewrite asinK// in_itv/= x_geN1 ltW.
case: (ltrgtP _ ((pi / 2))) => // ->.
by rewrite sin_pihalf => <-; rewrite ltxx.
Qed.
Lemma asin_gtNpi2 x : -1 < x <= 1 -> - (pi / 2) < asin x.
Proof.
move=> /andP[x_gtN1 x_le1]; move: (x_gtN1).
have : - (pi / 2) <= asin x by rewrite asin_geNpi2 // x_le1 ltW.
have : sin (asin x) = x by rewrite asinK// in_itv/= x_le1 ltW.
by case: (ltrgtP (asin x)) => //->; rewrite sinN sin_pihalf => <-; rewrite ltxx.
Qed.
Lemma sinK : {in `[(- (pi / 2)), pi / 2], cancel sin asin}.
Proof.
move=> x; rewrite !in_itv/= => xB ; apply: sin_inj => //; last first.
by rewrite asinK// in_itv/= sin_geN1 sin_le1.
by rewrite in_itv/= asin_geNpi2/= ?asin_lepi2 ?sin_geN1 ?sin_le1.
Qed.
Lemma cos_asin x : -1 <= x <= 1 -> cos (asin x) = Num.sqrt (1 - x^+2).
Proof.
move=> xB; rewrite -[LHS]ger0_norm; first by rewrite -sqrtr_sqr cos2sin2 asinK.
by apply: cos_ge0_pihalf; rewrite asin_lepi2 // asin_geNpi2.
Qed.
Lemma continuous_asin x : -1 < x < 1 -> {for x, continuous asin}.
Proof.
move=> /andP[x_gtN1 x_lt1]; rewrite -[x]asinK; first last.
by have : -1 <= x <= 1 by rewrite !ltW //; case/andP: xB.
apply: nbhs_singleton (near_can_continuous _ _); last first.
by near=> z; apply: continuous_sin.
have /near_in_itv aI : asin x \in `](-(pi/2)), (pi/2)[.
suff : - (pi / 2) < asin x < pi / 2 by [].
by rewrite asin_gtNpi2 ?ltW ?andbT //= asin_ltpi2 // ltW.
near=> z; apply: sinK.
suff /itvP zI : z \in `](-(pi/2)), (pi/2)[.
by have : - (pi / 2) <= z <= pi / 2 by rewrite ltW ?zI.
by near: z.
Unshelve. all: by end_near. Qed.
Lemma is_derive1_asin (x : R) :
-1 < x < 1 -> is_derive x 1 asin ((Num.sqrt (1 - x ^+ 2))^-1).
Proof.
move=> /andP[x_gtN1 x_lt1]; rewrite -cos_asin ?ltW //.
rewrite -{1}[x]asinK; last by have : -1 <= x <= 1 by rewrite ltW // ltW.
have /near_in_itv aI : asin x \in `](-(pi/2)), (pi/2)[.
suff : -(pi/2) < asin x < pi/2 by [].
by rewrite asin_gtNpi2 ?ltW ?andbT //= asin_ltpi2 // ltW.
apply: (@is_derive_inverse R sin).
- near=> z; apply: sinK.
suff /itvP zI : z \in `](-(pi/2)), (pi/2)[.
by have : - (pi / 2) <= z <= pi / 2 by rewrite ltW ?zI.
by near: z.
- by near=> z; exact: continuous_sin.
- rewrite cos_asin ?ltW // sqrtr_eq0 // -ltNge subr_gt0.
rewrite -real_normK ?qualifE; last by case: ltrgt0P.
by rewrite exprn_cp1 // ltr_norml x_gtN1.
Unshelve. all: by end_near. Qed.
End Asin.
#[global] Hint Extern 0 (is_derive _ 1 (@asin _) _) =>
(eapply is_derive1_asin; first by []) : typeclass_instances.
Section Atan.
Variable R : realType.
Definition atan (x : R) : R :=
get [set y | -(pi / 2) < y < pi / 2 /\ tan y = x].
(* Did not see how to use ITV like in the other *)
Lemma atan_def x : -(pi / 2) < atan x < pi / 2 /\ tan (atan x) = x.
Proof.
rewrite /atan; case: xgetP => //= He.
pose x1 := Num.sqrt (1 + x^+ 2) ^-1.
have ox2_gt0 : 0 < 1 + x^2.
by apply: lt_le_trans (_ : 1 <= _); rewrite ?ler_addl ?sqr_ge0.
have ox2_ge0 : 0 <= 1 + x^2 by rewrite ltW.
have x1B : -1 <= x1 <= 1.
rewrite -ler_norml /x1 ger0_norm ?sqrtr_ge0 // -[leRHS]sqrtr1.
by rewrite ler_psqrt ?qualifE ?invr_gte0 //= invf_cp1 // ler_addl sqr_ge0.
case: (He (Num.sg x * acos x1)); split; last first.
case: (x =P 0) => [->|/eqP xD0]; first by rewrite /tan sgr0 mul0r sin0 mul0r.
rewrite /tan sin_sg cos_sg // acosK ?sin_acos //.
rewrite /x1 sqr_sqrtr// ?invr_ge0 //.
rewrite -{1}[_^-1 in X in X / _ = _]mul1r.
rewrite -{1}[X in X - _](divff (_: 1 != 0)) //.
rewrite -mulNr addf_div ?lt0r_neq0 //.
rewrite mul1r mulr1 [X in X - 1]addrC addrK // sqrtrM ?sqr_ge0 //.
rewrite sqrtrV // invrK // mulrA divfK //; last by rewrite sqrtr_eq0 -ltNge.
by rewrite sqrtr_sqr mulr_sg_norm.
rewrite -ltr_norml normrM.
have pi2 : 0 < pi / 2 :> R by rewrite divr_gt0 // pi_gt0.
case: (x =P 0) => [->|/eqP xD0]; first by rewrite sgr0 normr0 mul0r.
rewrite normr_sg xD0 mul1r ltr_norml.
rewrite (@lt_le_trans _ _ 0) ?acos_ge0 ?oppr_cp0 //=.
rewrite -ltr_cos ?in_itv/= ?acos_ge0/= ?acos_lepi//; last first.
by rewrite divr_ge0 ?pi_ge0//= ler_pdivr_mulr// ler_pmulr ?pi_gt0// ler1n.
by rewrite cos_pihalf acosK // ?sqrtr_gt0 ?invr_gt0.
Qed.
Lemma atan_gtNpi2 x : - (pi / 2) < atan x.
Proof. by case: (atan_def x) => [] /andP[]. Qed.
Lemma atan_ltpi2 x : atan x < pi / 2.
Proof. by case: (atan_def x) => [] /andP[]. Qed.
Lemma atanK : cancel atan tan.
Proof. by move=> x; case: (atan_def x). Qed.
Lemma atan0 : atan 0 = 0 :> R.
Proof.
apply: tan_inj; last by rewrite atanK tan0.
- by rewrite in_itv/= atan_gtNpi2 atan_ltpi2.
- by rewrite in_itv/= oppr_cp0 divr_gt0 ?pi_gt0.
Qed.
Lemma atan1 : atan 1 = pi / 4%:R :> R.
Proof.
apply: tan_inj; first 2 last.
by rewrite atanK tan_piquarter.
by rewrite in_itv/= atan_gtNpi2 atan_ltpi2.
rewrite in_itv/= -mulNr (lt_trans _ (_ : 0 < _ )) /=; last 2 first.
by rewrite mulNr oppr_cp0 divr_gt0 // pi_gt0.
by rewrite divr_gt0 ?pi_gt0 // ltr0n.
rewrite ltr_pdivr_mulr// -mulrA ltr_pmulr// ?pi_gt0//.
by rewrite (natrM _ 2 2) mulrA mulVf// mul1r ltr1n.
Qed.
Lemma atanN x : atan (- x) = - atan x.
Proof.
apply: tan_inj; first by rewrite in_itv/= atan_ltpi2 atan_gtNpi2.
- by rewrite in_itv/= ltr_oppl opprK ltr_oppl andbC atan_ltpi2 atan_gtNpi2.
- by rewrite tanN !atanK.
Qed.
Lemma tanK : {in `](- (pi / 2)), (pi / 2)[ , cancel tan atan}.
Proof.
move=> x xB; apply tan_inj => //; rewrite ?atanK//.
by rewrite in_itv/= atan_gtNpi2 atan_ltpi2.
Qed.
Lemma continuous_atan x : {for x, continuous atan}.
Proof.
rewrite -[x]atanK.
have /near_in_itv aI : atan x \in `](-(pi / 2)), (pi / 2)[.
suff : - (pi / 2) < atan x < pi / 2 by [].
by rewrite atan_gtNpi2 atan_ltpi2.
apply: nbhs_singleton (near_can_continuous _ _); last first.
by near=> z; apply/continuous_tan/lt0r_neq0/cos_gt0_pihalf; near: z.
by near=> z; apply: tanK; near: z.
Unshelve. all: by end_near. Qed.
Lemma cos_atan x : cos (atan x) = (Num.sqrt (1 + x ^+ 2)) ^-1.
Proof.
have cos_gt0 : 0 < cos (atan x).
by apply: cos_gt0_pihalf; rewrite atan_gtNpi2 atan_ltpi2.
have cosD0 : cos (atan x) != 0 by apply: lt0r_neq0.
have /eqP : cos (atan x) ^+2 = (Num.sqrt (1 + x ^+ 2))^-2.
by rewrite -[LHS]invrK cos2_tan2 // atanK sqr_sqrtr // addr_ge0 // sqr_ge0.
rewrite -exprVn eqf_sqr => /orP[] /eqP // cosE.
move: cos_gt0; rewrite cosE ltNge; case/negP.
by rewrite oppr_le0 invr_ge0 sqrtr_ge0.
Qed.
Global Instance is_derive1_atan (x : R) : is_derive x 1 atan (1 + x ^+ 2)^-1.
Proof.
rewrite -{1}[x]atanK.
have cosD0 : cos (atan x) != 0.
by apply/lt0r_neq0/cos_gt0_pihalf; rewrite atan_gtNpi2 atan_ltpi2.
have /near_in_itv aI : atan x \in `](-(pi/2)), (pi/2)[.
suff : - (pi / 2) < atan x < pi / 2 by [].
by rewrite atan_gtNpi2 atan_ltpi2.
apply: (@is_derive_inverse R tan).
- by near=> z; apply: tanK; near: z.
- by near=> z; apply/continuous_tan/lt0r_neq0/cos_gt0_pihalf; near: z.
- by rewrite -[X in 1 + X ^+ 2]atanK -cos2_tan2 //; exact: is_derive_tan.
by apply/lt0r_neq0/(@lt_le_trans _ _ 1) => //; rewrite ler_addl sqr_ge0.
Unshelve. all: by end_near. Qed.
End Atan.
|