Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 73,943 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 |
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From mathcomp Require Import all_ssreflect ssralg ssrnum ssrint interval.
From mathcomp Require Import finmap fingroup perm rat.
Require Import boolp reals ereal classical_sets signed topology numfun.
Require Import mathcomp_extra functions normedtype.
From HB Require Import structures.
Require Import sequences esum measure fsbigop cardinality set_interval.
Require Import realfun.
(******************************************************************************)
(* Lebesgue Measure *)
(* *)
(* This file contains a formalization of the Lebesgue measure using the *)
(* Caratheodory's theorem available in measure.v and further develops the *)
(* theory of measurable functions. *)
(* *)
(* Main reference: *)
(* - Daniel Li, Intégration et applications, 2016 *)
(* - Achim Klenke, Probability Theory 2nd edition, 2014 *)
(* *)
(* hlength A == length of the hull of the set of real numbers A *)
(* ocitv == set of open-closed intervals ]x, y] where *)
(* x and y are real numbers *)
(* lebesgue_measure == the Lebesgue measure *)
(* *)
(* ps_infty == inductive definition of the powerset *)
(* {0, {-oo}, {+oo}, {-oo,+oo}} *)
(* emeasurable G == sigma-algebra over \bar R built out of the *)
(* measurables G of a sigma-algebra over R *)
(* elebesgue_measure == the Lebesgue measure extended to \bar R *)
(* *)
(* The modules RGenOInfty, RGenInftyO, RGenCInfty, RGenOpens provide proofs *)
(* of equivalence between the sigma-algebra generated by list of intervals *)
(* and the sigma-algebras generated by open rays, closed rays, and open *)
(* intervals. *)
(* *)
(* The modules ErealGenOInfty and ErealGenCInfty provide proofs of *)
(* equivalence between emeasurable and the sigma-algebras generated open *)
(* rays and closed rays. *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldTopology.Exports.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Reserved Notation "R .-ocitv" (at level 1, format "R .-ocitv").
Reserved Notation "R .-ocitv.-measurable"
(at level 2, format "R .-ocitv.-measurable").
Section hlength.
Local Open Scope ereal_scope.
Variable R : realType.
Implicit Types i j : interval R.
Definition hlength (A : set R) : \bar R := let i := Rhull A in i.2 - i.1.
Lemma hlength0 : hlength (set0 : set R) = 0.
Proof. by rewrite /hlength Rhull0 /= subee. Qed.
Lemma hlength_singleton (r : R) : hlength `[r, r] = 0.
Proof.
rewrite /hlength /= asboolT// sup_itvcc//= asboolT//.
by rewrite asboolT inf_itvcc//= ?subee// inE.
Qed.
Lemma hlength_setT : hlength setT = +oo%E :> \bar R.
Proof. by rewrite /hlength RhullT. Qed.
Lemma hlength_itv i : hlength [set` i] = if i.2 > i.1 then i.2 - i.1 else 0.
Proof.
case: ltP => [/lt_ereal_bnd/neitvP i12|]; first by rewrite /hlength set_itvK.
rewrite le_eqVlt => /orP[|/lt_ereal_bnd i12]; last first.
rewrite (_ : [set` i] = set0) ?hlength0//.
by apply/eqP/negPn; rewrite -/(neitv _) neitvE -leNgt (ltW i12).
case: i => -[ba a|[|]] [bb b|[|]] //=.
- rewrite /= => /eqP[->{b}]; move: ba bb => -[] []; try
by rewrite set_itvE hlength0.
by rewrite hlength_singleton.
- by move=> _; rewrite set_itvE hlength0.
- by move=> _; rewrite set_itvE hlength0.
Qed.
Lemma hlength_finite_fin_num i : neitv i -> hlength [set` i] < +oo ->
((i.1 : \bar R) \is a fin_num) /\ ((i.2 : \bar R) \is a fin_num).
Proof.
move: i => [[ba a|[]] [bb b|[]]] /neitvP //=; do ?by rewrite ?set_itvE ?eqxx.
by move=> _; rewrite hlength_itv /= ltey.
by move=> _; rewrite hlength_itv /= ltNye.
by move=> _; rewrite hlength_itv.
Qed.
Lemma finite_hlengthE i : neitv i -> hlength [set` i] < +oo ->
hlength [set` i] = (fine i.2)%:E - (fine i.1)%:E.
Proof.
move=> i0 ioo; have [ri1 ri2] := hlength_finite_fin_num i0 ioo.
rewrite !fineK// hlength_itv; case: ifPn => //.
rewrite -leNgt le_eqVlt => /predU1P[->|]; first by rewrite subee.
by move/lt_ereal_bnd/ltW; rewrite leNgt; move: i0 => /neitvP => ->.
Qed.
Lemma hlength_infty_bnd b r :
hlength [set` Interval -oo%O (BSide b r)] = +oo :> \bar R.
Proof. by rewrite hlength_itv /= ltNye. Qed.
Lemma hlength_bnd_infty b r :
hlength [set` Interval (BSide b r) +oo%O] = +oo :> \bar R.
Proof. by rewrite hlength_itv /= ltey. Qed.
Lemma pinfty_hlength i : hlength [set` i] = +oo ->
(exists s r, i = Interval -oo%O (BSide s r) \/ i = Interval (BSide s r) +oo%O)
\/ i = `]-oo, +oo[.
Proof.
rewrite hlength_itv; case: i => -[ba a|[]] [bb b|[]] //= => [|_|_|].
- by case: ifPn.
- by left; exists ba, a; right.
- by left; exists bb, b; left.
- by right.
Qed.
Lemma hlength_ge0 i : 0 <= hlength [set` i].
Proof.
rewrite hlength_itv; case: ifPn => //; case: (i.1 : \bar _) => [r| |].
- by rewrite suber_ge0//; exact: ltW.
- by rewrite ltNge leey.
- by case: (i.2 : \bar _) => //= [r _]; rewrite leey.
Qed.
Local Hint Extern 0 (0%:E <= hlength _) => solve[apply: hlength_ge0] : core.
Lemma hlength_Rhull (A : set R) : hlength [set` Rhull A] = hlength A.
Proof. by rewrite /hlength Rhull_involutive. Qed.
Lemma le_hlength_itv i j : {subset i <= j} -> hlength [set` i] <= hlength [set` j].
Proof.
set I := [set` i]; set J := [set` j].
have [->|/set0P I0] := eqVneq I set0; first by rewrite hlength0 hlength_ge0.
have [J0|/set0P J0] := eqVneq J set0.
by move/subset_itvP; rewrite -/J J0 subset0 -/I => ->.
move=> /subset_itvP ij; apply: lee_sub => /=.
have [ui|ui] := asboolP (has_ubound I).
have [uj /=|uj] := asboolP (has_ubound J); last by rewrite leey.
by rewrite lee_fin le_sup // => r Ir; exists r; split => //; apply: ij.
have [uj /=|//] := asboolP (has_ubound J).
by move: ui; have := subset_has_ubound ij uj.
have [lj /=|lj] := asboolP (has_lbound J); last by rewrite leNye.
have [li /=|li] := asboolP (has_lbound I); last first.
by move: li; have := subset_has_lbound ij lj.
rewrite lee_fin ler_oppl opprK le_sup// ?has_inf_supN//; last exact/nonemptyN.
move=> r [r' Ir' <-{r}]; exists (- r')%R.
by split => //; exists r' => //; apply: ij.
Qed.
Lemma le_hlength : {homo hlength : A B / (A `<=` B) >-> A <= B}.
Proof.
move=> a b /le_Rhull /le_hlength_itv.
by rewrite (hlength_Rhull a) (hlength_Rhull b).
Qed.
End hlength.
Arguments hlength {R}.
#[global] Hint Extern 0 (0%:E <= hlength _) => solve[apply: hlength_ge0] : core.
Section itv_semiRingOfSets.
Variable R : realType.
Implicit Types (I J K : set R).
Definition ocitv_type : Type := R.
Definition ocitv := [set `]x.1, x.2]%classic | x in [set: R * R]].
Lemma is_ocitv a b : ocitv `]a, b]%classic.
Proof. by exists (a, b); split => //=; rewrite in_itv/= andbT. Qed.
Hint Extern 0 (ocitv _) => solve [apply: is_ocitv] : core.
Lemma ocitv0 : ocitv set0.
Proof. by exists (1, 0); rewrite //= set_itv_ge ?bnd_simp//= ltr10. Qed.
Hint Resolve ocitv0 : core.
Lemma ocitvP X : ocitv X <-> X = set0 \/ exists2 x, x.1 < x.2 & X = `]x.1, x.2]%classic.
Proof.
split=> [[x _ <-]|[->//|[x xlt ->]]]//.
case: (boolP (x.1 < x.2)) => x12; first by right; exists x.
by left; rewrite set_itv_ge.
Qed.
Lemma ocitvD : semi_setD_closed ocitv.
Proof.
move=> _ _ [a _ <-] /ocitvP[|[b ltb]] ->.
rewrite setD0; exists [set `]a.1, a.2]%classic].
by split=> [//|? ->//||? ? -> ->//]; rewrite bigcup_set1.
rewrite setDE setCitv/= setIUr -!set_itvI.
rewrite /Order.meet/= /Order.meet/= /Order.join/=
?(andbF, orbF)/= ?(meetEtotal, joinEtotal).
rewrite -negb_or le_total/=; set c := minr _ _; set d := maxr _ _.
have inside : a.1 < c -> d < a.2 -> `]a.1, c] `&` `]d, a.2] = set0.
rewrite -subset0 lt_minr lt_maxl => /andP[a12 ab1] /andP[_ ba2] x /= [].
have b1a2 : b.1 <= a.2 by rewrite ltW// (lt_trans ltb).
have a1b2 : a.1 <= b.2 by rewrite ltW// (lt_trans _ ltb).
rewrite /c /d (min_idPr _)// (max_idPr _)// !in_itv /=.
move=> /andP[a1x xb1] /andP[b2x xa2].
by have := lt_le_trans b2x xb1; case: ltgtP ltb.
exists ((if a.1 < c then [set `]a.1, c]%classic] else set0) `|`
(if d < a.2 then [set `]d, a.2]%classic] else set0)); split.
- by rewrite finite_setU; do! case: ifP.
- by move=> ? []; case: ifP => ? // ->//=.
- by rewrite bigcup_setU; congr (_ `|` _);
case: ifPn => ?; rewrite ?bigcup_set1 ?bigcup_set0// set_itv_ge.
- move=> I J/=; case: ifP => //= ac; case: ifP => //= da [] // -> []// ->.
by rewrite inside// => -[].
by rewrite setIC inside// => -[].
Qed.
Lemma ocitvI : setI_closed ocitv.
Proof.
move=> _ _ [a _ <-] [b _ <-]; rewrite -set_itvI/=.
rewrite /Order.meet/= /Order.meet /Order.join/=
?(andbF, orbF)/= ?(meetEtotal, joinEtotal).
by rewrite -negb_or le_total/=.
Qed.
Definition ocitv_display : Type -> measure_display. Proof. exact. Qed.
HB.instance Definition _ :=
@isSemiRingOfSets.Build (ocitv_display R)
ocitv_type (Pointed.class R) ocitv ocitv0 ocitvI ocitvD.
Notation "R .-ocitv" := (ocitv_display R) : measure_display_scope.
Notation "R .-ocitv.-measurable" := (measurable : set (set (ocitv_type))) :
classical_set_scope.
Lemma hlength_ge0' (I : set ocitv_type) : (0 <= hlength I)%E.
Proof. by rewrite -hlength0 le_hlength. Qed.
(* Unused *)
(* Lemma hlength_semi_additive2 : semi_additive2 hlength. *)
(* Proof. *)
(* move=> I J /ocitvP[|[a a12]] ->; first by rewrite set0U hlength0 add0e. *)
(* move=> /ocitvP[|[b b12]] ->; first by rewrite setU0 hlength0 adde0. *)
(* rewrite -subset0 => + ab0 => /ocitvP[|[x x12] abx]. *)
(* by rewrite setU_eq0 => -[-> ->]; rewrite setU0 hlength0 adde0. *)
(* rewrite abx !hlength_itv//= ?lte_fin a12 b12 x12/= -!EFinB -EFinD. *)
(* wlog ab1 : a a12 b b12 ab0 abx / a.1 <= b.1 => [hwlog|]. *)
(* have /orP[ab1|ba1] := le_total a.1 b.1; first by apply: hwlog. *)
(* by rewrite [in RHS]addrC; apply: hwlog => //; rewrite (setIC, setUC). *)
(* have := ab0; rewrite subset0 -set_itv_meet/=. *)
(* rewrite /Order.join /Order.meet/= ?(andbF, orbF)/= ?(meetEtotal, joinEtotal). *)
(* rewrite -negb_or le_total/=; set c := minr _ _; set d := maxr _ _. *)
(* move=> /eqP/neitvP/=; rewrite bnd_simp/= /d/c (max_idPr _)// => /negP. *)
(* rewrite -leNgt le_minl orbC lt_geF//= => {c} {d} a2b1. *)
(* have ab i j : i \in `]a.1, a.2] -> j \in `]b.1, b.2] -> i <= j. *)
(* by move=> ia jb; rewrite (le_le_trans _ _ a2b1) ?(itvP ia) ?(itvP jb). *)
(* have /(congr1 sup) := abx; rewrite sup_setU// ?sup_itv_bounded// => bx. *)
(* have /(congr1 inf) := abx; rewrite inf_setU// ?inf_itv_bounded// => ax. *)
(* rewrite -{}ax -{x}bx in abx x12 *. *)
(* case: ltgtP a2b1 => // a2b1 _; last first. *)
(* by rewrite a2b1 [in RHS]addrC subrKA. *)
(* exfalso; pose c := (a.2 + b.1) / 2%:R. *)
(* have /predeqP/(_ c)[_ /(_ _)/Box[]] := abx. *)
(* apply: subset_itv_oo_oc; have := mid_in_itvoo a2b1. *)
(* by apply/subitvP; rewrite subitvE ?bnd_simp/= ?ltW. *)
(* apply/not_orP; rewrite /= !in_itv/=. *)
(* by rewrite lt_geF ?midf_lt//= andbF le_gtF ?midf_le//= ltW. *)
(* Qed. *)
Lemma hlength_semi_additive : semi_additive (hlength : set ocitv_type -> _).
Proof.
move=> /= I n /(_ _)/cid2-/all_sig[b]/all_and2[_]/(_ _)/esym-/funext {I}->.
move=> Itriv [[/= a1 a2] _] /esym /[dup] + ->.
rewrite hlength_itv ?lte_fin/= -EFinB.
case: ifPn => a12; last first.
pose I i := `](b i).1, (b i).2]%classic.
rewrite set_itv_ge//= -(bigcup_mkord _ I) /I => /bigcup0P I0.
by under eq_bigr => i _ do rewrite I0//= hlength0; rewrite big1.
set A := `]a1, a2]%classic.
rewrite -bigcup_pred; set P := xpredT; rewrite (eq_bigl P)//.
move: P => P; have [p] := ubnP #|P|; elim: p => // p IHp in P a2 a12 A *.
rewrite ltnS => cP /esym AE.
have : A a2 by rewrite /A /= in_itv/= lexx andbT.
rewrite AE/= => -[i /= Pi] a2bi.
case: (boolP ((b i).1 < (b i).2)) => bi; last by rewrite itv_ge in a2bi.
have {}a2bi : a2 = (b i).2.
apply/eqP; rewrite eq_le (itvP a2bi)/=.
suff: A (b i).2 by move=> /itvP->.
by rewrite AE; exists i=> //=; rewrite in_itv/= lexx andbT.
rewrite {a2}a2bi in a12 A AE *.
rewrite (bigD1 i)//= hlength_itv ?lte_fin/= bi !EFinD -addeA.
congr (_ + _)%E; apply/eqP; rewrite addeC -sube_eq// 1?adde_defC//.
rewrite ?EFinN oppeK addeC; apply/eqP.
case: (eqVneq a1 (b i).1) => a1bi.
rewrite {a1}a1bi in a12 A AE {IHp} *; rewrite subee ?big1// => j.
move=> /andP[Pj Nji]; rewrite hlength_itv ?lte_fin/=; case: ifPn => bj//.
exfalso; have /trivIsetP/(_ j i I I Nji) := Itriv.
pose m := ((b j).1 + (b j).2) / 2%:R.
have mbj : `](b j).1, (b j).2]%classic m.
by rewrite /= !in_itv/= ?(midf_lt, midf_le)//= ltW.
rewrite -subset0 => /(_ m); apply; split=> //.
by suff: A m by []; rewrite AE; exists j => //.
have a1b2 j : P j -> (b j).1 < (b j).2 -> a1 <= (b j).2.
move=> Pj bj; suff /itvP-> : A (b j).2 by [].
by rewrite AE; exists j => //=; rewrite ?in_itv/= bj//=.
have a1b j : P j -> (b j).1 < (b j).2 -> a1 <= (b j).1.
move=> Pj bj; case: ltP=> // bj1a.
suff : A a1 by rewrite /A/= in_itv/= ltxx.
by rewrite AE; exists j; rewrite //= in_itv/= bj1a//= a1b2.
have bbi2 j : P j -> (b j).1 < (b j).2 -> (b j).2 <= (b i).2.
move=> Pj bj; suff /itvP-> : A (b j).2 by [].
by rewrite AE; exists j => //=; rewrite ?in_itv/= bj//=.
apply/IHp.
- by rewrite lt_neqAle a1bi/= a1b.
- rewrite (leq_trans _ cP)// -(cardID (pred1 i) P).
rewrite [X in (_ < X + _)%N](@eq_card _ _ (pred1 i)); last first.
by move=> j; rewrite !inE andbC; case: eqVneq => // ->.
rewrite ?card1 ?ltnS// subset_leq_card//.
by apply/fintype.subsetP => j; rewrite -topredE/= !inE andbC.
apply/seteqP; split=> /= [x [j/= /andP[Pj Nji]]|x/= xabi].
case: (boolP ((b j).1 < (b j).2)) => bj; last by rewrite itv_ge.
apply: subitvP; rewrite subitvE ?bnd_simp a1b//= leNgt.
have /trivIsetP/(_ j i I I Nji) := Itriv.
rewrite -subset0 => /(_ (b j).2); apply: contra_notN => /= bi1j2.
by rewrite !in_itv/= bj !lexx bi1j2 bbi2.
have: A x.
rewrite /A/= in_itv/= (itvP xabi)/= ltW//.
by rewrite (le_lt_trans _ bi) ?(itvP xabi).
rewrite AE => -[j /= Pj xbj].
exists j => //=.
apply/andP; split=> //; apply: contraTneq xbj => ->.
by rewrite in_itv/= le_gtF// (itvP xabi).
Qed.
HB.instance Definition _ := isAdditiveMeasure.Build _ R _
(hlength : set ocitv_type -> _) (@hlength_ge0') hlength_semi_additive.
Hint Extern 0 ((_ .-ocitv).-measurable _) => solve [apply: is_ocitv] : core.
Lemma hlength_sigma_sub_additive :
sigma_sub_additive (hlength : set ocitv_type -> _).
Proof.
move=> I A /(_ _)/cid2-/all_sig[b]/all_and2[_]/(_ _)/esym AE.
move=> [a _ <-]; rewrite hlength_itv ?lte_fin/= -EFinB => lebig.
case: ifPn => a12; last by rewrite nneseries_esum// esum_ge0.
apply: lee_adde => e.
rewrite [e%:num]splitr [in leRHS]EFinD addeA -lee_subl_addr//.
apply: le_trans (epsilon_trick _ _ _) => //=.
have eVn_gt0 n : 0 < e%:num / 2 / (2 ^ n.+1)%:R.
by rewrite divr_gt0// ltr0n// expn_gt0.
have eVn_ge0 n := ltW (eVn_gt0 n).
pose Aoo i : set ocitv_type :=
`](b i).1, (b i).2 + e%:num / 2 / (2 ^ i.+1)%:R[%classic.
pose Aoc i : set ocitv_type :=
`](b i).1, (b i).2 + e%:num / 2 / (2 ^ i.+1)%:R]%classic.
have: `[a.1 + e%:num / 2, a.2] `<=` \bigcup_i Aoo i.
apply: (@subset_trans _ `]a.1, a.2]).
move=> x; rewrite /= !in_itv /= => /andP[+ -> //].
by move=> /lt_le_trans-> //; rewrite ltr_addl.
apply: (subset_trans lebig); apply: subset_bigcup => i _; rewrite AE /Aoo/=.
move=> x /=; rewrite !in_itv /= => /andP[-> /le_lt_trans->]//=.
by rewrite ltr_addl.
have := @segment_compact _ (a.1 + e%:num / 2) a.2; rewrite compact_cover.
move=> /[apply]-[i _|X _ Xc]; first exact: interval_open.
have: `](a.1 + e%:num / 2), a.2] `<=` \bigcup_(i in [set` X]) Aoc i.
move=> x /subset_itv_oc_cc /Xc [i /= Xi] Aooix.
by exists i => //; apply: subset_itv_oo_oc Aooix.
have /[apply] := @content_sub_fsum _ _ _
[the additive_measure _ _ of hlength : set ocitv_type -> _] _ [set` X].
move=> /(_ _ _ _)/Box[]//=; apply: le_le_trans.
rewrite hlength_itv ?lte_fin -?EFinD/= -addrA -opprD.
by case: ltP => //; rewrite lee_fin subr_le0.
rewrite nneseries_esum//; last by move=> *; rewrite adde_ge0//= ?lee_fin.
rewrite esum_ge//; exists X => //; rewrite fsbig_finite// ?set_fsetK//=.
rewrite lee_sum // => i _; rewrite ?AE// !hlength_itv/= ?lte_fin -?EFinD/=.
do !case: ifPn => //= ?; do ?by rewrite ?adde_ge0 ?lee_fin// ?subr_ge0// ?ltW.
by rewrite addrAC.
by rewrite addrAC lee_fin ler_add// subr_le0 leNgt.
Qed.
Lemma hlength_sigma_finite : sigma_finite [set: ocitv_type] hlength.
Proof.
exists (fun k : nat => `] (- k%:R)%R, k%:R]%classic).
apply/esym; rewrite -subTset => /= x _ /=.
exists `|(floor `|x|%R + 1)%R|%N; rewrite //= in_itv/=.
rewrite !natr_absz intr_norm intrD -RfloorE.
suff: `|x| < `|Rfloor `|x| + 1| by rewrite ltr_norml => /andP[-> /ltW->].
rewrite [ltRHS]ger0_norm//.
by rewrite (le_lt_trans _ (lt_succ_Rfloor _))// ?ler_norm.
by rewrite addr_ge0// -Rfloor0 le_Rfloor.
by move=> k; split => //; rewrite hlength_itv/= -EFinB; case: ifP; rewrite ltey.
Qed.
Let gitvs := [the semiRingOfSetsType _ of salgebraType ocitv].
Definition lebesgue_measure := Hahn_ext
[the additive_measure _ _ of hlength : set ocitv_type -> _].
Let lebesgue_measure0 : lebesgue_measure set0 = 0%E.
Proof. by []. Qed.
Let lebesgue_measure_ge0 : forall x, (0 <= lebesgue_measure x)%E.
Proof. exact: measure.Hahn_ext_ge0. Qed.
Let lebesgue_measure_semi_sigma_additive : semi_sigma_additive lebesgue_measure.
Proof. exact/measure.Hahn_ext_sigma_additive/hlength_sigma_sub_additive. Qed.
HB.instance Definition _ := isMeasure.Build _ _ _ lebesgue_measure
lebesgue_measure0 lebesgue_measure_ge0 lebesgue_measure_semi_sigma_additive.
End itv_semiRingOfSets.
Arguments lebesgue_measure {R}.
Notation "R .-ocitv" := (ocitv_display R) : measure_display_scope.
Notation "R .-ocitv.-measurable" := (measurable : set (set (ocitv_type R))) :
classical_set_scope.
Section lebesgue_measure.
Variable R : realType.
Let gitvs := [the measurableType _ of salgebraType (@ocitv R)].
Lemma lebesgue_measure_unique (mu : {measure set gitvs -> \bar R}) :
(forall X, ocitv X -> hlength X = mu X) ->
forall X, measurable X -> lebesgue_measure X = mu X.
Proof.
move=> muE X mX; apply: Hahn_ext_unique => //=.
- exact: hlength_sigma_sub_additive.
- exact: hlength_sigma_finite.
Qed.
End lebesgue_measure.
Section ps_infty.
Context {T : Type}.
Local Open Scope ereal_scope.
Inductive ps_infty : set \bar T -> Prop :=
| ps_infty0 : ps_infty set0
| ps_ninfty : ps_infty [set -oo]
| ps_pinfty : ps_infty [set +oo]
| ps_inftys : ps_infty [set -oo; +oo].
Lemma ps_inftyP (A : set \bar T) : ps_infty A <-> A `<=` [set -oo; +oo].
Proof.
split => [[]//|Aoo].
by have [] := subset_set2 Aoo; move=> ->; constructor.
Qed.
Lemma setCU_Efin (A : set T) (B : set \bar T) : ps_infty B ->
~` (EFin @` A) `&` ~` B = (EFin @` ~` A) `|` ([set -oo%E; +oo%E] `&` ~` B).
Proof.
move=> ps_inftyB.
have -> : ~` (EFin @` A) = EFin @` (~` A) `|` [set -oo; +oo]%E.
by rewrite EFin_setC setDKU // => x [|] -> -[].
rewrite setIUl; congr (_ `|` _); rewrite predeqE => -[x| |]; split; try by case.
by move=> [] x' Ax' [] <-{x}; split; [exists x'|case: ps_inftyB => // -[]].
Qed.
End ps_infty.
Section salgebra_ereal.
Variables (R : realType) (G : set (set R)).
Let measurableR : set (set R) := G.-sigma.-measurable.
Definition emeasurable : set (set \bar R) :=
[set EFin @` A `|` B | A in measurableR & B in ps_infty].
Lemma emeasurable0 : emeasurable set0.
Proof.
exists set0; first exact: measurable0.
by exists set0; rewrite ?setU0// ?image_set0//; constructor.
Qed.
Lemma emeasurableC (X : set \bar R) : emeasurable X -> emeasurable (~` X).
Proof.
move => -[A mA] [B PooB <-]; rewrite setCU setCU_Efin //.
exists (~` A); [exact: measurableC | exists ([set -oo%E; +oo%E] `&` ~` B) => //].
case: PooB.
- by rewrite setC0 setIT; constructor.
- rewrite setIUl setICr set0U -setDE.
have [_ ->] := @setDidPl (\bar R) [set +oo%E] [set -oo%E]; first by constructor.
by rewrite predeqE => x; split => // -[->].
- rewrite setIUl setICr setU0 -setDE.
have [_ ->] := @setDidPl (\bar R) [set -oo%E] [set +oo%E]; first by constructor.
by rewrite predeqE => x; split => // -[->].
- by rewrite setICr; constructor.
Qed.
Lemma bigcupT_emeasurable (F : (set \bar R)^nat) :
(forall i, emeasurable (F i)) -> emeasurable (\bigcup_i (F i)).
Proof.
move=> mF; pose P := fun i j => measurableR j.1 /\ ps_infty j.2 /\
F i = [set x%:E | x in j.1] `|` j.2.
have [f fi] : {f : nat -> (set R) * (set \bar R) & forall i, P i (f i) }.
by apply: choice => i; have [x mx [y PSoo'y] xy] := mF i; exists (x, y).
exists (\bigcup_i (f i).1).
by apply: bigcupT_measurable => i; exact: (fi i).1.
exists (\bigcup_i (f i).2).
apply/ps_inftyP => x [n _] fn2x.
have /ps_inftyP : ps_infty(f n).2 by have [_ []] := fi n.
exact.
rewrite [RHS](@eq_bigcupr _ _ _ _
(fun i => [set x%:E | x in (f i).1] `|` (f i).2)); last first.
by move=> i; have [_ []] := fi i.
rewrite bigcupU; congr (_ `|` _).
rewrite predeqE => i /=; split=> [[r [n _ fn1r <-{i}]]|[n _ [r fn1r <-{i}]]];
by [exists n => //; exists r | exists r => //; exists n].
Qed.
Definition ereal_isMeasurable :
isMeasurable default_measure_display (\bar R) :=
isMeasurable.Build _ _ (Pointed.class _)
emeasurable0 emeasurableC bigcupT_emeasurable.
End salgebra_ereal.
Section puncture_ereal_itv.
Variable R : realDomainType.
Implicit Types (y : R) (b : bool).
Local Open Scope ereal_scope.
Lemma punct_eitv_bnd_pinfty b y : [set` Interval (BSide b y%:E) +oo%O] =
EFin @` [set` Interval (BSide b y) +oo%O] `|` [set +oo].
Proof.
rewrite predeqE => x; split; rewrite /= in_itv andbT.
- move: x => [x| |] yxb; [|by right|by case: b yxb].
by left; exists x => //; rewrite in_itv /= andbT; case: b yxb.
- move=> [[r]|->].
+ by rewrite in_itv /= andbT => yxb <-; case: b yxb.
+ by case: b => /=; rewrite ?(ltey, leey).
Qed.
Lemma punct_eitv_ninfty_bnd b y : [set` Interval -oo%O (BSide b y%:E)] =
[set -oo%E] `|` EFin @` [set x | x \in Interval -oo%O (BSide b y)].
Proof.
rewrite predeqE => x; split; rewrite /= in_itv.
- move: x => [x| |] yxb; [|by case: b yxb|by left].
by right; exists x => //; rewrite in_itv /= andbT; case: b yxb.
- move=> [->|[r]].
+ by case: b => /=; rewrite ?(ltNye, leNye).
+ by rewrite in_itv /= => yxb <-; case: b yxb.
Qed.
Lemma punct_eitv_setTR : range (@EFin R) `|` [set +oo] = [set~ -oo].
Proof.
rewrite eqEsubset; split => [a [[a' _ <-]|->]|] //.
by move=> [x| |] //= _; [left; exists x|right].
Qed.
Lemma punct_eitv_setTL : range (@EFin R) `|` [set -oo] = [set~ +oo].
Proof.
rewrite eqEsubset; split => [a [[a' _ <-]|->]|] //.
by move=> [x| |] //= _; [left; exists x|right].
Qed.
End puncture_ereal_itv.
Lemma set1_bigcap_oc (R : realType) (r : R) :
[set r] = \bigcap_i `]r - i.+1%:R^-1, r]%classic.
Proof.
apply/seteqP; split=> [x ->|].
by move=> i _/=; rewrite in_itv/= lexx ltr_subl_addr ltr_addl invr_gt0 ltr0n.
move=> x rx; apply/esym/eqP; rewrite eq_le (itvP (rx 0%N _))// andbT.
apply/ler_addgt0Pl => e e_gt0; rewrite -ler_subl_addl ltW//.
have := rx `|floor e^-1%R|%N I; rewrite /= in_itv => /andP[/le_lt_trans->]//.
rewrite ler_add2l ler_opp2 -lef_pinv ?invrK//; last by rewrite qualifE.
rewrite -addn1 natrD natr_absz ger0_norm ?floor_ge0 ?invr_ge0 1?ltW//.
by rewrite -RfloorE lt_succ_Rfloor.
Qed.
Lemma itv_bnd_open_bigcup (R : realType) b (r s : R) :
[set` Interval (BSide b r) (BLeft s)] =
\bigcup_n [set` Interval (BSide b r) (BRight (s - n.+1%:R^-1))].
Proof.
apply/seteqP; split => [x/=|]; last first.
move=> x [n _ /=] /[!in_itv] /andP[-> /le_lt_trans]; apply.
by rewrite ltr_subl_addr ltr_addl invr_gt0 ltr0n.
rewrite in_itv/= => /andP[sx xs]; exists `|ceil ((s - x)^-1)|%N => //=.
rewrite in_itv/= sx/= ler_subr_addl addrC -ler_subr_addl.
rewrite -[in X in _ <= X](invrK (s - x)) ler_pinv.
- rewrite -addn1 natrD natr_absz ger0_norm; last first.
by rewrite ceil_ge0// invr_ge0 subr_ge0 ltW.
by rewrite (@le_trans _ _ (ceil (s - x)^-1)%:~R)// ?ler_addl// ceil_ge.
- by rewrite inE unitfE ltr0n andbT pnatr_eq0.
- by rewrite inE invr_gt0 subr_gt0 xs andbT unitfE invr_eq0 subr_eq0 gt_eqF.
Qed.
Lemma itv_open_bnd_bigcup (R : realType) b (r s : R) :
[set` Interval (BRight s) (BSide b r)] =
\bigcup_n [set` Interval (BLeft (s + n.+1%:R^-1)) (BSide b r)].
Proof.
have /(congr1 (fun x => -%R @` x)) := itv_bnd_open_bigcup (~~ b) (- r) (- s).
rewrite opp_itv_bnd_bnd/= !opprK negbK => ->; rewrite image_bigcup.
apply eq_bigcupr => k _; apply/seteqP; split=> [_/= [y ysr] <-|x/= xsr].
by rewrite oppr_itv/= opprD.
by exists (- x); rewrite ?oppr_itv//= opprK// negbK opprB opprK addrC.
Qed.
Lemma itv_bnd_infty_bigcup (R : realType) b (x : R) :
[set` Interval (BSide b x) +oo%O] =
\bigcup_i [set` Interval (BSide b x) (BRight (x + i%:R))].
Proof.
apply/seteqP; split=> y; rewrite /= !in_itv/= andbT; last first.
by move=> [k _ /=]; move: b => [|] /=; rewrite in_itv/= => /andP[//] /ltW.
move=> xy; exists `|ceil (y - x)|%N => //=; rewrite in_itv/= xy/= -ler_subl_addl.
rewrite !natr_absz/= ger0_norm ?ceil_ge0// ?subr_ge0//; last first.
by case: b xy => //= /ltW.
by rewrite -RceilE Rceil_ge.
Qed.
Lemma itv_infty_bnd_bigcup (R : realType) b (x : R) :
[set` Interval -oo%O (BSide b x)] =
\bigcup_i [set` Interval (BLeft (x - i%:R)) (BSide b x)].
Proof.
have /(congr1 (fun x => -%R @` x)) := itv_bnd_infty_bigcup (~~ b) (- x).
rewrite opp_itv_bnd_infty negbK opprK => ->; rewrite image_bigcup.
apply eq_bigcupr => k _; apply/seteqP; split=> [_ /= -[r rbxk <-]|y/= yxkb].
by rewrite oppr_itv/= opprB addrC.
by exists (- y); [rewrite oppr_itv/= negbK opprD opprK|rewrite opprK].
Qed.
Section salgebra_R_ssets.
Variable R : realType.
Definition measurableTypeR := salgebraType (R.-ocitv.-measurable).
Definition measurableR : set (set R) :=
(R.-ocitv.-measurable).-sigma.-measurable.
HB.instance Definition R_isMeasurable :
isMeasurable default_measure_display R :=
@isMeasurable.Build _ measurableTypeR (Pointed.class R) measurableR
measurable0 (@measurableC _ _) (@bigcupT_measurable _ _).
(*HB.instance (Real.sort R) R_isMeasurable.*)
Lemma measurable_set1 (r : R) : measurable [set r].
Proof.
rewrite set1_bigcap_oc; apply: bigcap_measurable => k // _.
by apply: sub_sigma_algebra; exact/is_ocitv.
Qed.
#[local] Hint Resolve measurable_set1 : core.
Lemma measurable_itv (i : interval R) : measurable [set` i].
Proof.
have moc (a b : R) : measurable `]a, b]%classic.
by apply: sub_sigma_algebra; apply: is_ocitv.
have mopoo (x : R) : measurable `]x, +oo[%classic.
by rewrite itv_bnd_infty_bigcup; exact: bigcup_measurable.
have mnooc (x : R) : measurable `]-oo, x]%classic.
by rewrite -setCitvr; exact/measurableC.
have ooE (a b : R) : `]a, b[%classic = `]a, b]%classic `\ b.
case: (boolP (a < b)) => ab; last by rewrite !set_itv_ge ?set0D.
by rewrite -setUitv1// setUDK// => x [->]; rewrite /= in_itv/= ltxx andbF.
have moo (a b : R) : measurable `]a, b[%classic.
by rewrite ooE; exact: measurableD.
have mcc (a b : R) : measurable `[a, b]%classic.
case: (boolP (a <= b)) => ab; last by rewrite set_itv_ge.
by rewrite -setU1itv//; apply/measurableU.
have mco (a b : R) : measurable `[a, b[%classic.
case: (boolP (a < b)) => ab; last by rewrite set_itv_ge.
by rewrite -setU1itv//; apply/measurableU.
have oooE (b : R) : `]-oo, b[%classic = `]-oo, b]%classic `\ b.
by rewrite -setUitv1// setUDK// => x [->]; rewrite /= in_itv/= ltxx.
case: i => [[[] a|[]] [[] b|[]]] => //; do ?by rewrite set_itv_ge.
- by rewrite -setU1itv//; exact/measurableU.
- by rewrite oooE; exact/measurableD.
- by rewrite set_itv_infty_infty.
Qed.
HB.instance Definition _ :=
(ereal_isMeasurable (R.-ocitv.-measurable)).
(* NB: Until we dropped support for Coq 8.12, we were using
HB.instance (\bar (Real.sort R))
(ereal_isMeasurable (@measurable (@itvs_semiRingOfSets R))).
This was producing a warning but the alternative was failing with Coq 8.12 with
the following message (according to the CI):
# [redundant-canonical-projection,typechecker]
# forall (T : measurableType) (f : T -> R), measurable_fun setT f
# : Prop
# File "./theories/lebesgue_measure.v", line 4508, characters 0-88:
# Error: Anomaly "Uncaught exception Failure("sep_last")."
# Please report at http://coq.inria.fr/bugs/.
*)
Lemma measurable_EFin (A : set R) : measurableR A -> measurable (EFin @` A).
Proof.
by move=> mA; exists A => //; exists set0; [constructor|rewrite setU0].
Qed.
Lemma emeasurable_set1 (x : \bar R) : measurable [set x].
Proof.
case: x => [r| |].
- by rewrite -image_set1; apply: measurable_EFin; apply: measurable_set1.
- exists set0 => //; [exists [set +oo%E]; [by constructor|]].
by rewrite image_set0 set0U.
- exists set0 => //; [exists [set -oo%E]; [by constructor|]].
by rewrite image_set0 set0U.
Qed.
#[local] Hint Resolve emeasurable_set1 : core.
Lemma itv_cpinfty_pinfty : `[+oo%E, +oo[%classic = [set +oo%E] :> set (\bar R).
Proof.
by rewrite set_itvE predeqE => t; split => /= [|<-//]; rewrite leye_eq => /eqP.
Qed.
Lemma itv_opinfty_pinfty : `]+oo%E, +oo[%classic = set0 :> set (\bar R).
Proof.
by rewrite set_itvE predeqE => t; split => //=; apply/negP; rewrite -leNgt leey.
Qed.
Lemma itv_cninfty_pinfty : `[-oo%E, +oo[%classic = setT :> set (\bar R).
Proof. by rewrite set_itvE predeqE => t; split => //= _; rewrite leNye. Qed.
Lemma itv_oninfty_pinfty :
`]-oo%E, +oo[%classic = ~` [set -oo]%E :> set (\bar R).
Proof.
rewrite set_itvE predeqE => x; split => /=.
- by move: x => [x| |]; rewrite ?ltxx.
- by move: x => [x h|//|/(_ erefl)]; rewrite ?ltNye.
Qed.
Lemma emeasurable_itv_bnd_pinfty b (y : \bar R) :
measurable [set` Interval (BSide b y) +oo%O].
Proof.
move: y => [y| |].
- exists [set` Interval (BSide b y) +oo%O]; first exact: measurable_itv.
by exists [set +oo%E]; [constructor|rewrite -punct_eitv_bnd_pinfty].
- by case: b; rewrite ?itv_opinfty_pinfty ?itv_cpinfty_pinfty.
- case: b; first by rewrite itv_cninfty_pinfty.
by rewrite itv_oninfty_pinfty; exact/measurableC.
Qed.
Lemma emeasurable_itv_ninfty_bnd b (y : \bar R) :
measurable [set` Interval -oo%O (BSide b y)].
Proof.
by rewrite -setCitvr; exact/measurableC/emeasurable_itv_bnd_pinfty.
Qed.
Definition elebesgue_measure : set \bar R -> \bar R :=
fun S => lebesgue_measure (fine @` (S `\` [set -oo; +oo]%E)).
Lemma elebesgue_measure0 : elebesgue_measure set0 = 0%E.
Proof. by rewrite /elebesgue_measure set0D image_set0 measure0. Qed.
Lemma measurable_fine (X : set \bar R) : measurable X ->
measurable [set fine x | x in X `\` [set -oo; +oo]%E].
Proof.
case => Y mY [X' [ | <-{X} | <-{X} | <-{X} ]].
- rewrite setU0 => <-{X}.
rewrite [X in measurable X](_ : _ = Y) // predeqE => r; split.
by move=> [x [[x' Yx' <-{x}/= _ <-//]]].
by move=> Yr; exists r%:E; split => [|[]//]; exists r.
- rewrite [X in measurable X](_ : _ = Y) // predeqE => r; split.
move=> [x [[[x' Yx' <- _ <-//]|]]].
by move=> <-; rewrite not_orP => -[]/(_ erefl).
by move=> Yr; exists r%:E => //; split => [|[]//]; left; exists r.
- rewrite [X in measurable X](_ : _ = Y) // predeqE => r; split.
move=> [x [[[x' Yx' <-{x} _ <-//]|]]].
by move=> ->; rewrite not_orP => -[_]/(_ erefl).
by move=> Yr; exists r%:E => //; split => [|[]//]; left; exists r.
- rewrite [X in measurable X](_ : _ = Y) // predeqE => r; split.
by rewrite setDUl setDv setU0 => -[_ [[x' Yx' <-]] _ <-].
by move=> Yr; exists r%:E => //; split => [|[]//]; left; exists r.
Qed.
Lemma elebesgue_measure_ge0 X : (0 <= elebesgue_measure X)%E.
Proof. exact/measure_ge0. Qed.
Lemma semi_sigma_additive_elebesgue_measure :
semi_sigma_additive elebesgue_measure.
Proof.
move=> /= F mF tF mUF; rewrite /elebesgue_measure.
rewrite [X in lebesgue_measure X](_ : _ =
\bigcup_n (fine @` (F n `\` [set -oo; +oo]%E))); last first.
rewrite predeqE => r; split.
by move=> [x [[n _ Fnx xoo <-]]]; exists n => //; exists x.
by move=> [n _ [x [Fnx xoo <-{r}]]]; exists x => //; split => //; exists n.
apply: (@measure_semi_sigma_additive _ _ _ [the measure _ _ of (@lebesgue_measure R)]
(fun n => fine @` (F n `\` [set -oo; +oo]%E))).
- move=> n; have := mF n.
move=> [X mX [X' mX']] XX'Fn.
apply: measurable_fine.
rewrite -XX'Fn.
apply: measurableU; first exact: measurable_EFin.
by case: mX' => //; exact: measurableU.
- move=> i j _ _ [x [[a [Fia aoo ax] [b [Fjb boo] bx]]]].
move: tF => /(_ i j Logic.I Logic.I); apply.
suff ab : a = b by exists a; split => //; rewrite ab.
move: a b {Fia Fjb} aoo boo ax bx.
move=> [a| |] [b| |] /=.
+ by move=> _ _ -> ->.
+ by move=> _; rewrite not_orP => -[_]/(_ erefl).
+ by move=> _; rewrite not_orP => -[]/(_ erefl).
+ by rewrite not_orP => -[_]/(_ erefl).
+ by rewrite not_orP => -[_]/(_ erefl).
+ by rewrite not_orP => -[_]/(_ erefl).
+ by rewrite not_orP => -[]/(_ erefl).
+ by rewrite not_orP => -[]/(_ erefl).
+ by rewrite not_orP => -[]/(_ erefl).
- move: mUF.
rewrite {1}/measurable /emeasurable /= => -[X mX [Y []]] {Y}.
- rewrite setU0 => h.
rewrite [X in measurable X](_ : _ = X) // predeqE => r; split => [|Xr].
move=> -[n _ [x [Fnx xoo <-{r}]]].
have : (\bigcup_n F n) x by exists n.
by rewrite -h => -[x' Xx' <-].
have [n _ Fnr] : (\bigcup_n F n) r%:E by rewrite -h; exists r.
by exists n => //; exists r%:E => //; split => //; case.
- move=> h.
rewrite [X in measurable X](_ : _ = X) // predeqE => r; split => [|Xr].
move=> -[n _ [x [Fnx xoo <-]]].
have : (\bigcup_n F n) x by exists n.
by rewrite -h => -[[x' Xx' <-//]|xoo']; move/not_orP : xoo => -[].
have [n _ Fnr] : (\bigcup_n F n) r%:E by rewrite -h; left; exists r.
by exists n => //; exists r%:E => //; split => //; case.
- (* NB: almost the same as the previous one, factorize?*)
move=> h.
rewrite [X in measurable X](_ : _ = X) // predeqE => r; split => [|Xr].
move=> -[n _ [x [Fnx xoo <-]]].
have : (\bigcup_n F n) x by exists n.
by rewrite -h => -[[x' Xx' <-//]|xoo']; move/not_orP : xoo => -[].
have [n _ Fnr] : (\bigcup_n F n) r%:E by rewrite -h; left; exists r.
by exists n => //; exists r%:E => //; split => //; case.
- move=> h.
rewrite [X in measurable X](_ : _ = X) // predeqE => r; split => [|Xr].
move=> -[n _ [x [Fnx xoo <-]]].
have : (\bigcup_n F n) x by exists n.
by rewrite -h => -[[x' Xx' <-//]|].
have [n _ Fnr] : (\bigcup_n F n) r%:E by rewrite -h; left; exists r.
by exists n => //; exists r%:E => //; split => //; case.
Qed.
HB.instance Definition _ := isMeasure.Build _ _ _ elebesgue_measure
elebesgue_measure0 elebesgue_measure_ge0
semi_sigma_additive_elebesgue_measure.
End salgebra_R_ssets.
#[global]
Hint Extern 0 (measurable [set _]) => solve [apply: measurable_set1|
apply: emeasurable_set1] : core.
Section lebesgue_measure_itv.
Variable R : realType.
Let lebesgue_measure_itvoc (a b : R) :
(lebesgue_measure (`]a, b] : set R) = hlength `]a, b])%classic.
Proof.
rewrite /lebesgue_measure/= /Hahn_ext measurable_mu_extE//; last first.
by exists (a, b).
exact: hlength_sigma_sub_additive.
Qed.
Let lebesgue_measure_itvoo_subr1 (a : R) :
lebesgue_measure (`]a - 1, a[%classic : set R) = 1%E.
Proof.
rewrite itv_bnd_open_bigcup//; transitivity (lim (lebesgue_measure \o
(fun k => `]a - 1, a - k.+1%:R^-1]%classic : set R))).
apply/esym/cvg_lim => //; apply: cvg_mu_inc.
- by move=> ?; exact: measurable_itv.
- by apply: bigcup_measurable => k _; exact: measurable_itv.
- move=> n m nm; apply/subsetPset => x /=; rewrite !in_itv/= => /andP[->/=].
by move/le_trans; apply; rewrite ler_sub// ler_pinv ?ler_nat//;
rewrite inE ltr0n andbT unitfE.
rewrite (_ : _ \o _ = (fun n => (1 - n.+1%:R^-1)%:E)); last first.
apply/funext => n /=; rewrite lebesgue_measure_itvoc.
have [->|n0] := eqVneq n 0%N; first by rewrite invr1 subrr set_itvoc0.
rewrite hlength_itv/= lte_fin ifT; last first.
by rewrite ler_lt_sub// invr_lt1 ?unitfE// ltr1n ltnS lt0n.
by rewrite !(EFinB,EFinN) oppeB// addeAC addeA subee// add0e.
apply/cvg_lim => //=; apply/ereal_cvg_real; split => /=; first exact: nearW.
apply/(@cvg_distP _ [pseudoMetricNormedZmodType R of R^o]) => _/posnumP[e].
rewrite !near_simpl; near=> n; rewrite opprB addrCA subrr addr0 ger0_norm//.
by near: n; exact: near_infty_natSinv_lt.
Unshelve. all: by end_near. Qed.
Lemma lebesgue_measure_set1 (a : R) : lebesgue_measure [set a] = 0%E.
Proof.
suff : (lebesgue_measure (`]a - 1, a]%classic%R : set R) =
lebesgue_measure (`]a - 1, a[%classic%R : set R) +
lebesgue_measure [set a])%E.
rewrite lebesgue_measure_itvoo_subr1 lebesgue_measure_itvoc => /eqP.
rewrite hlength_itv lte_fin ltr_subl_addr ltr_addl ltr01.
rewrite [in X in X == _]/= EFinN EFinB oppeB// addeA subee// add0e.
rewrite addeC -sube_eq//; last by rewrite fin_num_adde_def.
by rewrite subee// => /eqP.
rewrite -setUitv1// ?bnd_simp; last by rewrite ltr_subl_addr ltr_addl.
rewrite measureU//; first exact: measurable_itv.
apply/seteqP; split => // x []/=; rewrite in_itv/= => + xa.
by rewrite xa ltxx andbF.
Qed.
Let lebesgue_measure_itvoo (a b : R) :
(lebesgue_measure (`]a, b[ : set R) = hlength `]a, b[)%classic.
Proof.
have [ab|ba] := ltP a b; last by rewrite set_itv_ge ?measure0// -leNgt.
have := lebesgue_measure_itvoc a b.
rewrite 2!hlength_itv => <-; rewrite -setUitv1// measureU//.
- by have /= -> := lebesgue_measure_set1 b; rewrite adde0.
- exact: measurable_itv.
- by apply/seteqP; split => // x [/= + xb]; rewrite in_itv/= xb ltxx andbF.
Qed.
Let lebesgue_measure_itvcc (a b : R) :
(lebesgue_measure (`[a, b] : set R) = hlength `[a, b])%classic.
Proof.
have [ab|ba] := leP a b; last by rewrite set_itv_ge ?measure0// -leNgt.
have := lebesgue_measure_itvoc a b.
rewrite 2!hlength_itv => <-; rewrite -setU1itv// measureU//.
- by have /= -> := lebesgue_measure_set1 a; rewrite add0e.
- exact: measurable_itv.
- by apply/seteqP; split => // x [/= ->]; rewrite in_itv/= ltxx.
Qed.
Let lebesgue_measure_itvco (a b : R) :
(lebesgue_measure (`[a, b[ : set R) = hlength `[a, b[)%classic.
Proof.
have [ab|ba] := ltP a b; last by rewrite set_itv_ge ?measure0// -leNgt.
have := lebesgue_measure_itvoo a b.
rewrite 2!hlength_itv => <-; rewrite -setU1itv// measureU//.
- by have /= -> := lebesgue_measure_set1 a; rewrite add0e.
- exact: measurable_itv.
- by apply/seteqP; split => // x [/= ->]; rewrite in_itv/= ltxx.
Qed.
Let lebesgue_measure_itv_bnd (x y : bool) (a b : R) :
lebesgue_measure ([set` Interval (BSide x a) (BSide y b)] : set R) =
hlength [set` Interval (BSide x a) (BSide y b)].
Proof.
by move: x y => [|] [|]; [exact: lebesgue_measure_itvco |
exact: lebesgue_measure_itvcc | exact: lebesgue_measure_itvoo |
exact: lebesgue_measure_itvoc].
Qed.
Let limnatR : lim (fun k => (k%:R)%:E : \bar R) = +oo%E.
Proof.
apply/cvg_lim => //; apply/dvg_ereal_cvg/cvgPpinfty => A.
exists `|ceil A|%N => //= => n/=; rewrite -(@ler_nat R); apply: le_trans.
by rewrite natr_absz (le_trans (ceil_ge _))// intr_norm ler_norm.
Qed.
Let lebesgue_measure_itv_bnd_infty x (a : R) :
lebesgue_measure ([set` Interval (BSide x a) +oo%O] : set R) = +oo%E.
Proof.
rewrite itv_bnd_infty_bigcup; transitivity (lim (lebesgue_measure \o
(fun k => [set` Interval (BSide x a) (BRight (a + k%:R))] : set R))).
apply/esym/cvg_lim => //; apply: cvg_mu_inc => //.
+ by move=> k; exact: measurable_itv.
+ by apply: bigcup_measurable => k _; exact: measurable_itv.
+ move=> m n mn; apply/subsetPset => r/=; rewrite !in_itv/= => /andP[->/=].
by move=> /le_trans; apply; rewrite ler_add// ler_nat.
rewrite (_ : _ \o _ = (fun k => k%:R%:E))//.
apply/funext => n /=; rewrite lebesgue_measure_itv_bnd hlength_itv/=.
rewrite lte_fin; have [->|n0] := eqVneq n 0%N; first by rewrite addr0 ltxx.
by rewrite ltr_addl ltr0n lt0n n0 EFinD addeAC EFinN subee ?add0e.
Qed.
Let lebesgue_measure_itv_infty_bnd y (b : R) :
lebesgue_measure ([set` Interval -oo%O (BSide y b)] : set R) = +oo%E.
Proof.
rewrite itv_infty_bnd_bigcup; transitivity (lim (lebesgue_measure \o
(fun k => [set` Interval (BLeft (b - k%:R)) (BSide y b)] : set R))).
apply/esym/cvg_lim => //; apply: cvg_mu_inc => //.
+ by move=> k; exact: measurable_itv.
+ by apply: bigcup_measurable => k _; exact: measurable_itv.
+ move=> m n mn; apply/subsetPset => r/=; rewrite !in_itv/= => /andP[+ ->].
by rewrite andbT; apply: le_trans; rewrite ler_sub// ler_nat.
rewrite (_ : _ \o _ = (fun k : nat => k%:R%:E))//.
apply/funext => n /=; rewrite lebesgue_measure_itv_bnd hlength_itv/= lte_fin.
have [->|n0] := eqVneq n 0%N; first by rewrite subr0 ltxx.
rewrite ltr_subl_addr ltr_addl ltr0n lt0n n0 EFinN EFinB oppeB// addeA subee//.
by rewrite add0e.
Qed.
Lemma lebesgue_measure_itv (i : interval R) :
lebesgue_measure ([set` i] : set R) = hlength [set` i].
Proof.
move: i => [[x a|[|]]] [y b|[|]]; first exact: lebesgue_measure_itv_bnd.
- by rewrite set_itvE ?measure0.
- by rewrite lebesgue_measure_itv_bnd_infty hlength_bnd_infty.
- by rewrite lebesgue_measure_itv_infty_bnd hlength_infty_bnd.
- by rewrite set_itvE ?measure0.
- rewrite set_itvE hlength_setT.
rewrite (_ : setT = [set` `]-oo, 0[] `|` [set` `[0, +oo[]); last first.
by apply/seteqP; split=> // => x _; have [x0|x0] := leP 0 x; [right|left];
rewrite /= in_itv//= x0.
rewrite measureU//=; try exact: measurable_itv.
+ by rewrite lebesgue_measure_itv_infty_bnd lebesgue_measure_itv_bnd_infty.
+ by apply/seteqP; split => // x []/=; rewrite !in_itv/= andbT leNgt => ->.
- by rewrite set_itvE ?measure0.
- by rewrite set_itvE ?measure0.
- by rewrite set_itvE ?measure0.
Qed.
End lebesgue_measure_itv.
Lemma lebesgue_measure_rat (R : realType) :
lebesgue_measure (range ratr : set R) = 0%E.
Proof.
have /pcard_eqP/bijPex[f bijf] := card_rat; set f1 := 'pinv_(fun=> 0) setT f.
rewrite (_ : range _ = \bigcup_n [set ratr (f1 n)]); last first.
apply/seteqP; split => [_ [q _ <-]|_ [n _ /= ->]]; last by exists (f1 n).
exists (f q) => //=; rewrite /f1 pinvKV// ?in_setE// => x y _ _.
by apply: bij_inj; rewrite -setTT_bijective.
rewrite measure_bigcup//; last first.
apply/trivIsetP => i j _ _ ij; apply/seteqP; split => //= _ [/= ->].
move=> /fmorph_inj.
have /set_bij_inj /[apply] := bijpinv_bij (fun=> 0) bijf.
by rewrite in_setE => /(_ Logic.I Logic.I); exact/eqP.
by rewrite nneseries0// => n _; exact: lebesgue_measure_set1.
Qed.
Section measurable_fun_measurable.
Local Open Scope ereal_scope.
Variables (d : measure_display) (T : measurableType d).
Variables (R : realType) (D : set T) (f : T -> \bar R).
Hypotheses (mD : measurable D) (mf : measurable_fun D f).
Implicit Types y : \bar R.
Lemma emeasurable_fun_c_infty y : measurable (D `&` [set x | y <= f x]).
Proof.
by rewrite -preimage_itv_c_infty; exact/mf/emeasurable_itv_bnd_pinfty.
Qed.
Lemma emeasurable_fun_o_infty y : measurable (D `&` [set x | y < f x]).
Proof.
by rewrite -preimage_itv_o_infty; exact/mf/emeasurable_itv_bnd_pinfty.
Qed.
Lemma emeasurable_fun_infty_o y : measurable (D `&` [set x | f x < y]).
Proof.
by rewrite -preimage_itv_infty_o; exact/mf/emeasurable_itv_ninfty_bnd.
Qed.
Lemma emeasurable_fun_infty_c y : measurable (D `&` [set x | f x <= y]).
Proof.
by rewrite -preimage_itv_infty_c; exact/mf/emeasurable_itv_ninfty_bnd.
Qed.
Lemma emeasurable_fin_num : measurable (D `&` [set x | f x \is a fin_num]).
Proof.
rewrite [X in measurable X](_ : _ =
\bigcup_k (D `&` ([set x | - k%:R%:E <= f x] `&` [set x | f x <= k%:R%:E]))).
apply: bigcupT_measurable => k; rewrite -(setIid D) setIACA.
by apply: measurableI; [exact: emeasurable_fun_c_infty|
exact: emeasurable_fun_infty_c].
rewrite predeqE => t; split => [/= [Dt ft]|].
have [ft0|ft0] := leP 0%R (fine (f t)).
exists `|ceil (fine (f t))|%N => //=; split => //; split.
by rewrite -{2}(fineK ft)// lee_fin (le_trans _ ft0)// ler_oppl oppr0.
by rewrite natr_absz ger0_norm ?ceil_ge0// -(fineK ft) lee_fin ceil_ge.
exists `|floor (fine (f t))|%N => //=; split => //; split.
rewrite natr_absz ltr0_norm ?floor_lt0// EFinN.
by rewrite -{2}(fineK ft) lee_fin mulrNz opprK floor_le.
by rewrite -(fineK ft)// lee_fin (le_trans (ltW ft0)).
move=> [n _] [/= Dt [nft fnt]]; split => //; rewrite fin_numElt.
by rewrite (lt_le_trans _ nft) ?ltNye//= (le_lt_trans fnt)// ltey.
Qed.
Lemma emeasurable_neq y : measurable (D `&` [set x | f x != y]).
Proof.
rewrite (_ : [set x | f x != y] = f @^-1` (setT `\ y)).
exact/mf/measurableD.
rewrite predeqE => t; split; last by rewrite /preimage /= => -[_ /eqP].
by rewrite /= => ft0; rewrite /preimage /=; split => //; exact/eqP.
Qed.
End measurable_fun_measurable.
Module RGenOInfty.
Section rgenoinfty.
Variable R : realType.
Implicit Types x y z : R.
Definition G := [set A | exists x, A = `]x, +oo[%classic].
Lemma measurable_itv_bnd_infty b x :
G.-sigma.-measurable [set` Interval (BSide b x) +oo%O].
Proof.
case: b; last by apply: sub_sigma_algebra; eexists; reflexivity.
rewrite itv_c_inftyEbigcap; apply: bigcapT_measurable => k.
by apply: sub_sigma_algebra; eexists; reflexivity.
Qed.
Lemma measurable_itv_bounded a b x : a != +oo%O ->
G.-sigma.-measurable [set` Interval a (BSide b x)].
Proof.
case: a => [a r _|[_|//]].
by rewrite set_itv_splitD; apply: measurableD => //;
exact: measurable_itv_bnd_infty.
by rewrite -setCitvr; apply: measurableC; apply: measurable_itv_bnd_infty.
Qed.
Lemma measurableE :
(R.-ocitv.-measurable).-sigma.-measurable = G.-sigma.-measurable.
Proof.
rewrite eqEsubset; split => A.
apply: smallest_sub; first exact: smallest_sigma_algebra.
by move=> I [x _ <-]; exact: measurable_itv_bounded.
apply: smallest_sub; first exact: smallest_sigma_algebra.
by move=> A' /= [x ->]; exact: measurable_itv.
Qed.
End rgenoinfty.
End RGenOInfty.
Module RGenInftyO.
Section rgeninftyo.
Variable R : realType.
Implicit Types x y z : R.
Definition G := [set A | exists x, A = `]-oo, x[%classic].
Lemma measurable_itv_bnd_infty b x :
G.-sigma.-measurable [set` Interval -oo%O (BSide b x)].
Proof.
case: b; first by apply sub_sigma_algebra; eexists; reflexivity.
rewrite -setCitvr itv_o_inftyEbigcup; apply/measurableC/bigcupT_measurable => n.
rewrite -setCitvl; apply: measurableC.
by apply: sub_sigma_algebra; eexists; reflexivity.
Qed.
Lemma measurable_itv_bounded a b x : a != -oo%O ->
G.-sigma.-measurable [set` Interval (BSide b x) a].
Proof.
case: a => [a r _|[//|_]].
by rewrite set_itv_splitD; apply/measurableD => //;
rewrite -setCitvl; apply: measurableC; exact: measurable_itv_bnd_infty.
by rewrite -setCitvl; apply: measurableC; apply: measurable_itv_bnd_infty.
Qed.
Lemma measurableE : (R.-ocitv.-measurable).-sigma.-measurable = G.-sigma.-measurable.
Proof.
rewrite eqEsubset; split => A.
apply: smallest_sub; first exact: smallest_sigma_algebra.
by move=> I [x _ <-]; apply: measurable_itv_bounded.
apply: smallest_sub; first exact: smallest_sigma_algebra.
by move=> A' /= [x ->]; apply: measurable_itv.
Qed.
End rgeninftyo.
End RGenInftyO.
Module RGenCInfty.
Section rgencinfty.
Variable R : realType.
Implicit Types x y z : R.
Definition G : set (set R) := [set A | exists x, A = `[x, +oo[%classic].
Lemma measurable_itv_bnd_infty b x :
G.-sigma.-measurable [set` Interval (BSide b x) +oo%O].
Proof.
case: b; first by apply: sub_sigma_algebra; exists x; rewrite set_itv_c_infty.
rewrite itv_o_inftyEbigcup; apply: bigcupT_measurable => k.
by apply: sub_sigma_algebra; eexists; reflexivity.
Qed.
Lemma measurable_itv_bounded a b y : a != +oo%O ->
G.-sigma.-measurable [set` Interval a (BSide b y)].
Proof.
case: a => [a r _|[_|//]].
rewrite set_itv_splitD.
by apply: measurableD; apply: measurable_itv_bnd_infty.
by rewrite -setCitvr; apply: measurableC; apply: measurable_itv_bnd_infty.
Qed.
Lemma measurableE : (R.-ocitv.-measurable).-sigma.-measurable = G.-sigma.-measurable.
Proof.
rewrite eqEsubset; split => A.
apply: smallest_sub; first exact: smallest_sigma_algebra.
by move=> I [x _ <-]; apply: measurable_itv_bounded.
apply: smallest_sub; first exact: smallest_sigma_algebra.
by move=> A' /= [x ->]; apply: measurable_itv.
Qed.
End rgencinfty.
End RGenCInfty.
Module RGenOpens.
Section rgenopens.
Variable R : realType.
Implicit Types x y z : R.
Definition G := [set A | exists x y, A = `]x, y[%classic].
Local Lemma measurable_itvoo x y : G.-sigma.-measurable `]x, y[%classic.
Proof. by apply sub_sigma_algebra; eexists; eexists; reflexivity. Qed.
Local Lemma measurable_itv_o_infty x : G.-sigma.-measurable `]x, +oo[%classic.
Proof.
rewrite itv_bnd_inftyEbigcup; apply: bigcupT_measurable => i.
exact: measurable_itvoo.
Qed.
Lemma measurable_itv_bnd_infty b x :
G.-sigma.-measurable [set` Interval (BSide b x) +oo%O].
Proof.
case: b; last exact: measurable_itv_o_infty.
rewrite itv_c_inftyEbigcap; apply: bigcapT_measurable => k.
exact: measurable_itv_o_infty.
Qed.
Lemma measurable_itv_infty_bnd b x :
G.-sigma.-measurable [set` Interval -oo%O (BSide b x)].
Proof.
by rewrite -setCitvr; apply: measurableC; exact: measurable_itv_bnd_infty.
Qed.
Lemma measurable_itv_bounded a x b y :
G.-sigma.-measurable [set` Interval (BSide a x) (BSide b y)].
Proof.
move: a b => [] []; rewrite -[X in measurable X]setCK setCitv;
apply: measurableC; apply: measurableU; try solve[
exact: measurable_itv_infty_bnd|exact: measurable_itv_bnd_infty].
Qed.
Lemma measurableE : (R.-ocitv.-measurable).-sigma.-measurable = G.-sigma.-measurable.
Proof.
rewrite eqEsubset; split => A.
apply: smallest_sub; first exact: smallest_sigma_algebra.
by move=> I [x _ <-]; apply: measurable_itv_bounded.
apply: smallest_sub; first exact: smallest_sigma_algebra.
by move=> A' /= [x [y ->]]; apply: measurable_itv.
Qed.
End rgenopens.
End RGenOpens.
Section erealwithrays.
Variable R : realType.
Implicit Types (x y z : \bar R) (r s : R).
Local Open Scope ereal_scope.
Lemma EFin_itv_bnd_infty b r : EFin @` [set` Interval (BSide b r) +oo%O] =
[set` Interval (BSide b r%:E) +oo%O] `\ +oo.
Proof.
rewrite eqEsubset; split => [x [s /itvP rs <-]|x []].
split => //=; rewrite in_itv /=.
by case: b in rs *; rewrite /= ?(lee_fin, lte_fin) rs.
move: x => [s|_ /(_ erefl)|] //=; rewrite in_itv /= andbT; last first.
by case: b => /=; rewrite 1?(leNgt,ltNge) 1?(ltNye, leNye).
by case: b => /=; rewrite 1?(lte_fin,lee_fin) => rs _;
exists s => //; rewrite in_itv /= rs.
Qed.
Lemma EFin_itv r : [set s | r%:E < s%:E] = `]r, +oo[%classic.
Proof.
by rewrite predeqE => s; split => [|]; rewrite /= lte_fin in_itv/= andbT.
Qed.
Lemma preimage_EFin_setT : @EFin R @^-1` [set x | x \in `]-oo%E, +oo[] = setT.
Proof.
by rewrite set_itvE predeqE => r; split=> // _; rewrite /preimage /= ltNye.
Qed.
Lemma eitv_c_infty r : `[r%:E, +oo[%classic =
\bigcap_k `](r - k.+1%:R^-1)%:E, +oo[%classic :> set _.
Proof.
rewrite predeqE => x; split=> [|].
- move: x => [s /=| _ n _|//].
+ rewrite in_itv /= andbT lee_fin => rs n _ /=.
by rewrite in_itv/= andbT lte_fin ltr_subl_addl (le_lt_trans rs)// ltr_addr.
+ by rewrite /= in_itv /= andbT ltey.
- move: x => [s| |/(_ 0%N Logic.I)] //=; last by rewrite in_itv /= leey.
move=> h; rewrite in_itv /= lee_fin leNgt andbT; apply/negP.
move=> /ltr_add_invr[k skr]; have {h} := h k Logic.I.
rewrite /= in_itv /= andbT lte_fin ltNge => /negP; apply.
by rewrite -ler_subl_addr opprK ltW.
Qed.
Lemma eitv_infty_c r : `]-oo, r%:E]%classic =
\bigcap_k `]-oo, (r%:E + k.+1%:R^-1%:E)]%classic :> set _.
Proof.
rewrite predeqE => x; split=> [|].
- move: x => [s /=|//|_ n _].
+ rewrite in_itv /= lee_fin => sr n _; rewrite /= in_itv /=.
by rewrite -EFinD lee_fin (le_trans sr)// ler_addl.
+ by rewrite /= in_itv /= -EFinD leNye.
- move: x => [s|/(_ 0%N Logic.I)//|]/=; rewrite ?in_itv /= ?leNye//.
move=> h; rewrite lee_fin leNgt; apply/negP => /ltr_add_invr[k rks].
have {h} := h k Logic.I; rewrite /= in_itv /=.
by rewrite -EFinD lee_fin leNgt => /negP; apply.
Qed.
Lemma eset1_ninfty :
[set -oo] = \bigcap_k `]-oo, (-k%:R%:E)[%classic :> set (\bar R).
Proof.
rewrite eqEsubset; split=> [_ -> i _ |]; first by rewrite /= in_itv /= ltNye.
move=> [r|/(_ O Logic.I)|]//.
move=> /(_ `|floor r|%N Logic.I); rewrite /= in_itv/= ltNge.
rewrite lee_fin; have [r0|r0] := leP 0%R r.
by rewrite (le_trans _ r0) // ler_oppl oppr0 ler0n.
rewrite ler_oppl -abszN natr_absz gtr0_norm; last first.
by rewrite ltr_oppr oppr0 floor_lt0.
by rewrite mulrNz ler_oppl opprK floor_le.
Qed.
Lemma eset1_pinfty :
[set +oo] = \bigcap_k `]k%:R%:E, +oo[%classic :> set (\bar R).
Proof.
rewrite eqEsubset; split=> [_ -> i _/=|]; first by rewrite in_itv /= ltey.
move=> [r| |/(_ O Logic.I)] // /(_ `|ceil r|%N Logic.I); rewrite /= in_itv /=.
rewrite andbT lte_fin ltNge.
have [r0|r0] := ltP 0%R r; last by rewrite (le_trans r0).
by rewrite natr_absz gtr0_norm // ?ceil_ge// ceil_gt0.
Qed.
End erealwithrays.
Module ErealGenOInfty.
Section erealgenoinfty.
Variable R : realType.
Implicit Types (x y z : \bar R) (r s : R).
Local Open Scope ereal_scope.
Definition G := [set A : set \bar R | exists x, A = `]x, +oo[%classic].
Lemma measurable_set1_ninfty : G.-sigma.-measurable [set -oo].
Proof.
rewrite eset1_ninfty; apply: bigcap_measurable => i _.
rewrite -setCitvr; apply: measurableC; rewrite eitv_c_infty.
apply: bigcap_measurable => j _; apply: sub_sigma_algebra.
by exists (- (i%:R + j.+1%:R^-1))%:E; rewrite opprD.
Qed.
Lemma measurable_set1_pinfty : G.-sigma.-measurable [set +oo].
Proof.
rewrite eset1_pinfty; apply: bigcapT_measurable => i.
by apply: sub_sigma_algebra; exists i%:R%:E.
Qed.
Lemma measurableE : emeasurable (R.-ocitv.-measurable) = G.-sigma.-measurable.
Proof.
apply/seteqP; split; last first.
apply: smallest_sub.
split; first exact: emeasurable0.
by move=> *; rewrite setTD; exact: emeasurableC.
by move=> *; exact: bigcupT_emeasurable.
move=> _ [x ->]; rewrite /emeasurable /=; move: x => [r| |].
+ exists `]r, +oo[%classic.
rewrite RGenOInfty.measurableE.
exact: RGenOInfty.measurable_itv_bnd_infty.
by exists [set +oo]; [constructor|rewrite -punct_eitv_bnd_pinfty].
+ exists set0 => //.
by exists set0; [constructor|rewrite setU0 itv_opinfty_pinfty image_set0].
+ exists setT => //; exists [set +oo]; first by constructor.
by rewrite itv_oninfty_pinfty punct_eitv_setTR.
move=> A [B mB [C mC]] <-; apply: measurableU; last first.
case: mC; [by []|exact: measurable_set1_ninfty
|exact: measurable_set1_pinfty|].
- by apply: measurableU; [exact: measurable_set1_ninfty|
exact: measurable_set1_pinfty].
rewrite RGenOInfty.measurableE in mB.
have smB := smallest_sub _ _ mB.
(* BUG: elim/smB : _. fails !! *)
apply: (smB (G.-sigma.-measurable \o (image^~ EFin))); last first.
move=> _ [r ->]/=; rewrite EFin_itv_bnd_infty; apply: measurableD.
by apply sub_sigma_algebra => /=; exists r%:E.
exact: measurable_set1_pinfty.
split=> /= [|D mD|F mF]; first by rewrite image_set0.
- rewrite setTD EFin_setC; apply: measurableD; first exact: measurableC.
by apply: measurableU; [exact: measurable_set1_ninfty|
exact: measurable_set1_pinfty].
- by rewrite EFin_bigcup; apply: bigcup_measurable => i _ ; exact: mF.
Qed.
End erealgenoinfty.
End ErealGenOInfty.
Module ErealGenCInfty.
Section erealgencinfty.
Variable R : realType.
Implicit Types (x y z : \bar R) (r s : R).
Local Open Scope ereal_scope.
Definition G := [set A : set \bar R | exists x, A = `[x, +oo[%classic].
Lemma measurable_set1_ninfty : G.-sigma.-measurable [set -oo].
Proof.
rewrite eset1_ninfty; apply: bigcapT_measurable=> i; rewrite -setCitvr.
by apply: measurableC; apply: sub_sigma_algebra; exists (- i%:R)%:E.
Qed.
Lemma measurable_set1_pinfty : G.-sigma.-measurable [set +oo].
Proof.
apply: sub_sigma_algebra; exists +oo; rewrite predeqE => x; split => [->//|/=].
by rewrite in_itv /= andbT leye_eq => /eqP ->.
Qed.
Lemma measurableE : emeasurable (R.-ocitv.-measurable) = G.-sigma.-measurable.
Proof.
apply/seteqP; split; last first.
apply: smallest_sub.
split; first exact: emeasurable0.
by move=> *; rewrite setTD; exact: emeasurableC.
by move=> *; exact: bigcupT_emeasurable.
move=> _ [[r||] ->]/=.
- exists `[r, +oo[%classic.
rewrite RGenOInfty.measurableE.
exact: RGenOInfty.measurable_itv_bnd_infty.
by exists [set +oo]; [constructor | rewrite -punct_eitv_bnd_pinfty].
- exists set0 => //; exists [set +oo]; first by constructor.
by rewrite image_set0 set0U itv_cpinfty_pinfty.
- exists setT => //; exists [set -oo; +oo]; first by constructor.
by rewrite itv_cninfty_pinfty setUA punct_eitv_setTL setUCl.
move=> _ [A' mA' [C mC]] <-; apply: measurableU; last first.
case: mC; [by []|exact: measurable_set1_ninfty|
exact: measurable_set1_pinfty|].
by apply: measurableU; [exact: measurable_set1_ninfty|
exact: measurable_set1_pinfty].
rewrite RGenCInfty.measurableE in mA'.
have smA' := smallest_sub _ _ mA'.
(* BUG: elim/smA' : _. fails !! *)
apply: (smA' (G.-sigma.-measurable \o (image^~ EFin))); last first.
move=> _ [r ->]/=; rewrite EFin_itv_bnd_infty; apply: measurableD.
by apply sub_sigma_algebra => /=; exists r%:E.
exact: measurable_set1_pinfty.
split=> /= [|D mD|F mF]; first by rewrite image_set0.
- rewrite setTD EFin_setC; apply: measurableD; first exact: measurableC.
by apply: measurableU; [exact: measurable_set1_ninfty|
exact: measurable_set1_pinfty].
- by rewrite EFin_bigcup; apply: bigcup_measurable => i _; exact: mF.
Qed.
End erealgencinfty.
End ErealGenCInfty.
Section trace.
Variable (T : Type).
Implicit Types (G : set (set T)) (A D : set T).
(* intended as a trace sigma-algebra *)
Definition strace G D := [set x `&` D | x in G].
Lemma stracexx G D : G D -> strace G D D.
Proof. by rewrite /strace /=; exists D => //; rewrite setIid. Qed.
Lemma sigma_algebra_strace G D :
sigma_algebra setT G -> sigma_algebra D (strace G D).
Proof.
move=> [G0 GC GU]; split; first by exists set0 => //; rewrite set0I.
- move=> S [A mA ADS]; have mCA := GC _ mA.
have : strace G D (D `&` ~` A).
by rewrite setIC; exists (setT `\` A) => //; rewrite setTD.
rewrite -setDE => trDA.
have DADS : D `\` A = D `\` S by rewrite -ADS !setDE setCI setIUr setICr setU0.
by rewrite DADS in trDA.
- move=> S mS; have /choice[M GM] : forall n, exists A, G A /\ S n = A `&` D.
by move=> n; have [A mA ADSn] := mS n; exists A.
exists (\bigcup_i (M i)); first by apply GU => i; exact: (GM i).1.
by rewrite setI_bigcupl; apply eq_bigcupr => i _; rewrite (GM i).2.
Qed.
End trace.
Lemma strace_measurable d (T : measurableType d) (A : set T) : measurable A ->
strace measurable A `<=` measurable.
Proof. by move=> mA=> _ [C mC <-]; apply: measurableI. Qed.
(* more properties of measurable functions *)
Lemma is_interval_measurable (R : realType) (I : set R) :
is_interval I -> measurable I.
Proof. by move/is_intervalP => ->; exact: measurable_itv. Qed.
Section coutinuous_measurable.
Variable R : realType.
Lemma open_measurable (U : set R) : open U -> measurable U.
Proof.
move=> /open_bigcup_rat ->; rewrite bigcup_mkcond; apply: bigcupT_measurable_rat.
move=> q; case: ifPn => // qfab; apply: is_interval_measurable => //.
exact: is_interval_bigcup_ointsub.
Qed.
Lemma continuous_measurable_fun (f : R -> R) : continuous f ->
measurable_fun setT f.
Proof.
move=> /continuousP cf; apply: (measurability (RGenOpens.measurableE R)).
move=> _ [_ [a [b ->] <-]]; rewrite setTI.
by apply: open_measurable; exact/cf/interval_open.
Qed.
End coutinuous_measurable.
Section standard_measurable_fun.
Lemma measurable_fun_normr (R : realType) (D : set R) :
measurable_fun D (@normr _ R).
Proof.
move=> mD; apply: (measurability (RGenOInfty.measurableE R)) => //.
move=> /= _ [_ [x ->] <-]; apply: measurableI => //.
have [x0|x0] := leP 0 x.
rewrite [X in measurable X](_ : _ = `]-oo, (- x)[ `|` `]x, +oo[)%classic.
by apply: measurableU; apply: measurable_itv.
rewrite predeqE => r; split => [|[|]]; rewrite preimage_itv ?in_itv ?andbT/=.
- have [r0|r0] := leP 0 r; [rewrite ger0_norm|rewrite ltr0_norm] => // xr;
rewrite 2!in_itv/=.
+ by right; rewrite xr.
+ by left; rewrite ltr_oppr.
- move=> rx /=.
by rewrite ler0_norm 1?ltr_oppr// (le_trans (ltW rx))// ler_oppl oppr0.
- by rewrite in_itv /= andbT => xr; rewrite (lt_le_trans _ (ler_norm _)).
rewrite [X in measurable X](_ : _ = setT)// predeqE => r.
by split => // _; rewrite /= in_itv /= andbT (lt_le_trans x0).
Qed.
End standard_measurable_fun.
Section measurable_fun_realType.
Variables (d : measure_display) (T : measurableType d) (R : realType).
Implicit Types (D : set T) (f g : T -> R).
Lemma measurable_funD D f g :
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \+ g).
Proof.
move=> mf mg mD; apply: (measurability (RGenOInfty.measurableE R)) => //.
move=> /= _ [_ [a ->] <-]; rewrite preimage_itv_o_infty.
rewrite [X in measurable X](_ : _ = \bigcup_(q : rat)
((D `&` [set x | ratr q < f x]) `&` (D `&` [set x | a - ratr q < g x]))).
apply: bigcupT_measurable_rat => q; apply: measurableI.
- by rewrite -preimage_itv_o_infty; apply: mf => //; apply: measurable_itv.
- by rewrite -preimage_itv_o_infty; apply: mg => //; apply: measurable_itv.
rewrite predeqE => x; split => [|[r _] []/= [Dx rfx]] /= => [[Dx]|[_]].
rewrite -ltr_subl_addr => /rat_in_itvoo[r]; rewrite inE /= => /itvP h.
exists r => //; rewrite setIACA setIid; split => //; split => /=.
by rewrite h.
by rewrite ltr_subl_addr addrC -ltr_subl_addr h.
by rewrite ltr_subl_addr=> afg; rewrite (lt_le_trans afg)// addrC ler_add2r ltW.
Qed.
Lemma measurable_funrM D f (k : R) : measurable_fun D f ->
measurable_fun D (fun x => k * f x).
Proof.
apply: (@measurable_fun_comp _ _ _ _ _ _ ( *%R k)).
by apply: continuous_measurable_fun; apply: mulrl_continuous.
Qed.
Lemma measurable_funN D f : measurable_fun D f -> measurable_fun D (-%R \o f).
Proof.
move=> mf mD; rewrite (_ : _ \o _ = (fun x => - 1 * f x)).
exact: measurable_funrM.
by under eq_fun do rewrite mulN1r.
Qed.
Lemma measurable_funB D f g : measurable_fun D f ->
measurable_fun D g -> measurable_fun D (f \- g).
Proof.
by move=> ? ? ?; apply: measurable_funD => //; exact: measurable_funN.
Qed.
Lemma measurable_fun_exprn D n f :
measurable_fun D f -> measurable_fun D (fun x => f x ^+ n).
Proof.
apply: measurable_fun_comp ((@GRing.exp R)^~ n) _ _ _.
by apply: continuous_measurable_fun; apply: exprn_continuous.
Qed.
Lemma measurable_fun_sqr D f :
measurable_fun D f -> measurable_fun D (fun x => f x ^+ 2).
Proof. exact: measurable_fun_exprn. Qed.
Lemma measurable_funM D f g :
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \* g).
Proof.
move=> mf mg mD; rewrite (_ : (_ \* _) = (fun x => 2%:R^-1 * (f x + g x) ^+ 2)
\- (fun x => 2%:R^-1 * (f x ^+ 2)) \- (fun x => 2%:R^-1 * ( g x ^+ 2))).
apply: measurable_funB => //; last first.
by apply: measurable_funrM => //; exact: measurable_fun_sqr.
apply: measurable_funB => //; last first.
by apply: measurable_funrM => //; exact: measurable_fun_sqr.
apply: measurable_funrM => //.
by apply: measurable_fun_sqr => //; exact: measurable_funD.
rewrite funeqE => x /=; rewrite -2!mulrBr sqrrD (addrC (f x ^+ 2)) -addrA.
rewrite -(addrA (f x * g x *+ 2)) -opprB opprK (addrC (g x ^+ 2)) addrK.
by rewrite -(mulr_natr (f x * g x)) -(mulrC 2) mulrA mulVr ?mul1r// unitfE.
Qed.
Lemma measurable_fun_max D f g :
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \max g).
Proof.
move=> mf mg mD; apply (measurability (RGenCInfty.measurableE R)) => //.
move=> _ [_ [x ->] <-]; rewrite [X in measurable X](_ : _ =
(D `&` f @^-1` `[x, +oo[) `|` (D `&` g @^-1` `[x, +oo[)); last first.
rewrite predeqE => t /=; split.
by rewrite /= !in_itv /= !andbT le_maxr => -[Dx /orP[|]]; tauto.
by move=> [|]; rewrite !in_itv/= !andbT le_maxr => -[Dx ->]//; rewrite orbT.
by apply: measurableU; [apply: mf|apply: mg] =>//; apply: measurable_itv.
Qed.
Lemma measurable_fun_sups D (h : (T -> R)^nat) n :
(forall t, D t -> has_ubound (range (h ^~ t))) ->
(forall m, measurable_fun D (h m)) ->
measurable_fun D (fun x => sups (h ^~ x) n).
Proof.
move=> f_ub mf mD; apply: (measurability (RGenOInfty.measurableE R)) => //.
move=> _ [_ [x ->] <-]; rewrite sups_preimage // setI_bigcupr.
by apply: bigcup_measurable => k /= nk; apply: mf => //; exact: measurable_itv.
Qed.
Lemma measurable_fun_infs D (h : (T -> R)^nat) n :
(forall t, D t -> has_lbound (range (h ^~ t))) ->
(forall n, measurable_fun D (h n)) ->
measurable_fun D (fun x => infs (h ^~ x) n).
Proof.
move=> lb_f mf mD; apply: (measurability (RGenInftyO.measurableE R)) =>//.
move=> _ [_ [x ->] <-]; rewrite infs_preimage // setI_bigcupr.
by apply: bigcup_measurable => k /= nk; apply: mf => //; exact: measurable_itv.
Qed.
Lemma measurable_fun_lim_sup D (h : (T -> R)^nat) :
(forall t, D t -> has_ubound (range (h ^~ t))) ->
(forall t, D t -> has_lbound (range (h ^~ t))) ->
(forall n, measurable_fun D (h n)) ->
measurable_fun D (fun x => lim_sup (h ^~ x)).
Proof.
move=> f_ub f_lb mf.
have : {in D, (fun x => inf [set sups (h ^~ x) n | n in [set n | 0 <= n]%N])
=1 (fun x => lim_sup (h^~ x))}.
move=> t; rewrite inE => Dt; apply/esym/cvg_lim; first exact: Rhausdorff.
rewrite [X in _ --> X](_ : _ = inf (range (sups (h^~t)))).
by apply: cvg_sups_inf; [exact: f_ub|exact: f_lb].
by congr (inf [set _ | _ in _]); rewrite predeqE.
move/eq_measurable_fun; apply; apply: measurable_fun_infs => //.
move=> t Dt; have [M hM] := f_lb _ Dt; exists M => _ [m /= nm <-].
rewrite (@le_trans _ _ (h m t)) //; first by apply hM => /=; exists m.
by apply: sup_ub; [exact/has_ubound_sdrop/f_ub|exists m => /=].
by move=> k; exact: measurable_fun_sups.
Qed.
Lemma measurable_fun_cvg D (h : (T -> R)^nat) f :
(forall m, measurable_fun D (h m)) -> (forall x, D x -> h ^~ x --> f x) ->
measurable_fun D f.
Proof.
move=> mf_ f_f; have fE x : D x -> f x = lim_sup (h ^~ x).
move=> Dx; have /cvg_lim <-// := @cvg_sups _ (h ^~ x) (f x) (f_f _ Dx).
exact: Rhausdorff.
apply: (@eq_measurable_fun _ _ _ _ D (fun x => lim_sup (h ^~ x))).
by move=> x; rewrite inE => Dx; rewrite -fE.
apply: (@measurable_fun_lim_sup _ h) => // t Dt.
- apply/bounded_fun_has_ubound/(@cvg_seq_bounded _ [normedModType R of R^o]).
by apply/cvg_ex; eexists; exact: f_f.
- apply/bounded_fun_has_lbound/(@cvg_seq_bounded _ [normedModType R of R^o]).
by apply/cvg_ex; eexists; exact: f_f.
Qed.
End measurable_fun_realType.
Section standard_emeasurable_fun.
Variable R : realType.
Lemma measurable_fun_EFin (D : set R) : measurable_fun D EFin.
Proof.
move=> mD; apply: (measurability (ErealGenOInfty.measurableE R)) => //.
move=> /= _ [_ [x ->]] <-; move: x => [x| |]; apply: measurableI => //.
- by rewrite preimage_itv_o_infty EFin_itv; exact: measurable_itv.
- by rewrite [X in measurable X](_ : _ = set0)// predeqE.
- by rewrite preimage_EFin_setT.
Qed.
Lemma measurable_fun_abse (D : set (\bar R)) : measurable_fun D abse.
Proof.
move=> mD; apply: (measurability (ErealGenOInfty.measurableE R)) => //.
move=> /= _ [_ [x ->] <-]; move: x => [x| |].
- rewrite [X in _ @^-1` X](punct_eitv_bnd_pinfty _ x) preimage_setU setIUr.
apply: measurableU; last first.
rewrite preimage_abse_pinfty.
by apply: measurableI => //; exact: measurableU.
apply: measurableI => //; exists (normr @^-1` `]x, +oo[%classic).
rewrite -[X in measurable X]setTI.
by apply: measurable_fun_normr => //; exact: measurable_itv.
exists set0; first by constructor.
rewrite setU0 predeqE => -[y| |]; split => /= => -[r];
rewrite ?/= /= ?in_itv /= ?andbT => xr//.
+ by move=> [ry]; exists `|y| => //=; rewrite in_itv/= andbT -ry.
+ by move=> [ry]; exists y => //=; rewrite /= in_itv/= andbT -ry.
- by apply: measurableI => //; rewrite itv_opinfty_pinfty preimage_set0.
- apply: measurableI => //; rewrite itv_oninfty_pinfty -preimage_setC.
by apply: measurableC; rewrite preimage_abse_ninfty.
Qed.
Lemma emeasurable_fun_minus (D : set (\bar R)) :
measurable_fun D (-%E : \bar R -> \bar R).
Proof.
move=> mD; apply: (measurability (ErealGenCInfty.measurableE R)) => //.
move=> _ [_ [x ->] <-]; rewrite (_ : _ @^-1` _ = `]-oo, (- x)%E]%classic).
by apply: measurableI => //; exact: emeasurable_itv_ninfty_bnd.
by rewrite predeqE => y; rewrite preimage_itv !in_itv/= andbT in_itv lee_oppr.
Qed.
End standard_emeasurable_fun.
#[global] Hint Extern 0 (measurable_fun _ abse) =>
solve [exact: measurable_fun_abse] : core.
#[global] Hint Extern 0 (measurable_fun _ EFin) =>
solve [exact: measurable_fun_EFin] : core.
(* NB: real-valued function *)
Lemma EFin_measurable_fun d (T : measurableType d) (R : realType) (D : set T)
(g : T -> R) :
measurable_fun D (EFin \o g) <-> measurable_fun D g.
Proof.
split=> [mf mD A mA|]; last by move=> mg; exact: measurable_fun_comp.
rewrite [X in measurable X](_ : _ = D `&` (EFin \o g) @^-1` (EFin @` A)).
by apply: mf => //; exists A => //; exists set0; [constructor|rewrite setU0].
congr (_ `&` _);rewrite eqEsubset; split=> [|? []/= _ /[swap] -[->//]].
by move=> ? ?; exact: preimage_image.
Qed.
Section emeasurable_fun.
Local Open Scope ereal_scope.
Variables (d : measure_display) (T : measurableType d) (R : realType).
Implicit Types (D : set T).
Lemma measurable_fun_einfs D (f : (T -> \bar R)^nat) :
(forall n, measurable_fun D (f n)) ->
forall n, measurable_fun D (fun x => einfs (f ^~ x) n).
Proof.
move=> mf n mD.
apply: (measurability (ErealGenCInfty.measurableE R)) => //.
move=> _ [_ [x ->] <-]; rewrite einfs_preimage -bigcapIr; last by exists n => /=.
by apply: bigcap_measurable => ? ?; exact/mf/emeasurable_itv_bnd_pinfty.
Qed.
Lemma measurable_fun_esups D (f : (T -> \bar R)^nat) :
(forall n, measurable_fun D (f n)) ->
forall n, measurable_fun D (fun x => esups (f ^~ x) n).
Proof.
move=> mf n mD; apply: (measurability (ErealGenOInfty.measurableE R)) => //.
move=> _ [_ [x ->] <-];rewrite esups_preimage setI_bigcupr.
by apply: bigcup_measurable => ? ?; exact/mf/emeasurable_itv_bnd_pinfty.
Qed.
Lemma emeasurable_fun_max D (f g : T -> \bar R) :
measurable_fun D f -> measurable_fun D g ->
measurable_fun D (fun x => maxe (f x) (g x)).
Proof.
move=> mf mg mD; apply: (measurability (ErealGenCInfty.measurableE R)) => //.
move=> _ [_ [x ->] <-]; rewrite [X in measurable X](_ : _ =
(D `&` f @^-1` `[x, +oo[) `|` (D `&` g @^-1` `[x, +oo[)); last first.
rewrite predeqE => t /=; split.
by rewrite !/= /= !in_itv /= !andbT le_maxr => -[Dx /orP[|]];
tauto.
by move=> [|]; rewrite !/= /= !in_itv/= !andbT le_maxr;
move=> [Dx ->]//; rewrite orbT.
by apply: measurableU; [exact/mf/emeasurable_itv_bnd_pinfty|
exact/mg/emeasurable_itv_bnd_pinfty].
Qed.
Lemma emeasurable_funN D (f : T -> \bar R) :
measurable_fun D f -> measurable_fun D (\- f).
Proof. by apply: measurable_fun_comp => //; exact: emeasurable_fun_minus. Qed.
Lemma emeasurable_fun_funepos D (f : T -> \bar R) :
measurable_fun D f -> measurable_fun D f^\+.
Proof.
by move=> mf; apply: emeasurable_fun_max => //; exact: measurable_fun_cst.
Qed.
Lemma emeasurable_fun_funeneg D (f : T -> \bar R) :
measurable_fun D f -> measurable_fun D f^\-.
Proof.
by move=> mf; apply: emeasurable_fun_max => //;
[exact: emeasurable_funN|exact: measurable_fun_cst].
Qed.
Lemma emeasurable_fun_min D (f g : T -> \bar R) :
measurable_fun D f -> measurable_fun D g ->
measurable_fun D (fun x => mine (f x) (g x)).
Proof.
move=> /emeasurable_funN mf /emeasurable_funN mg.
have /emeasurable_funN := emeasurable_fun_max mf mg.
by apply eq_measurable_fun => i Di; rewrite -oppe_min oppeK.
Qed.
Lemma measurable_fun_elim_sup D (f : (T -> \bar R)^nat) :
(forall n, measurable_fun D (f n)) ->
measurable_fun D (fun x => elim_sup (f ^~ x)).
Proof.
move=> mf mD; rewrite (_ : (fun _ => _) =
(fun x => ereal_inf [set esups (f^~ x) n | n in [set n | n >= 0]%N])).
by apply: measurable_fun_einfs => // k; exact: measurable_fun_esups.
rewrite funeqE => t; apply/cvg_lim => //.
rewrite [X in _ --> X](_ : _ = ereal_inf (range (esups (f^~t)))).
exact: cvg_esups_inf.
by congr (ereal_inf [set _ | _ in _]); rewrite predeqE.
Qed.
Lemma emeasurable_fun_cvg D (f_ : (T -> \bar R)^nat) (f : T -> \bar R) :
(forall m, measurable_fun D (f_ m)) ->
(forall x, D x -> f_ ^~ x --> f x) -> measurable_fun D f.
Proof.
move=> mf_ f_f; have fE x : D x -> f x = elim_sup (f_^~ x).
by move=> Dx; have /cvg_lim <-// := @cvg_esups _ (f_^~x) (f x) (f_f x Dx).
apply: (measurable_fun_ext (fun x => elim_sup (f_ ^~ x))) => //.
by move=> x; rewrite inE => Dx; rewrite fE.
exact: measurable_fun_elim_sup.
Qed.
End emeasurable_fun.
Arguments emeasurable_fun_cvg {d T R D} f_.
|