Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 65,005 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C.              *)
From mathcomp Require Import all_ssreflect ssralg ssrnum.
Require Import boolp ereal reals mathcomp_extra.
Require Import classical_sets signed functions topology normedtype.
Require Import prodnormedzmodule.

(******************************************************************************)
(*              BACHMANN-LANDAU NOTATIONS : BIG AND LITTLE O                  *)
(******************************************************************************)
(******************************************************************************)
(* F is a filter, K is an absRingType and V W X Y Z are normed spaces over K  *)
(* alternatively, K can be equal to the reals R (from the standard library    *)
(* for now)                                                                   *)
(* This library is very asymmetric, in multiple respects:                     *)
(* - most rewrite rules can only be rewritten from left to right.             *)
(*   e.g. an equation 'o_F f = 'O_G g can be used only from LEFT TO RIGHT     *)
(* - conversely most small 'o_F f in your goal are very specific,             *)
(*   only 'a_F f is mutable                                                   *)
(*                                                                            *)
(* - most notations are either parse only or print only.                      *)
(*   Indeed all the 'O_F notations contain a function which is NOT displayed. *)
(*   This might be confusing as sometimes you might get 'O_F g = 'O_F g       *)
(*   and not be able to solve by reflexivity.                                 *)
(*   - In order to have a look at the hidden function, rewrite showo.         *)
(*   - Do not use showo during a normal proof.                                *)
(*   - All theorems should be stated so that when an impossible reflexivity   *)
(*     is encountered, it is of the form 'O_F g = 'O_F g so that you          *)
(*     know you should use eqOE in order to generalize your 'O_F g            *)
(*     to an arbitrary 'O_F g                                                 *)
(*                                                                            *)
(* To prove that f is a bigO of g near F, you should go back to filter        *)
(* reasoning only as a last resort. To do so, use the view eqOP. Similarly,   *)
(* you can use eqaddOP to prove that f is equal to g plus a bigO of e near F  *)
(* using filter reasoning.                                                    *)
(*                                                                            *)
(* Parsable notations:                                                        *)
(*    [bigO of f] == recovers the canonical structure of big-o of f           *)
(*                   expands to itself                                        *)
(*       f =O_F h == f is a bigO of h near F,                                 *)
(*                   this is the preferred way for statements.                *)
(*                   expands to the equation (f = 'O_F h)                     *)
(*                   rewrite from LEFT to RIGHT only                          *)
(*   f = g +O_F h == f is equal to g plus a bigO near F,                      *)
(*                   this is the preferred way for statements.                *)
(*                   expands to the equation (f = g + 'O_F h)                 *)
(*                   rewrite from LEFT to RIGHT only                          *)
(*                   /!\ When you have to prove                               *)
(*                   (f =O_F h) or (f = g +O_F h).                            *)
(*                   you must (apply: eqOE) as soon as possible in a proof    *)
(*                   in order to turn it into 'a_O_F f with a shelved content *)
(*                   /!\ under rare circumstances, a hint may do that for you *)
(*   [O_F h of f] == returns a function with a bigO canonical structure       *)
(*                   provably equal to f if f is indeed a bigO of h           *)
(*                   provably equal to 0 otherwise                            *)
(*                   expands to ('O_F h)                                      *)
(*           'O_F == pattern to match a bigO with a specific F                *)
(*             'O == pattern to match a bigO with a generic F                 *)
(* f x =O_(x \near F) e x == alternative way of stating f =O_F e (provably    *)
(*                   equal using the lemma eqOEx                              *)
(*                                                                            *)
(* Printing only notations:                                                   *)
(*        {O_F f} == the type of functions that are a bigO of f near F        *)
(*       'a_O_F f == an existential bigO, must come from (apply: eqOE)        *)
(*         'O_F f == a generic bigO, with a function you should not rely on,  *)
(*                   but there is no way you can use eqOE on it.              *)
(*                                                                            *)
(* The former works exactly the same by with littleo instead of bigO.         *)
(*                                                                            *)
(* Asymptotic equivalence:                                                    *)
(*       f ~_ F g == function f is asymptotically equivalent to               *)
(*                   function g for filter F, i.e., f = g +o_ F g             *)
(*      f ~~_ F g == f == g +o_ F g (i.e., as a boolean relation)             *)
(* --> asymptotic equivalence proved to be an equivalence relation            *)
(*                                                                            *)
(* Big-Omega and big-Theta notations on the model of bigO and littleo:        *)
(* {Omega_F f}      == the type of functions that are a big Omega of f near F *)
(* [bigOmega of f]  == recovers the canonical structure of big-Omega of f     *)
(* [Omega_F e of f] == returns a function with a bigOmega canonical structure *)
(*                     provably equal to f if f is indeed a bigOmega of e     *)
(*                     or e otherwise                                         *)
(* f \is 'Omega_F(e) == f : T -> V is a bigOmega of e : T -> W near F         *)
(* f =Omega_F h      == f : T -> V is a bigOmega of h : T -> V near F         *)
(* --> lemmas: relation with big-O, transitivity, product of functions, etc.  *)
(*                                                                            *)
(* Similar notations available for big-Theta.                                 *)
(* --> lemmas: relations with big-O and big-Omega, reflexivity, symmetry,     *)
(*     transitivity, product of functions, etc.                               *)
(*                                                                            *)
(* WARNING: The piece of syntax "=O_(" is only valid in the syntax            *)
(*          "=O_(x \near F)", not in the syntax "=O_(x : U)".                 *)
(*                                                                            *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Declare Scope R_scope.

Import Order.TTheory GRing.Theory Num.Theory.

Reserved Notation "{o_ F f }" (at level 0, F at level 0, format "{o_ F  f }").
Reserved Notation "[littleo 'of' f 'for' fT ]" (at level 0, f at level 0,
  format "[littleo  'of'  f  'for'  fT ]").
Reserved Notation "[littleo 'of' f ]" (at level 0, f at level 0,
  format "[littleo  'of'  f ]").

Reserved Notation "'o_ x" (at level 200, x at level 0, only parsing).
Reserved Notation "'o" (at level 200, only parsing).
(* Parsing *)
Reserved Notation "[o_ x e 'of' f ]" (at level 0, x, e at level 0, only parsing).
(*Printing*)
Reserved Notation "[o '_' x e 'of' f ]"
  (at level 0, x, e at level 0, format "[o '_' x  e  'of'  f ]").
(* These notations are printing only in order to display 'o
   without looking at the contents, use showo to display *)
Reserved Notation "''o_' x e "
  (at level 0, x, e at level 0, format "''o_' x  e ").
Reserved Notation "''a_o_' x e "
  (at level 0, x, e at level 0, format "''a_o_' x  e ").
Reserved Notation "''o' '_' x"
  (at level 0, x at level 0, format "''o' '_' x").

Reserved Notation "f = g '+o_' F h"
  (at level 70, no associativity,
   g at next level, F at level 0, h at next level,
   format "f  =  g  '+o_' F  h").
Reserved Notation "f '=o_' F h"
  (at level 70, no associativity,
   F at level 0, h at next level,
   format "f  '=o_' F  h").
Reserved Notation "f == g '+o_' F h"
  (at level 70, no associativity,
   g at next level, F at level 0, h at next level,
   format "f  ==  g  '+o_' F  h").
Reserved Notation "f '==o_' F h"
  (at level 70, no associativity,
   F at level 0, h at next level,
   format "f  '==o_' F  h").

Reserved Notation "[o_( x \near F ) ex 'of' fx ]"
  (at level 0, x, ex at level 0, only parsing).
(*Printing*)
Reserved Notation "[o '_(' x \near F ')' ex 'of' fx ]"
  (at level 0, x, ex at level 0,
   format "[o '_(' x  \near  F ')'  ex  'of'  fx ]").
(* These notations are printing only in order to display 'o
   without looking at the contents, use showo to display *)
Reserved Notation "''o_(' x \near F ')' ex"
  (at level 0, x, ex at level 0, format "''o_(' x  \near  F ')'  ex").
Reserved Notation "''a_o_(' x \near F ')' ex"
  (at level 0, x, ex at level 0, format "''a_o_(' x  \near  F ')'  ex").
Reserved Notation "''o' '_(' x \near F ')' ex"
  (at level 0, x, ex at level 0, format "''o' '_(' x  \near  F ')'  ex").

Reserved Notation "fx = gx '+o_(' x \near F ')' hx"
  (at level 70, no associativity,
   gx at next level, F at level 0, hx at next level,
   format "fx  =  gx  '+o_(' x  \near  F ')'  hx").
Reserved Notation "fx '=o_(' x \near F ')' hx"
  (at level 70, no associativity,
   F at level 0, hx at next level,
   format "fx  '=o_(' x  \near  F ')'  hx").
Reserved Notation "fx == gx '+o_(' x \near F ')' hx"
  (at level 70, no associativity,
   gx at next level, F at level 0, hx at next level,
   format "fx  ==  gx  '+o_(' x  \near  F ')'  hx").
Reserved Notation "fx '==o_(' x \near F ')' hx"
  (at level 70, no associativity,
   F at level 0, hx at next level,
   format "fx  '==o_(' x  \near  F ')'  hx").

Reserved Notation "{O_ F f }" (at level 0, F at level 0, format "{O_ F  f }").
Reserved Notation "[bigO 'of' f 'for' fT ]" (at level 0, f at level 0,
  format "[bigO  'of'  f  'for'  fT ]").
Reserved Notation "[bigO 'of' f ]" (at level 0, f at level 0,
  format "[bigO  'of'  f ]").

Reserved Notation "'O_ x" (at level 200, x at level 0, only parsing).
Reserved Notation "'O" (at level 200, only parsing).
(* Parsing *)
Reserved Notation "[O_ x e 'of' f ]" (at level 0, x, e at level 0, only parsing).
(*Printing*)
Reserved Notation "[O '_' x e 'of' f ]"
  (at level 0, x, e at level 0, format "[O '_' x  e  'of'  f ]").
(* These notations are printing only in order to display 'O
   without looking at the contents, use showo to display *)
Reserved Notation "''O_' x e "
  (at level 0, x, e at level 0, format "''O_' x  e ").
Reserved Notation "''a_O_' x e "
  (at level 0, x, e at level 0, format "''a_O_' x  e ").
Reserved Notation "''O' '_' x"
  (at level 0, x at level 0, format "''O' '_' x").

Reserved Notation "f = g '+O_' F h"
  (at level 70, no associativity,
   g at next level, F at level 0, h at next level,
   format "f  =  g  '+O_' F  h").
Reserved Notation "f '=O_' F h"
  (at level 70, no associativity,
   F at level 0, h at next level,
   format "f  '=O_' F  h").
Reserved Notation "f == g '+O_' F h"
  (at level 70, no associativity,
   g at next level, F at level 0, h at next level,
   format "f  ==  g  '+O_' F  h").
Reserved Notation "f '==O_' F h"
  (at level 70, no associativity,
   F at level 0, h at next level,
   format "f  '==O_' F  h").

Reserved Notation "[O_( x \near F ) ex 'of' fx ]"
  (at level 0, x, ex at level 0, only parsing).
(*Printing*)
Reserved Notation "[O '_(' x \near F ')' ex 'of' fx ]"
  (at level 0, x, ex at level 0,
   format "[O '_(' x  \near  F ')'  ex  'of'  fx ]").
(* These notations are printing only in order to display 'o
   without looking at the contents, use showo to display *)
Reserved Notation "''O_(' x \near F ')' ex"
  (at level 0, x, ex at level 0, format "''O_(' x  \near  F ')'  ex").
Reserved Notation "''a_O_(' x \near F ')' ex"
  (at level 0, x, ex at level 0, format "''a_O_(' x  \near  F ')'  ex").
Reserved Notation "''O' '_(' x \near F ')' ex"
  (at level 0, x, ex at level 0, format "''O' '_(' x  \near  F ')'  ex").

Reserved Notation "fx = gx '+O_(' x \near F ')' hx"
  (at level 70, no associativity,
   gx at next level, F at level 0, hx at next level,
   format "fx  =  gx  '+O_(' x  \near  F ')'  hx").
Reserved Notation "fx '=O_(' x \near F ')' hx"
  (at level 70, no associativity,
   F at level 0, hx at next level,
   format "fx  '=O_(' x  \near  F ')'  hx").
Reserved Notation "fx == gx '+O_(' x \near F ')' hx"
  (at level 70, no associativity,
   gx at next level, F at level 0, hx at next level,
   format "fx  ==  gx  '+O_(' x  \near  F ')'  hx").
Reserved Notation "fx '==O_(' x \near F ')' hx"
  (at level 70, no associativity,
   F at level 0, hx at next level,
   format "fx  '==O_(' x  \near  F ')'  hx").

Reserved Notation "f '~_' F g"
  (at level 70, F at level 0, g at next level, format "f  '~_' F  g").
Reserved Notation "f '~~_' F g"
  (at level 70, F at level 0, g at next level, format "f  '~~_' F  g").

Reserved Notation "{Omega_ F f }"
  (at level 0, F at level 0, format "{Omega_ F  f }").
Reserved Notation "[bigOmega 'of' f 'for' fT ]"
  (at level 0, f at level 0, format "[bigOmega  'of'  f  'for'  fT ]").
Reserved Notation "[bigOmega 'of' f ]"
  (at level 0, f at level 0, format "[bigOmega  'of'  f ]").
Reserved Notation "[Omega_ x e 'of' f ]"
  (at level 0, x, e at level 0, only parsing).
(* Printing *)
Reserved Notation "[Omega '_' x e 'of' f ]"
  (at level 0, x, e at level 0, format "[Omega '_' x  e  'of'  f ]").
Reserved Notation "'Omega_ F g"
  (at level 0, F at level 0, format "''Omega_' F g").
Reserved Notation "f '=Omega_' F h"
  (at level 70, no associativity,
   F at level 0, h at next level,
   format "f  '=Omega_' F  h").

Reserved Notation "{Theta_ F g }"
  (at level 0, F at level 0, format "{Theta_  F  g }").
Reserved Notation "[bigTheta 'of' f 'for' fT ]"
  (at level 0, f at level 0, format "[bigTheta  'of'  f  'for'  fT ]").
Reserved Notation "[bigTheta 'of' f ]"
  (at level 0, f at level 0, format "[bigTheta  'of'  f ]").
Reserved Notation "[Theta_ x e 'of' f ]"
  (at level 0, x, e at level 0, only parsing).
(*Printing*)
Reserved Notation "[Theta '_' x e 'of' f ]"
  (at level 0, x, e at level 0, format "[Theta '_' x  e  'of'  f ]").
Reserved Notation "'Theta_ F g"
  (at level 0, F at level 0, format "''Theta_' F g").
Reserved Notation "f '=Theta_' F h"
  (at level 70, no associativity,
   F at level 0, h at next level,
   format "f  '=Theta_' F  h").

Delimit Scope R_scope with coqR.
Local Open Scope ring_scope.
Local Open Scope classical_set_scope.

(* tags for littleo and bigO notations *)
Definition the_tag : unit := tt.
Definition gen_tag : unit := tt.
Definition a_tag : unit := tt.
Lemma showo : (gen_tag = tt) * (the_tag = tt) * (a_tag = tt). Proof. by []. Qed.

(* Tentative to handle small o and big O notations *)
Section Domination.
Context {K : numDomainType} {T : Type} {V W : normedModType K}.

Let littleo_def (F : set (set T)) (f : T -> V) (g : T -> W) :=
  forall eps, 0 < eps -> \forall x \near F, `|f x| <= eps * `|g x|.

Structure littleo_type (F : set (set T)) (g : T -> W) := Littleo {
  littleo_fun :> T -> V;
  _ : `[< littleo_def F littleo_fun g >]
}.
Notation "{o_ F f }" := (littleo_type F f).

Canonical littleo_subtype (F : set (set T)) (g : T -> W) :=
  [subType for (@littleo_fun F g)].

Lemma littleo_class (F : set (set T)) (g : T -> W) (f : {o_F g}) :
  `[< littleo_def F f g >].
Proof. by case: f => ?. Qed.
Hint Resolve littleo_class : core.

Definition littleo_clone (F : set (set T)) (g : T -> W) (f : T -> V) (fT : {o_F g}) c
  of phant_id (littleo_class fT) c := @Littleo F g f c.
Notation "[littleo 'of' f 'for' fT ]" := (@littleo_clone _ _ f fT _ idfun).
Notation "[littleo 'of' f ]" := (@littleo_clone _ _ f _ _ idfun).

Lemma littleo0_subproof F (g : T -> W) :
  Filter F -> littleo_def F (0 : T -> V) g.
Proof.
move=> FF _/posnumP[eps] /=; apply: filterE => x; rewrite normr0.
by rewrite mulr_ge0 // ltrW.
Qed.

Canonical littleo0 (F : filter_on T) g :=
  Littleo (asboolT (@littleo0_subproof F g _)).

Definition the_littleo (_ : unit) (F : filter_on T)
  (phF : phantom (set (set T)) F) f h := littleo_fun (insubd (littleo0 F h) f).
Notation PhantomF := (Phantom (set (set T))).
Arguments the_littleo : simpl never, clear implicits.

Notation mklittleo tag x := (the_littleo tag _ (PhantomF x)).
(* Parsing *)
Notation "[o_ x e 'of' f ]" := (mklittleo gen_tag x f e).
(*Printing*)
Notation "[o '_' x e 'of' f ]" := (the_littleo _ _ (PhantomF x) f e).
(* These notations are printing only in order to display 'o
   without looking at the contents, use showo to display *)
Notation "''o_' x e " := (the_littleo the_tag _ (PhantomF x) _ e).
Notation "''a_o_' x e " := (the_littleo a_tag _ (PhantomF x) _ e).
Notation "''o' '_' x" := (the_littleo gen_tag _ (PhantomF x) _).

Notation "f = g '+o_' F h" :=
  (f%function = g%function + mklittleo the_tag F (f \- g) h).
Notation "f '=o_' F h" := (f%function = (mklittleo the_tag F f h)).
Notation "f == g '+o_' F h" :=
  (f%function == g%function + mklittleo the_tag F (f \- g) h).
Notation "f '==o_' F h" := (f%function == (mklittleo the_tag F f h)).

Notation "[o_( x \near F ) ex 'of' f ]" :=
  (mklittleo gen_tag F (fun x => f) (fun x => ex) x).
Notation "[o '_(' x \near F ')' ex 'of' f ]" :=
  (the_littleo _ _ (PhantomF F) (fun x => f) (fun x => ex) x).
Notation "''o_(' x \near F ')' ex" :=
  (the_littleo the_tag _ (PhantomF F) _ (fun x => ex) x).
Notation "''a_o_(' x \near F ')' ex" :=
  (the_littleo a_tag _ (PhantomF F) _ (fun x => ex) x).
Notation "''o' '_(' x \near F ')' ex" :=
  (the_littleo gen_tag _ (PhantomF F) _ (fun x => ex) x).

Notation "fx = gx '+o_(' x \near F ')' hx" :=
  (fx = gx + mklittleo the_tag F
                  ((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '=o_(' x \near F ')' hx" :=
  (fx = (mklittleo the_tag F (fun x => fx) (fun x => hx) x)).
Notation "fx == gx '+o_(' x \near F ')' hx" :=
  (fx == gx + mklittleo the_tag F
                  ((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '==o_(' x \near F ')' hx" :=
  (fx == (mklittleo the_tag F (fun x => fx) (fun x => hx) x)).

Lemma littleoP (F : set (set T)) (g : T -> W) (f : {o_F g}) : littleo_def F f g.
Proof. exact/asboolP. Qed.
Hint Extern 0 (littleo_def _ _ _) => solve[apply: littleoP] : core.
Hint Extern 0 (nbhs _ _) => solve[apply: littleoP] : core.
Hint Extern 0 (prop_near1 _) => solve[apply: littleoP] : core.
Hint Extern 0 (prop_near2 _) => solve[apply: littleoP] : core.

Lemma littleoE (tag : unit) (F : filter_on T)
   (phF : phantom (set (set T)) F) f h :
   littleo_def F f h -> the_littleo tag F phF f h = f.
Proof. by move=> /asboolP?; rewrite /the_littleo /insubd insubT. Qed.

Canonical the_littleo_littleo (tag : unit) (F : filter_on T)
  (phF : phantom (set (set T)) F) f h := [littleo of the_littleo tag F phF f h].

Variant littleo_spec (F : set (set T)) (g : T -> W) : (T -> V) -> Type :=
  LittleoSpec f of littleo_def F f g : littleo_spec F g f.

Lemma littleo (F : set (set T)) (g : T -> W) (f : {o_F g}) : littleo_spec F g f.
Proof. by constructor; apply/(@littleoP F). Qed.

Lemma opp_littleo_subproof (F : filter_on T) e (df : {o_F e}) :
   littleo_def F (- (df : _ -> _)) e.
Proof.
by move=> _/posnumP[eps]; near=> x; rewrite normrN; near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.

Canonical opp_littleo (F : filter_on T) e (df : {o_F e}) :=
  Littleo (asboolT (opp_littleo_subproof df)).

Lemma oppo (F : filter_on T) (f : T -> V) e : - [o_F e of f] =o_F e.
Proof. by rewrite [RHS]littleoE. Qed.

Lemma oppox (F : filter_on T) (f : T -> V) e x :
  - [o_F e of f] x = [o_F e of - [o_F e of f]] x.
Proof. by move: x; rewrite -/(- _ =1 _) {1}oppo. Qed.

Lemma eqadd_some_oP (F : filter_on T) (f g : T -> V) (e : T -> W) h :
  f = g + [o_F e of h] -> littleo_def F (f - g) e.
Proof.
rewrite /the_littleo /insubd=> ->.
case: insubP => /= [u /asboolP fg_o_e ->|_] eps  /=.
  by rewrite addrAC subrr add0r; apply: fg_o_e.
by rewrite addrC addKr; apply: littleoP.
Qed.

Lemma eqaddoP (F : filter_on T) (f g : T -> V) (e : T -> W) :
   (f = g +o_ F e) <-> (littleo_def F (f - g) e).
Proof.
by split=> [/eqadd_some_oP|fg_o_e]; rewrite ?littleoE // addrC addrNK.
Qed.

Lemma eqoP (F : filter_on T) (e : T -> W) (f : T -> V) :
   (f =o_ F e) <-> (littleo_def F f e).
Proof. by rewrite -[f]subr0 -eqaddoP -[f \- 0]/(f - 0) subr0 add0r. Qed.

Lemma eq_some_oP (F : filter_on T) (e : T -> W) (f : T -> V) h :
   f = [o_F e of h] -> littleo_def F f e.
Proof. by have := @eqadd_some_oP F f 0 e h; rewrite add0r subr0. Qed.

(* replaces a 'o_F e by a "canonical one" *)
(* mostly to prevent problems with dependent types *)
Lemma eqaddoE (F : filter_on T) (f g : T -> V) h (e : T -> W) :
  f = g + mklittleo a_tag F h e -> f = g +o_ F e.
Proof. by move=> /eqadd_some_oP /eqaddoP. Qed.

Lemma eqoE (F : filter_on T) (f : T -> V) h (e : T -> W) :
  f = mklittleo a_tag F h e -> f =o_F e.
Proof. by move=> /eq_some_oP /eqoP. Qed.

Lemma eqoEx (F : filter_on T) (f : T -> V) h (e : T -> W) :
  (forall x, f x = mklittleo a_tag F h e x) ->
  (forall x, f x =o_(x \near F) e x).
Proof. by have := @eqoE F f h e; rewrite !funeqE. Qed.

Lemma eqaddoEx (F : filter_on T) (f g : T -> V) h (e : T -> W) :
  (forall x, f x = g x + mklittleo a_tag F h e x) ->
  (forall x, f x = g x +o_(x \near F) (e x)).
Proof. by have := @eqaddoE F f g h e; rewrite !funeqE. Qed.

Lemma littleo_eqo (F : filter_on T) (g : T -> W) (f : {o_F g}) :
   (f : _ -> _) =o_F g.
Proof. by apply/eqoP. Qed.

End Domination.

Section Domination_numFieldType.
Context {K : numFieldType} {T : Type} {V W : normedModType K}.

Let bigO_def (F : set (set T)) (f : T -> V) (g : T -> W) :=
  \forall k \near +oo, \forall x \near F, `|f x| <= k * `|g x|.

Let bigO_ex_def (F : set (set T)) (f : T -> V) (g : T -> W) :=
  exists2 k, k > 0 & \forall x \near F, `|f x| <= k * `|g x|.

Lemma bigO_exP (F : set (set T)) (f : T -> V) (g : T -> W) :
  Filter F -> bigO_ex_def F f g <-> bigO_def F f g.
Proof.
split=> [[k k0 fOg] | [k [kreal fOg]]].
  exists k; rewrite realE (ltW k0) /=; split=> // l ltkl; move: fOg.
  by apply: filter_app; near=> x => /le_trans; apply; rewrite ler_wpmul2r // ltW.
exists (Num.max 1 `|k + 1|) => //.
apply: fOg; rewrite (@lt_le_trans _ _ `|k + 1|) //.
  by rewrite (@lt_le_trans _ _ (k + 1)) ?ltr_addl // real_ler_norm ?realD.
by rewrite comparable_le_maxr ?real_comparable// lexx orbT.
Unshelve. end_near. Qed.

Structure bigO_type (F : set (set T)) (g : T -> W) := BigO {
  bigO_fun :> T -> V;
  _ : `[< bigO_def F bigO_fun g >]
}.
Notation "{O_ F f }" := (bigO_type F f).

Canonical bigO_subtype (F : set (set T)) (g : T -> W) :=
  [subType for (@bigO_fun F g)].

Lemma bigO_class (F : set (set T)) (g : T -> W) (f : {O_F g}) :
  `[< bigO_def F f g >].
Proof. by case: f => ?. Qed.
Hint Resolve bigO_class : core.

Definition bigO_clone (F : set (set T)) (g : T -> W) (f : T -> V) (fT : {O_F g}) c
  of phant_id (bigO_class fT) c := @BigO F g f c.
Notation "[bigO 'of' f 'for' fT ]" := (@bigO_clone _ _ f fT _ idfun).
Notation "[bigO 'of' f ]" := (@bigO_clone _ _ f _ _ idfun).

Lemma bigO0_subproof F (g : T -> W) : Filter F -> bigO_def F (0 : T -> V) g.
Proof.
move=> FF; near=> k; apply: filterE => x; rewrite normr0 pmulr_rge0 ?normr_ge0//.
by near: k; exists 0.
Unshelve. all: by end_near. Qed.

Canonical bigO0 (F : filter_on T) g := BigO (asboolT (@bigO0_subproof F g _)).

Definition the_bigO (u : unit) (F : filter_on T)
  (phF : phantom (set (set T)) F) f h := bigO_fun (insubd (bigO0 F h) f).
Arguments the_bigO : simpl never, clear implicits.

(* duplicate from Section Domination *)
Notation PhantomF := (Phantom (set (set T))).
Notation mkbigO tag x := (the_bigO tag _ (PhantomF x)).
(* Parsing *)
Notation "[O_ x e 'of' f ]" := (mkbigO gen_tag x f e).
(*Printing*)
Notation "[O '_' x e 'of' f ]" := (the_bigO _ _ (PhantomF x) f e).
(* These notations are printing only in order to display 'o
   without looking at the contents, use showo to display *)
Notation "''O_' x e " := (the_bigO the_tag _ (PhantomF x) _ e).
Notation "''a_O_' x e " := (the_bigO a_tag _ (PhantomF x) _ e).
Notation "''O' '_' x" := (the_bigO gen_tag _ (PhantomF x) _).

Notation "[O_( x \near F ) e 'of' f ]" :=
  (mkbigO gen_tag F (fun x => f) (fun x => e) x).
Notation "[O '_(' x \near F ')' e 'of' f ]" :=
  (the_bigO _ _ (PhantomF F) (fun x => f) (fun x => e) x).
Notation "''O_(' x \near F ')' e" :=
  (the_bigO the_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''a_O_(' x \near F ')' e" :=
  (the_bigO a_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''O' '_(' x \near F ')' e" :=
  (the_bigO gen_tag _ (PhantomF F) _ (fun x => e) x).

Notation "f = g '+O_' F h" :=
  (f%function = g%function + mkbigO the_tag F (f \- g) h).
Notation "f '=O_' F h" := (f%function = mkbigO the_tag F f h).
Notation "f == g '+O_' F h" :=
  (f%function == g%function + mkbigO the_tag F (f \- g) h).
Notation "f '==O_' F h" := (f%function == mkbigO the_tag F f h).

Notation "fx = gx '+O_(' x \near F ')' hx" :=
  (fx = gx + mkbigO the_tag F
                  ((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '=O_(' x \near F ')' hx" :=
  (fx = (mkbigO the_tag F (fun x => fx) (fun x => hx) x)).
Notation "fx == gx '+O_(' x \near F ')' hx" :=
  (fx == gx + mkbigO the_tag F
                  ((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '==O_(' x \near F ')' hx" :=
  (fx == (mkbigO the_tag F (fun x => fx) (fun x => hx) x)).

Lemma bigOP (F : set (set T)) (g : T -> W) (f : {O_F g}) : bigO_def F f g.
Proof. exact/asboolP. Qed.
Hint Extern 0 (bigO_def _ _ _) => solve[apply: bigOP] : core.
Hint Extern 0 (nbhs _ _) => solve[apply: bigOP] : core.
Hint Extern 0 (prop_near1 _) => solve[apply: bigOP] : core.
Hint Extern 0 (prop_near2 _) => solve[apply: bigOP] : core.

Lemma bigOE (tag : unit) (F : filter_on T) (phF : phantom (set (set T)) F) f h :
   bigO_def F f h -> the_bigO tag F phF f h = f.
Proof. by move=> /asboolP?; rewrite /the_bigO /insubd insubT. Qed.

Canonical the_bigO_bigO (tag : unit) (F : filter_on T)
  (phF : phantom (set (set T)) F) f h := [bigO of the_bigO tag F phF f h].

Variant bigO_spec (F : set (set T)) (g : T -> W) : (T -> V) -> Prop :=
  BigOSpec f (k : {posnum K})
    of (\forall x \near F, `|f x| <= k%:num * `|g x|) :
      bigO_spec F g f.

Lemma bigO (F : filter_on T) (g : T -> W) (f : {O_F g}) : bigO_spec F g f.
Proof. by have /bigO_exP [_/posnumP[k] kP] := bigOP f; exists k. Qed.

Lemma opp_bigO_subproof (F : filter_on T) e (df : {O_F e}) :
   bigO_def F (- (df : _ -> _)) e.
Proof.
have := bigOP [bigO of df]; apply: filter_app; near=> k.
by apply: filter_app; near=> x; rewrite normrN.
Unshelve. all: by end_near. Qed.

Canonical Opp_bigO (F : filter_on T) e (df : {O_F e}) :=
  BigO (asboolT (opp_bigO_subproof df)).

Lemma oppO (F : filter_on T) (f : T -> V) e : - [O_F e of f] =O_F e.
Proof. by rewrite [RHS]bigOE. Qed.

Lemma oppOx (F : filter_on T) (f : T -> V) e x :
  - [O_F e of f] x = [O_F e of - [O_F e of f]] x.
Proof. by move: x; rewrite -/(- _ =1 _) {1}oppO. Qed.

Lemma add_bigO_subproof (F : filter_on T) e (df dg : {O_F e}) :
  bigO_def F (df \+ dg) e.
Proof.
near=> k; near=> x; apply: le_trans (ler_norm_add _ _) _.
by rewrite (splitr k) mulrDl ler_add //; near: x; near: k;
  [apply: near_pinfty_div2 (bigOP df)|apply: near_pinfty_div2 (bigOP dg)].
Unshelve. all: by end_near. Qed.

Canonical add_bigO (F : filter_on T) e (df dg : {O_F e}) :=
  @BigO _ _ (_ + _) (asboolT (add_bigO_subproof df dg)).
Canonical addfun_bigO (F : filter_on T) e (df dg : {O_F e}) :=
  BigO (asboolT (add_bigO_subproof df dg)).

Lemma addO (F : filter_on T) (f g: T -> V) e :
  [O_F e of f] + [O_F e of g] =O_F e.
Proof. by rewrite [RHS]bigOE. Qed.

Lemma addOx (F : filter_on T) (f g: T -> V) e x :
  [O_F e of f] x + [O_F e of g] x =
  [O_F e of [O_F e of f] + [O_F e of g]] x.
Proof. by move: x; rewrite -/(_ + _ =1 _) {1}addO. Qed.

Lemma eqadd_some_OP (F : filter_on T) (f g : T -> V) (e : T -> W) h :
  f = g + [O_F e of h] -> bigO_def F (f - g) e.
Proof.
rewrite /the_bigO /insubd=> ->.
case: insubP => /= [u /asboolP fg_o_e ->|_].
  by rewrite addrAC subrr add0r; apply: fg_o_e.
by rewrite addrC addKr; apply: bigOP.
Qed.

Lemma eqaddOP (F : filter_on T) (f g : T -> V) (e : T -> W) :
   (f = g +O_ F e) <-> (bigO_def F (f - g) e).
Proof. by split=> [/eqadd_some_OP|fg_O_e]; rewrite ?bigOE // addrC addrNK. Qed.

Lemma eqOP (F : filter_on T) (e : T -> W) (f : T -> V) :
   (f =O_ F e) <-> (bigO_def F f e).
Proof. by rewrite -[f]subr0 -eqaddOP -[f \- 0]/(f - 0) subr0 add0r. Qed.

Lemma eqO_exP (F : filter_on T) (e : T -> W) (f : T -> V) :
   (f =O_ F e) <-> (bigO_ex_def F f e).
Proof. apply: iff_trans (iff_sym (bigO_exP _ _ _)); apply: eqOP. Qed.

Lemma eq_some_OP (F : filter_on T) (e : T -> W) (f : T -> V) h :
   f = [O_F e of h] -> bigO_def F f e.
Proof. by have := @eqadd_some_OP F f 0 e h; rewrite add0r subr0. Qed.

Lemma bigO_eqO (F : filter_on T) (g : T -> W) (f : {O_F g}) :
   (f : _ -> _) =O_F g.
Proof. by apply/eqOP; apply: bigOP. Qed.

Lemma eqO_bigO (F : filter_on T) (e : T -> W) (f : T -> V) :
   f =O_ F e -> bigO_def F f e.
Proof. by rewrite eqOP. Qed.

(* replaces a 'O_F e by a "canonical one" *)
(* mostly to prevent problems with dependent types *)
Lemma eqaddOE (F : filter_on T) (f g : T -> V) h (e : T -> W) :
  f = g + mkbigO a_tag F h e -> f = g +O_ F e.
Proof.  by move=> /eqadd_some_OP /eqaddOP. Qed.

Lemma eqOE (F : filter_on T) (f : T -> V) h (e : T -> W) :
  f = mkbigO a_tag F h e -> f =O_F e.
Proof. by move=> /eq_some_OP /eqOP. Qed.

Lemma eqOEx (F : filter_on T) (f : T -> V) h (e : T -> W) :
  (forall x, f x = mkbigO a_tag F h e x) ->
  (forall x, f x =O_(x \near F) e x).
Proof. by have := @eqOE F f h e; rewrite !funeqE. Qed.

Lemma eqaddOEx (F : filter_on T) (f g : T -> V) h (e : T -> W) :
  (forall x, f x = g x + mkbigO a_tag F h e x) ->
  (forall x, f x = g x +O_(x \near F) (e x)).
Proof. by have := @eqaddOE F f g h e; rewrite !funeqE. Qed.

(* duplicate from Section Domination *)
Notation mklittleo tag x := (the_littleo tag (PhantomF x)).
(* Parsing *)
Notation "[o_ x e 'of' f ]" := (mklittleo gen_tag x f e).
(*Printing*)
Notation "[o '_' x e 'of' f ]" := (the_littleo _ _ (PhantomF x) f e).

Lemma eqoO (F : filter_on T) (f : T -> V) (e : T -> W) :
  [o_F e of f] =O_F e.
Proof. by apply/eqOP; exists 0; split => // k kgt0; apply: littleoP. Qed.
Hint Resolve eqoO : core.

(* NB: duplicate from Section Domination *)
Notation "{o_ F f }" := (littleo_type F f).

Lemma littleo_eqO (F : filter_on T) (e : T -> W) (f : {o_F e}) :
   (f : _ -> _) =O_F e.
Proof. by apply: eqOE; rewrite littleo_eqo. Qed.

Canonical littleo_is_bigO (F : filter_on T) (e : T -> W) (f : {o_F e}) :=
  BigO (asboolT (eqO_bigO (littleo_eqO f))).
Canonical the_littleo_bigO (tag : unit) (F : filter_on T)
  (phF : phantom (set (set T)) F) f h := [bigO of the_littleo tag phF f h].

End Domination_numFieldType.

Notation "{o_ F f }" := (@littleo_type _ _ _ _ F f).
Notation "{O_ F f }" := (@bigO_type _ _ _ _ F f).

Notation "[littleo 'of' f 'for' fT ]" :=
  (@littleo_clone _ _ _ _ _ _ f fT _ idfun).
Notation "[littleo 'of' f ]" := (@littleo_clone _ _ _ _ _ _ f _ _ idfun).

Notation "[bigO 'of' f 'for' fT ]" := (@bigO_clone _ _ _ _ _ _ f fT _ idfun).
Notation "[bigO 'of' f ]" := (@bigO_clone _ _ _ _ _ _ f _ _ idfun).

Arguments the_littleo {_ _ _ _} _ _ _ _ _ : simpl never.
Arguments the_bigO {_ _ _ _} _ _ _ _ _ : simpl never.
Local Notation PhantomF x := (Phantom _ [filter of x]).

Notation mklittleo tag x := (the_littleo tag _ (PhantomF x)).
(* Parsing *)
Notation "[o_ x e 'of' f ]" := (mklittleo gen_tag x f e).
Notation "[o_( x \near F ) e 'of' f ]" :=
  (mklittleo gen_tag F (fun x => f) (fun x => e) x).
Notation "'o_ x" := (the_littleo _ _ (PhantomF x) _).
Notation "'o" := (the_littleo _ _ _ _).
(*Printing*)
Notation "[o '_(' x \near F ')' e 'of' f ]" :=
  (the_littleo _ _ (PhantomF F) (fun x => f) (fun x => e) x).
Notation "[o '_' x e 'of' f ]" := (the_littleo _ _ (Phantom _ x) f e).
(* These notations are printing only in order to display 'o
   without looking at the contents, use showo to display *)
Notation "''o_' x e " := (the_littleo the_tag _ (Phantom _ x) _ e).
Notation "''a_o_' x e " := (the_littleo a_tag _ (Phantom _ x) _ e).
Notation "''o' '_' x" := (the_littleo gen_tag _ (Phantom _ x) _).

Notation "''o_(' x \near F ')' e" :=
  (the_littleo the_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''a_o_(' x \near F ')' e" :=
  (the_littleo a_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''o' '_(' x \near F ')' e" :=
  (the_littleo gen_tag _ (PhantomF F) _ (fun x => e) x).

Notation mkbigO tag x := (the_bigO tag _ (PhantomF x)).
(* Parsing *)
Notation "[O_ x e 'of' f ]" := (mkbigO gen_tag x f e).
Notation "[O_( x \near F ) e 'of' f ]" :=
  (mkbigO gen_tag F (fun x => f) (fun x => e) x).
Notation "'O_ x" := (the_bigO _ _ (PhantomF x) _).
Notation "'O" := (the_bigO _ _ _ _).
(*Printing*)
Notation "[O '_' x e 'of' f ]" := (the_bigO _ _ (Phantom _ x) f e).
Notation "[O '_(' x \near F ')' e 'of' f ]" :=
  (the_bigO _ _ (PhantomF F) (fun x => f) (fun x => e) x).
(* These notations are printing only in order to display 'o
   without looking at the contents, use showo to display *)
Notation "''O_' x e " := (the_bigO the_tag _ (Phantom _ x) _ e).
Notation "''a_O_' x e " := (the_bigO a_tag _ (Phantom _ x) _ e).
Notation "''O' '_' x" := (the_bigO gen_tag _ (Phantom _ x) _).

Notation "''O_(' x \near F ')' e" :=
  (the_bigO the_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''a_O_(' x \near F ')' e" :=
  (the_bigO a_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''O' '_(' x \near F ')' e" :=
  (the_bigO gen_tag _ (PhantomF F) _ (fun x => e) x).

Notation "f = g '+o_' F h" :=
  (f%function = g%function + mklittleo the_tag F (f \- g) h).
Notation "f '=o_' F h" := (f%function = (mklittleo the_tag F f h)).
Notation "f == g '+o_' F h" :=
  (f%function == g%function + mklittleo the_tag F (f \- g) h).
Notation "f '==o_' F h" := (f%function == (mklittleo the_tag F f h)).
Notation "fx = gx '+o_(' x \near F ')' hx" :=
  (fx = gx + mklittleo the_tag F
                  ((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '=o_(' x \near F ')' hx" :=
  (fx = (mklittleo the_tag F (fun x => fx) (fun x => hx) x)).
Notation "fx == gx '+o_(' x \near F ')' hx" :=
  (fx == gx + mklittleo the_tag F
                  ((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '==o_(' x \near F ')' hx" :=
  (fx == (mklittleo the_tag F (fun x => fx) (fun x => hx) x)).

Notation "f = g '+O_' F h" :=
  (f%function = g%function + mkbigO the_tag F (f \- g) h).
Notation "f '=O_' F h" := (f%function = mkbigO the_tag F f h).
Notation "f == g '+O_' F h" :=
  (f%function == g%function + mkbigO the_tag F (f \- g) h).
Notation "f '==O_' F h" := (f%function == mkbigO the_tag F f h).
Notation "fx = gx '+O_(' x \near F ')' hx" :=
  (fx = gx + mkbigO the_tag F
                  ((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '=O_(' x \near F ')' hx" :=
  (fx = (mkbigO the_tag F (fun x => fx) (fun x => hx) x)).
Notation "fx == gx '+O_(' x \near F ')' hx" :=
  (fx == gx + mkbigO the_tag F
                  ((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '==O_(' x \near F ')' hx" :=
  (fx == (mkbigO the_tag F (fun x => fx) (fun x => hx) x)).

#[global] Hint Extern 0 (_ = 'o__ _) => apply: eqoE; reflexivity : core.
#[global] Hint Extern 0 (_ = 'O__ _) => apply: eqOE; reflexivity : core.
#[global] Hint Extern 0 (_ = 'O__ _) => apply: eqoO; reflexivity : core.
#[global] Hint Extern 0 (_ = _ + 'o__ _) => apply: eqaddoE; reflexivity : core.
#[global] Hint Extern 0 (_ = _ + 'O__ _) => apply: eqaddOE; reflexivity : core.
#[global] Hint Extern 0 (\forall k \near +oo, \forall x \near _,
  is_true (`|_ x| <= k * `|_ x|)) => solve[apply: bigOP] : core.
#[global] Hint Extern 0 (nbhs _ _) => solve[apply: bigOP] : core.
#[global] Hint Extern 0 (prop_near1 _) => solve[apply: bigOP] : core.
#[global] Hint Extern 0 (prop_near2 _) => solve[apply: bigOP] : core.
#[global] Hint Extern 0 (forall e, is_true (0 < e) -> \forall x \near _,
  is_true (`|_ x| <= e * `|_ x|)) => solve[apply: littleoP] : core.
#[global] Hint Extern 0 (nbhs _ _) => solve[apply: littleoP] : core.
#[global] Hint Extern 0 (prop_near1 _) => solve[apply: littleoP] : core.
#[global] Hint Extern 0 (prop_near2 _) => solve[apply: littleoP] : core.
#[global] Hint Resolve littleo_class : core.
#[global] Hint Resolve bigO_class : core.
#[global] Hint Resolve littleo_eqO : core.

Arguments bigO {_ _ _ _}.

Section Domination_numFieldType.
Context {K : numFieldType} {T : Type} {V W : normedModType K}.

(* duplicate from Section Domination *)
Let littleo_def (F : set (set T)) (f : T -> V) (g : T -> W) :=
  forall eps, 0 < eps -> \forall x \near F, `|f x| <= eps * `|g x|.

Lemma add_littleo_subproof (F : filter_on T) e (df dg : {o_F e}) :
  littleo_def F (df \+ dg) e.
Proof.
move=> _/posnumP[eps]; near=> x => /=.
rewrite [eps%:num]splitr mulrDl (le_trans (ler_norm_add _ _)) // ler_add //;
by near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.

Canonical add_littleo (F : filter_on T) e (df dg : {o_F e}) :=
  @Littleo _ _ _ _ _ _ (_ + _) (asboolT (add_littleo_subproof df dg)).
Canonical addfun_littleo (F : filter_on T) e (df dg : {o_F e}) :=
  @Littleo _ _ _ _ _ _ (_ \+ _) (asboolT (add_littleo_subproof df dg)).

Lemma addo (F : filter_on T) (f g: T -> V) (e : _ -> W) :
  [o_F e of f] + [o_F e of g] =o_F e.
Proof. by rewrite [RHS]littleoE. Qed.

Lemma addox (F : filter_on T) (f g: T -> V) (e : _ -> W) x :
  [o_F e of f] x + [o_F e of g] x =
  [o_F e of [o_F e of f] + [o_F e of g]] x.
Proof. by move: x; rewrite -/(_ + _ =1 _) {1}addo. Qed.

(* duplicate from Section Domination *)
Hint Extern 0 (littleo_def _ _ _) => solve[apply: littleoP] : core.

Lemma scale_littleo_subproof (F : filter_on T) e (df : {o_F e}) a :
  littleo_def F (a *: (df : _ -> _)) e.
Proof.
have [->|a0] := eqVneq a 0; first  by rewrite scale0r.
move=> _ /posnumP[eps]; have aa := normr_eq0 a; near=> x => /=.
rewrite normmZ -ler_pdivl_mull ?lt_def ?aa ?a0 //= mulrA; near: x.
by apply: littleoP; rewrite mulr_gt0 // invr_gt0 ?lt_def ?aa ?a0 /=.
Unshelve. all: by end_near. Qed.

Canonical scale_littleo (F : filter_on T) e a (df : {o_F e}) :=
  Littleo (asboolT (scale_littleo_subproof df a)).

Lemma scaleo (F : filter_on T) a (f : T -> V) (e : _ -> W) :
  a *: [o_F e of f] = [o_F e of a *: [o_F e of f]].
Proof. by rewrite [RHS]littleoE. Qed.

Lemma scaleox (F : filter_on T) a (f : T -> V) (e : _ -> W) x :
  a *: ([o_F e of f] x) = [o_F e of a *: [o_F e of f]] x.
Proof. by move: x; rewrite -/(_ *: _ =1 _) {1}scaleo. Qed.

End Domination_numFieldType.

(* NB: see also scaleox *)
Lemma scaleolx (K : numFieldType) (V W : normedModType K) {T : Type}
  (F : filter_on T) (a : W) (k : T -> K^o) (e : T -> V) (x : T) :
  ([o_F e of k] x) *: a = [o_F e of (fun y => [o_F e of k] y *: a)] x.
Proof.
rewrite [in RHS]littleoE //.
have [->|a0] := eqVneq a 0.
  by move=> ??; apply: filterE => ?; rewrite scaler0 normr0 pmulr_rge0.
move=> _/posnumP[eps].
have ea : 0 < eps%:num / `| a | by rewrite divr_gt0 // normr_gt0.
have [g /(_ _ ea) ?] := littleo; near=> y.
rewrite normmZ -ler_pdivl_mulr; first by rewrite mulrAC; near: y.
by rewrite lt_def normr_eq0 a0 normr_ge0.
Unshelve. all: by end_near. Qed.

Section Limit.
Context {K : numFieldType} {T : Type} {V W X : normedModType K}.

Lemma eqolimP (F : filter_on T) (f : T -> V) (l : V) :
  f @ F --> l <-> f = cst l +o_F (cst (1 : K^o)).
Proof.
split=> fFl.
  apply/eqaddoP => _/posnumP[eps]; near=> x.
  rewrite /cst ltW //= distrC; near: x.
  by apply: (cvg_dist _ fFl); rewrite mulr_gt0 // normr1.
apply/cvg_distP=> _/posnumP[eps]; rewrite /= near_simpl.
have lt_eps x : x <= (eps%:num / 2%:R) * `|1 : K^o|%real -> x < eps%:num.
  rewrite normr1 mulr1 => /le_lt_trans; apply.
  by rewrite ltr_pdivr_mulr // ltr_pmulr // ltr1n.
near=> x; rewrite [X in X x]fFl opprD addNKr normrN lt_eps //; near: x.
by rewrite /= !near_simpl; apply: littleoP; rewrite divr_gt0.
Unshelve. all: by end_near. Qed.

Lemma eqolim (F : filter_on T) (f : T -> V) (l : V) e :
  f = cst l + [o_F (cst (1 : K^o)) of e] -> f @ F --> l.
Proof. by move=> /eqaddoE /eqolimP. Qed.

Lemma eqolim0P (F : filter_on T) (f : T -> V) :
  f @ F --> (0 : V) <-> f =o_F (cst (1 : K^o)).
Proof. by rewrite eqolimP add0r -[f \- cst 0]/(f - 0) subr0. Qed.

Lemma eqolim0 (F : filter_on T) (f : T -> V) :
  f =o_F (cst (1 : K^o)) -> f @ F --> (0 : V).
Proof. by move=> /eqoE /eqolim0P. Qed.

(* ideally the precondition should be f = '[O_F g of f'] with a *)
(* universally quantified f' which is irrelevant and replaced by *)
(* a hole, on the fly, by ssreflect rewrite *)

Lemma littleo_bigO_eqo {F : filter_on T}
  (g : T -> W) (f : T -> V) (h : T -> X) :
  f =O_F g -> [o_F f of h] =o_F g.
Proof.
move->; apply/eqoP => _/posnumP[e]; have [k c] := bigO _ g.
apply: filter_app; near=> x.
rewrite -!ler_pdivr_mull //; apply: le_trans; rewrite ler_pdivr_mull // mulrA.
by near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.
Arguments littleo_bigO_eqo {F}.

Lemma bigO_littleo_eqo {F : filter_on T} (g : T -> W) (f : T -> V) (h : T -> X) :
  f =o_F g -> [O_F f of h] =o_F g.
Proof.
move->; apply/eqoP => _/posnumP[e]; have [k c] := bigO.
apply: filter_app; near=> x => /le_trans; apply.
by rewrite -ler_pdivl_mull // mulrA; near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.
Arguments bigO_littleo_eqo {F}.

Lemma add2o (F : filter_on T) (f g : T -> V) (e : T -> W) :
  f =o_F e -> g =o_F e -> f + g =o_F e.
Proof. by move=> -> ->; rewrite addo. Qed.

Lemma addfo (F : filter_on T) (h f : T -> V) (e : T -> W) :
  f =o_F e -> f + [o_F e of h] =o_F e.
Proof. by move->; rewrite addo. Qed.

Lemma oppfo (F : filter_on T) (h f : T -> V) (e : T -> W) :
  f =o_F e -> - f =o_F e.
Proof. by move->; rewrite oppo. Qed.

Lemma add2O (F : filter_on T) (f g : T -> V) (e : T -> W) :
  f =O_F e -> g =O_F e -> f + g =O_F e.
Proof. by move=> -> ->; rewrite addO. Qed.

Lemma addfO (F : filter_on T) (h f : T -> V) (e : T -> W) :
  f =O_F e -> f + [O_F e of h] =O_F e.
Proof. by move->; rewrite addO. Qed.

Lemma oppfO (F : filter_on T) (h f : T -> V) (e : T -> W) :
  f =O_F e -> - f =O_F e.
Proof. by move->; rewrite oppO. Qed.

Lemma idO (F : filter_on T) (e : T -> W) : e =O_F e.
Proof. by apply/eqO_exP; exists 1 => //; apply: filterE=> x; rewrite mul1r. Qed.

Lemma littleo_littleo (F : filter_on T) (f : T -> V) (g : T -> W) (h : T -> X) :
  f =o_F g -> [o_F f of h] =o_F g.
Proof. by move=> ->; apply: eqoE; rewrite (littleo_bigO_eqo g). Qed.

End Limit.
Arguments littleo_bigO_eqo {K T V W X F}.
Arguments bigO_littleo_eqo {K T V W X F}.

Section Limit_realFieldType.
Context {K : realFieldType} (*TODO: generalize to numFieldType?*)
  {T : Type} {V W X : normedModType K}.

Lemma bigO_bigO_eqO {F : filter_on T} (g : T -> W) (f : T -> V) (h : T -> X) :
  f =O_F g -> ([O_F f of h] : _ -> _) =O_F g.
Proof.
move->; apply/eqOP; have [k c1 kOg] := bigO _ g. have [k' c2 k'Ok] := bigO _ k.
near=> c; move: k'Ok kOg; apply: filter_app2; near=> x => lek'c2k.
rewrite -(@ler_pmul2l _ c2%:num) // mulrA => /(le_trans lek'c2k) /le_trans.
by apply; rewrite ler_pmul//; near: c; exact: nbhs_pinfty_ge.
Unshelve. all: by end_near. Qed.
Arguments bigO_bigO_eqO {F}.

End Limit_realFieldType.
Arguments littleo_bigO_eqo {K T V W X F}.
Arguments bigO_littleo_eqo {K T V W X F}.
Arguments bigO_bigO_eqO {K T V W X F}.

Section littleo_bigO_transitivity.

Context {K : numFieldType} {T : Type} {V W Z : normedModType K}.

Lemma eqaddo_trans (F : filter_on T) (f g h : T -> V) fg gh (e : T -> W):
  f = g + [o_ F e of fg] -> g = h + [o_F e of gh] -> f = h +o_F e.
Proof. by move=> -> ->; rewrite -addrA addo. Qed.

End littleo_bigO_transitivity.

Section littleo_bigO_transitivity.
Context {K : numFieldType} {T : Type} {V W Z : normedModType K}.

Lemma eqaddO_trans (F : filter_on T) (f g h : T -> V) fg gh (e : T -> W):
  f = g + [O_ F e of fg] -> g = h + [O_F e of gh] -> f = h +O_F e.
Proof. by move=> -> ->; rewrite -addrA addO. Qed.

Lemma eqaddoO_trans (F : filter_on T) (f g h : T -> V) fg gh (e : T -> W):
  f = g + [o_ F e of fg] -> g = h + [O_F e of gh] -> f = h +O_F e.
Proof. by move=> -> ->; rewrite addrAC -addrA addfO. Qed.

Lemma eqaddOo_trans (F : filter_on T) (f g h : T -> V) fg gh (e : T -> W):
  f = g + [O_ F e of fg] -> g = h + [o_F e of gh] -> f = h +O_F e.
Proof. by move=> -> ->; rewrite -addrA addfO. Qed.

Lemma eqo_trans (F : filter_on T) (f : T -> V) f' (g : T -> W) g' (h : T -> Z) :
  f = [o_F g of f'] -> g = [o_F h of g'] -> f =o_F h.
Proof.  by move=> -> ->; rewrite (littleo_bigO_eqo h). Qed.

Lemma eqOo_trans (F : filter_on T) (f : T -> V) f' (g : T -> W) g' (h : T -> Z) :
  f = [O_F g of f'] -> g = [o_F h of g'] -> f =o_F h.
Proof. by move=> -> ->; rewrite (bigO_littleo_eqo h). Qed.

Lemma eqoO_trans (F : filter_on T) (f : T -> V) f' (g : T -> W) g' (h : T -> Z) :
  f = [o_F g of f'] -> g = [O_F h of g'] -> f =o_F h.
Proof. by move=> -> ->; rewrite (littleo_bigO_eqo h). Qed.
End littleo_bigO_transitivity.

Section littleo_bigO_transitivity_realFieldType.
Context {K : realFieldType} (*TODO: generalize to numFieldType?*) {T : Type}
  {V W Z : normedModType K}.

Lemma eqO_trans (F : filter_on T) (f : T -> V) f' (g : T -> W) g' (h : T -> Z) :
  f = [O_F g of f'] -> g = [O_F h of g'] -> f =O_F h.
Proof. by move=> -> ->; rewrite (bigO_bigO_eqO h). Qed.
End littleo_bigO_transitivity_realFieldType.

Section rule_of_products_rcfType.

Variables (R : rcfType) (pT : pointedType).
(* TODO: generalize to R : numDomainType? *)

Lemma mulo (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
  [o_F h1 of f] * [o_F h2 of g] =o_F (h1 * h2).
Proof.
rewrite [in RHS]littleoE // => _/posnumP[e]; near=> x.
rewrite [`|_|]normrM -(sqr_sqrtr (ge0 e)) expr2.
rewrite (@normrM _ (h1 x) (h2 x)) mulrACA ler_pmul //; near: x;
by have [/= h] := littleo; apply.
Unshelve. all: by end_near. Qed.

Lemma mulO (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
  [O_F h1 of f] * [O_F h2 of g] =O_F (h1 * h2).
Proof.
rewrite [RHS]bigOE//; have [ O1 k1 Oh1] := bigO; have [ O2 k2 Oh2] := bigO.
near=> k; move: Oh1 Oh2; apply: filter_app2; near=> x => leOh1 leOh2.
rewrite [`|_|]normrM (le_trans (ler_pmul _ _ leOh1 leOh2)) //.
rewrite mulrACA [`|_| in leRHS]normrM ler_wpmul2r // ?mulr_ge0 //.
by near: k; exact: nbhs_pinfty_ge.
Unshelve. all: by end_near. Qed.

End rule_of_products_rcfType.

(* NB: almost a duplicate of Section rule_of_products_rcfType *)
Section rule_of_products_numClosedFieldType.

Variables (R : numClosedFieldType) (pT : pointedType).

Lemma mulo_numClosedFieldType (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
  [o_F h1 of f] * [o_F h2 of g] =o_F (h1 * h2).
Proof.
rewrite [in RHS]littleoE // => _/posnumP[e]; near=> x.
rewrite [`|_|]normrM -(sqrCK (ge0 e)) expr2 sqrtCM ?qualifE//.
rewrite (@normrM _ (h1 x) (h2 x)) mulrACA ler_pmul //; near: x;
by have [/= h] := littleo; apply.
Unshelve. all: by end_near. Qed.

Lemma mulO_numClosedFieldType (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
  [O_F h1 of f] * [O_F h2 of g] =O_F (h1 * h2).
Proof.
rewrite [RHS]bigOE//; have [ O1 k1 Oh1] := bigO; have [ O2 k2 Oh2] := bigO.
near=> k; move: Oh1 Oh2; apply: filter_app2; near=> x => leOh1 leOh2.
rewrite [`|_|]normrM (le_trans (ler_pmul _ _ leOh1 leOh2)) //.
rewrite mulrACA [`|_| in leRHS]normrM ler_wpmul2r // ?mulr_ge0 //.
by near: k; exact: nbhs_pinfty_ge.
Unshelve. all: by end_near. Qed.

End rule_of_products_numClosedFieldType.

Section Linear3.
Context (R : realFieldType) (U : normedModType R) (V : normedModType R)
        (s : R -> V -> V) (s_law : GRing.Scale.law s).
Hypothesis (normm_s : forall k x, `|s k x| = `|k| * `|x|).

(* Split in multiple bits *)
(* - Locally bounded => locally lipschitz *)
(* - locally lipschitz + linear => lipschitz *)
(* - locally lipschitz => continuous at a point *)
(* - lipschitz => uniformly continous *)

Local Notation "'+oo'" := (@pinfty_nbhs R).

Lemma linear_for_continuous (f : {linear U -> V | GRing.Scale.op s_law}) :
  (f : _ -> _) =O_ (0 : U) (cst (1 : R^o)) -> continuous f.
Proof.
move=> /eqO_exP [_/posnumP[k0] Of1] x.
apply/cvg_distP => _/posnumP[e]; rewrite !near_simpl.
rewrite (near_shift 0) /= subr0; near=> y => /=.
rewrite -linearB opprD addrC addrNK linearN normrN; near: y.
suff flip : \forall k \near +oo, forall x, `|f x| <= k * `|x|.
  near +oo => k; near=> y.
  rewrite (le_lt_trans (near flip k _ _)) // -ltr_pdivl_mull; last first.
    by near: k; exists 0.
  near: y; apply/nbhs_normP.
  eexists; last by move=> ?; rewrite -ball_normE /= sub0r normrN; apply.
  by rewrite /= mulr_gt0 // invr_gt0; near: k; exists 0.
have /nbhs_normP [_/posnumP[d]] := Of1.
rewrite /cst [X in _ * X]normr1 mulr1 => fk; near=> k => y.
case: (ler0P `|y|) => [|y0].
  by rewrite normr_le0 => /eqP->; rewrite linear0 !normr0 mulr0.
have ky0 : 0 <= k0%:num / (k * `|y|).
  by rewrite pmulr_rge0 // invr_ge0 mulr_ge0 // ltW //; near: k; exists 0.
rewrite -[leRHS]mulr1 -ler_pdivr_mull ?pmulr_rgt0 //; last first.
  by near: k; exists 0.
rewrite -(ler_pmul2l [gt0 of k0%:num]) mulr1 mulrA -[_ / _]ger0_norm //.
rewrite -normm_s.
have <- : GRing.Scale.op s_law =2 s by rewrite GRing.Scale.opE.
rewrite -linearZ fk //= -ball_normE /= distrC subr0 normmZ ger0_norm //.
rewrite invfM mulrA mulfVK ?lt0r_neq0 // ltr_pdivr_mulr //; last first.
  by near: k; exists 0.
by rewrite -ltr_pdivr_mull//; near: k; exact: nbhs_pinfty_gt.
Unshelve. all: by end_near. Qed.

End Linear3.

Arguments linear_for_continuous {R U V s s_law normm_s} f _.

Lemma linear_continuous (R : realFieldType) (U : normedModType R)
  (V : normedModType R) (f : {linear U -> V}) :
  (f : _ -> _) =O_ (0 : U) (cst (1 : R^o)) -> continuous f.
Proof. by apply: linear_for_continuous => ??; rewrite normmZ. Qed.

Lemma linear_for_mul_continuous (R : realFieldType) (U : normedModType R)
  (f : {linear U -> R | (@GRing.mul [ringType of R^o])}) :
  (f : _ -> _) =O_ (0 : U) (cst (1 : R^o)) -> continuous f.
Proof. by apply: linear_for_continuous => ??; rewrite normmZ. Qed.

Notation "f '~_' F g" := (f = g +o_ F g).
Notation "f '~~_' F g" := (f == g +o_ F g).

Section asymptotic_equivalence.

Context {K : realFieldType} {T : Type} {V W : normedModType K}.
Implicit Types F : filter_on T.

Lemma equivOLR F (f g : T -> V) : f ~_F g -> f =O_F g.
Proof. by move=> ->; apply: eqOE; rewrite {1}[g](idO F) addrC addfO. Qed.

Lemma equiv_refl F (f : T -> V) : f ~_F f.
Proof. by apply/eqaddoP; rewrite subrr. Qed.

Lemma equivoRL (W' : normedModType K) F (f g : T -> V) (h : T -> W') :
  f ~_F g -> [o_F g of h] =o_F f.
Proof.
move=> ->; apply/eqoP; move=> _/posnumP[eps]; near=> x.
rewrite -ler_pdivr_mull // -[X in g + X]opprK oppo.
rewrite (le_trans _ (ler_dist_dist _ _)) //.
rewrite [leRHS]ger0_norm ?ler_subr_addr ?add0r; last first.
  by rewrite -[leRHS]mul1r; near: x; apply: littleoP.
rewrite [leRHS]splitr [_ / 2]mulrC.
by rewrite ler_add ?ler_pdivr_mull ?mulrA //; near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.

Lemma equiv_sym F (f g : T -> V) : f ~_F g -> g ~_F f.
Proof.
move=> fg; have /(canLR (addrK _))<- := fg.
by apply:eqaddoE; rewrite oppo (equivoRL _ fg).
Qed.

Lemma equivoLR (W' : normedModType K) F (f g : T -> V) (h : T -> W') :
  f ~_F g -> [o_F f of h] =o_F g.
Proof. by move/equiv_sym/equivoRL. Qed.

Lemma equivORL F (f g : T -> V) : f ~_F g -> g =O_F f.
Proof. by move/equiv_sym/equivOLR. Qed.

Lemma eqoaddo (W' : normedModType K) F (f g : T -> V) (h : T -> W') :
  [o_F f + [o_F f of g] of h] =o_F f.
Proof. by apply: equivoLR. Qed.

Lemma equiv_trans F (f g h : T -> V) : f ~_F g -> g ~_F h -> f ~_F h.
Proof. by move=> -> ->; apply: eqaddoE; rewrite eqoaddo -addrA addo. Qed.

Lemma equivalence_rel_equiv F :
  equivalence_rel [rel f g : T -> V | f ~~_F g].
Proof.
move=> f g h; split; first by apply/eqP/equiv_refl.
by move=> /eqP fg /=; apply/eqP/eqP; apply/equiv_trans => //; apply/equiv_sym.
Qed.

End asymptotic_equivalence.

Section big_omega.

Context {K : realFieldType} {T : Type} {V : normedModType K}.
Implicit Types W : normedModType K.

Let bigOmega_def W (F : set (set T)) (f : T -> V) (g : T -> W) :=
  exists2 k, k > 0 & \forall x \near F, `|f x| >= k * `|g x|.

Structure bigOmega_type {W} (F : set (set T)) (g : T -> W) := BigOmega {
  bigOmega_fun :> T -> V;
  _ : `[< bigOmega_def F bigOmega_fun g >]
}.

Notation "{Omega_ F g }" := (@bigOmega_type _ F g).

Canonical bigOmega_subtype {W} (F : set (set T)) (g : T -> W) :=
  [subType for (@bigOmega_fun W F g)].

Lemma bigOmega_class {W} (F : set (set T)) (g : T -> W) (f : {Omega_F g}) :
  `[< bigOmega_def F f g >].
Proof. by case: f => ?. Qed.
Hint Resolve bigOmega_class : core.

Definition bigOmega_clone {W} (F : set (set T)) (g : T -> W) (f : T -> V)
  (fT : {Omega_F g}) c of phant_id (bigOmega_class fT) c := @BigOmega W F g f c.
Notation "[bigOmega 'of' f 'for' fT ]" := (@bigOmega_clone _ _ _ f fT _ idfun).
Notation "[bigOmega 'of' f ]" := (@bigOmega_clone _ _ _ f _ _ idfun).

Lemma bigOmega_refl_subproof F (g : T -> V) : Filter F -> bigOmega_def F g g.
Proof.
by move=> FF; exists 1 => //; near=> x; rewrite mul1r.
Unshelve. all: by end_near. Qed.

Definition bigOmega_refl (F : filter_on T) g :=
  BigOmega (asboolT (@bigOmega_refl_subproof F g _)).

Definition the_bigOmega (u : unit) (F : filter_on T)
  (phF : phantom (set (set T)) F) f g :=
  bigOmega_fun (insubd (bigOmega_refl F g) f).
Arguments the_bigOmega : simpl never, clear implicits.

Notation mkbigOmega tag x := (the_bigOmega tag _ (PhantomF x)).
Notation "[Omega_ x e 'of' f ]" := (mkbigOmega gen_tag x f e). (* parsing *)
Notation "[Omega '_' x e 'of' f ]" := (the_bigOmega _ _ (PhantomF x) f e).

Definition is_bigOmega {W} (F : set (set T)) (g : T -> W) :=
  [qualify f : T -> V | `[< bigOmega_def F f g >] ].
Fact is_bigOmega_key {W} (F : set (set T)) (g : T -> W) : pred_key (is_bigOmega F g).
Proof. by []. Qed.
Canonical is_bigOmega_keyed {W} (F : set (set T)) (g : T -> W) :=
  KeyedQualifier (is_bigOmega_key F g).
Notation "'Omega_ F g" := (is_bigOmega F g).

Lemma bigOmegaP {W} (F : set (set T)) (g : T -> W) (f : {Omega_F g}) :
  bigOmega_def F f g.
Proof. exact/asboolP. Qed.
Hint Extern 0 (bigOmega_def _ _ _) => solve[apply: bigOmegaP] : core.
Hint Extern 0 (nbhs _ _) => solve[apply: bigOmegaP] : core.
Hint Extern 0 (prop_near1 _) => solve[apply: bigOmegaP] : core.
Hint Extern 0 (prop_near2 _) => solve[apply: bigOmegaP] : core.

Notation "f '=Omega_' F h" := (f%function = mkbigOmega the_tag F f h).

Canonical the_bigOmega_bigOmega (tag : unit) (F : filter_on T)
  (phF : phantom (set (set T)) F) f h := [bigOmega of the_bigOmega tag F phF f h].

Variant bigOmega_spec {W} (F : set (set T)) (g : T -> W) : (T -> V) -> Prop :=
  BigOmegaSpec f (k : {posnum K}) of
    (\forall x \near F, `|f x| >= k%:num * `|g x|) :
  bigOmega_spec F g f.

Lemma bigOmega {W} (F : filter_on T) (g : T -> W) (f : {Omega_F g}) :
  bigOmega_spec F g f.
Proof. by have [_/posnumP[k]] := bigOmegaP f; exists k. Qed.

(* properties of big Omega *)

Lemma eqOmegaO {W} (F : filter_on T) (f : T -> V) (e : T -> W) :
  (f \is 'Omega_F(e)) = (e =O_F f) :> Prop.
Proof.
rewrite propeqE; split => [| /eqO_exP[x x0 Hx] ];
[rewrite qualifE => /asboolP[x x0 Hx]; apply/eqO_exP |
rewrite qualifE; apply/asboolP];
exists x^-1; rewrite ?invr_gt0 //; near=> y.
  by rewrite ler_pdivl_mull //; near: y.
by rewrite ler_pdivr_mull //; near: y.
Unshelve. all: by end_near. Qed.

Lemma eqOmegaE (F : filter_on T) (f e : T -> V) :
  (f =Omega_F(e)) = (f \is 'Omega_F(e)).
Proof.
rewrite propeqE; split=> [->|]; rewrite qualifE; last first.
  by move=> H; rewrite /the_bigOmega val_insubd H.
by apply/asboolP; rewrite /the_bigOmega val_insubd; case: ifPn => // /asboolP.
Qed.

Lemma eqOmega_trans (F : filter_on T) (f g h : T -> V) :
  f =Omega_F(g) -> g =Omega_F(h) -> f =Omega_F(h).
Proof. rewrite !eqOmegaE !eqOmegaO => fg gh; exact: (eqO_trans gh fg). Qed.

End big_omega.

Notation "{Omega_ F f }" := (@bigOmega_type _ _ _ _ F f).
Notation "[bigOmega 'of' f ]" := (@bigOmega_clone _ _ _ _ _ _ f _ _ idfun).
Notation mkbigOmega tag x := (the_bigOmega tag (PhantomF x)).
Notation "[Omega_ x e 'of' f ]" := (mkbigOmega gen_tag x f e).
Notation "[Omega '_' x e 'of' f ]" := (the_bigOmega _ _ (PhantomF x) f e).
Notation "'Omega_ F g" := (is_bigOmega F g).
Notation "f '=Omega_' F h" := (f%function = mkbigOmega the_tag F f h).
Arguments bigOmega {_ _ _ _}.

Section big_omega_in_R.

Variable pT : pointedType.

Lemma addOmega (R : realFieldType) (F : filter_on pT) (f g h : _ -> R^o)
  (f_nonneg : forall x, 0 <= f x) (g_nonneg : forall x, 0 <= g x) :
  f =Omega_F h -> f + g =Omega_F h.
Proof.
rewrite 2!eqOmegaE !eqOmegaO => /eqOP hOf; apply/eqOP.
apply: filter_app hOf; near=> k; apply: filter_app; near=> x => /le_trans.
apply; rewrite ler_pmul2l //; last by near: k; exists 0.
by rewrite !ger0_norm // ?addr_ge0 // ler_addl.
Unshelve. all: by end_near. Qed.

Lemma mulOmega (R : realFieldType) (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
  [Omega_F h1 of f] * [Omega_F h2 of g] =Omega_F (h1 * h2).
Proof.
rewrite eqOmegaE eqOmegaO [in RHS]bigOE //.
have [W1 k1 ?] := bigOmega; have [W2 k2 ?] := bigOmega.
near=> k; near=> x; rewrite [`|_|]normrM.
rewrite (@le_trans _ _ ((k2%:num * k1%:num)^-1 * `|(W1 * W2) x|)) //.
  rewrite invrM ?unitfE ?gtr_eqF // -mulrA ler_pdivl_mull //.
  rewrite ler_pdivl_mull // (mulrA k1%:num) mulrCA (@normrM _ (W1 x)).
  by rewrite ler_pmul ?mulr_ge0 //; near: x.
by rewrite ler_wpmul2r // ltW //; near: k; exists (k2%:num * k1%:num)^-1.
Unshelve. all: by end_near. Qed.

End big_omega_in_R.

Section big_theta.

Context {K : realFieldType} {T : Type} {V : normedModType K}.
Implicit Types W : normedModType K.

Let bigTheta_def W (F : set (set T)) (f : T -> V) (g : T -> W) :=
  exists2 k, (k.1 > 0) && (k.2 > 0) &
  \forall x \near F, k.1 * `|g x| <= `|f x| /\ `|f x| <= k.2 * `|g x|.

Structure bigTheta_type {W} (F : set (set T)) (g : T -> W) := BigTheta {
  bigTheta_fun :> T -> V;
  _ : `[< bigTheta_def F bigTheta_fun g >]
}.

Notation "{Theta_ F g }" := (@bigTheta_type _ F g).

Canonical bigTheta_subtype {W} (F : set (set T)) (g : T -> W) :=
  [subType for (@bigTheta_fun W F g)].

Lemma bigTheta_class {W} (F : set (set T)) (g : T -> W) (f : {Theta_F g}) :
  `[< bigTheta_def F f g >].
Proof. by case: f => ?. Qed.
Hint Resolve bigTheta_class : core.

Definition bigTheta_clone {W} (F : set (set T)) (g : T -> W) (f : T -> V)
  (fT : {Theta_F g}) c of phant_id (bigTheta_class fT) c := @BigTheta W F g f c.
Notation "[bigTheta 'of' f 'for' fT ]" := (@bigTheta_clone _ _ _ f fT _ idfun).
Notation "[bigTheta 'of' f ]" := (@bigTheta_clone _ _ _ f _ _ idfun).

Lemma bigTheta_refl_subproof F (g : T -> V) : Filter F -> bigTheta_def F g g.
Proof.
by move=> FF; exists 1 => /=; rewrite ?ltr01 //; near=> x; by rewrite mul1r.
Unshelve. all: by end_near. Qed.

Definition bigTheta_refl (F : filter_on T) g :=
  BigTheta (asboolT (@bigTheta_refl_subproof F g _)).

Definition the_bigTheta (u : unit) (F : filter_on T)
  (phF : phantom (set (set T)) F) f g :=
  bigTheta_fun (insubd (bigTheta_refl F g) f).
Arguments the_bigOmega : simpl never, clear implicits.

Notation mkbigTheta tag x := (@the_bigTheta tag _ (PhantomF x)).
Notation "[Theta_ x e 'of' f ]" := (mkbigTheta gen_tag x f e). (* parsing *)
Notation "[Theta '_' x e 'of' f ]" := (the_bigTheta _ _ (PhantomF x) f e).

Definition is_bigTheta {W} (F : set (set T)) (g : T -> W) :=
  [qualify f : T -> V | `[< bigTheta_def F f g >] ].
Fact is_bigTheta_key {W} (F : set (set T)) (g : T -> W) : pred_key (is_bigTheta F g).
Proof. by []. Qed.
Canonical is_bigTheta_keyed {W} (F : set (set T)) (g : T -> W) :=
  KeyedQualifier (is_bigTheta_key F g).
Notation "'Theta_ F g" := (@is_bigTheta _ F g).

Lemma bigThetaP {W} (F : set (set T)) (g : T -> W) (f : {Theta_F g}) :
  bigTheta_def F f g.
Proof. exact/asboolP. Qed.
Hint Extern 0 (bigTheta_def _ _ _) => solve[apply: bigThetaP] : core.
Hint Extern 0 (nbhs _ _) => solve[apply: bigThetaP] : core.
Hint Extern 0 (prop_near1 _) => solve[apply: bigThetaP] : core.
Hint Extern 0 (prop_near2 _) => solve[apply: bigThetaP] : core.

Canonical the_bigTheta_bigTheta (tag : unit) (F : filter_on T)
  (phF : phantom (set (set T)) F) f h := [bigTheta of @the_bigTheta tag F phF f h].

Variant bigTheta_spec {W} (F : set (set T)) (g : T -> W) : (T -> V) -> Prop :=
    BigThetaSpec f (k1 : {posnum K}) (k2 : {posnum K}) of
      (\forall x \near F, k1%:num * `|g x| <= `|f x|) &
      (\forall x \near F, `|f x| <= k2%:num * `|g x|) :
  bigTheta_spec F g f.

Lemma bigTheta {W} (F : filter_on T) (g : T -> W) (f : {Theta_F g}) :
  bigTheta_spec F g f.
Proof.
have [[_ _] /andP[/posnumP[k] /posnumP[k']]] := bigThetaP f.
by move=> /near_andP[]; exists k k'.
Qed.

Notation "f '=Theta_' F h" := (f%function = mkbigTheta the_tag F f h).

Lemma bigThetaE {W} (F : filter_on T) (f : T -> V) (g : T -> W) :
  (f \is 'Theta_F(g)) = (f =O_F g /\ f \is 'Omega_F(g)) :> Prop.
Proof.
rewrite propeqE; split.
- rewrite qualifE => /asboolP[[/= k1 k2] /andP[k10 k20]] /near_andP[Hx1 Hx2].
  by split; [rewrite eqO_exP; exists k2|
    rewrite qualifE; apply/asboolP; exists k1].
- case; rewrite eqO_exP qualifE => -[k1 k10 H1] /asboolP[k2 k20 H2].
  rewrite qualifE; apply/asboolP; exists (k2, k1) => /=; first by rewrite k20.
  by apply/near_andP; split.
Qed.

Lemma eqThetaE (F : filter_on T) (f e : T -> V) :
  (f =Theta_F(e)) = (f \is 'Theta_F(e)).
Proof.
rewrite propeqE; split=> [->|]; rewrite qualifE; last first.
  by move=> H; rewrite /the_bigTheta val_insubd H.
by apply/asboolP; rewrite /the_bigTheta val_insubd; case: ifPn => // /asboolP.
Qed.

Lemma eqThetaO (F : filter_on T) (f g : T -> V) : [Theta_F g of f] =O_F g.
Proof. by have [T1 k1 k2 ? ?] := bigTheta; apply/eqO_exP; exists k2%:num. Qed.

Lemma idTheta (F : filter_on T) (f : T -> V) : f =Theta_F f.
Proof. rewrite eqThetaE bigThetaE eqOmegaO; split; exact/idO. Qed.

Lemma Theta_sym (F : filter_on T) (f g : T -> V) :
  (f =Theta_F g) = (g =Theta_F f).
Proof. by rewrite !eqThetaE propeqE !bigThetaE !eqOmegaO; split => -[]. Qed.

Lemma eqTheta_trans (F : filter_on T) (f g h : T -> V) :
  f =Theta_F g -> g =Theta_F h -> f =Theta_F h.
Proof.
rewrite !eqThetaE !bigThetaE -!eqOmegaE => -[fg gf] [gh hg]; split.
by rewrite fg (bigO_bigO_eqO _ _ _ gh).
exact: (eqOmega_trans gf hg).
Qed.

End big_theta.

Notation "{Theta_ F g }" := (@bigTheta_type _ F g).
Notation "[bigTheta 'of' f ]" := (@bigTheta_clone _ _ _ _ _ _ f _ _ idfun).
Notation mkbigTheta tag x := (the_bigTheta tag (PhantomF x)).
Notation "[Theta_ x e 'of' f ]" := (mkbigTheta gen_tag x f e).
Notation "[Theta '_' x e 'of' f ]" := (the_bigTheta _ _ (PhantomF x) f e).
Notation "'Theta_ F g" := (is_bigTheta F g).
Notation "f '=Theta_' F h" := (f%function = mkbigTheta the_tag F f h).

Section big_theta_in_R.

Variables (R : rcfType (*realType*)) (pT : pointedType).

Lemma addTheta (F : filter_on pT) (f g h : _ -> R^o)
  (f0 : forall x, 0 <= f x) (g0 : forall x, 0 <= g x) (h0 : forall x, 0 <= h x) :
  [Theta_F h of f] + [O_F h of g] =Theta_F h.
Proof.
rewrite eqThetaE bigThetaE; split; first by rewrite eqThetaO addO.
rewrite -eqOmegaE; apply: addOmega.
- by move=> ?; rewrite /the_bigTheta val_insubd /=; case: ifP.
- by move=> ?; rewrite /the_bigO val_insubd /=; case: ifP.
- rewrite eqOmegaE eqOmegaO; have [T1 k1 k2 ? ?] := bigTheta.
  rewrite bigOE //; apply/bigO_exP; exists k1%:num^-1 => //.
  by near=> x; rewrite ler_pdivl_mull //; near: x.
Unshelve. all: by end_near. Qed.

Lemma mulTheta (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
  [Theta_F h1 of f] * [Theta_F h2 of g] =Theta_F h1 * h2.
Proof.
rewrite eqThetaE bigThetaE; split.
  by rewrite (eqThetaO _ f) (eqThetaO _ g) mulO.
rewrite eqOmegaO [in RHS]bigOE //.
have [T1 k1 l1 P1 ?] := bigTheta; have [T2 k2 l2 P2 ?] := bigTheta.
near=> k; first near=> x.
rewrite [`|_|]normrM (@le_trans _ _ ((k2%:num * k1%:num)^-1 * `|(T1 * T2) x|)) //.
  rewrite invrM ?unitfE ?gtr_eqF // -mulrA ler_pdivl_mull //.
  rewrite ler_pdivl_mull // (mulrA k1%:num) mulrCA (@normrM _ (T1 x)) ler_pmul //;
  by [rewrite mulr_ge0 //|near: x].
by rewrite ler_wpmul2r // ltW //; near: k; exists (k2%:num * k1%:num)^-1.
Unshelve. all: by end_near. Qed.

End big_theta_in_R.