Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 33,676 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
(* -------------------------------------------------------------------- *)
(* Copyright (c) - 2015--2016 - IMDEA Software Institute *)
(* Copyright (c) - 2015--2018 - Inria *)
(* Copyright (c) - 2016--2018 - Polytechnique *)
(* -------------------------------------------------------------------- *)
(******************************************************************************)
(* An axiomatization of real numbers *)
(* *)
(* This file provides a classical axiomatization of real numbers as a *)
(* discrete real archimedean field with in particular a theory of floor and *)
(* ceil. *)
(* *)
(* realType == type of real numbers *)
(* sup A == where A : set R with R : realType, the supremum of A when *)
(* it exists, 0 otherwise *)
(* inf A := - sup (- A) *)
(* *)
(* The mixin corresponding to realType extends an archiFieldType with two *)
(* properties: *)
(* - when sup A exists, it is an upper bound of A (lemma sup_upper_bound) *)
(* - when sup A exists, there exists an element x in A such that *)
(* sup A - eps < x for any 0 < eps (lemma sup_adherent) *)
(* *)
(* Rint == the set of real numbers that can be written as z%:~R, *)
(* i.e., as an integer *)
(* Rtoint r == r when r is an integer, 0 otherwise *)
(* floor_set x := [set y | Rtoint y /\ y <= x] *)
(* Rfloor x == the floor of x as a real number *)
(* floor x == the floor of x as an integer (type int) *)
(* range1 x := [set y |x <= y < x + 1] *)
(* Rceil x == the ceil of x as a real number, i.e., - Rfloor (- x) *)
(* ceil x := - floor (- x) *)
(* *)
(******************************************************************************)
From mathcomp Require Import all_ssreflect all_algebra.
(* ------- *) Require Import mathcomp_extra boolp classical_sets.
Require Import Setoid.
Declare Scope real_scope.
(* -------------------------------------------------------------------- *)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Unset SsrOldRewriteGoalsOrder.
Import Order.TTheory Order.Syntax GRing.Theory Num.Def Num.Theory.
(* -------------------------------------------------------------------- *)
Delimit Scope real_scope with real.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Section subr_image.
Variable R : numDomainType.
Implicit Types (E : set R) (x : R).
Lemma setNK : involutive (fun E => -%R @` E).
Proof.
move=> A; rewrite image_comp (_ : _ \o _ = id) ?image_id//.
by rewrite funeqE => r /=; rewrite opprK.
Qed.
Lemma memNE E x : E x = (-%R @` E) (- x).
Proof. by rewrite image_inj //; exact: oppr_inj. Qed.
Lemma lb_ubN E x : lbound E x <-> ubound (-%R @` E) (- x).
Proof.
split=> [/lbP xlbE|/ubP xlbE].
by move=> _ [z Ez <-]; rewrite ler_oppr opprK; apply xlbE.
by move=> y Ey; rewrite -(opprK x) ler_oppl; apply xlbE; exists y.
Qed.
Lemma ub_lbN E x : ubound E x <-> lbound (-%R @` E) (- x).
Proof.
split=> [? | /lb_ubN]; first by apply/lb_ubN; rewrite opprK setNK.
by rewrite opprK setNK.
Qed.
Lemma nonemptyN E : nonempty (-%R @` E) <-> nonempty E.
Proof.
split=> [[x ENx]|[x Ex]]; exists (- x); last by rewrite -memNE.
by rewrite memNE opprK.
Qed.
Lemma opp_set_eq0 E : (-%R @` E) = set0 <-> E = set0.
Proof. by split; apply: contraPP => /eqP/set0P/nonemptyN/set0P/eqP. Qed.
Lemma has_lb_ubN E : has_lbound E <-> has_ubound (-%R @` E).
Proof.
by split=> [[x /lb_ubN] | [x /ub_lbN]]; [|rewrite setNK]; exists (- x).
Qed.
Lemma has_ub_lbN E : has_ubound E <-> has_lbound (-%R @` E).
Proof.
rewrite has_lb_ubN image_comp /comp /=.
by under eq_fun do rewrite opprK; rewrite image_id.
Qed.
Lemma has_lbound0 : has_lbound (@set0 R). Proof. by exists 0. Qed.
Lemma has_ubound0 : has_ubound (@set0 R). Proof. by exists 0. Qed.
Lemma ubound0 : ubound (@set0 R) = setT.
Proof. by rewrite predeqE => r; split => // _. Qed.
Lemma lboundT : lbound (@setT R) = set0.
Proof.
rewrite predeqE => r; split => // /(_ (r - 1) Logic.I).
rewrite ler_subr_addl addrC -ler_subr_addl subrr.
by rewrite real_leNgt ?realE ?ler01// ?lexx// ltr01.
Qed.
End subr_image.
Section has_bound_lemmas.
Variable R : realDomainType.
Implicit Types E : set R.
Implicit Types x : R.
Lemma has_ubPn {E} : ~ has_ubound E <-> (forall x, exists2 y, E y & x < y).
Proof.
split; last first.
move=> h [x] /ubP hle; case/(_ x): h => y /hle.
by rewrite leNgt => /negbTE ->.
move/forallNP => h x; have {h} := h x.
move=> /ubP /existsNP => -[y /not_implyP[Ey /negP]].
by rewrite -ltNge => ltx; exists y.
Qed.
Lemma has_lbPn E : ~ has_lbound E <-> (forall x, exists2 y, E y & y < x).
Proof.
split=> [/has_lb_ubN /has_ubPn NEnub x|Enlb /has_lb_ubN].
have [y ENy ltxy] := NEnub (- x); exists (- y); rewrite 1?ltr_oppl //.
by case: ENy => z Ez <-; rewrite opprK.
apply/has_ubPn => x; have [y Ey ltyx] := Enlb (- x).
exists (- y); last by rewrite ltr_oppr.
by exists y => //; rewrite opprK.
Qed.
Lemma has_ub_image_norm E : has_ubound (normr @` E) -> has_ubound E.
Proof.
case => M /ubP uM; exists `|M|; apply/ubP => r rS.
rewrite (le_trans (real_ler_norm _)) ?num_real //.
rewrite (le_trans (uM _ _)) ?real_ler_norm ?num_real //.
by exists r.
Qed.
Lemma has_inf_supN E : has_sup (-%R @` E) <-> has_inf E.
Proof.
split=> [ [NEn0 [x /ub_lbN xubE]] | [En0 [x /lb_ubN xlbe]] ].
by split; [apply/nonemptyN|rewrite -[E]setNK; exists (- x)].
by split; [apply/nonemptyN|exists (- x)].
Qed.
Lemma has_supPn {E} : E !=set0 ->
~ has_sup E <-> (forall x, exists2 y, E y & x < y).
Proof.
move=> nzE; split=> [/asboolPn|/has_ubPn h [_]] //.
by rewrite asbool_and (asboolT nzE) /= => /asboolP/has_ubPn.
Qed.
End has_bound_lemmas.
(* -------------------------------------------------------------------- *)
Module Real.
Section Mixin.
Variable (R : archiFieldType).
Record mixin_of : Type := Mixin {
_ :
forall E : set (Num.ArchimedeanField.sort R),
has_sup E -> ubound E (supremum 0 E) ;
_ :
forall (E : set (Num.ArchimedeanField.sort R)) (eps : R), 0 < eps ->
has_sup E -> exists2 e : R, E e & (supremum 0 E - eps) < e ;
}.
End Mixin.
Definition EtaMixin R sup_upper_bound sup_adherent :=
let _ := @Mixin R sup_upper_bound sup_adherent in
@Mixin (Num.ArchimedeanField.Pack (Num.ArchimedeanField.class R))
sup_upper_bound sup_adherent.
Section ClassDef.
Record class_of (R : Type) : Type := Class {
base : Num.ArchimedeanField.class_of R;
mixin_rcf : Num.real_closed_axiom (Num.NumDomain.Pack base);
(* TODO: ajouter une structure de pseudoMetricNormedDomain *)
mixin : mixin_of (Num.ArchimedeanField.Pack base)
}.
Local Coercion base : class_of >-> Num.ArchimedeanField.class_of.
Local Coercion base_rcf R (c : class_of R) : Num.RealClosedField.class_of R :=
@Num.RealClosedField.Class _ c (@mixin_rcf _ c).
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Definition clone c of phant_id class c := @Pack T c T.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition rcf_axiom {R} (cR : Num.RealClosedField.class_of R) :
Num.real_closed_axiom (Num.NumDomain.Pack cR) :=
match cR with Num.RealClosedField.Class _ ax => ax end.
Coercion rcf_axiom : Num.RealClosedField.class_of >-> Num.real_closed_axiom.
Definition pack b0 (m0 : mixin_of (@Num.ArchimedeanField.Pack T b0)) :=
fun bT b & phant_id (Num.ArchimedeanField.class bT) b =>
fun (bTr : rcfType) (br : Num.RealClosedField.class_of bTr) &
phant_id (Num.RealClosedField.class bTr) br =>
fun cra & phant_id (@rcf_axiom bTr br) cra =>
fun m & phant_id m0 m => Pack (@Class T b cra m) T.
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition porderType := @Order.POrder.Pack ring_display cT xclass.
Definition latticeType := @Order.Lattice.Pack ring_display cT xclass.
Definition distrLatticeType := @Order.DistrLattice.Pack ring_display cT xclass.
Definition orderType := @Order.Total.Pack ring_display cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
Definition numDomainType := @Num.NumDomain.Pack cT xclass.
Definition normedZmodType := NormedZmodType numDomainType cT xclass.
Definition fieldType := @GRing.Field.Pack cT xclass.
Definition realDomainType := @Num.RealDomain.Pack cT xclass.
Definition numFieldType := @Num.NumField.Pack cT xclass.
Definition realFieldType := @Num.RealField.Pack cT xclass.
Definition archimedeanFieldType := @Num.ArchimedeanField.Pack cT xclass.
Definition rcfType := @Num.RealClosedField.Pack cT xclass.
Definition join_rcfType := @Num.RealClosedField.Pack archimedeanFieldType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> Num.ArchimedeanField.class_of.
Coercion base_rcf : class_of >-> Num.RealClosedField.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion porderType : type >-> Order.POrder.type.
Canonical porderType.
Coercion latticeType : type >-> Order.Lattice.type.
Canonical latticeType.
Coercion distrLatticeType : type >-> Order.DistrLattice.type.
Canonical distrLatticeType.
Coercion orderType : type >-> Order.Total.type.
Canonical orderType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion numDomainType : type >-> Num.NumDomain.type.
Canonical numDomainType.
Coercion normedZmodType : type >-> Num.NormedZmodule.type.
Canonical normedZmodType.
Coercion realDomainType : type >-> Num.RealDomain.type.
Canonical realDomainType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Coercion numFieldType : type >-> Num.NumField.type.
Canonical numFieldType.
Coercion realFieldType : type >-> Num.RealField.type.
Canonical realFieldType.
Coercion archimedeanFieldType : type >-> Num.ArchimedeanField.type.
Canonical archimedeanFieldType.
Coercion rcfType : type >-> Num.RealClosedField.type.
Canonical rcfType.
Canonical join_rcfType.
Notation realType := type.
Notation RealType T m := (@pack T _ m _ _ id _ _ id _ id _ id).
Notation RealMixin := EtaMixin.
Notation "[ 'realType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'realType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'realType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'realType' 'of' T ]") : form_scope.
End Exports.
End Real.
Export Real.Exports.
(* -------------------------------------------------------------------- *)
Definition sup {R : realType} := @supremum _ R 0.
(*Local Notation "-` E" := [pred x | - x \in E]
(at level 35, right associativity) : fun_scope.*)
Definition inf {R : realType} (E : set R) := - sup (-%R @` E).
(* -------------------------------------------------------------------- *)
Lemma sup_upper_bound {R : realType} (E : set R):
has_sup E -> ubound E (sup E).
Proof. by move=> supE; case: R E supE=> ? [? ? []]. Qed.
Lemma sup_adherent {R : realType} (E : set R) (eps : R) : 0 < eps ->
has_sup E -> exists2 e : R, E e & (sup E - eps) < e.
Proof. by case: R E eps=> ? [? ? []]. Qed.
(* -------------------------------------------------------------------- *)
Section IsInt.
Context {R : realFieldType}.
Definition Rint := [qualify a x : R | `[< exists z, x == z%:~R >]].
Fact Rint_key : pred_key Rint. Proof. by []. Qed.
Canonical Rint_keyed := KeyedQualifier Rint_key.
Lemma Rint_def x : (x \is a Rint) = (`[< exists z, x == z%:~R >]).
Proof. by []. Qed.
Lemma RintP x : reflect (exists z, x = z%:~R) (x \in Rint).
Proof.
by apply/(iffP idP) => [/asboolP[z /eqP]|[z]] ->; [|apply/asboolP]; exists z.
Qed.
Lemma RintC z : z%:~R \is a Rint.
Proof. by apply/RintP; exists z. Qed.
Lemma Rint0 : 0 \is a Rint.
Proof. by rewrite -[0](mulr0z 1) RintC. Qed.
Lemma Rint1 : 1 \is a Rint.
Proof. by rewrite -[1]mulr1z RintC. Qed.
Hint Resolve Rint0 Rint1 RintC : core.
Lemma Rint_subring_closed : subring_closed Rint.
Proof.
split=> // _ _ /RintP[x ->] /RintP[y ->]; apply/RintP.
by exists (x - y); rewrite rmorphB. by exists (x * y); rewrite rmorphM.
Qed.
Canonical Rint_opprPred := OpprPred Rint_subring_closed.
Canonical Rint_addrPred := AddrPred Rint_subring_closed.
Canonical Rint_mulrPred := MulrPred Rint_subring_closed.
Canonical Rint_zmodPred := ZmodPred Rint_subring_closed.
Canonical Rint_semiringPred := SemiringPred Rint_subring_closed.
Canonical Rint_smulrPred := SmulrPred Rint_subring_closed.
Canonical Rint_subringPred := SubringPred Rint_subring_closed.
Lemma Rint_ler_addr1 (x y : R) : x \is a Rint -> y \is a Rint ->
(x + 1 <= y) = (x < y).
Proof.
move=> /RintP[xi ->] /RintP[yi ->]; rewrite -{2}[1]mulr1z.
by rewrite -intrD !(ltr_int, ler_int) lez_addr1.
Qed.
Lemma Rint_ltr_addr1 (x y : R) : x \is a Rint -> y \is a Rint ->
(x < y + 1) = (x <= y).
move=> /RintP[xi ->] /RintP[yi ->]; rewrite -{3}[1]mulr1z.
by rewrite -intrD !(ltr_int, ler_int) ltz_addr1.
Qed.
End IsInt.
(* -------------------------------------------------------------------- *)
Section ToInt.
Context {R : realType}.
Implicit Types x y : R.
Definition Rtoint (x : R) : int :=
if insub x : {? x | x \is a Rint} is Some Px then
xchoose (asboolP _ (tagged Px))
else 0.
Lemma RtointK (x : R): x \is a Rint -> (Rtoint x)%:~R = x.
Proof.
move=> Ix; rewrite /Rtoint insubT /= [RHS](eqP (xchooseP (asboolP _ Ix))).
by congr _%:~R; apply/eq_xchoose.
Qed.
Lemma Rtointz (z : int): Rtoint z%:~R = z.
Proof. by apply/eqP; rewrite -(@eqr_int R) RtointK ?rpred_int. Qed.
Lemma Rtointn (n : nat): Rtoint n%:R = n%:~R.
Proof. by rewrite -{1}mulrz_nat Rtointz. Qed.
Lemma inj_Rtoint : {in Rint &, injective Rtoint}.
Proof. by move=> x y Ix Iy /= /(congr1 (@intmul R 1)); rewrite !RtointK. Qed.
Lemma RtointN x : x \is a Rint -> Rtoint (- x) = - Rtoint x.
Proof.
move=> Ir; apply/eqP.
by rewrite -(@eqr_int R) RtointK // ?rpredN // mulrNz RtointK.
Qed.
End ToInt.
(* -------------------------------------------------------------------- *)
Section RealDerivedOps.
Variable R : realType.
Implicit Types x y : R.
Definition floor_set x := [set y : R | (y \is a Rint) && (y <= x)].
Definition Rfloor x : R := sup (floor_set x).
Definition floor x : int := Rtoint (Rfloor x).
Definition range1 (x : R) := [set y | x <= y < x + 1].
Definition Rceil x := - Rfloor (- x).
Definition ceil x := - floor (- x).
End RealDerivedOps.
(*-------------------------------------------------------------------- *)
Section RealLemmas.
Variables (R : realType).
Implicit Types E : set R.
Implicit Types x : R.
Lemma sup_out E : ~ has_sup E -> sup E = 0. Proof. exact: supremum_out. Qed.
Lemma sup0 : sup (@set0 R) = 0. Proof. exact: supremum0. Qed.
Lemma sup1 x : sup [set x] = x. Proof. exact: supremum1. Qed.
Lemma sup_ub {E} : has_ubound E -> ubound E (sup E).
Proof.
move=> ubE; apply/ubP=> x x_in_E; move: (x) (x_in_E).
by apply/ubP/sup_upper_bound=> //; split; first by exists x.
Qed.
Lemma sup_ub_strict E : has_ubound E ->
~ E (sup E) -> E `<=` [set r | r < sup E].
Proof.
move=> ubE EsupE r Er; rewrite /mkset lt_neqAle sup_ub // andbT.
by apply/negP => /eqP supEr; move: EsupE; rewrite -supEr.
Qed.
Lemma sup_total {E} x : has_sup E -> down E x \/ sup E <= x.
Proof.
move=> has_supE; rewrite orC.
case: (lerP (sup E) x)=> hx /=; [by left|right].
have /sup_adherent/(_ has_supE) : 0 < sup E - x by rewrite subr_gt0.
case=> e Ee hlte; apply/downP; exists e => //; move: hlte.
by rewrite opprB addrCA subrr addr0 => /ltW.
Qed.
Lemma sup_le_ub {E} x : E !=set0 -> (ubound E) x -> sup E <= x.
Proof.
move=> hasE leEx; set y := sup E; pose z := (x + y) / 2%:R.
have Dz: 2%:R * z = x + y.
by rewrite mulrCA divff ?mulr1 // pnatr_eq0.
have ubE : has_sup E by split => //; exists x.
have [/downP [t Et lezt] | leyz] := sup_total z ubE.
rewrite -(ler_add2l x) -Dz -mulr2n -[leRHS]mulr_natl.
rewrite ler_pmul2l ?ltr0Sn //; apply/(le_trans lezt).
by move/ubP : leEx; exact.
rewrite -(ler_add2r y) -Dz -mulr2n -[leLHS]mulr_natl.
by rewrite ler_pmul2l ?ltr0Sn.
Qed.
Lemma sup_setU (A B : set R) : has_sup B ->
(forall a b, A a -> B b -> a <= b) -> sup (A `|` B) = sup B.
Proof.
move=> [B0 [l Bl]] AB; apply/eqP; rewrite eq_le; apply/andP; split.
- apply sup_le_ub => [|x [Ax|]]; first by apply: subset_nonempty B0 => ?; right.
by case: B0 => b Bb; rewrite (le_trans (AB _ _ Ax Bb)) // sup_ub //; exists l.
- by move=> Bx; rewrite sup_ub //; exists l.
- apply sup_le_ub => // b Bb; apply sup_ub; last by right.
by exists l => x [Ax|Bx]; [rewrite (le_trans (AB _ _ Ax Bb)) // Bl|exact: Bl].
Qed.
Lemma sup_gt (S : set R) (x : R) : S !=set0 ->
(x < sup S -> exists2 y, S y & x < y)%R.
Proof.
move=> S0; rewrite not_exists2P => + g; apply/negP; rewrite -leNgt.
by apply sup_le_ub => // y Sy; move: (g y) => -[// | /negP]; rewrite leNgt.
Qed.
End RealLemmas.
(* -------------------------------------------------------------------- *)
Section InfTheory.
Variables (R : realType).
Implicit Types E : set R.
Implicit Types x : R.
Lemma inf_lower_bound E : has_inf E -> lbound E (inf E).
Proof.
move=> /has_inf_supN /sup_upper_bound /ubP inflb; apply/lbP => x.
by rewrite memNE => /inflb; rewrite ler_oppl.
Qed.
Lemma inf_adherent E (eps : R) : 0 < eps ->
has_inf E -> exists2 e, E e & e < inf E + eps.
Proof.
move=> + /has_inf_supN supNE => /sup_adherent /(_ supNE)[e NEx egtsup].
exists (- e); first by case: NEx => x Ex <-{}; rewrite opprK.
by rewrite ltr_oppl -mulN1r mulrDr !mulN1r opprK.
Qed.
Lemma inf_out E : ~ has_inf E -> inf E = 0.
Proof.
move=> ninfE; rewrite -oppr0 -(@sup_out _ (-%R @` E)) => // supNE; apply: ninfE.
exact/has_inf_supN.
Qed.
Lemma inf0 : inf (@set0 R) = 0.
Proof. by rewrite /inf image_set0 sup0 oppr0. Qed.
Lemma inf1 x : inf [set x] = x.
Proof. by rewrite /inf image_set1 sup1 opprK. Qed.
Lemma inf_lb E : has_lbound E -> lbound E (inf E).
Proof. by move/has_lb_ubN/sup_ub/ub_lbN; rewrite setNK. Qed.
Lemma inf_lb_strict E : has_lbound E ->
~ E (inf E) -> E `<=` [set r | inf E < r].
Proof.
move=> lE EinfE r Er; rewrite /mkset lt_neqAle inf_lb // andbT.
by apply/negP => /eqP infEr; move: EinfE; rewrite infEr.
Qed.
Lemma lb_le_inf E x : nonempty E -> (lbound E) x -> x <= inf E.
Proof.
by move=> /(nonemptyN E) En0 /lb_ubN /(sup_le_ub En0); rewrite ler_oppr.
Qed.
Lemma has_infPn E : nonempty E ->
~ has_inf E <-> (forall x, exists2 y, E y & y < x).
Proof.
move=> nzE; split=> [/asboolPn|/has_lbPn h [_] //].
by rewrite asbool_and (asboolT nzE) /= => /asboolP/has_lbPn.
Qed.
Lemma inf_setU (A B : set R) : has_inf A ->
(forall a b, A a -> B b -> a <= b) -> inf (A `|` B) = inf A.
Proof.
move=> hiA AB; congr (- _).
rewrite image_setU setUC sup_setU //; first exact/has_inf_supN.
by move=> _ _ [] b Bb <-{} [] a Aa <-{}; rewrite ler_oppl opprK; apply AB.
Qed.
Lemma inf_lt (S : set R) (x : R) : S !=set0 ->
(inf S < x -> exists2 y, S y & y < x)%R.
Proof.
move=> /nonemptyN S0; rewrite /inf ltr_oppl => /sup_gt => /(_ S0)[r [r' Sr']].
by move=> <-; rewrite ltr_oppr opprK => r'x; exists r'.
Qed.
End InfTheory.
(* -------------------------------------------------------------------- *)
Section FloorTheory.
Variable R : realType.
Implicit Types x y : R.
Lemma has_sup_floor_set x : has_sup (floor_set x).
Proof.
split; [exists (- (Num.bound (-x))%:~R) | exists (Num.bound x)%:~R].
rewrite /floor_set/mkset rpredN rpred_int /= ler_oppl.
case: (ger0P (-x)) => [/archi_boundP/ltW//|].
by move/ltW/le_trans; apply; rewrite ler0z.
apply/ubP=> y /andP[_] /le_trans; apply.
case: (ger0P x)=> [/archi_boundP/ltW|] //.
by move/ltW/le_trans; apply; rewrite ler0z.
Qed.
Lemma sup_in_floor_set x : (floor_set x) (sup (floor_set x)).
Proof.
have /(sup_adherent ltr01) [y Fy] := has_sup_floor_set x.
have /sup_upper_bound /ubP /(_ _ Fy) := has_sup_floor_set x.
rewrite le_eqVlt=> /orP[/eqP<-//| lt_yFx].
rewrite ltr_subl_addr -ltr_subl_addl => lt1_FxBy.
pose e := sup (floor_set x) - y; have := has_sup_floor_set x.
move/sup_adherent=> -/(_ e) []; first by rewrite subr_gt0.
move=> z Fz; rewrite /e opprB addrCA subrr addr0 => lt_yz.
have /sup_upper_bound /ubP /(_ _ Fz) := has_sup_floor_set x.
rewrite -(ler_add2r (-y)) => /le_lt_trans /(_ lt1_FxBy).
case/andP: Fy Fz lt_yz=> /RintP[yi -> _].
case/andP=> /RintP[zi -> _]; rewrite -rmorphB /= ltrz1 ltr_int.
rewrite lt_neqAle => /andP[ne_yz le_yz].
rewrite -[_-_]gez0_abs ?subr_ge0 // ltz_nat ltnS leqn0.
by rewrite absz_eq0 subr_eq0 eq_sym (negbTE ne_yz).
Qed.
Lemma isint_Rfloor x : Rfloor x \is a Rint.
Proof. by case/andP: (sup_in_floor_set x). Qed.
Lemma RfloorE x : Rfloor x = (floor x)%:~R.
Proof. by rewrite /floor RtointK ?isint_Rfloor. Qed.
Lemma mem_rg1_Rfloor x : (range1 (Rfloor x)) x.
Proof.
rewrite /range1/mkset.
have /andP[_ ->] /= := sup_in_floor_set x.
have [|] := pselect ((floor_set x) (Rfloor x + 1)); last first.
rewrite /floor_set => /negP.
by rewrite negb_and -ltNge rpredD // ?(Rint1, isint_Rfloor).
move/ubP : (sup_upper_bound (has_sup_floor_set x)) => h/h.
by rewrite ger_addl ler10.
Qed.
Lemma Rfloor_le x : Rfloor x <= x.
Proof. by case/andP: (mem_rg1_Rfloor x). Qed.
Lemma floor_le x : (floor x)%:~R <= x.
Proof. by rewrite -RfloorE; exact: Rfloor_le. Qed.
Lemma lt_succ_Rfloor x : x < Rfloor x + 1.
Proof. by case/andP: (mem_rg1_Rfloor x). Qed.
Lemma range1z_inj x (m1 m2 : int) :
(range1 m1%:~R) x -> (range1 m2%:~R) x -> m1 = m2.
Proof.
move=> /andP[m1x x_m1] /andP[m2x x_m2].
wlog suffices: m1 m2 m1x {x_m1 m2x} x_m2 / (m1 <= m2).
by move=> ih; apply/eqP; rewrite eq_le !ih.
rewrite -(ler_add2r 1) lez_addr1 -(@ltr_int R) intrD.
exact/(le_lt_trans m1x).
Qed.
Lemma range1rr x : (range1 x) x.
Proof. by rewrite /range1/mkset lexx /= ltr_addl ltr01. Qed.
Lemma range1zP (m : int) x : Rfloor x = m%:~R <-> (range1 m%:~R) x.
Proof.
split=> [<-|h]; first exact/mem_rg1_Rfloor.
apply/eqP; rewrite RfloorE eqr_int; apply/eqP/(@range1z_inj x) => //.
by rewrite /range1/mkset -RfloorE mem_rg1_Rfloor.
Qed.
Lemma Rfloor_natz (z : int) : Rfloor z%:~R = z%:~R :> R.
Proof. by apply/range1zP/range1rr. Qed.
Lemma Rfloor0 : Rfloor 0 = 0 :> R.
Proof. by rewrite -{1}(mulr0z 1) Rfloor_natz. Qed.
Lemma Rfloor1 : Rfloor 1 = 1 :> R.
Proof. by rewrite -{1}(mulr1z 1) Rfloor_natz. Qed.
Lemma le_Rfloor : {homo (@Rfloor R) : x y / x <= y}.
Proof.
move=> x y le_xy; case: lerP=> //=; rewrite -Rint_ler_addr1 ?isint_Rfloor //.
move/(lt_le_trans (lt_succ_Rfloor y))/lt_le_trans/(_ (Rfloor_le x)).
by rewrite ltNge le_xy.
Qed.
Lemma Rfloor_ge_int x (n : int) : (n%:~R <= x)= (n%:~R <= Rfloor x).
Proof.
apply/idP/idP; last by move/le_trans => /(_ _ (Rfloor_le x)).
by move/le_Rfloor; apply le_trans; rewrite Rfloor_natz.
Qed.
Lemma Rfloor_le0 x : x <= 0 -> Rfloor x <= 0.
Proof. by move=> ?; rewrite -Rfloor0 le_Rfloor. Qed.
Lemma Rfloor_lt0 x : x < 0 -> Rfloor x < 0.
Proof. by move=> x0; rewrite (le_lt_trans _ x0) // Rfloor_le. Qed.
Lemma floor_natz n : floor (n%:R : R) = n%:~R :> int.
Proof. by rewrite /floor (Rfloor_natz n) Rtointz intz. Qed.
Lemma floor1 : floor (1 : R) = 1.
Proof. by rewrite /floor Rfloor1 (_ : 1 = 1%:R) // Rtointn. Qed.
Lemma floor_ge0 x : (0 <= floor x) = (0 <= x).
Proof. by rewrite -(@ler_int R) -RfloorE -Rfloor_ge_int. Qed.
Lemma floor_le0 x : x <= 0 -> floor x <= 0.
Proof. by move=> ?; rewrite -(@ler_int R) -RfloorE Rfloor_le0. Qed.
Lemma floor_lt0 x : x < 0 -> floor x < 0.
Proof. by move=> ?; rewrite -(@ltrz0 R) RtointK ?isint_Rfloor// Rfloor_lt0. Qed.
Lemma le_floor : {homo @floor R : x y / x <= y}.
Proof. by move=>*; rewrite -(@ler_int R) !RtointK ?isint_Rfloor ?le_Rfloor. Qed.
Lemma floor_neq0 x : (floor x != 0) = (x < 0) || (x >= 1).
Proof.
apply/idP/orP => [|[x0|/le_floor r1]]; first rewrite neq_lt => /orP[x0|x0].
- by left; apply: contra_lt x0; rewrite floor_ge0.
- by right; rewrite (le_trans _ (floor_le _))// ler1z -gtz0_ge1.
- by rewrite lt_eqF//; apply: contra_lt x0; rewrite floor_ge0.
- by rewrite gt_eqF// (lt_le_trans _ r1)// floor1.
Qed.
Lemma ltr_add_invr (y x : R) : y < x -> exists k, y + k.+1%:R^-1 < x.
Proof.
move=> yx; exists `|floor (x - y)^-1|%N.
rewrite -ltr_subr_addl -{2}(invrK (x - y)%R) ltf_pinv ?qualifE ?ltr0n//.
by rewrite invr_gt0 subr_gt0.
rewrite -addn1 natrD natr_absz ger0_norm.
by rewrite floor_ge0 invr_ge0 subr_ge0 ltW.
by rewrite -RfloorE lt_succ_Rfloor.
Qed.
End FloorTheory.
Section CeilTheory.
Variable R : realType.
Implicit Types x y : R.
Lemma isint_Rceil x : Rceil x \is a Rint.
Proof. by rewrite /Rceil rpredN isint_Rfloor. Qed.
Lemma Rceil0 : Rceil 0 = 0 :> R.
Proof. by rewrite /Rceil oppr0 Rfloor0 oppr0. Qed.
Lemma Rceil_ge x : x <= Rceil x.
Proof. by rewrite /Rceil ler_oppr Rfloor_le. Qed.
Lemma le_Rceil : {homo (@Rceil R) : x y / x <= y}.
Proof. by move=> x y ?; rewrite ler_oppl opprK le_Rfloor // ler_oppl opprK. Qed.
Lemma Rceil_ge0 x : 0 <= x -> 0 <= Rceil x.
Proof. by move=> ?; rewrite -Rceil0 le_Rceil. Qed.
Lemma RceilE x : Rceil x = (ceil x)%:~R.
Proof. by rewrite /Rceil /ceil RfloorE mulrNz. Qed.
Lemma ceil_ge x : x <= (ceil x)%:~R.
Proof. by rewrite -RceilE; exact: Rceil_ge. Qed.
Lemma ceil_ge0 x : 0 <= x -> 0 <= ceil x.
Proof. by move/(ge_trans (ceil_ge x)); rewrite -(ler_int R). Qed.
Lemma ceil_gt0 x : 0 < x -> 0 < ceil x.
Proof. by move=> ?; rewrite /ceil oppr_gt0 floor_lt0 // ltr_oppl oppr0. Qed.
Lemma ceil_le0 x : x <= 0 -> ceil x <= 0.
Proof. by move=> x0; rewrite -ler_oppl oppr0 floor_ge0 -ler_oppr oppr0. Qed.
Lemma le_ceil : {homo @ceil R : x y / x <= y}.
Proof. by move=> x y xy; rewrite ler_oppl opprK le_floor // ler_oppl opprK. Qed.
End CeilTheory.
(* -------------------------------------------------------------------- *)
Section Sup.
Context {R : realType}.
Lemma le_down (S : set R) : S `<=` down S.
Proof. by move=> x xS; apply/downP; exists x. Qed.
Lemma downK (S : set R) : down (down S) = down S.
Proof.
rewrite predeqE => x; split.
- case/downP => y /downP[z Sz yz xy].
by apply/downP; exists z => //; rewrite (le_trans xy).
- by move=> Sx; apply/downP; exists x.
Qed.
Lemma has_sup_down (S : set R) : has_sup (down S) <-> has_sup S.
Proof.
split=> -[nzS nzubS].
case: nzS=> x /downP[y yS le_xy]; split; first by exists y.
case: nzubS=> u /ubP ubS; exists u; apply/ubP=> z zS.
by apply/ubS; apply/downP; exists z.
case: nzS=> x xS; split; first by exists x; apply/le_down.
case: nzubS=> u /ubP ubS; exists u; apply/ubP=> y /downP [].
by move=> z zS /le_trans; apply; apply/ubS.
Qed.
Lemma le_sup (S1 S2 : set R) :
S1 `<=` down S2 -> nonempty S1 -> has_sup S2
-> sup S1 <= sup S2.
Proof.
move=> le_S12 nz_S1 hs_S2; have hs_S1: has_sup S1.
split=> //; case: hs_S2=> _ [x ubx].
exists x; apply/ubP=> y /le_S12 /downP[z zS2 le_yz].
by apply/(le_trans le_yz); move/ubP: ubx; apply.
rewrite leNgt -subr_gt0; apply/negP => lt_sup.
case: (sup_adherent lt_sup hs_S1 )=> x /le_S12 xdS2.
rewrite subKr => lt_S2x; case/downP: xdS2=> z zS2.
move/(lt_le_trans lt_S2x); rewrite ltNge.
by move/ubP: (sup_upper_bound hs_S2) => ->.
Qed.
Lemma sup_down (S : set R) : sup (down S) = sup S.
Proof.
have [supS|supNS] := pselect (has_sup S); last first.
by rewrite !sup_out // => /has_sup_down.
have supDS : has_sup (down S) by apply/has_sup_down.
apply/eqP; rewrite eq_le !le_sup //.
by case: supS => -[x xS] _; exists x; apply/le_down.
rewrite downK; exact: le_down.
by case: supS.
Qed.
Lemma lt_sup_imfset {T : Type} (F : T -> R) l :
has_sup [set y | exists x, y = F x] ->
l < sup [set y | exists x, y = F x] ->
exists2 x, l < F x & F x <= sup [set y | exists x, y = F x].
Proof.
set P := [set y | _] => hs; rewrite -subr_gt0.
move=> /sup_adherent/(_ hs)[_ [x ->]]; rewrite subKr=> lt_lFx.
by exists x => //; move/ubP : (sup_upper_bound hs) => -> //; exists x.
Qed.
Lemma lt_inf_imfset {T : Type} (F : T -> R) l :
has_inf [set y | exists x, y = F x] ->
inf [set y | exists x, y = F x] < l ->
exists2 x, F x < l & inf [set y | exists x, y = F x] <= F x.
Proof.
set P := [set y | _]; move=> hs; rewrite -subr_gt0.
move=> /inf_adherent/(_ hs)[_ [x ->]]; rewrite addrA [_ + l]addrC addrK.
by move=> ltFxl; exists x=> //; move/lbP : (inf_lower_bound hs) => -> //; exists x.
Qed.
End Sup.
Lemma int_lbound_has_minimum (B : set int) i : B !=set0 -> lbound B i ->
exists j, B j /\ forall k, B k -> j <= k.
Proof.
move=> [i0 Bi0] lbBi; have [n i0in] : exists n, i0 - i = n%:Z.
by exists `|i0 - i|%N; rewrite gez0_abs // subr_ge0; exact: lbBi.
elim: n i lbBi i0in => [i lbBi /eqP|n ih i lbBi i0in1].
by rewrite subr_eq0 => /eqP i0i; exists i0; split =>// k Bk; rewrite i0i lbBi.
have i0i1n : i0 - (i + 1) = n by rewrite opprD addrA i0in1 -addn1 PoszD addrK.
have [?|/not_forallP] := pselect (lbound B (i + 1)); first exact: (ih (i + 1)).
move=> /contrapT[x /not_implyP[Bx i1x]]; exists x; split => // k Bk.
rewrite (le_trans _ (lbBi _ Bk)) //.
by move/negP : i1x; rewrite -ltNge ltz_addr1.
Qed.
Section rat_in_itvoo.
Let bound_div (R : archiFieldType) (x y : R) : nat :=
if y < 0 then 0%N else Num.bound (y / x).
Let archi_bound_divP (R : archiFieldType) (x y : R) :
0 < x -> y < x *+ bound_div x y.
Proof.
move=> x0; have [y0|y0] := leP 0 y; last by rewrite /bound_div y0 mulr0n.
rewrite /bound_div (ltNge y 0) y0/= -mulr_natl -ltr_pdivr_mulr//.
by rewrite archi_boundP// (divr_ge0 _(ltW _)).
Qed.
Lemma rat_in_itvoo (R : realType) (x y : R) :
x < y -> exists q, ratr q \in `]x, y[.
Proof.
move=> xy; move: (xy); rewrite -subr_gt0.
move=> /(archi_bound_divP 1); set n := bound_div _ _ => nyx.
have [m1 m1nx] : exists m1, m1.+1%:~R > x *+ n.
have := archi_bound_divP (x *+ n) ltr01; set p := bound_div _ _ => nxp.
have [x0|x0] := ltP 0 x.
exists p.-1; rewrite prednK // lt0n; apply: contraPN nxp => /eqP ->.
by apply/negP; rewrite -leNgt mulrn_wge0 // ltW.
by exists 0%N; rewrite (le_lt_trans _ ltr01) // mulrn_wle0.
have [m2 m2nx] : exists m2, m2.+1%:~R > - x *+ n.
have := archi_bound_divP (- x *+ n) ltr01; set p := bound_div _ _ => nxp.
have [x0|x0] := ltP 0 x.
by exists O; rewrite (le_lt_trans _ ltr01) // nmulrn_rle0// oppr_lt0.
exists p.-1; rewrite prednK // -(ltr_nat R) (le_lt_trans _ nxp) //.
by rewrite mulrn_wge0 // oppr_ge0.
have : exists m, -(m2.+1 : int) <= m <= m1.+1 /\ m%:~R - 1 <= x *+ n < m%:~R.
have m2m1 : - (m2.+1 : int) < m1.+1.
by rewrite -(ltr_int R) (lt_trans _ m1nx)// rmorphN /= ltr_oppl // -mulNrn.
pose B := [set m : int | m%:~R > x *+ n].
have m1B : B m1.+1 by [].
have m2B : lbound B (- m2.+1%:~R).
move=> i; rewrite /B /= -(opprK (x *+ n)) -ltr_oppl -mulNrn => nxi.
rewrite -(mulN1r m2.+1%:~R) mulN1r -ler_oppl.
by have := lt_trans nxi m2nx; rewrite intz -mulrNz ltr_int => /ltW.
have [m [Bm infB]] := int_lbound_has_minimum (ex_intro _ _ m1B) m2B.
have mN1B : ~ B (m - 1).
by move=> /infB; apply/negP; rewrite -ltNge ltr_subl_addr ltz_addr1.
exists m; split; [apply/andP; split|apply/andP; split] => //.
- by move: m2B; rewrite /lbound /= => /(_ _ Bm); rewrite intz.
- exact: infB.
- by rewrite leNgt; apply/negP; rewrite /B /= intrD in mN1B.
move=> [m [/andP[m2m mm1] /andP[mnx nxm]]].
have [/andP[a b] c] : x *+ n < m%:~R <= 1 + x *+ n /\ 1 + x *+ n < y *+ n.
split; [apply/andP; split|] => //; first by rewrite -ler_subl_addl.
by move: nyx; rewrite mulrnDl -ltr_subr_addr mulNrn.
have n_gt0 : n != 0%N by apply: contraTN nyx => /eqP ->; rewrite mulr0n ltr10.
exists (m%:Q / n%:Q); rewrite in_itv /=; apply/andP; split.
rewrite rmorphM (@rmorphV _ _ _ n%:~R); first by rewrite unitfE // intr_eq0.
rewrite ltr_pdivl_mulr /=; first by rewrite ltr0q ltr0z ltz_nat lt0n.
by rewrite mulrC // !ratr_int mulr_natl.
rewrite rmorphM /= (@rmorphV _ _ _ n%:~R); first by rewrite unitfE // intr_eq0.
rewrite ltr_pdivr_mulr /=; first by rewrite ltr0q ltr0z ltz_nat lt0n.
by rewrite 2!ratr_int mulr_natr (le_lt_trans _ c).
Qed.
End rat_in_itvoo.
|