Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,463 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C.              *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect.
From mathcomp Require Import ssralg ssrnum ssrint interval finmap.
Require Import mathcomp_extra boolp classical_sets signed functions cardinality.
Require Import reals ereal topology normedtype sequences.

(******************************************************************************)
(* This file provides definitions and lemmas about numerical functions.       *)
(*                                                                            *)
(*              f ^\+ == the function formed by the non-negative outputs      *)
(*                       of f (from a type to the type of extended real       *)
(*                       numbers) and 0 otherwise                             *)
(*                       rendered as f ⁺ with company-coq (U+207A)            *)
(*              f ^\- == the function formed by the non-positive outputs      *)
(*                       of f and 0 o.w.                                      *)
(*                       rendered as f ⁻ with company-coq (U+207B)            *)
(*              \1_ A == indicator function 1_A                               *)
(*                                                                            *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldTopology.Exports.

Local Open Scope classical_set_scope.
Local Open Scope ring_scope.

Reserved Notation "f ^\+" (at level 1, format "f ^\+").
Reserved Notation "f ^\-" (at level 1, format "f ^\-").

Section restrict_lemmas.
Context {aT : Type} {rT : numFieldType}.
Implicit Types (f g : aT -> rT) (D : set aT).

Lemma restrict_set0 f : f \_ set0 = cst 0.
Proof. by rewrite patch_set0. Qed.

Lemma restrict_ge0 D f :
  (forall x, D x -> 0 <= f x) -> forall x, 0 <= (f \_ D) x.
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed.

Lemma ler_restrict D f g :
  (forall x, D x -> f x <= g x) -> forall x, (f \_ D) x <= (g \_ D) x.
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed.

End restrict_lemmas.

Lemma erestrict_ge0 {aT} {rT : numFieldType} (D : set aT) (f : aT -> \bar rT) :
  (forall x, D x -> (0 <= f x)%E) -> forall x, (0 <= (f \_ D) x)%E.
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed.

Lemma lee_restrict {aT} {rT : numFieldType} (D : set aT) (f g : aT -> \bar rT) :
  (forall x, D x -> f x <= g x)%E -> forall x, ((f \_ D) x <= (g \_ D) x)%E.
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed.

Lemma restrict_lee {aT} {rT : numFieldType} (D E : set aT) (f : aT -> \bar rT) :
  (forall x, E x -> 0 <= f x)%E ->
  D `<=` E -> forall x, ((f \_ D) x <= (f \_ E) x)%E.
Proof.
move=> f0 ED x; rewrite /restrict; case: ifPn => [xD|xD].
  by rewrite mem_set//; apply: ED; rewrite in_setE in xD.
by case: ifPn => // xE; apply: f0; rewrite in_setE in xE.
Qed.

Section erestrict_lemmas.
Local Open Scope ereal_scope.
Variables (T : Type) (R : realDomainType) (D : set T).
Implicit Types (f g : T -> \bar R) (r : R).

Lemma erestrict_set0 f : f \_ set0 = cst 0.
Proof. by rewrite patch_set0. Qed.

Lemma erestrict0 : (cst 0 : T -> \bar R) \_ D = cst 0.
Proof. by apply/funext => x; rewrite /patch/=; case: ifP. Qed.

Lemma erestrictD f g : (f \+ g) \_ D = f \_ D \+ g \_ D.
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?adde0. Qed.

Lemma erestrictN f : (\- f) \_ D = \- f \_ D.
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?oppe0. Qed.

Lemma erestrictB f g : (f \- g) \_ D = f \_ D \- g \_ D.
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?sube0. Qed.

Lemma erestrictM f g : (f \* g) \_ D = f \_ D \* g \_ D.
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?mule0. Qed.

Lemma erestrict_scale k f :
  (fun x => k%:E * f x) \_ D = (fun x => k%:E * (f \_ D) x).
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?mule0. Qed.

End erestrict_lemmas.

Section funposneg.
Local Open Scope ereal_scope.

Definition funepos T (R : realDomainType) (f : T -> \bar R) :=
  fun x => maxe (f x) 0.
Definition funeneg T (R : realDomainType) (f : T -> \bar R) :=
  fun x => maxe (- f x) 0.

End funposneg.

Notation "f ^\+" := (funepos f) : ereal_scope.
Notation "f ^\-" := (funeneg f) : ereal_scope.

Section funposneg_lemmas.
Local Open Scope ereal_scope.
Variables (T : Type) (R : realDomainType) (D : set T).
Implicit Types (f g : T -> \bar R) (r : R).

Lemma funepos_ge0 f x : 0 <= f^\+ x.
Proof. by rewrite /funepos /= le_maxr lexx orbT. Qed.

Lemma funeneg_ge0 f x : 0 <= f^\- x.
Proof. by rewrite /funeneg le_maxr lexx orbT. Qed.

Lemma funeposN f : (\- f)^\+ = f^\-. Proof. exact/funext. Qed.

Lemma funenegN f : (\- f)^\- = f^\+.
Proof. by apply/funext => x; rewrite /funeneg oppeK. Qed.

Lemma funepos_restrict f : (f \_ D)^\+ = (f^\+) \_ D.
Proof.
by apply/funext => x; rewrite /patch/_^\+; case: ifP; rewrite //= maxxx.
Qed.

Lemma funeneg_restrict f : (f \_ D)^\- = (f^\-) \_ D.
Proof.
by apply/funext => x; rewrite /patch/_^\-; case: ifP; rewrite //= oppr0 maxxx.
Qed.

Lemma ge0_funeposE f : (forall x, D x -> 0 <= f x) -> {in D, f^\+ =1 f}.
Proof. by move=> f0 x; rewrite inE => Dx; apply/max_idPl/f0. Qed.

Lemma ge0_funenegE f : (forall x, D x -> 0 <= f x) -> {in D, f^\- =1 cst 0}.
Proof.
by move=> f0 x; rewrite inE => Dx; apply/max_idPr; rewrite lee_oppl oppe0 f0.
Qed.

Lemma le0_funeposE f : (forall x, D x -> f x <= 0) -> {in D, f^\+ =1 cst 0}.
Proof. by move=> f0 x; rewrite inE => Dx; exact/max_idPr/f0. Qed.

Lemma le0_funenegE f : (forall x, D x -> f x <= 0) -> {in D, f^\- =1 \- f}.
Proof.
by move=> f0 x; rewrite inE => Dx; apply/max_idPl; rewrite lee_oppr oppe0 f0.
Qed.

Lemma gt0_funeposM r f : (0 < r)%R ->
  (fun x => r%:E * f x)^\+ = (fun x => r%:E * (f^\+ x)).
Proof. by move=> ?; rewrite funeqE => x; rewrite /funepos maxeMr// mule0. Qed.

Lemma gt0_funenegM r f : (0 < r)%R ->
  (fun x => r%:E * f x)^\- = (fun x => r%:E * (f^\- x)).
Proof.
by move=> r0; rewrite funeqE => x; rewrite /funeneg -muleN maxeMr// mule0.
Qed.

Lemma lt0_funeposM r f : (r < 0)%R ->
  (fun x => r%:E * f x)^\+ = (fun x => - r%:E * (f^\- x)).
Proof.
move=> r0; rewrite -[in LHS](opprK r); under eq_fun do rewrite EFinN mulNe.
by rewrite funeposN gt0_funenegM -1?ltr_oppr ?oppr0.
Qed.

Lemma lt0_funenegM r f : (r < 0)%R ->
  (fun x => r%:E * f x)^\- = (fun x => - r%:E * (f^\+ x)).
Proof.
move=> r0; rewrite -[in LHS](opprK r); under eq_fun do rewrite EFinN mulNe.
by rewrite funenegN gt0_funeposM -1?ltr_oppr ?oppr0.
Qed.

Lemma fune_abse f : abse \o f = f^\+ \+ f^\-.
Proof.
rewrite funeqE => x /=; have [fx0|/ltW fx0] := leP (f x) 0.
- rewrite lee0_abs// /funepos /funeneg.
  move/max_idPr : (fx0) => ->; rewrite add0e.
  by move: fx0; rewrite -{1}oppr0 EFinN lee_oppr => /max_idPl ->.
- rewrite gee0_abs// /funepos /funeneg; move/max_idPl : (fx0) => ->.
  by move: fx0; rewrite -{1}oppr0 EFinN lee_oppl => /max_idPr ->; rewrite adde0.
Qed.

Lemma funeposneg f : f = (fun x => f^\+ x - f^\- x).
Proof.
rewrite funeqE => x; rewrite /funepos /funeneg; have [|/ltW] := leP (f x) 0.
  by rewrite -{1}oppe0 -lee_oppr => /max_idPl ->; rewrite oppeK add0e.
by rewrite -{1}oppe0 -lee_oppl => /max_idPr ->; rewrite sube0.
Qed.

Lemma add_def_funeposneg f x : (f^\+ x +? - f^\- x).
Proof.
by rewrite /funeneg /funepos; case: (f x) => [r| |];
  [rewrite !maxEFin|rewrite /maxe /= ltNye|rewrite /maxe /= ltNye].
Qed.

Lemma funeD_Dpos f g : f \+ g = (f \+ g)^\+ \- (f \+ g)^\-.
Proof.
apply/funext => x; rewrite /funepos /funeneg; have [|/ltW] := leP 0 (f x + g x).
- by rewrite -{1}oppe0 -lee_oppl => /max_idPr ->; rewrite sube0.
- by rewrite -{1}oppe0 -lee_oppr => /max_idPl ->; rewrite oppeK add0e.
Qed.

Lemma funeD_posD f g : f \+ g = (f^\+ \+ g^\+) \- (f^\- \+ g^\-).
Proof.
apply/funext => x; rewrite /funepos /funeneg.
have [|fx0] := leP 0 (f x); last rewrite add0e.
- rewrite -{1}oppe0 lee_oppl => /max_idPr ->; have [|/ltW] := leP 0 (g x).
    by rewrite -{1}oppe0 lee_oppl => /max_idPr ->; rewrite adde0 sube0.
  by rewrite -{1}oppe0 -lee_oppr => /max_idPl ->; rewrite adde0 sub0e oppeK.
- move/ltW : (fx0); rewrite -{1}oppe0 lee_oppr => /max_idPl ->.
  have [|] := leP 0 (g x); last rewrite add0e.
    by rewrite -{1}oppe0 lee_oppl => /max_idPr ->; rewrite adde0 oppeK addeC.
  move gg' : (g x) => g'; move: g' gg' => [g' gg' g'0|//|goo _].
  + move/ltW : (g'0); rewrite -{1}oppe0 -lee_oppr => /max_idPl => ->.
    by rewrite oppeD// 2!oppeK.
  + by rewrite /maxe /=; case: (f x) fx0.
Qed.

End funposneg_lemmas.
#[global]
Hint Extern 0 (is_true (0 <= _ ^\+ _)%E) => solve [apply: funepos_ge0] : core.
#[global]
Hint Extern 0 (is_true (0 <= _ ^\- _)%E) => solve [apply: funeneg_ge0] : core.

Definition indic {T} {R : ringType} (A : set T) (x : T) : R := (x \in A)%:R.
Reserved Notation "'\1_' A" (at level 8, A at level 2, format "'\1_' A") .
Notation "'\1_' A" := (indic A) : ring_scope.

Lemma indicE {T} {R : ringType} (A : set T) (x : T) :
  indic A x = (x \in A)%:R :> R.
Proof. by []. Qed.

Lemma indicT {T} {R : ringType} : \1_[set: T] = cst (1 : R).
Proof. by apply/funext=> x; rewrite indicE in_setT. Qed.

Lemma indic0 {T} {R : ringType} : \1_(@set0 T) = cst (0 : R).
Proof. by apply/funext=> x; rewrite indicE in_set0. Qed.

Lemma indic_restrict {T : pointedType} {R : numFieldType} (A : set T) :
  \1_A = 1 \_ A :> (T -> R).
Proof. by apply/funext => x; rewrite indicE /patch; case: ifP. Qed.

Lemma restrict_indic T (R : numFieldType) (E A : set T) :
  (\1_E \_ A) = \1_(E `&` A) :> (T -> R).
Proof.
apply/funext => x; rewrite /restrict 2!indicE.
case: ifPn => [|] xA; first by rewrite in_setI xA andbT.
by rewrite in_setI (negbTE xA) andbF.
Qed.

Lemma preimage_indic (T : Type) (R : ringType) (D : set T) (B : set R) :
  \1_D @^-1` B = if 1 \in B then (if 0 \in B then setT else D)
                            else (if 0 \in B then ~` D else set0).
Proof.
rewrite /preimage/= /indic; apply/seteqP; split => x;
  case: ifPn => B1; case: ifPn => B0 //=.
- have [|] := boolP (x \in D); first by rewrite inE.
  by rewrite notin_set in B0.
- have [|] := boolP (x \in D); last by rewrite notin_set.
  by rewrite notin_set in B1.
- by have [xD|xD] := boolP (x \in D);
    [rewrite notin_set in B1|rewrite notin_set in B0].
- by have [xD|xD] := boolP (x \in D); [rewrite inE in B1|rewrite inE in B0].
- have [xD|] := boolP (x \in D); last by rewrite notin_set.
  by rewrite inE in B1.
- have [|xD] := boolP (x \in D); first by rewrite inE.
  by rewrite inE in B0.
Qed.

Lemma image_indic T (R : ringType) (D A : set T) :
  \1_D @` A = (if A `\` D != set0 then [set 0] else set0) `|`
              (if A `&` D != set0 then [set 1 : R] else set0).
Proof.
rewrite /indic; apply/predeqP => x; split => [[t At /= <-]|].
  by rewrite /indic; case: (boolP (t \in D)); rewrite ?(inE, notin_set) => Dt;
     [right|left]; rewrite ifT//=; apply/set0P; exists t.
by move=> []; case: ifPn; rewrite ?negbK// => /set0P[t [At Dt]] ->;
   exists t => //; case: (boolP (t \in D)); rewrite ?(inE, notin_set).
Qed.

Lemma image_indic_sub T (R : ringType) (D A : set T) :
  \1_D @` A `<=` [set (0 : R); 1].
Proof.
by rewrite image_indic; do ![case: ifP=> //= _] => // t []//= ->; [left|right].
Qed.