Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 65,005 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 |
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From mathcomp Require Import all_ssreflect ssralg ssrnum.
Require Import boolp ereal reals mathcomp_extra.
Require Import classical_sets signed functions topology normedtype.
Require Import prodnormedzmodule.
(******************************************************************************)
(* BACHMANN-LANDAU NOTATIONS : BIG AND LITTLE O *)
(******************************************************************************)
(******************************************************************************)
(* F is a filter, K is an absRingType and V W X Y Z are normed spaces over K *)
(* alternatively, K can be equal to the reals R (from the standard library *)
(* for now) *)
(* This library is very asymmetric, in multiple respects: *)
(* - most rewrite rules can only be rewritten from left to right. *)
(* e.g. an equation 'o_F f = 'O_G g can be used only from LEFT TO RIGHT *)
(* - conversely most small 'o_F f in your goal are very specific, *)
(* only 'a_F f is mutable *)
(* *)
(* - most notations are either parse only or print only. *)
(* Indeed all the 'O_F notations contain a function which is NOT displayed. *)
(* This might be confusing as sometimes you might get 'O_F g = 'O_F g *)
(* and not be able to solve by reflexivity. *)
(* - In order to have a look at the hidden function, rewrite showo. *)
(* - Do not use showo during a normal proof. *)
(* - All theorems should be stated so that when an impossible reflexivity *)
(* is encountered, it is of the form 'O_F g = 'O_F g so that you *)
(* know you should use eqOE in order to generalize your 'O_F g *)
(* to an arbitrary 'O_F g *)
(* *)
(* To prove that f is a bigO of g near F, you should go back to filter *)
(* reasoning only as a last resort. To do so, use the view eqOP. Similarly, *)
(* you can use eqaddOP to prove that f is equal to g plus a bigO of e near F *)
(* using filter reasoning. *)
(* *)
(* Parsable notations: *)
(* [bigO of f] == recovers the canonical structure of big-o of f *)
(* expands to itself *)
(* f =O_F h == f is a bigO of h near F, *)
(* this is the preferred way for statements. *)
(* expands to the equation (f = 'O_F h) *)
(* rewrite from LEFT to RIGHT only *)
(* f = g +O_F h == f is equal to g plus a bigO near F, *)
(* this is the preferred way for statements. *)
(* expands to the equation (f = g + 'O_F h) *)
(* rewrite from LEFT to RIGHT only *)
(* /!\ When you have to prove *)
(* (f =O_F h) or (f = g +O_F h). *)
(* you must (apply: eqOE) as soon as possible in a proof *)
(* in order to turn it into 'a_O_F f with a shelved content *)
(* /!\ under rare circumstances, a hint may do that for you *)
(* [O_F h of f] == returns a function with a bigO canonical structure *)
(* provably equal to f if f is indeed a bigO of h *)
(* provably equal to 0 otherwise *)
(* expands to ('O_F h) *)
(* 'O_F == pattern to match a bigO with a specific F *)
(* 'O == pattern to match a bigO with a generic F *)
(* f x =O_(x \near F) e x == alternative way of stating f =O_F e (provably *)
(* equal using the lemma eqOEx *)
(* *)
(* Printing only notations: *)
(* {O_F f} == the type of functions that are a bigO of f near F *)
(* 'a_O_F f == an existential bigO, must come from (apply: eqOE) *)
(* 'O_F f == a generic bigO, with a function you should not rely on, *)
(* but there is no way you can use eqOE on it. *)
(* *)
(* The former works exactly the same by with littleo instead of bigO. *)
(* *)
(* Asymptotic equivalence: *)
(* f ~_ F g == function f is asymptotically equivalent to *)
(* function g for filter F, i.e., f = g +o_ F g *)
(* f ~~_ F g == f == g +o_ F g (i.e., as a boolean relation) *)
(* --> asymptotic equivalence proved to be an equivalence relation *)
(* *)
(* Big-Omega and big-Theta notations on the model of bigO and littleo: *)
(* {Omega_F f} == the type of functions that are a big Omega of f near F *)
(* [bigOmega of f] == recovers the canonical structure of big-Omega of f *)
(* [Omega_F e of f] == returns a function with a bigOmega canonical structure *)
(* provably equal to f if f is indeed a bigOmega of e *)
(* or e otherwise *)
(* f \is 'Omega_F(e) == f : T -> V is a bigOmega of e : T -> W near F *)
(* f =Omega_F h == f : T -> V is a bigOmega of h : T -> V near F *)
(* --> lemmas: relation with big-O, transitivity, product of functions, etc. *)
(* *)
(* Similar notations available for big-Theta. *)
(* --> lemmas: relations with big-O and big-Omega, reflexivity, symmetry, *)
(* transitivity, product of functions, etc. *)
(* *)
(* WARNING: The piece of syntax "=O_(" is only valid in the syntax *)
(* "=O_(x \near F)", not in the syntax "=O_(x : U)". *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope R_scope.
Import Order.TTheory GRing.Theory Num.Theory.
Reserved Notation "{o_ F f }" (at level 0, F at level 0, format "{o_ F f }").
Reserved Notation "[littleo 'of' f 'for' fT ]" (at level 0, f at level 0,
format "[littleo 'of' f 'for' fT ]").
Reserved Notation "[littleo 'of' f ]" (at level 0, f at level 0,
format "[littleo 'of' f ]").
Reserved Notation "'o_ x" (at level 200, x at level 0, only parsing).
Reserved Notation "'o" (at level 200, only parsing).
(* Parsing *)
Reserved Notation "[o_ x e 'of' f ]" (at level 0, x, e at level 0, only parsing).
(*Printing*)
Reserved Notation "[o '_' x e 'of' f ]"
(at level 0, x, e at level 0, format "[o '_' x e 'of' f ]").
(* These notations are printing only in order to display 'o
without looking at the contents, use showo to display *)
Reserved Notation "''o_' x e "
(at level 0, x, e at level 0, format "''o_' x e ").
Reserved Notation "''a_o_' x e "
(at level 0, x, e at level 0, format "''a_o_' x e ").
Reserved Notation "''o' '_' x"
(at level 0, x at level 0, format "''o' '_' x").
Reserved Notation "f = g '+o_' F h"
(at level 70, no associativity,
g at next level, F at level 0, h at next level,
format "f = g '+o_' F h").
Reserved Notation "f '=o_' F h"
(at level 70, no associativity,
F at level 0, h at next level,
format "f '=o_' F h").
Reserved Notation "f == g '+o_' F h"
(at level 70, no associativity,
g at next level, F at level 0, h at next level,
format "f == g '+o_' F h").
Reserved Notation "f '==o_' F h"
(at level 70, no associativity,
F at level 0, h at next level,
format "f '==o_' F h").
Reserved Notation "[o_( x \near F ) ex 'of' fx ]"
(at level 0, x, ex at level 0, only parsing).
(*Printing*)
Reserved Notation "[o '_(' x \near F ')' ex 'of' fx ]"
(at level 0, x, ex at level 0,
format "[o '_(' x \near F ')' ex 'of' fx ]").
(* These notations are printing only in order to display 'o
without looking at the contents, use showo to display *)
Reserved Notation "''o_(' x \near F ')' ex"
(at level 0, x, ex at level 0, format "''o_(' x \near F ')' ex").
Reserved Notation "''a_o_(' x \near F ')' ex"
(at level 0, x, ex at level 0, format "''a_o_(' x \near F ')' ex").
Reserved Notation "''o' '_(' x \near F ')' ex"
(at level 0, x, ex at level 0, format "''o' '_(' x \near F ')' ex").
Reserved Notation "fx = gx '+o_(' x \near F ')' hx"
(at level 70, no associativity,
gx at next level, F at level 0, hx at next level,
format "fx = gx '+o_(' x \near F ')' hx").
Reserved Notation "fx '=o_(' x \near F ')' hx"
(at level 70, no associativity,
F at level 0, hx at next level,
format "fx '=o_(' x \near F ')' hx").
Reserved Notation "fx == gx '+o_(' x \near F ')' hx"
(at level 70, no associativity,
gx at next level, F at level 0, hx at next level,
format "fx == gx '+o_(' x \near F ')' hx").
Reserved Notation "fx '==o_(' x \near F ')' hx"
(at level 70, no associativity,
F at level 0, hx at next level,
format "fx '==o_(' x \near F ')' hx").
Reserved Notation "{O_ F f }" (at level 0, F at level 0, format "{O_ F f }").
Reserved Notation "[bigO 'of' f 'for' fT ]" (at level 0, f at level 0,
format "[bigO 'of' f 'for' fT ]").
Reserved Notation "[bigO 'of' f ]" (at level 0, f at level 0,
format "[bigO 'of' f ]").
Reserved Notation "'O_ x" (at level 200, x at level 0, only parsing).
Reserved Notation "'O" (at level 200, only parsing).
(* Parsing *)
Reserved Notation "[O_ x e 'of' f ]" (at level 0, x, e at level 0, only parsing).
(*Printing*)
Reserved Notation "[O '_' x e 'of' f ]"
(at level 0, x, e at level 0, format "[O '_' x e 'of' f ]").
(* These notations are printing only in order to display 'O
without looking at the contents, use showo to display *)
Reserved Notation "''O_' x e "
(at level 0, x, e at level 0, format "''O_' x e ").
Reserved Notation "''a_O_' x e "
(at level 0, x, e at level 0, format "''a_O_' x e ").
Reserved Notation "''O' '_' x"
(at level 0, x at level 0, format "''O' '_' x").
Reserved Notation "f = g '+O_' F h"
(at level 70, no associativity,
g at next level, F at level 0, h at next level,
format "f = g '+O_' F h").
Reserved Notation "f '=O_' F h"
(at level 70, no associativity,
F at level 0, h at next level,
format "f '=O_' F h").
Reserved Notation "f == g '+O_' F h"
(at level 70, no associativity,
g at next level, F at level 0, h at next level,
format "f == g '+O_' F h").
Reserved Notation "f '==O_' F h"
(at level 70, no associativity,
F at level 0, h at next level,
format "f '==O_' F h").
Reserved Notation "[O_( x \near F ) ex 'of' fx ]"
(at level 0, x, ex at level 0, only parsing).
(*Printing*)
Reserved Notation "[O '_(' x \near F ')' ex 'of' fx ]"
(at level 0, x, ex at level 0,
format "[O '_(' x \near F ')' ex 'of' fx ]").
(* These notations are printing only in order to display 'o
without looking at the contents, use showo to display *)
Reserved Notation "''O_(' x \near F ')' ex"
(at level 0, x, ex at level 0, format "''O_(' x \near F ')' ex").
Reserved Notation "''a_O_(' x \near F ')' ex"
(at level 0, x, ex at level 0, format "''a_O_(' x \near F ')' ex").
Reserved Notation "''O' '_(' x \near F ')' ex"
(at level 0, x, ex at level 0, format "''O' '_(' x \near F ')' ex").
Reserved Notation "fx = gx '+O_(' x \near F ')' hx"
(at level 70, no associativity,
gx at next level, F at level 0, hx at next level,
format "fx = gx '+O_(' x \near F ')' hx").
Reserved Notation "fx '=O_(' x \near F ')' hx"
(at level 70, no associativity,
F at level 0, hx at next level,
format "fx '=O_(' x \near F ')' hx").
Reserved Notation "fx == gx '+O_(' x \near F ')' hx"
(at level 70, no associativity,
gx at next level, F at level 0, hx at next level,
format "fx == gx '+O_(' x \near F ')' hx").
Reserved Notation "fx '==O_(' x \near F ')' hx"
(at level 70, no associativity,
F at level 0, hx at next level,
format "fx '==O_(' x \near F ')' hx").
Reserved Notation "f '~_' F g"
(at level 70, F at level 0, g at next level, format "f '~_' F g").
Reserved Notation "f '~~_' F g"
(at level 70, F at level 0, g at next level, format "f '~~_' F g").
Reserved Notation "{Omega_ F f }"
(at level 0, F at level 0, format "{Omega_ F f }").
Reserved Notation "[bigOmega 'of' f 'for' fT ]"
(at level 0, f at level 0, format "[bigOmega 'of' f 'for' fT ]").
Reserved Notation "[bigOmega 'of' f ]"
(at level 0, f at level 0, format "[bigOmega 'of' f ]").
Reserved Notation "[Omega_ x e 'of' f ]"
(at level 0, x, e at level 0, only parsing).
(* Printing *)
Reserved Notation "[Omega '_' x e 'of' f ]"
(at level 0, x, e at level 0, format "[Omega '_' x e 'of' f ]").
Reserved Notation "'Omega_ F g"
(at level 0, F at level 0, format "''Omega_' F g").
Reserved Notation "f '=Omega_' F h"
(at level 70, no associativity,
F at level 0, h at next level,
format "f '=Omega_' F h").
Reserved Notation "{Theta_ F g }"
(at level 0, F at level 0, format "{Theta_ F g }").
Reserved Notation "[bigTheta 'of' f 'for' fT ]"
(at level 0, f at level 0, format "[bigTheta 'of' f 'for' fT ]").
Reserved Notation "[bigTheta 'of' f ]"
(at level 0, f at level 0, format "[bigTheta 'of' f ]").
Reserved Notation "[Theta_ x e 'of' f ]"
(at level 0, x, e at level 0, only parsing).
(*Printing*)
Reserved Notation "[Theta '_' x e 'of' f ]"
(at level 0, x, e at level 0, format "[Theta '_' x e 'of' f ]").
Reserved Notation "'Theta_ F g"
(at level 0, F at level 0, format "''Theta_' F g").
Reserved Notation "f '=Theta_' F h"
(at level 70, no associativity,
F at level 0, h at next level,
format "f '=Theta_' F h").
Delimit Scope R_scope with coqR.
Local Open Scope ring_scope.
Local Open Scope classical_set_scope.
(* tags for littleo and bigO notations *)
Definition the_tag : unit := tt.
Definition gen_tag : unit := tt.
Definition a_tag : unit := tt.
Lemma showo : (gen_tag = tt) * (the_tag = tt) * (a_tag = tt). Proof. by []. Qed.
(* Tentative to handle small o and big O notations *)
Section Domination.
Context {K : numDomainType} {T : Type} {V W : normedModType K}.
Let littleo_def (F : set (set T)) (f : T -> V) (g : T -> W) :=
forall eps, 0 < eps -> \forall x \near F, `|f x| <= eps * `|g x|.
Structure littleo_type (F : set (set T)) (g : T -> W) := Littleo {
littleo_fun :> T -> V;
_ : `[< littleo_def F littleo_fun g >]
}.
Notation "{o_ F f }" := (littleo_type F f).
Canonical littleo_subtype (F : set (set T)) (g : T -> W) :=
[subType for (@littleo_fun F g)].
Lemma littleo_class (F : set (set T)) (g : T -> W) (f : {o_F g}) :
`[< littleo_def F f g >].
Proof. by case: f => ?. Qed.
Hint Resolve littleo_class : core.
Definition littleo_clone (F : set (set T)) (g : T -> W) (f : T -> V) (fT : {o_F g}) c
of phant_id (littleo_class fT) c := @Littleo F g f c.
Notation "[littleo 'of' f 'for' fT ]" := (@littleo_clone _ _ f fT _ idfun).
Notation "[littleo 'of' f ]" := (@littleo_clone _ _ f _ _ idfun).
Lemma littleo0_subproof F (g : T -> W) :
Filter F -> littleo_def F (0 : T -> V) g.
Proof.
move=> FF _/posnumP[eps] /=; apply: filterE => x; rewrite normr0.
by rewrite mulr_ge0 // ltrW.
Qed.
Canonical littleo0 (F : filter_on T) g :=
Littleo (asboolT (@littleo0_subproof F g _)).
Definition the_littleo (_ : unit) (F : filter_on T)
(phF : phantom (set (set T)) F) f h := littleo_fun (insubd (littleo0 F h) f).
Notation PhantomF := (Phantom (set (set T))).
Arguments the_littleo : simpl never, clear implicits.
Notation mklittleo tag x := (the_littleo tag _ (PhantomF x)).
(* Parsing *)
Notation "[o_ x e 'of' f ]" := (mklittleo gen_tag x f e).
(*Printing*)
Notation "[o '_' x e 'of' f ]" := (the_littleo _ _ (PhantomF x) f e).
(* These notations are printing only in order to display 'o
without looking at the contents, use showo to display *)
Notation "''o_' x e " := (the_littleo the_tag _ (PhantomF x) _ e).
Notation "''a_o_' x e " := (the_littleo a_tag _ (PhantomF x) _ e).
Notation "''o' '_' x" := (the_littleo gen_tag _ (PhantomF x) _).
Notation "f = g '+o_' F h" :=
(f%function = g%function + mklittleo the_tag F (f \- g) h).
Notation "f '=o_' F h" := (f%function = (mklittleo the_tag F f h)).
Notation "f == g '+o_' F h" :=
(f%function == g%function + mklittleo the_tag F (f \- g) h).
Notation "f '==o_' F h" := (f%function == (mklittleo the_tag F f h)).
Notation "[o_( x \near F ) ex 'of' f ]" :=
(mklittleo gen_tag F (fun x => f) (fun x => ex) x).
Notation "[o '_(' x \near F ')' ex 'of' f ]" :=
(the_littleo _ _ (PhantomF F) (fun x => f) (fun x => ex) x).
Notation "''o_(' x \near F ')' ex" :=
(the_littleo the_tag _ (PhantomF F) _ (fun x => ex) x).
Notation "''a_o_(' x \near F ')' ex" :=
(the_littleo a_tag _ (PhantomF F) _ (fun x => ex) x).
Notation "''o' '_(' x \near F ')' ex" :=
(the_littleo gen_tag _ (PhantomF F) _ (fun x => ex) x).
Notation "fx = gx '+o_(' x \near F ')' hx" :=
(fx = gx + mklittleo the_tag F
((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '=o_(' x \near F ')' hx" :=
(fx = (mklittleo the_tag F (fun x => fx) (fun x => hx) x)).
Notation "fx == gx '+o_(' x \near F ')' hx" :=
(fx == gx + mklittleo the_tag F
((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '==o_(' x \near F ')' hx" :=
(fx == (mklittleo the_tag F (fun x => fx) (fun x => hx) x)).
Lemma littleoP (F : set (set T)) (g : T -> W) (f : {o_F g}) : littleo_def F f g.
Proof. exact/asboolP. Qed.
Hint Extern 0 (littleo_def _ _ _) => solve[apply: littleoP] : core.
Hint Extern 0 (nbhs _ _) => solve[apply: littleoP] : core.
Hint Extern 0 (prop_near1 _) => solve[apply: littleoP] : core.
Hint Extern 0 (prop_near2 _) => solve[apply: littleoP] : core.
Lemma littleoE (tag : unit) (F : filter_on T)
(phF : phantom (set (set T)) F) f h :
littleo_def F f h -> the_littleo tag F phF f h = f.
Proof. by move=> /asboolP?; rewrite /the_littleo /insubd insubT. Qed.
Canonical the_littleo_littleo (tag : unit) (F : filter_on T)
(phF : phantom (set (set T)) F) f h := [littleo of the_littleo tag F phF f h].
Variant littleo_spec (F : set (set T)) (g : T -> W) : (T -> V) -> Type :=
LittleoSpec f of littleo_def F f g : littleo_spec F g f.
Lemma littleo (F : set (set T)) (g : T -> W) (f : {o_F g}) : littleo_spec F g f.
Proof. by constructor; apply/(@littleoP F). Qed.
Lemma opp_littleo_subproof (F : filter_on T) e (df : {o_F e}) :
littleo_def F (- (df : _ -> _)) e.
Proof.
by move=> _/posnumP[eps]; near=> x; rewrite normrN; near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.
Canonical opp_littleo (F : filter_on T) e (df : {o_F e}) :=
Littleo (asboolT (opp_littleo_subproof df)).
Lemma oppo (F : filter_on T) (f : T -> V) e : - [o_F e of f] =o_F e.
Proof. by rewrite [RHS]littleoE. Qed.
Lemma oppox (F : filter_on T) (f : T -> V) e x :
- [o_F e of f] x = [o_F e of - [o_F e of f]] x.
Proof. by move: x; rewrite -/(- _ =1 _) {1}oppo. Qed.
Lemma eqadd_some_oP (F : filter_on T) (f g : T -> V) (e : T -> W) h :
f = g + [o_F e of h] -> littleo_def F (f - g) e.
Proof.
rewrite /the_littleo /insubd=> ->.
case: insubP => /= [u /asboolP fg_o_e ->|_] eps /=.
by rewrite addrAC subrr add0r; apply: fg_o_e.
by rewrite addrC addKr; apply: littleoP.
Qed.
Lemma eqaddoP (F : filter_on T) (f g : T -> V) (e : T -> W) :
(f = g +o_ F e) <-> (littleo_def F (f - g) e).
Proof.
by split=> [/eqadd_some_oP|fg_o_e]; rewrite ?littleoE // addrC addrNK.
Qed.
Lemma eqoP (F : filter_on T) (e : T -> W) (f : T -> V) :
(f =o_ F e) <-> (littleo_def F f e).
Proof. by rewrite -[f]subr0 -eqaddoP -[f \- 0]/(f - 0) subr0 add0r. Qed.
Lemma eq_some_oP (F : filter_on T) (e : T -> W) (f : T -> V) h :
f = [o_F e of h] -> littleo_def F f e.
Proof. by have := @eqadd_some_oP F f 0 e h; rewrite add0r subr0. Qed.
(* replaces a 'o_F e by a "canonical one" *)
(* mostly to prevent problems with dependent types *)
Lemma eqaddoE (F : filter_on T) (f g : T -> V) h (e : T -> W) :
f = g + mklittleo a_tag F h e -> f = g +o_ F e.
Proof. by move=> /eqadd_some_oP /eqaddoP. Qed.
Lemma eqoE (F : filter_on T) (f : T -> V) h (e : T -> W) :
f = mklittleo a_tag F h e -> f =o_F e.
Proof. by move=> /eq_some_oP /eqoP. Qed.
Lemma eqoEx (F : filter_on T) (f : T -> V) h (e : T -> W) :
(forall x, f x = mklittleo a_tag F h e x) ->
(forall x, f x =o_(x \near F) e x).
Proof. by have := @eqoE F f h e; rewrite !funeqE. Qed.
Lemma eqaddoEx (F : filter_on T) (f g : T -> V) h (e : T -> W) :
(forall x, f x = g x + mklittleo a_tag F h e x) ->
(forall x, f x = g x +o_(x \near F) (e x)).
Proof. by have := @eqaddoE F f g h e; rewrite !funeqE. Qed.
Lemma littleo_eqo (F : filter_on T) (g : T -> W) (f : {o_F g}) :
(f : _ -> _) =o_F g.
Proof. by apply/eqoP. Qed.
End Domination.
Section Domination_numFieldType.
Context {K : numFieldType} {T : Type} {V W : normedModType K}.
Let bigO_def (F : set (set T)) (f : T -> V) (g : T -> W) :=
\forall k \near +oo, \forall x \near F, `|f x| <= k * `|g x|.
Let bigO_ex_def (F : set (set T)) (f : T -> V) (g : T -> W) :=
exists2 k, k > 0 & \forall x \near F, `|f x| <= k * `|g x|.
Lemma bigO_exP (F : set (set T)) (f : T -> V) (g : T -> W) :
Filter F -> bigO_ex_def F f g <-> bigO_def F f g.
Proof.
split=> [[k k0 fOg] | [k [kreal fOg]]].
exists k; rewrite realE (ltW k0) /=; split=> // l ltkl; move: fOg.
by apply: filter_app; near=> x => /le_trans; apply; rewrite ler_wpmul2r // ltW.
exists (Num.max 1 `|k + 1|) => //.
apply: fOg; rewrite (@lt_le_trans _ _ `|k + 1|) //.
by rewrite (@lt_le_trans _ _ (k + 1)) ?ltr_addl // real_ler_norm ?realD.
by rewrite comparable_le_maxr ?real_comparable// lexx orbT.
Unshelve. end_near. Qed.
Structure bigO_type (F : set (set T)) (g : T -> W) := BigO {
bigO_fun :> T -> V;
_ : `[< bigO_def F bigO_fun g >]
}.
Notation "{O_ F f }" := (bigO_type F f).
Canonical bigO_subtype (F : set (set T)) (g : T -> W) :=
[subType for (@bigO_fun F g)].
Lemma bigO_class (F : set (set T)) (g : T -> W) (f : {O_F g}) :
`[< bigO_def F f g >].
Proof. by case: f => ?. Qed.
Hint Resolve bigO_class : core.
Definition bigO_clone (F : set (set T)) (g : T -> W) (f : T -> V) (fT : {O_F g}) c
of phant_id (bigO_class fT) c := @BigO F g f c.
Notation "[bigO 'of' f 'for' fT ]" := (@bigO_clone _ _ f fT _ idfun).
Notation "[bigO 'of' f ]" := (@bigO_clone _ _ f _ _ idfun).
Lemma bigO0_subproof F (g : T -> W) : Filter F -> bigO_def F (0 : T -> V) g.
Proof.
move=> FF; near=> k; apply: filterE => x; rewrite normr0 pmulr_rge0 ?normr_ge0//.
by near: k; exists 0.
Unshelve. all: by end_near. Qed.
Canonical bigO0 (F : filter_on T) g := BigO (asboolT (@bigO0_subproof F g _)).
Definition the_bigO (u : unit) (F : filter_on T)
(phF : phantom (set (set T)) F) f h := bigO_fun (insubd (bigO0 F h) f).
Arguments the_bigO : simpl never, clear implicits.
(* duplicate from Section Domination *)
Notation PhantomF := (Phantom (set (set T))).
Notation mkbigO tag x := (the_bigO tag _ (PhantomF x)).
(* Parsing *)
Notation "[O_ x e 'of' f ]" := (mkbigO gen_tag x f e).
(*Printing*)
Notation "[O '_' x e 'of' f ]" := (the_bigO _ _ (PhantomF x) f e).
(* These notations are printing only in order to display 'o
without looking at the contents, use showo to display *)
Notation "''O_' x e " := (the_bigO the_tag _ (PhantomF x) _ e).
Notation "''a_O_' x e " := (the_bigO a_tag _ (PhantomF x) _ e).
Notation "''O' '_' x" := (the_bigO gen_tag _ (PhantomF x) _).
Notation "[O_( x \near F ) e 'of' f ]" :=
(mkbigO gen_tag F (fun x => f) (fun x => e) x).
Notation "[O '_(' x \near F ')' e 'of' f ]" :=
(the_bigO _ _ (PhantomF F) (fun x => f) (fun x => e) x).
Notation "''O_(' x \near F ')' e" :=
(the_bigO the_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''a_O_(' x \near F ')' e" :=
(the_bigO a_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''O' '_(' x \near F ')' e" :=
(the_bigO gen_tag _ (PhantomF F) _ (fun x => e) x).
Notation "f = g '+O_' F h" :=
(f%function = g%function + mkbigO the_tag F (f \- g) h).
Notation "f '=O_' F h" := (f%function = mkbigO the_tag F f h).
Notation "f == g '+O_' F h" :=
(f%function == g%function + mkbigO the_tag F (f \- g) h).
Notation "f '==O_' F h" := (f%function == mkbigO the_tag F f h).
Notation "fx = gx '+O_(' x \near F ')' hx" :=
(fx = gx + mkbigO the_tag F
((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '=O_(' x \near F ')' hx" :=
(fx = (mkbigO the_tag F (fun x => fx) (fun x => hx) x)).
Notation "fx == gx '+O_(' x \near F ')' hx" :=
(fx == gx + mkbigO the_tag F
((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '==O_(' x \near F ')' hx" :=
(fx == (mkbigO the_tag F (fun x => fx) (fun x => hx) x)).
Lemma bigOP (F : set (set T)) (g : T -> W) (f : {O_F g}) : bigO_def F f g.
Proof. exact/asboolP. Qed.
Hint Extern 0 (bigO_def _ _ _) => solve[apply: bigOP] : core.
Hint Extern 0 (nbhs _ _) => solve[apply: bigOP] : core.
Hint Extern 0 (prop_near1 _) => solve[apply: bigOP] : core.
Hint Extern 0 (prop_near2 _) => solve[apply: bigOP] : core.
Lemma bigOE (tag : unit) (F : filter_on T) (phF : phantom (set (set T)) F) f h :
bigO_def F f h -> the_bigO tag F phF f h = f.
Proof. by move=> /asboolP?; rewrite /the_bigO /insubd insubT. Qed.
Canonical the_bigO_bigO (tag : unit) (F : filter_on T)
(phF : phantom (set (set T)) F) f h := [bigO of the_bigO tag F phF f h].
Variant bigO_spec (F : set (set T)) (g : T -> W) : (T -> V) -> Prop :=
BigOSpec f (k : {posnum K})
of (\forall x \near F, `|f x| <= k%:num * `|g x|) :
bigO_spec F g f.
Lemma bigO (F : filter_on T) (g : T -> W) (f : {O_F g}) : bigO_spec F g f.
Proof. by have /bigO_exP [_/posnumP[k] kP] := bigOP f; exists k. Qed.
Lemma opp_bigO_subproof (F : filter_on T) e (df : {O_F e}) :
bigO_def F (- (df : _ -> _)) e.
Proof.
have := bigOP [bigO of df]; apply: filter_app; near=> k.
by apply: filter_app; near=> x; rewrite normrN.
Unshelve. all: by end_near. Qed.
Canonical Opp_bigO (F : filter_on T) e (df : {O_F e}) :=
BigO (asboolT (opp_bigO_subproof df)).
Lemma oppO (F : filter_on T) (f : T -> V) e : - [O_F e of f] =O_F e.
Proof. by rewrite [RHS]bigOE. Qed.
Lemma oppOx (F : filter_on T) (f : T -> V) e x :
- [O_F e of f] x = [O_F e of - [O_F e of f]] x.
Proof. by move: x; rewrite -/(- _ =1 _) {1}oppO. Qed.
Lemma add_bigO_subproof (F : filter_on T) e (df dg : {O_F e}) :
bigO_def F (df \+ dg) e.
Proof.
near=> k; near=> x; apply: le_trans (ler_norm_add _ _) _.
by rewrite (splitr k) mulrDl ler_add //; near: x; near: k;
[apply: near_pinfty_div2 (bigOP df)|apply: near_pinfty_div2 (bigOP dg)].
Unshelve. all: by end_near. Qed.
Canonical add_bigO (F : filter_on T) e (df dg : {O_F e}) :=
@BigO _ _ (_ + _) (asboolT (add_bigO_subproof df dg)).
Canonical addfun_bigO (F : filter_on T) e (df dg : {O_F e}) :=
BigO (asboolT (add_bigO_subproof df dg)).
Lemma addO (F : filter_on T) (f g: T -> V) e :
[O_F e of f] + [O_F e of g] =O_F e.
Proof. by rewrite [RHS]bigOE. Qed.
Lemma addOx (F : filter_on T) (f g: T -> V) e x :
[O_F e of f] x + [O_F e of g] x =
[O_F e of [O_F e of f] + [O_F e of g]] x.
Proof. by move: x; rewrite -/(_ + _ =1 _) {1}addO. Qed.
Lemma eqadd_some_OP (F : filter_on T) (f g : T -> V) (e : T -> W) h :
f = g + [O_F e of h] -> bigO_def F (f - g) e.
Proof.
rewrite /the_bigO /insubd=> ->.
case: insubP => /= [u /asboolP fg_o_e ->|_].
by rewrite addrAC subrr add0r; apply: fg_o_e.
by rewrite addrC addKr; apply: bigOP.
Qed.
Lemma eqaddOP (F : filter_on T) (f g : T -> V) (e : T -> W) :
(f = g +O_ F e) <-> (bigO_def F (f - g) e).
Proof. by split=> [/eqadd_some_OP|fg_O_e]; rewrite ?bigOE // addrC addrNK. Qed.
Lemma eqOP (F : filter_on T) (e : T -> W) (f : T -> V) :
(f =O_ F e) <-> (bigO_def F f e).
Proof. by rewrite -[f]subr0 -eqaddOP -[f \- 0]/(f - 0) subr0 add0r. Qed.
Lemma eqO_exP (F : filter_on T) (e : T -> W) (f : T -> V) :
(f =O_ F e) <-> (bigO_ex_def F f e).
Proof. apply: iff_trans (iff_sym (bigO_exP _ _ _)); apply: eqOP. Qed.
Lemma eq_some_OP (F : filter_on T) (e : T -> W) (f : T -> V) h :
f = [O_F e of h] -> bigO_def F f e.
Proof. by have := @eqadd_some_OP F f 0 e h; rewrite add0r subr0. Qed.
Lemma bigO_eqO (F : filter_on T) (g : T -> W) (f : {O_F g}) :
(f : _ -> _) =O_F g.
Proof. by apply/eqOP; apply: bigOP. Qed.
Lemma eqO_bigO (F : filter_on T) (e : T -> W) (f : T -> V) :
f =O_ F e -> bigO_def F f e.
Proof. by rewrite eqOP. Qed.
(* replaces a 'O_F e by a "canonical one" *)
(* mostly to prevent problems with dependent types *)
Lemma eqaddOE (F : filter_on T) (f g : T -> V) h (e : T -> W) :
f = g + mkbigO a_tag F h e -> f = g +O_ F e.
Proof. by move=> /eqadd_some_OP /eqaddOP. Qed.
Lemma eqOE (F : filter_on T) (f : T -> V) h (e : T -> W) :
f = mkbigO a_tag F h e -> f =O_F e.
Proof. by move=> /eq_some_OP /eqOP. Qed.
Lemma eqOEx (F : filter_on T) (f : T -> V) h (e : T -> W) :
(forall x, f x = mkbigO a_tag F h e x) ->
(forall x, f x =O_(x \near F) e x).
Proof. by have := @eqOE F f h e; rewrite !funeqE. Qed.
Lemma eqaddOEx (F : filter_on T) (f g : T -> V) h (e : T -> W) :
(forall x, f x = g x + mkbigO a_tag F h e x) ->
(forall x, f x = g x +O_(x \near F) (e x)).
Proof. by have := @eqaddOE F f g h e; rewrite !funeqE. Qed.
(* duplicate from Section Domination *)
Notation mklittleo tag x := (the_littleo tag (PhantomF x)).
(* Parsing *)
Notation "[o_ x e 'of' f ]" := (mklittleo gen_tag x f e).
(*Printing*)
Notation "[o '_' x e 'of' f ]" := (the_littleo _ _ (PhantomF x) f e).
Lemma eqoO (F : filter_on T) (f : T -> V) (e : T -> W) :
[o_F e of f] =O_F e.
Proof. by apply/eqOP; exists 0; split => // k kgt0; apply: littleoP. Qed.
Hint Resolve eqoO : core.
(* NB: duplicate from Section Domination *)
Notation "{o_ F f }" := (littleo_type F f).
Lemma littleo_eqO (F : filter_on T) (e : T -> W) (f : {o_F e}) :
(f : _ -> _) =O_F e.
Proof. by apply: eqOE; rewrite littleo_eqo. Qed.
Canonical littleo_is_bigO (F : filter_on T) (e : T -> W) (f : {o_F e}) :=
BigO (asboolT (eqO_bigO (littleo_eqO f))).
Canonical the_littleo_bigO (tag : unit) (F : filter_on T)
(phF : phantom (set (set T)) F) f h := [bigO of the_littleo tag phF f h].
End Domination_numFieldType.
Notation "{o_ F f }" := (@littleo_type _ _ _ _ F f).
Notation "{O_ F f }" := (@bigO_type _ _ _ _ F f).
Notation "[littleo 'of' f 'for' fT ]" :=
(@littleo_clone _ _ _ _ _ _ f fT _ idfun).
Notation "[littleo 'of' f ]" := (@littleo_clone _ _ _ _ _ _ f _ _ idfun).
Notation "[bigO 'of' f 'for' fT ]" := (@bigO_clone _ _ _ _ _ _ f fT _ idfun).
Notation "[bigO 'of' f ]" := (@bigO_clone _ _ _ _ _ _ f _ _ idfun).
Arguments the_littleo {_ _ _ _} _ _ _ _ _ : simpl never.
Arguments the_bigO {_ _ _ _} _ _ _ _ _ : simpl never.
Local Notation PhantomF x := (Phantom _ [filter of x]).
Notation mklittleo tag x := (the_littleo tag _ (PhantomF x)).
(* Parsing *)
Notation "[o_ x e 'of' f ]" := (mklittleo gen_tag x f e).
Notation "[o_( x \near F ) e 'of' f ]" :=
(mklittleo gen_tag F (fun x => f) (fun x => e) x).
Notation "'o_ x" := (the_littleo _ _ (PhantomF x) _).
Notation "'o" := (the_littleo _ _ _ _).
(*Printing*)
Notation "[o '_(' x \near F ')' e 'of' f ]" :=
(the_littleo _ _ (PhantomF F) (fun x => f) (fun x => e) x).
Notation "[o '_' x e 'of' f ]" := (the_littleo _ _ (Phantom _ x) f e).
(* These notations are printing only in order to display 'o
without looking at the contents, use showo to display *)
Notation "''o_' x e " := (the_littleo the_tag _ (Phantom _ x) _ e).
Notation "''a_o_' x e " := (the_littleo a_tag _ (Phantom _ x) _ e).
Notation "''o' '_' x" := (the_littleo gen_tag _ (Phantom _ x) _).
Notation "''o_(' x \near F ')' e" :=
(the_littleo the_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''a_o_(' x \near F ')' e" :=
(the_littleo a_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''o' '_(' x \near F ')' e" :=
(the_littleo gen_tag _ (PhantomF F) _ (fun x => e) x).
Notation mkbigO tag x := (the_bigO tag _ (PhantomF x)).
(* Parsing *)
Notation "[O_ x e 'of' f ]" := (mkbigO gen_tag x f e).
Notation "[O_( x \near F ) e 'of' f ]" :=
(mkbigO gen_tag F (fun x => f) (fun x => e) x).
Notation "'O_ x" := (the_bigO _ _ (PhantomF x) _).
Notation "'O" := (the_bigO _ _ _ _).
(*Printing*)
Notation "[O '_' x e 'of' f ]" := (the_bigO _ _ (Phantom _ x) f e).
Notation "[O '_(' x \near F ')' e 'of' f ]" :=
(the_bigO _ _ (PhantomF F) (fun x => f) (fun x => e) x).
(* These notations are printing only in order to display 'o
without looking at the contents, use showo to display *)
Notation "''O_' x e " := (the_bigO the_tag _ (Phantom _ x) _ e).
Notation "''a_O_' x e " := (the_bigO a_tag _ (Phantom _ x) _ e).
Notation "''O' '_' x" := (the_bigO gen_tag _ (Phantom _ x) _).
Notation "''O_(' x \near F ')' e" :=
(the_bigO the_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''a_O_(' x \near F ')' e" :=
(the_bigO a_tag _ (PhantomF F) _ (fun x => e) x).
Notation "''O' '_(' x \near F ')' e" :=
(the_bigO gen_tag _ (PhantomF F) _ (fun x => e) x).
Notation "f = g '+o_' F h" :=
(f%function = g%function + mklittleo the_tag F (f \- g) h).
Notation "f '=o_' F h" := (f%function = (mklittleo the_tag F f h)).
Notation "f == g '+o_' F h" :=
(f%function == g%function + mklittleo the_tag F (f \- g) h).
Notation "f '==o_' F h" := (f%function == (mklittleo the_tag F f h)).
Notation "fx = gx '+o_(' x \near F ')' hx" :=
(fx = gx + mklittleo the_tag F
((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '=o_(' x \near F ')' hx" :=
(fx = (mklittleo the_tag F (fun x => fx) (fun x => hx) x)).
Notation "fx == gx '+o_(' x \near F ')' hx" :=
(fx == gx + mklittleo the_tag F
((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '==o_(' x \near F ')' hx" :=
(fx == (mklittleo the_tag F (fun x => fx) (fun x => hx) x)).
Notation "f = g '+O_' F h" :=
(f%function = g%function + mkbigO the_tag F (f \- g) h).
Notation "f '=O_' F h" := (f%function = mkbigO the_tag F f h).
Notation "f == g '+O_' F h" :=
(f%function == g%function + mkbigO the_tag F (f \- g) h).
Notation "f '==O_' F h" := (f%function == mkbigO the_tag F f h).
Notation "fx = gx '+O_(' x \near F ')' hx" :=
(fx = gx + mkbigO the_tag F
((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '=O_(' x \near F ')' hx" :=
(fx = (mkbigO the_tag F (fun x => fx) (fun x => hx) x)).
Notation "fx == gx '+O_(' x \near F ')' hx" :=
(fx == gx + mkbigO the_tag F
((fun x => fx) \- (fun x => gx%R)) (fun x => hx) x).
Notation "fx '==O_(' x \near F ')' hx" :=
(fx == (mkbigO the_tag F (fun x => fx) (fun x => hx) x)).
#[global] Hint Extern 0 (_ = 'o__ _) => apply: eqoE; reflexivity : core.
#[global] Hint Extern 0 (_ = 'O__ _) => apply: eqOE; reflexivity : core.
#[global] Hint Extern 0 (_ = 'O__ _) => apply: eqoO; reflexivity : core.
#[global] Hint Extern 0 (_ = _ + 'o__ _) => apply: eqaddoE; reflexivity : core.
#[global] Hint Extern 0 (_ = _ + 'O__ _) => apply: eqaddOE; reflexivity : core.
#[global] Hint Extern 0 (\forall k \near +oo, \forall x \near _,
is_true (`|_ x| <= k * `|_ x|)) => solve[apply: bigOP] : core.
#[global] Hint Extern 0 (nbhs _ _) => solve[apply: bigOP] : core.
#[global] Hint Extern 0 (prop_near1 _) => solve[apply: bigOP] : core.
#[global] Hint Extern 0 (prop_near2 _) => solve[apply: bigOP] : core.
#[global] Hint Extern 0 (forall e, is_true (0 < e) -> \forall x \near _,
is_true (`|_ x| <= e * `|_ x|)) => solve[apply: littleoP] : core.
#[global] Hint Extern 0 (nbhs _ _) => solve[apply: littleoP] : core.
#[global] Hint Extern 0 (prop_near1 _) => solve[apply: littleoP] : core.
#[global] Hint Extern 0 (prop_near2 _) => solve[apply: littleoP] : core.
#[global] Hint Resolve littleo_class : core.
#[global] Hint Resolve bigO_class : core.
#[global] Hint Resolve littleo_eqO : core.
Arguments bigO {_ _ _ _}.
Section Domination_numFieldType.
Context {K : numFieldType} {T : Type} {V W : normedModType K}.
(* duplicate from Section Domination *)
Let littleo_def (F : set (set T)) (f : T -> V) (g : T -> W) :=
forall eps, 0 < eps -> \forall x \near F, `|f x| <= eps * `|g x|.
Lemma add_littleo_subproof (F : filter_on T) e (df dg : {o_F e}) :
littleo_def F (df \+ dg) e.
Proof.
move=> _/posnumP[eps]; near=> x => /=.
rewrite [eps%:num]splitr mulrDl (le_trans (ler_norm_add _ _)) // ler_add //;
by near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.
Canonical add_littleo (F : filter_on T) e (df dg : {o_F e}) :=
@Littleo _ _ _ _ _ _ (_ + _) (asboolT (add_littleo_subproof df dg)).
Canonical addfun_littleo (F : filter_on T) e (df dg : {o_F e}) :=
@Littleo _ _ _ _ _ _ (_ \+ _) (asboolT (add_littleo_subproof df dg)).
Lemma addo (F : filter_on T) (f g: T -> V) (e : _ -> W) :
[o_F e of f] + [o_F e of g] =o_F e.
Proof. by rewrite [RHS]littleoE. Qed.
Lemma addox (F : filter_on T) (f g: T -> V) (e : _ -> W) x :
[o_F e of f] x + [o_F e of g] x =
[o_F e of [o_F e of f] + [o_F e of g]] x.
Proof. by move: x; rewrite -/(_ + _ =1 _) {1}addo. Qed.
(* duplicate from Section Domination *)
Hint Extern 0 (littleo_def _ _ _) => solve[apply: littleoP] : core.
Lemma scale_littleo_subproof (F : filter_on T) e (df : {o_F e}) a :
littleo_def F (a *: (df : _ -> _)) e.
Proof.
have [->|a0] := eqVneq a 0; first by rewrite scale0r.
move=> _ /posnumP[eps]; have aa := normr_eq0 a; near=> x => /=.
rewrite normmZ -ler_pdivl_mull ?lt_def ?aa ?a0 //= mulrA; near: x.
by apply: littleoP; rewrite mulr_gt0 // invr_gt0 ?lt_def ?aa ?a0 /=.
Unshelve. all: by end_near. Qed.
Canonical scale_littleo (F : filter_on T) e a (df : {o_F e}) :=
Littleo (asboolT (scale_littleo_subproof df a)).
Lemma scaleo (F : filter_on T) a (f : T -> V) (e : _ -> W) :
a *: [o_F e of f] = [o_F e of a *: [o_F e of f]].
Proof. by rewrite [RHS]littleoE. Qed.
Lemma scaleox (F : filter_on T) a (f : T -> V) (e : _ -> W) x :
a *: ([o_F e of f] x) = [o_F e of a *: [o_F e of f]] x.
Proof. by move: x; rewrite -/(_ *: _ =1 _) {1}scaleo. Qed.
End Domination_numFieldType.
(* NB: see also scaleox *)
Lemma scaleolx (K : numFieldType) (V W : normedModType K) {T : Type}
(F : filter_on T) (a : W) (k : T -> K^o) (e : T -> V) (x : T) :
([o_F e of k] x) *: a = [o_F e of (fun y => [o_F e of k] y *: a)] x.
Proof.
rewrite [in RHS]littleoE //.
have [->|a0] := eqVneq a 0.
by move=> ??; apply: filterE => ?; rewrite scaler0 normr0 pmulr_rge0.
move=> _/posnumP[eps].
have ea : 0 < eps%:num / `| a | by rewrite divr_gt0 // normr_gt0.
have [g /(_ _ ea) ?] := littleo; near=> y.
rewrite normmZ -ler_pdivl_mulr; first by rewrite mulrAC; near: y.
by rewrite lt_def normr_eq0 a0 normr_ge0.
Unshelve. all: by end_near. Qed.
Section Limit.
Context {K : numFieldType} {T : Type} {V W X : normedModType K}.
Lemma eqolimP (F : filter_on T) (f : T -> V) (l : V) :
f @ F --> l <-> f = cst l +o_F (cst (1 : K^o)).
Proof.
split=> fFl.
apply/eqaddoP => _/posnumP[eps]; near=> x.
rewrite /cst ltW //= distrC; near: x.
by apply: (cvg_dist _ fFl); rewrite mulr_gt0 // normr1.
apply/cvg_distP=> _/posnumP[eps]; rewrite /= near_simpl.
have lt_eps x : x <= (eps%:num / 2%:R) * `|1 : K^o|%real -> x < eps%:num.
rewrite normr1 mulr1 => /le_lt_trans; apply.
by rewrite ltr_pdivr_mulr // ltr_pmulr // ltr1n.
near=> x; rewrite [X in X x]fFl opprD addNKr normrN lt_eps //; near: x.
by rewrite /= !near_simpl; apply: littleoP; rewrite divr_gt0.
Unshelve. all: by end_near. Qed.
Lemma eqolim (F : filter_on T) (f : T -> V) (l : V) e :
f = cst l + [o_F (cst (1 : K^o)) of e] -> f @ F --> l.
Proof. by move=> /eqaddoE /eqolimP. Qed.
Lemma eqolim0P (F : filter_on T) (f : T -> V) :
f @ F --> (0 : V) <-> f =o_F (cst (1 : K^o)).
Proof. by rewrite eqolimP add0r -[f \- cst 0]/(f - 0) subr0. Qed.
Lemma eqolim0 (F : filter_on T) (f : T -> V) :
f =o_F (cst (1 : K^o)) -> f @ F --> (0 : V).
Proof. by move=> /eqoE /eqolim0P. Qed.
(* ideally the precondition should be f = '[O_F g of f'] with a *)
(* universally quantified f' which is irrelevant and replaced by *)
(* a hole, on the fly, by ssreflect rewrite *)
Lemma littleo_bigO_eqo {F : filter_on T}
(g : T -> W) (f : T -> V) (h : T -> X) :
f =O_F g -> [o_F f of h] =o_F g.
Proof.
move->; apply/eqoP => _/posnumP[e]; have [k c] := bigO _ g.
apply: filter_app; near=> x.
rewrite -!ler_pdivr_mull //; apply: le_trans; rewrite ler_pdivr_mull // mulrA.
by near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.
Arguments littleo_bigO_eqo {F}.
Lemma bigO_littleo_eqo {F : filter_on T} (g : T -> W) (f : T -> V) (h : T -> X) :
f =o_F g -> [O_F f of h] =o_F g.
Proof.
move->; apply/eqoP => _/posnumP[e]; have [k c] := bigO.
apply: filter_app; near=> x => /le_trans; apply.
by rewrite -ler_pdivl_mull // mulrA; near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.
Arguments bigO_littleo_eqo {F}.
Lemma add2o (F : filter_on T) (f g : T -> V) (e : T -> W) :
f =o_F e -> g =o_F e -> f + g =o_F e.
Proof. by move=> -> ->; rewrite addo. Qed.
Lemma addfo (F : filter_on T) (h f : T -> V) (e : T -> W) :
f =o_F e -> f + [o_F e of h] =o_F e.
Proof. by move->; rewrite addo. Qed.
Lemma oppfo (F : filter_on T) (h f : T -> V) (e : T -> W) :
f =o_F e -> - f =o_F e.
Proof. by move->; rewrite oppo. Qed.
Lemma add2O (F : filter_on T) (f g : T -> V) (e : T -> W) :
f =O_F e -> g =O_F e -> f + g =O_F e.
Proof. by move=> -> ->; rewrite addO. Qed.
Lemma addfO (F : filter_on T) (h f : T -> V) (e : T -> W) :
f =O_F e -> f + [O_F e of h] =O_F e.
Proof. by move->; rewrite addO. Qed.
Lemma oppfO (F : filter_on T) (h f : T -> V) (e : T -> W) :
f =O_F e -> - f =O_F e.
Proof. by move->; rewrite oppO. Qed.
Lemma idO (F : filter_on T) (e : T -> W) : e =O_F e.
Proof. by apply/eqO_exP; exists 1 => //; apply: filterE=> x; rewrite mul1r. Qed.
Lemma littleo_littleo (F : filter_on T) (f : T -> V) (g : T -> W) (h : T -> X) :
f =o_F g -> [o_F f of h] =o_F g.
Proof. by move=> ->; apply: eqoE; rewrite (littleo_bigO_eqo g). Qed.
End Limit.
Arguments littleo_bigO_eqo {K T V W X F}.
Arguments bigO_littleo_eqo {K T V W X F}.
Section Limit_realFieldType.
Context {K : realFieldType} (*TODO: generalize to numFieldType?*)
{T : Type} {V W X : normedModType K}.
Lemma bigO_bigO_eqO {F : filter_on T} (g : T -> W) (f : T -> V) (h : T -> X) :
f =O_F g -> ([O_F f of h] : _ -> _) =O_F g.
Proof.
move->; apply/eqOP; have [k c1 kOg] := bigO _ g. have [k' c2 k'Ok] := bigO _ k.
near=> c; move: k'Ok kOg; apply: filter_app2; near=> x => lek'c2k.
rewrite -(@ler_pmul2l _ c2%:num) // mulrA => /(le_trans lek'c2k) /le_trans.
by apply; rewrite ler_pmul//; near: c; exact: nbhs_pinfty_ge.
Unshelve. all: by end_near. Qed.
Arguments bigO_bigO_eqO {F}.
End Limit_realFieldType.
Arguments littleo_bigO_eqo {K T V W X F}.
Arguments bigO_littleo_eqo {K T V W X F}.
Arguments bigO_bigO_eqO {K T V W X F}.
Section littleo_bigO_transitivity.
Context {K : numFieldType} {T : Type} {V W Z : normedModType K}.
Lemma eqaddo_trans (F : filter_on T) (f g h : T -> V) fg gh (e : T -> W):
f = g + [o_ F e of fg] -> g = h + [o_F e of gh] -> f = h +o_F e.
Proof. by move=> -> ->; rewrite -addrA addo. Qed.
End littleo_bigO_transitivity.
Section littleo_bigO_transitivity.
Context {K : numFieldType} {T : Type} {V W Z : normedModType K}.
Lemma eqaddO_trans (F : filter_on T) (f g h : T -> V) fg gh (e : T -> W):
f = g + [O_ F e of fg] -> g = h + [O_F e of gh] -> f = h +O_F e.
Proof. by move=> -> ->; rewrite -addrA addO. Qed.
Lemma eqaddoO_trans (F : filter_on T) (f g h : T -> V) fg gh (e : T -> W):
f = g + [o_ F e of fg] -> g = h + [O_F e of gh] -> f = h +O_F e.
Proof. by move=> -> ->; rewrite addrAC -addrA addfO. Qed.
Lemma eqaddOo_trans (F : filter_on T) (f g h : T -> V) fg gh (e : T -> W):
f = g + [O_ F e of fg] -> g = h + [o_F e of gh] -> f = h +O_F e.
Proof. by move=> -> ->; rewrite -addrA addfO. Qed.
Lemma eqo_trans (F : filter_on T) (f : T -> V) f' (g : T -> W) g' (h : T -> Z) :
f = [o_F g of f'] -> g = [o_F h of g'] -> f =o_F h.
Proof. by move=> -> ->; rewrite (littleo_bigO_eqo h). Qed.
Lemma eqOo_trans (F : filter_on T) (f : T -> V) f' (g : T -> W) g' (h : T -> Z) :
f = [O_F g of f'] -> g = [o_F h of g'] -> f =o_F h.
Proof. by move=> -> ->; rewrite (bigO_littleo_eqo h). Qed.
Lemma eqoO_trans (F : filter_on T) (f : T -> V) f' (g : T -> W) g' (h : T -> Z) :
f = [o_F g of f'] -> g = [O_F h of g'] -> f =o_F h.
Proof. by move=> -> ->; rewrite (littleo_bigO_eqo h). Qed.
End littleo_bigO_transitivity.
Section littleo_bigO_transitivity_realFieldType.
Context {K : realFieldType} (*TODO: generalize to numFieldType?*) {T : Type}
{V W Z : normedModType K}.
Lemma eqO_trans (F : filter_on T) (f : T -> V) f' (g : T -> W) g' (h : T -> Z) :
f = [O_F g of f'] -> g = [O_F h of g'] -> f =O_F h.
Proof. by move=> -> ->; rewrite (bigO_bigO_eqO h). Qed.
End littleo_bigO_transitivity_realFieldType.
Section rule_of_products_rcfType.
Variables (R : rcfType) (pT : pointedType).
(* TODO: generalize to R : numDomainType? *)
Lemma mulo (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
[o_F h1 of f] * [o_F h2 of g] =o_F (h1 * h2).
Proof.
rewrite [in RHS]littleoE // => _/posnumP[e]; near=> x.
rewrite [`|_|]normrM -(sqr_sqrtr (ge0 e)) expr2.
rewrite (@normrM _ (h1 x) (h2 x)) mulrACA ler_pmul //; near: x;
by have [/= h] := littleo; apply.
Unshelve. all: by end_near. Qed.
Lemma mulO (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
[O_F h1 of f] * [O_F h2 of g] =O_F (h1 * h2).
Proof.
rewrite [RHS]bigOE//; have [ O1 k1 Oh1] := bigO; have [ O2 k2 Oh2] := bigO.
near=> k; move: Oh1 Oh2; apply: filter_app2; near=> x => leOh1 leOh2.
rewrite [`|_|]normrM (le_trans (ler_pmul _ _ leOh1 leOh2)) //.
rewrite mulrACA [`|_| in leRHS]normrM ler_wpmul2r // ?mulr_ge0 //.
by near: k; exact: nbhs_pinfty_ge.
Unshelve. all: by end_near. Qed.
End rule_of_products_rcfType.
(* NB: almost a duplicate of Section rule_of_products_rcfType *)
Section rule_of_products_numClosedFieldType.
Variables (R : numClosedFieldType) (pT : pointedType).
Lemma mulo_numClosedFieldType (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
[o_F h1 of f] * [o_F h2 of g] =o_F (h1 * h2).
Proof.
rewrite [in RHS]littleoE // => _/posnumP[e]; near=> x.
rewrite [`|_|]normrM -(sqrCK (ge0 e)) expr2 sqrtCM ?qualifE//.
rewrite (@normrM _ (h1 x) (h2 x)) mulrACA ler_pmul //; near: x;
by have [/= h] := littleo; apply.
Unshelve. all: by end_near. Qed.
Lemma mulO_numClosedFieldType (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
[O_F h1 of f] * [O_F h2 of g] =O_F (h1 * h2).
Proof.
rewrite [RHS]bigOE//; have [ O1 k1 Oh1] := bigO; have [ O2 k2 Oh2] := bigO.
near=> k; move: Oh1 Oh2; apply: filter_app2; near=> x => leOh1 leOh2.
rewrite [`|_|]normrM (le_trans (ler_pmul _ _ leOh1 leOh2)) //.
rewrite mulrACA [`|_| in leRHS]normrM ler_wpmul2r // ?mulr_ge0 //.
by near: k; exact: nbhs_pinfty_ge.
Unshelve. all: by end_near. Qed.
End rule_of_products_numClosedFieldType.
Section Linear3.
Context (R : realFieldType) (U : normedModType R) (V : normedModType R)
(s : R -> V -> V) (s_law : GRing.Scale.law s).
Hypothesis (normm_s : forall k x, `|s k x| = `|k| * `|x|).
(* Split in multiple bits *)
(* - Locally bounded => locally lipschitz *)
(* - locally lipschitz + linear => lipschitz *)
(* - locally lipschitz => continuous at a point *)
(* - lipschitz => uniformly continous *)
Local Notation "'+oo'" := (@pinfty_nbhs R).
Lemma linear_for_continuous (f : {linear U -> V | GRing.Scale.op s_law}) :
(f : _ -> _) =O_ (0 : U) (cst (1 : R^o)) -> continuous f.
Proof.
move=> /eqO_exP [_/posnumP[k0] Of1] x.
apply/cvg_distP => _/posnumP[e]; rewrite !near_simpl.
rewrite (near_shift 0) /= subr0; near=> y => /=.
rewrite -linearB opprD addrC addrNK linearN normrN; near: y.
suff flip : \forall k \near +oo, forall x, `|f x| <= k * `|x|.
near +oo => k; near=> y.
rewrite (le_lt_trans (near flip k _ _)) // -ltr_pdivl_mull; last first.
by near: k; exists 0.
near: y; apply/nbhs_normP.
eexists; last by move=> ?; rewrite -ball_normE /= sub0r normrN; apply.
by rewrite /= mulr_gt0 // invr_gt0; near: k; exists 0.
have /nbhs_normP [_/posnumP[d]] := Of1.
rewrite /cst [X in _ * X]normr1 mulr1 => fk; near=> k => y.
case: (ler0P `|y|) => [|y0].
by rewrite normr_le0 => /eqP->; rewrite linear0 !normr0 mulr0.
have ky0 : 0 <= k0%:num / (k * `|y|).
by rewrite pmulr_rge0 // invr_ge0 mulr_ge0 // ltW //; near: k; exists 0.
rewrite -[leRHS]mulr1 -ler_pdivr_mull ?pmulr_rgt0 //; last first.
by near: k; exists 0.
rewrite -(ler_pmul2l [gt0 of k0%:num]) mulr1 mulrA -[_ / _]ger0_norm //.
rewrite -normm_s.
have <- : GRing.Scale.op s_law =2 s by rewrite GRing.Scale.opE.
rewrite -linearZ fk //= -ball_normE /= distrC subr0 normmZ ger0_norm //.
rewrite invfM mulrA mulfVK ?lt0r_neq0 // ltr_pdivr_mulr //; last first.
by near: k; exists 0.
by rewrite -ltr_pdivr_mull//; near: k; exact: nbhs_pinfty_gt.
Unshelve. all: by end_near. Qed.
End Linear3.
Arguments linear_for_continuous {R U V s s_law normm_s} f _.
Lemma linear_continuous (R : realFieldType) (U : normedModType R)
(V : normedModType R) (f : {linear U -> V}) :
(f : _ -> _) =O_ (0 : U) (cst (1 : R^o)) -> continuous f.
Proof. by apply: linear_for_continuous => ??; rewrite normmZ. Qed.
Lemma linear_for_mul_continuous (R : realFieldType) (U : normedModType R)
(f : {linear U -> R | (@GRing.mul [ringType of R^o])}) :
(f : _ -> _) =O_ (0 : U) (cst (1 : R^o)) -> continuous f.
Proof. by apply: linear_for_continuous => ??; rewrite normmZ. Qed.
Notation "f '~_' F g" := (f = g +o_ F g).
Notation "f '~~_' F g" := (f == g +o_ F g).
Section asymptotic_equivalence.
Context {K : realFieldType} {T : Type} {V W : normedModType K}.
Implicit Types F : filter_on T.
Lemma equivOLR F (f g : T -> V) : f ~_F g -> f =O_F g.
Proof. by move=> ->; apply: eqOE; rewrite {1}[g](idO F) addrC addfO. Qed.
Lemma equiv_refl F (f : T -> V) : f ~_F f.
Proof. by apply/eqaddoP; rewrite subrr. Qed.
Lemma equivoRL (W' : normedModType K) F (f g : T -> V) (h : T -> W') :
f ~_F g -> [o_F g of h] =o_F f.
Proof.
move=> ->; apply/eqoP; move=> _/posnumP[eps]; near=> x.
rewrite -ler_pdivr_mull // -[X in g + X]opprK oppo.
rewrite (le_trans _ (ler_dist_dist _ _)) //.
rewrite [leRHS]ger0_norm ?ler_subr_addr ?add0r; last first.
by rewrite -[leRHS]mul1r; near: x; apply: littleoP.
rewrite [leRHS]splitr [_ / 2]mulrC.
by rewrite ler_add ?ler_pdivr_mull ?mulrA //; near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.
Lemma equiv_sym F (f g : T -> V) : f ~_F g -> g ~_F f.
Proof.
move=> fg; have /(canLR (addrK _))<- := fg.
by apply:eqaddoE; rewrite oppo (equivoRL _ fg).
Qed.
Lemma equivoLR (W' : normedModType K) F (f g : T -> V) (h : T -> W') :
f ~_F g -> [o_F f of h] =o_F g.
Proof. by move/equiv_sym/equivoRL. Qed.
Lemma equivORL F (f g : T -> V) : f ~_F g -> g =O_F f.
Proof. by move/equiv_sym/equivOLR. Qed.
Lemma eqoaddo (W' : normedModType K) F (f g : T -> V) (h : T -> W') :
[o_F f + [o_F f of g] of h] =o_F f.
Proof. by apply: equivoLR. Qed.
Lemma equiv_trans F (f g h : T -> V) : f ~_F g -> g ~_F h -> f ~_F h.
Proof. by move=> -> ->; apply: eqaddoE; rewrite eqoaddo -addrA addo. Qed.
Lemma equivalence_rel_equiv F :
equivalence_rel [rel f g : T -> V | f ~~_F g].
Proof.
move=> f g h; split; first by apply/eqP/equiv_refl.
by move=> /eqP fg /=; apply/eqP/eqP; apply/equiv_trans => //; apply/equiv_sym.
Qed.
End asymptotic_equivalence.
Section big_omega.
Context {K : realFieldType} {T : Type} {V : normedModType K}.
Implicit Types W : normedModType K.
Let bigOmega_def W (F : set (set T)) (f : T -> V) (g : T -> W) :=
exists2 k, k > 0 & \forall x \near F, `|f x| >= k * `|g x|.
Structure bigOmega_type {W} (F : set (set T)) (g : T -> W) := BigOmega {
bigOmega_fun :> T -> V;
_ : `[< bigOmega_def F bigOmega_fun g >]
}.
Notation "{Omega_ F g }" := (@bigOmega_type _ F g).
Canonical bigOmega_subtype {W} (F : set (set T)) (g : T -> W) :=
[subType for (@bigOmega_fun W F g)].
Lemma bigOmega_class {W} (F : set (set T)) (g : T -> W) (f : {Omega_F g}) :
`[< bigOmega_def F f g >].
Proof. by case: f => ?. Qed.
Hint Resolve bigOmega_class : core.
Definition bigOmega_clone {W} (F : set (set T)) (g : T -> W) (f : T -> V)
(fT : {Omega_F g}) c of phant_id (bigOmega_class fT) c := @BigOmega W F g f c.
Notation "[bigOmega 'of' f 'for' fT ]" := (@bigOmega_clone _ _ _ f fT _ idfun).
Notation "[bigOmega 'of' f ]" := (@bigOmega_clone _ _ _ f _ _ idfun).
Lemma bigOmega_refl_subproof F (g : T -> V) : Filter F -> bigOmega_def F g g.
Proof.
by move=> FF; exists 1 => //; near=> x; rewrite mul1r.
Unshelve. all: by end_near. Qed.
Definition bigOmega_refl (F : filter_on T) g :=
BigOmega (asboolT (@bigOmega_refl_subproof F g _)).
Definition the_bigOmega (u : unit) (F : filter_on T)
(phF : phantom (set (set T)) F) f g :=
bigOmega_fun (insubd (bigOmega_refl F g) f).
Arguments the_bigOmega : simpl never, clear implicits.
Notation mkbigOmega tag x := (the_bigOmega tag _ (PhantomF x)).
Notation "[Omega_ x e 'of' f ]" := (mkbigOmega gen_tag x f e). (* parsing *)
Notation "[Omega '_' x e 'of' f ]" := (the_bigOmega _ _ (PhantomF x) f e).
Definition is_bigOmega {W} (F : set (set T)) (g : T -> W) :=
[qualify f : T -> V | `[< bigOmega_def F f g >] ].
Fact is_bigOmega_key {W} (F : set (set T)) (g : T -> W) : pred_key (is_bigOmega F g).
Proof. by []. Qed.
Canonical is_bigOmega_keyed {W} (F : set (set T)) (g : T -> W) :=
KeyedQualifier (is_bigOmega_key F g).
Notation "'Omega_ F g" := (is_bigOmega F g).
Lemma bigOmegaP {W} (F : set (set T)) (g : T -> W) (f : {Omega_F g}) :
bigOmega_def F f g.
Proof. exact/asboolP. Qed.
Hint Extern 0 (bigOmega_def _ _ _) => solve[apply: bigOmegaP] : core.
Hint Extern 0 (nbhs _ _) => solve[apply: bigOmegaP] : core.
Hint Extern 0 (prop_near1 _) => solve[apply: bigOmegaP] : core.
Hint Extern 0 (prop_near2 _) => solve[apply: bigOmegaP] : core.
Notation "f '=Omega_' F h" := (f%function = mkbigOmega the_tag F f h).
Canonical the_bigOmega_bigOmega (tag : unit) (F : filter_on T)
(phF : phantom (set (set T)) F) f h := [bigOmega of the_bigOmega tag F phF f h].
Variant bigOmega_spec {W} (F : set (set T)) (g : T -> W) : (T -> V) -> Prop :=
BigOmegaSpec f (k : {posnum K}) of
(\forall x \near F, `|f x| >= k%:num * `|g x|) :
bigOmega_spec F g f.
Lemma bigOmega {W} (F : filter_on T) (g : T -> W) (f : {Omega_F g}) :
bigOmega_spec F g f.
Proof. by have [_/posnumP[k]] := bigOmegaP f; exists k. Qed.
(* properties of big Omega *)
Lemma eqOmegaO {W} (F : filter_on T) (f : T -> V) (e : T -> W) :
(f \is 'Omega_F(e)) = (e =O_F f) :> Prop.
Proof.
rewrite propeqE; split => [| /eqO_exP[x x0 Hx] ];
[rewrite qualifE => /asboolP[x x0 Hx]; apply/eqO_exP |
rewrite qualifE; apply/asboolP];
exists x^-1; rewrite ?invr_gt0 //; near=> y.
by rewrite ler_pdivl_mull //; near: y.
by rewrite ler_pdivr_mull //; near: y.
Unshelve. all: by end_near. Qed.
Lemma eqOmegaE (F : filter_on T) (f e : T -> V) :
(f =Omega_F(e)) = (f \is 'Omega_F(e)).
Proof.
rewrite propeqE; split=> [->|]; rewrite qualifE; last first.
by move=> H; rewrite /the_bigOmega val_insubd H.
by apply/asboolP; rewrite /the_bigOmega val_insubd; case: ifPn => // /asboolP.
Qed.
Lemma eqOmega_trans (F : filter_on T) (f g h : T -> V) :
f =Omega_F(g) -> g =Omega_F(h) -> f =Omega_F(h).
Proof. rewrite !eqOmegaE !eqOmegaO => fg gh; exact: (eqO_trans gh fg). Qed.
End big_omega.
Notation "{Omega_ F f }" := (@bigOmega_type _ _ _ _ F f).
Notation "[bigOmega 'of' f ]" := (@bigOmega_clone _ _ _ _ _ _ f _ _ idfun).
Notation mkbigOmega tag x := (the_bigOmega tag (PhantomF x)).
Notation "[Omega_ x e 'of' f ]" := (mkbigOmega gen_tag x f e).
Notation "[Omega '_' x e 'of' f ]" := (the_bigOmega _ _ (PhantomF x) f e).
Notation "'Omega_ F g" := (is_bigOmega F g).
Notation "f '=Omega_' F h" := (f%function = mkbigOmega the_tag F f h).
Arguments bigOmega {_ _ _ _}.
Section big_omega_in_R.
Variable pT : pointedType.
Lemma addOmega (R : realFieldType) (F : filter_on pT) (f g h : _ -> R^o)
(f_nonneg : forall x, 0 <= f x) (g_nonneg : forall x, 0 <= g x) :
f =Omega_F h -> f + g =Omega_F h.
Proof.
rewrite 2!eqOmegaE !eqOmegaO => /eqOP hOf; apply/eqOP.
apply: filter_app hOf; near=> k; apply: filter_app; near=> x => /le_trans.
apply; rewrite ler_pmul2l //; last by near: k; exists 0.
by rewrite !ger0_norm // ?addr_ge0 // ler_addl.
Unshelve. all: by end_near. Qed.
Lemma mulOmega (R : realFieldType) (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
[Omega_F h1 of f] * [Omega_F h2 of g] =Omega_F (h1 * h2).
Proof.
rewrite eqOmegaE eqOmegaO [in RHS]bigOE //.
have [W1 k1 ?] := bigOmega; have [W2 k2 ?] := bigOmega.
near=> k; near=> x; rewrite [`|_|]normrM.
rewrite (@le_trans _ _ ((k2%:num * k1%:num)^-1 * `|(W1 * W2) x|)) //.
rewrite invrM ?unitfE ?gtr_eqF // -mulrA ler_pdivl_mull //.
rewrite ler_pdivl_mull // (mulrA k1%:num) mulrCA (@normrM _ (W1 x)).
by rewrite ler_pmul ?mulr_ge0 //; near: x.
by rewrite ler_wpmul2r // ltW //; near: k; exists (k2%:num * k1%:num)^-1.
Unshelve. all: by end_near. Qed.
End big_omega_in_R.
Section big_theta.
Context {K : realFieldType} {T : Type} {V : normedModType K}.
Implicit Types W : normedModType K.
Let bigTheta_def W (F : set (set T)) (f : T -> V) (g : T -> W) :=
exists2 k, (k.1 > 0) && (k.2 > 0) &
\forall x \near F, k.1 * `|g x| <= `|f x| /\ `|f x| <= k.2 * `|g x|.
Structure bigTheta_type {W} (F : set (set T)) (g : T -> W) := BigTheta {
bigTheta_fun :> T -> V;
_ : `[< bigTheta_def F bigTheta_fun g >]
}.
Notation "{Theta_ F g }" := (@bigTheta_type _ F g).
Canonical bigTheta_subtype {W} (F : set (set T)) (g : T -> W) :=
[subType for (@bigTheta_fun W F g)].
Lemma bigTheta_class {W} (F : set (set T)) (g : T -> W) (f : {Theta_F g}) :
`[< bigTheta_def F f g >].
Proof. by case: f => ?. Qed.
Hint Resolve bigTheta_class : core.
Definition bigTheta_clone {W} (F : set (set T)) (g : T -> W) (f : T -> V)
(fT : {Theta_F g}) c of phant_id (bigTheta_class fT) c := @BigTheta W F g f c.
Notation "[bigTheta 'of' f 'for' fT ]" := (@bigTheta_clone _ _ _ f fT _ idfun).
Notation "[bigTheta 'of' f ]" := (@bigTheta_clone _ _ _ f _ _ idfun).
Lemma bigTheta_refl_subproof F (g : T -> V) : Filter F -> bigTheta_def F g g.
Proof.
by move=> FF; exists 1 => /=; rewrite ?ltr01 //; near=> x; by rewrite mul1r.
Unshelve. all: by end_near. Qed.
Definition bigTheta_refl (F : filter_on T) g :=
BigTheta (asboolT (@bigTheta_refl_subproof F g _)).
Definition the_bigTheta (u : unit) (F : filter_on T)
(phF : phantom (set (set T)) F) f g :=
bigTheta_fun (insubd (bigTheta_refl F g) f).
Arguments the_bigOmega : simpl never, clear implicits.
Notation mkbigTheta tag x := (@the_bigTheta tag _ (PhantomF x)).
Notation "[Theta_ x e 'of' f ]" := (mkbigTheta gen_tag x f e). (* parsing *)
Notation "[Theta '_' x e 'of' f ]" := (the_bigTheta _ _ (PhantomF x) f e).
Definition is_bigTheta {W} (F : set (set T)) (g : T -> W) :=
[qualify f : T -> V | `[< bigTheta_def F f g >] ].
Fact is_bigTheta_key {W} (F : set (set T)) (g : T -> W) : pred_key (is_bigTheta F g).
Proof. by []. Qed.
Canonical is_bigTheta_keyed {W} (F : set (set T)) (g : T -> W) :=
KeyedQualifier (is_bigTheta_key F g).
Notation "'Theta_ F g" := (@is_bigTheta _ F g).
Lemma bigThetaP {W} (F : set (set T)) (g : T -> W) (f : {Theta_F g}) :
bigTheta_def F f g.
Proof. exact/asboolP. Qed.
Hint Extern 0 (bigTheta_def _ _ _) => solve[apply: bigThetaP] : core.
Hint Extern 0 (nbhs _ _) => solve[apply: bigThetaP] : core.
Hint Extern 0 (prop_near1 _) => solve[apply: bigThetaP] : core.
Hint Extern 0 (prop_near2 _) => solve[apply: bigThetaP] : core.
Canonical the_bigTheta_bigTheta (tag : unit) (F : filter_on T)
(phF : phantom (set (set T)) F) f h := [bigTheta of @the_bigTheta tag F phF f h].
Variant bigTheta_spec {W} (F : set (set T)) (g : T -> W) : (T -> V) -> Prop :=
BigThetaSpec f (k1 : {posnum K}) (k2 : {posnum K}) of
(\forall x \near F, k1%:num * `|g x| <= `|f x|) &
(\forall x \near F, `|f x| <= k2%:num * `|g x|) :
bigTheta_spec F g f.
Lemma bigTheta {W} (F : filter_on T) (g : T -> W) (f : {Theta_F g}) :
bigTheta_spec F g f.
Proof.
have [[_ _] /andP[/posnumP[k] /posnumP[k']]] := bigThetaP f.
by move=> /near_andP[]; exists k k'.
Qed.
Notation "f '=Theta_' F h" := (f%function = mkbigTheta the_tag F f h).
Lemma bigThetaE {W} (F : filter_on T) (f : T -> V) (g : T -> W) :
(f \is 'Theta_F(g)) = (f =O_F g /\ f \is 'Omega_F(g)) :> Prop.
Proof.
rewrite propeqE; split.
- rewrite qualifE => /asboolP[[/= k1 k2] /andP[k10 k20]] /near_andP[Hx1 Hx2].
by split; [rewrite eqO_exP; exists k2|
rewrite qualifE; apply/asboolP; exists k1].
- case; rewrite eqO_exP qualifE => -[k1 k10 H1] /asboolP[k2 k20 H2].
rewrite qualifE; apply/asboolP; exists (k2, k1) => /=; first by rewrite k20.
by apply/near_andP; split.
Qed.
Lemma eqThetaE (F : filter_on T) (f e : T -> V) :
(f =Theta_F(e)) = (f \is 'Theta_F(e)).
Proof.
rewrite propeqE; split=> [->|]; rewrite qualifE; last first.
by move=> H; rewrite /the_bigTheta val_insubd H.
by apply/asboolP; rewrite /the_bigTheta val_insubd; case: ifPn => // /asboolP.
Qed.
Lemma eqThetaO (F : filter_on T) (f g : T -> V) : [Theta_F g of f] =O_F g.
Proof. by have [T1 k1 k2 ? ?] := bigTheta; apply/eqO_exP; exists k2%:num. Qed.
Lemma idTheta (F : filter_on T) (f : T -> V) : f =Theta_F f.
Proof. rewrite eqThetaE bigThetaE eqOmegaO; split; exact/idO. Qed.
Lemma Theta_sym (F : filter_on T) (f g : T -> V) :
(f =Theta_F g) = (g =Theta_F f).
Proof. by rewrite !eqThetaE propeqE !bigThetaE !eqOmegaO; split => -[]. Qed.
Lemma eqTheta_trans (F : filter_on T) (f g h : T -> V) :
f =Theta_F g -> g =Theta_F h -> f =Theta_F h.
Proof.
rewrite !eqThetaE !bigThetaE -!eqOmegaE => -[fg gf] [gh hg]; split.
by rewrite fg (bigO_bigO_eqO _ _ _ gh).
exact: (eqOmega_trans gf hg).
Qed.
End big_theta.
Notation "{Theta_ F g }" := (@bigTheta_type _ F g).
Notation "[bigTheta 'of' f ]" := (@bigTheta_clone _ _ _ _ _ _ f _ _ idfun).
Notation mkbigTheta tag x := (the_bigTheta tag (PhantomF x)).
Notation "[Theta_ x e 'of' f ]" := (mkbigTheta gen_tag x f e).
Notation "[Theta '_' x e 'of' f ]" := (the_bigTheta _ _ (PhantomF x) f e).
Notation "'Theta_ F g" := (is_bigTheta F g).
Notation "f '=Theta_' F h" := (f%function = mkbigTheta the_tag F f h).
Section big_theta_in_R.
Variables (R : rcfType (*realType*)) (pT : pointedType).
Lemma addTheta (F : filter_on pT) (f g h : _ -> R^o)
(f0 : forall x, 0 <= f x) (g0 : forall x, 0 <= g x) (h0 : forall x, 0 <= h x) :
[Theta_F h of f] + [O_F h of g] =Theta_F h.
Proof.
rewrite eqThetaE bigThetaE; split; first by rewrite eqThetaO addO.
rewrite -eqOmegaE; apply: addOmega.
- by move=> ?; rewrite /the_bigTheta val_insubd /=; case: ifP.
- by move=> ?; rewrite /the_bigO val_insubd /=; case: ifP.
- rewrite eqOmegaE eqOmegaO; have [T1 k1 k2 ? ?] := bigTheta.
rewrite bigOE //; apply/bigO_exP; exists k1%:num^-1 => //.
by near=> x; rewrite ler_pdivl_mull //; near: x.
Unshelve. all: by end_near. Qed.
Lemma mulTheta (F : filter_on pT) (h1 h2 f g : pT -> R^o) :
[Theta_F h1 of f] * [Theta_F h2 of g] =Theta_F h1 * h2.
Proof.
rewrite eqThetaE bigThetaE; split.
by rewrite (eqThetaO _ f) (eqThetaO _ g) mulO.
rewrite eqOmegaO [in RHS]bigOE //.
have [T1 k1 l1 P1 ?] := bigTheta; have [T2 k2 l2 P2 ?] := bigTheta.
near=> k; first near=> x.
rewrite [`|_|]normrM (@le_trans _ _ ((k2%:num * k1%:num)^-1 * `|(T1 * T2) x|)) //.
rewrite invrM ?unitfE ?gtr_eqF // -mulrA ler_pdivl_mull //.
rewrite ler_pdivl_mull // (mulrA k1%:num) mulrCA (@normrM _ (T1 x)) ler_pmul //;
by [rewrite mulr_ge0 //|near: x].
by rewrite ler_wpmul2r // ltW //; near: k; exists (k2%:num * k1%:num)^-1.
Unshelve. all: by end_near. Qed.
End big_theta_in_R.
|