Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 104,053 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 |
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From mathcomp Require Import all_ssreflect finmap ssralg ssrnum ssrint rat.
From HB Require Import structures.
Require Import boolp mathcomp_extra classical_sets.
Add Search Blacklist "__canonical__".
Add Search Blacklist "__functions_".
Add Search Blacklist "_factory_".
Add Search Blacklist "_mixin_".
(******************************************************************************)
(* Theory of functions *)
(* *)
(* This file provides a theory of functions whose domain and codomain are *)
(* represented by sets. *)
(* *)
(* set_fun A B f == f : aT -> rT is a function with domain *)
(* A : set aT and codomain B : set rT *)
(* set_surj A B f == f is surjective *)
(* set inj A B f == f is injective *)
(* set_bij A B f == f is bijective *)
(* *)
(* {fun A >-> B} == type of functions f : aT -> rT from A : set aT *)
(* to B : set rT *)
(* {oinv aT >-> rT} == type of functions with a partial inverse *)
(* {oinvfun A >-> B} == combination of {fun A >-> B} and *)
(* {oinv aT >-> rT} *)
(* {inv aT >-> rT} == type of functions with an inverse *)
(* f ^-1 == inverse of f : {inv aT >-> rT} *)
(* {invfun A >-> B} == combination of {fun A >-> B} and {inv aT >-> rT} *)
(* {surj A >-> B} == type of surjective functions *)
(* {surjfun A >-> B} == combination of {fun A >-> B} and {surj A >-> B} *)
(* {splitsurj A >-> B} == type of surjective functions with an inverse *)
(* {splitsurjfun A >-> B} == combination of {fun A >-> B} and *)
(* {splitsurj A >-> B} *)
(* {inj A >-> rT} == type of injective functions *)
(* {injfun A >-> B} == combination of {fun A >-> B} and {inj A >-> rT} *)
(* {splitinj A >-> B} == type of injective functions with an inverse *)
(* {splitinjfun A >-> B} == combination of {fun A >-> B} and *)
(* {splitinj A >-> B} *)
(* {bij A >-> B} == combination of {injfun A >-> B} and *)
(* {surjfun A >-> B} *)
(* {splitbij A >-> B} == combination of {splitinj A >-> B} and *)
(* {splitsurj A >-> B} *)
(* *)
(* funin A f == alias for f : aT -> rT, with A : set aT *)
(* [fun f in A] == the function f from the set A to the set f @` A*)
(* 'split_ d f == partial injection from aT : Type to rt : Type; *)
(* f : aT -> rT, d : rT -> aT *)
(* split := 'split_point *)
(* @to_setT T == function that associates to x : T a dependent *)
(* pair of x with a proof that x belongs to setT *)
(* (i.e., the type set_type [set: T]) *)
(* incl AB == identity function from T to T, where AB is a *)
(* proof of A `<=` B, with A, B : set T *)
(* inclT A := incl (@subsetT _ _) *)
(* eqincl AB == identity function from T to T, where AB is a *)
(* proof of A = B, with A, B : set T *)
(* mkfun fAB == builds a function {fun A >-> B} given a function *)
(* f : aT -> rT and a proof fAB that *)
(* {homo f : x / A x >-> B x} *)
(* @set_val T A == injection from set_type A to T, where A has *)
(* type set T *)
(* @ssquash T == function of type *)
(* {splitsurj [set: T] >-> [set: $| T |]} *)
(* @finset_val T X == function that turns an element x : X *)
(* (with X : {fset T}) into a dependent pair of x *)
(* with a proof that x belongs to X *)
(* (i.e., the type set_type [set` X]) *)
(* @val_finset T X == function of type [set` X] -> X with X : {fset T} *)
(* that cancels finset_val *)
(* glue XY AB f g == function that behaves as f over X, as g over Y *)
(* XY is a proof that sets X and Y are disjoint, *)
(* AB is a proof that sets A and B are disjoint, *)
(* A and B are intended to be the ranges of f and g *)
(* 'pinv_ d A f == inverse of the function [fun f in A] over *)
(* f @` A, function d outside of f @` A *)
(* pinv := notation for 'pinv_point *)
(* *)
(* * Function restriction: *)
(* patch d A f == "partial function" that behaves as the function *)
(* f over the set A and as the function d otherwise *)
(* restrict D f := patch (fun=> point) D f *)
(* f \_ D := restrict D f *)
(* sigL A f == "left restriction"; given a set A : set U and a *)
(* function f : U -> V, returns the corresponding *)
(* function of type set_type A -> V *)
(* sigR A f == "right restriction"; given a set B : set V and a *)
(* function f : {fun [set: U] >-> B}, returns the *)
(* corresponding function of type U -> set_type B *)
(* sigLR A B f == the function of type set_type A -> set_type B *)
(* corresponding to f : {fun A >-> B} *)
(* valL_ v == function cancelled by sigL A, with A : set U and *)
(* v : V *)
(* valR f == the function of type U -> V corresponding to *)
(* f : U -> set_type B, with B : set V *)
(* valR_fun == the function of type {fun [set: U] >-> B} *)
(* corresponding to f : U -> set_type B, with *)
(* B : set V *)
(* valLR v f == the function of type U -> V corresponding to *)
(* f : set_type A -> set_type B (where v : V), *)
(* i.e., 'valL_ v \o valR_fun *)
(* valLfun_ v A B f := [fun of valL_ f] with f : {fun [set: A] >-> B} *)
(* valL := 'valL_ point *)
(* valLRfun v := 'valLfun_ v \o valR_fun *)
(* *)
(* Section function_space == canonical ringType and lmodType *)
(* structures for functions whose range is *)
(* a ringType, comRingType, or lmodType. *)
(* fctE == multi-rule for fct *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Reserved Notation "f \_ D" (at level 10).
Reserved Notation "'{' 'fun' A '>->' B '}'"
(format "'{' 'fun' A '>->' B '}'").
Reserved Notation "'{' 'oinv' T '>->' U '}'"
(format "'{' 'oinv' T '>->' U '}'").
Reserved Notation "'{' 'inv' T '>->' U '}'"
(format "'{' 'inv' T '>->' U '}'").
Reserved Notation "'{' 'oinvfun' T '>->' U '}'"
(format "'{' 'oinvfun' T '>->' U '}'").
Reserved Notation "'{' 'invfun' T '>->' U '}'"
(format "'{' 'invfun' T '>->' U '}'").
Reserved Notation "'{' 'inj' A '>->' T '}'"
(format "'{' 'inj' A '>->' T '}'").
Reserved Notation "'{' 'splitinj' A '>->' T '}'"
(format "'{' 'splitinj' A '>->' T '}'").
Reserved Notation "'{' 'surj' A '>->' B '}'"
(format "'{' 'surj' A '>->' B '}'").
Reserved Notation "'{' 'splitsurj' A '>->' B '}'"
(format "'{' 'splitsurj' A '>->' B '}'").
Reserved Notation "'{' 'injfun' A '>->' B '}'"
(format "'{' 'injfun' A '>->' B '}'").
Reserved Notation "'{' 'surjfun' A '>->' B '}'"
(format "'{' 'surjfun' A '>->' B '}'").
Reserved Notation "'{' 'splitinjfun' A '>->' B '}'"
(format "'{' 'splitinjfun' A '>->' B '}'").
Reserved Notation "'{' 'splitsurjfun' A '>->' B '}'"
(format "'{' 'splitsurjfun' A '>->' B '}'").
Reserved Notation "'{' 'bij' A '>->' B '}'"
(format "'{' 'bij' A '>->' B '}'").
Reserved Notation "'{' 'splitbij' A '>->' B '}'"
(format "'{' 'splitbij' A '>->' B '}'").
Reserved Notation "[ 'fun' 'of' f ]" (format "[ 'fun' 'of' f ]").
Reserved Notation "[ 'oinv' 'of' f ]" (format "[ 'oinv' 'of' f ]").
Reserved Notation "[ 'inv' 'of' f ]" (format "[ 'inv' 'of' f ]").
Reserved Notation "[ 'oinv' 'of' f ]" (format "[ 'oinv' 'of' f ]").
Reserved Notation "[ 'inv' 'of' f ]" (format "[ 'inv' 'of' f ]").
Reserved Notation "[ 'inj' 'of' f ]" (format "[ 'inj' 'of' f ]").
Reserved Notation "[ 'splitinj' 'of' f ]" (format "[ 'splitinj' 'of' f ]").
Reserved Notation "[ 'surj' 'of' f ]" (format "[ 'surj' 'of' f ]").
Reserved Notation "[ 'splitsurj' 'of' f ]" (format "[ 'splitsurj' 'of' f ]").
Reserved Notation "[ 'injfun' 'of' f ]" (format "[ 'injfun' 'of' f ]").
Reserved Notation "[ 'surjfun' 'of' f ]" (format "[ 'surjfun' 'of' f ]").
Reserved Notation "[ 'splitinjfun' 'of' f ]"
(format "[ 'splitinjfun' 'of' f ]").
Reserved Notation "[ 'splitsurjfun' 'of' f ]"
(format "[ 'splitsurjfun' 'of' f ]").
Reserved Notation "[ 'bij' 'of' f ]" (format "[ 'bij' 'of' f ]").
Reserved Notation "[ 'splitbij' 'of' f ]" (format "[ 'splitbij' 'of' f ]").
Reserved Notation "''oinv_' f" (at level 8, f at level 2, format "''oinv_' f").
Reserved Notation "''funS_' f" (at level 8, f at level 2, format "''funS_' f").
Reserved Notation "''mem_fun_' f"
(at level 8, f at level 2, format "''mem_fun_' f").
Reserved Notation "''oinvK_' f"
(at level 8, f at level 2, format "''oinvK_' f").
Reserved Notation "''oinvS_' f"
(at level 8, f at level 2, format "''oinvS_' f").
Reserved Notation "''oinvP_' f"
(at level 8, f at level 2, format "''oinvP_' f").
Reserved Notation "''oinvT_' f"
(at level 8, f at level 2, format "''oinvT_' f").
Reserved Notation "''invK_' f"
(at level 8, f at level 2, format "''invK_' f").
Reserved Notation "''invS_' f"
(at level 8, f at level 2, format "''invS_' f").
Reserved Notation "''funoK_' f"
(at level 8, f at level 2, format "''funoK_' f").
Reserved Notation "''inj_' f"
(at level 8, f at level 2, format "''inj_' f").
Reserved Notation "''funK_' f"
(at level 8, f at level 2, format "''funK_' f").
Reserved Notation "''totalfun_' A"
(at level 8, A at level 2, format "''totalfun_' A").
Reserved Notation "''surj_' f"
(at level 8, f at level 2, format "''surj_' f").
Reserved Notation "''split_' a"
(at level 8, a at level 2, format "''split_' a").
Reserved Notation "''bijTT_' f"
(at level 8, f at level 2, format "''bijTT_' f").
Reserved Notation "''bij_' f" (at level 8, f at level 2, format "''bij_' f").
Reserved Notation "''valL_' v" (at level 8, v at level 2, format "''valL_' v").
Reserved Notation "''valLfun_' v"
(at level 8, v at level 2, format "''valLfun_' v").
Reserved Notation "''pinv_' dflt"
(at level 8, dflt at level 2, format "''pinv_' dflt").
Reserved Notation "''pPbij_' dflt"
(at level 8, dflt at level 2, format "''pPbij_' dflt").
Reserved Notation "''pPinj_' dflt"
(at level 8, dflt at level 2, format "''pPinj_' dflt").
Reserved Notation "''injpPfun_' dflt"
(at level 8, dflt at level 2, format "''injpPfun_' dflt").
Reserved Notation "''funpPinj_' dflt"
(at level 8, dflt at level 2, format "''funpPinj_' dflt").
Local Open Scope classical_set_scope.
Section MainProperties.
Context {aT rT} (A : set aT) (B : set rT) (f : aT -> rT).
Definition set_fun := {homo f : x / A x >-> B x}.
Definition set_surj := B `<=` f @` A.
Definition set_inj := {in A &, injective f}.
Definition set_bij := [/\ set_fun, set_inj & set_surj].
End MainProperties.
HB.mixin Record IsFun {aT rT} (A : set aT) (B : set rT) (f : aT -> rT) :=
{ funS : set_fun A B f }.
HB.structure Definition Fun {aT rT} (A : set aT) (B : set rT) :=
{ f of IsFun _ _ A B f }.
Notation "{ 'fun' A >-> B }" := (@Fun.type _ _ A B) : form_scope.
Notation "[ 'fun' 'of' f ]" := [the {fun _ >-> _} of f : _ -> _] : form_scope.
HB.mixin Record OInv {aT rT} (f : aT -> rT) := { oinv : rT -> option aT }.
HB.structure Definition OInversible aT rT := {f of OInv aT rT f}.
Notation "{ 'oinv' aT >-> rT }" := (@OInversible.type aT rT) : type_scope.
Notation "[ 'oinv' 'of' f ]" := [the {oinv _ >-> _} of f : _ -> _] :
form_scope.
Definition phant_oinv aT rT (f : {oinv aT >-> rT})
of phantom (_ -> _) f := @oinv _ _ f.
Notation "''oinv_' f" := (@phant_oinv _ _ _ (Phantom (_ -> _) f%FUN)).
HB.structure Definition OInvFun aT rT A B :=
{f of OInv aT rT f & IsFun aT rT A B f}.
Notation "{ 'oinvfun' A >-> B }" := (@OInvFun.type _ _ A B) : type_scope.
Notation "[ 'oinvfun' 'of' f ]" :=
[the {oinvfun _ >-> _} of f : _ -> _] : form_scope.
HB.mixin Record OInv_Inv {aT rT} (f : aT -> rT) of OInv _ _ f := {
inv : rT -> aT;
oliftV : olift inv = 'oinv_f
}.
HB.factory Record Inv {aT rT} (f : aT -> rT) := { inv : rT -> aT }.
HB.builders Context {aT rT} (f : aT -> rT) of Inv _ _ f.
HB.instance Definition _ := OInv.Build _ _ f (olift inv).
HB.instance Definition _ := OInv_Inv.Build _ _ f erefl.
HB.end.
HB.structure Definition Inversible aT rT := {f of Inv aT rT f}.
Notation "{ 'inv' aT >-> rT }" := (@Inversible.type aT rT) : type_scope.
Notation "[ 'inv' 'of' f ]" := [the {inv _ >-> _} of f : _ -> _] : form_scope.
Definition phant_inv aT rT (f : {inv aT >-> rT}) of phantom (_ -> _) f := @inv _ _ f.
Notation "f ^-1" := (@inv _ _ f%FUN) (only printing) : fun_scope.
Notation "f ^-1" := (@inv _ _ f%function) (only printing) : function_scope.
Notation "f ^-1" := (@phant_inv _ _ _ (Phantom (_ -> _) f%FUN)) : fun_scope.
Notation "f ^-1" := (@phant_inv _ _ _ (Phantom (_ -> _) f%function)) : function_scope.
HB.structure Definition InvFun aT rT A B := {f of Inv aT rT f & IsFun aT rT A B f}.
Notation "{ 'invfun' A >-> B }" := (@InvFun.type _ _ A B) : type_scope.
Notation "[ 'invfun' 'of' f ]" :=
[the {invfun _ >-> _} of f : _ -> _] : form_scope.
HB.mixin Record OInv_CanV {aT rT} {A : set aT} {B : set rT}
(f : aT -> rT) of OInv _ _ f := {
oinvS : {homo 'oinv_f : x / B x >-> (some @` A) x};
oinvK : {in B, ocancel 'oinv_f f};
}.
HB.factory Record OCanV {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) := {
oinv; oinvS : {homo oinv : x / B x >-> (some @` A) x};
oinvK : {in B, ocancel oinv f};
}.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT)
of OCanV _ _ A B f.
HB.instance Definition _ := OInv.Build _ _ f oinv.
HB.instance Definition _ := OInv_CanV.Build _ _ A B f oinvS oinvK.
HB.end.
HB.structure Definition Surject {aT rT A B} := {f of @OCanV aT rT A B f}.
Notation "{ 'surj' A >-> B }" := (@Surject.type _ _ A B) : type_scope.
Notation "[ 'surj' 'of' f ]" :=
[the {surj _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition SurjFun aT rT A B :=
{f of @Surject aT rT A B f & @Fun _ _ A B f}.
Notation "{ 'surjfun' A >-> B }" := (@SurjFun.type _ _ A B) : type_scope.
Notation "[ 'surjfun' 'of' f ]" :=
[the {surjfun _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition SplitSurj aT rT A B :=
{f of @Surject aT rT A B f & @Inv _ _ f}.
Notation "{ 'splitsurj' A >-> B }" := (@SplitSurj.type _ _ A B) : type_scope.
Notation "[ 'splitsurj' 'of' f ]" :=
[the {splitsurj _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition SplitSurjFun aT rT A B :=
{f of @SplitSurj aT rT A B f & @Fun _ _ A B f}.
Notation "{ 'splitsurjfun' A >-> B }" := (@SplitSurjFun.type _ _ A B) : type_scope.
Notation "[ 'splitsurjfun' 'of' f ]" :=
[the {splitsurjfun _ >-> _} of f : _ -> _] : form_scope.
HB.mixin Record OInv_Can aT rT (A : set aT) (f : aT -> rT) of OInv _ _ f :=
{ funoK : {in A, pcancel f 'oinv_f} }.
HB.structure Definition Inject aT rT A :=
{f of OInv aT rT f & OInv_Can aT rT A f}.
Notation "{ 'inj' A >-> rT }" := (@Inject.type _ rT A) : type_scope.
Notation "[ 'inj' 'of' f ]" := [the {inj _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition InjFun {aT rT} (A : set aT) (B : set rT) :=
{ f of @Fun _ _ A B f & @Inject _ _ A f }.
Notation "{ 'injfun' A >-> B }" := (@InjFun.type _ _ A B) : type_scope.
Notation "[ 'injfun' 'of' f ]" :=
[the {injfun _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition SplitInj aT rT (A : set aT) :=
{f of @Inv aT rT f & @Inject aT rT A f}.
Notation "{ 'splitinj' A >-> rT }" := (@SplitInj.type _ rT A) : type_scope.
Notation "[ 'splitinj' 'of' f ]" :=
[the {splitinj _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition SplitInjFun aT rT (A : set aT) (B : set rT) :=
{f of @SplitInj _ rT A f & @IsFun _ _ A B f}.
Notation "{ 'splitinjfun' A >-> B }" := (@SplitInjFun.type _ _ A B) : type_scope.
Notation "[ 'splitinjfun' 'of' f ]" :=
[the {splitinjfun _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition Bij {aT rT} {A : set aT} {B : set rT} :=
{f of @InjFun _ _ A B f & @SurjFun _ _ A B f}.
Notation "{ 'bij' A >-> B }" := (@Bij.type _ _ A B) : type_scope.
Notation "[ 'bij' 'of' f ]" := [the {bij _ >-> _} of f] : form_scope.
HB.structure Definition SplitBij {aT rT} {A : set aT} {B : set rT} :=
{f of @SplitInjFun _ _ A B f & @SplitSurjFun _ _ A B f}.
Notation "{ 'splitbij' A >-> B }" := (@SplitBij.type _ _ A B) : type_scope.
Notation "[ 'splitbij' 'of' f ]" := [the {splitbij _ >-> _} of f] : form_scope.
(** begin hide *)
(* Hint View for move / Inversible.sort inv | 2. *)
(* Hint View for apply / Inversible.sort inv | 2. *)
(** end hide *)
Module ShortFunSyntax.
Notation "A ~> B" := {fun A >-> B} (at level 70) : type_scope.
Notation "aT <=> rT" := {oinv aT >-> rT} (at level 70) : type_scope.
Notation "A <~ B" := {oinvfun A >-> B} (at level 70) : type_scope.
Notation "aT <<=> rT" := {inv aT >-> rT} (at level 70) : type_scope.
Notation "A <<~ B" := {invfun A >-> B} (at level 70) : type_scope.
Notation "A =>> B" := {surj A >-> B} (at level 70) : type_scope.
Notation "A ~>> B" := {surjfun A >-> B} (at level 70) : type_scope.
Notation "A ==>> B" := {splitsurj A >-> B} (at level 70) : type_scope.
Notation "A ~~>> B" := {splitsurjfun A >-> B} (at level 70) : type_scope.
Notation "A >=> rT" := {inj A >-> rT} (at level 70) : type_scope.
Notation "A >~> B" := {injfun A >-> B} (at level 70) : type_scope.
Notation "A >>=> rT" := {splitinj A >-> rT} (at level 70) : type_scope.
Notation "A >>~> B" := {splitinjfun A >-> B} (at level 70) : type_scope.
Notation "A <~> B" := {bij A >-> B} (at level 70) : type_scope.
Notation "A <<~> B" := {splitbij A >-> B} (at level 70) : type_scope.
End ShortFunSyntax.
(**********)
(* Theory *)
(**********)
Definition phant_funS aT rT (A : set aT) (B : set rT)
(f : {fun A >-> B}) of phantom (_ -> _) f := @funS _ _ _ _ f.
Notation "'funS_ f" := (phant_funS (Phantom (_ -> _) f))
(at level 8, f at level 2) : form_scope.
#[global] Hint Extern 0 (set_fun _ _ _) => solve [apply: funS] : core.
#[global] Hint Extern 0 (prop_in1 _ _) => solve [apply: funS] : core.
Definition fun_image_sub aT rT (A : set aT) (B : set rT) (f : {fun A >-> B}) :=
image_subP.2 (@funS _ _ _ _ f).
Arguments fun_image_sub {aT rT A B}.
#[global] Hint Extern 0 (_ @` _ `<=` _) => solve [apply: fun_image_sub] : core.
Definition mem_fun aT rT (A : set aT) (B : set rT) (f : {fun A >-> B}) :=
homo_setP.2 (@funS _ _ _ _ f).
#[global] Hint Extern 0 (prop_in1 _ _) => solve [apply: mem_fun] : core.
Definition phant_mem_fun aT rT (A : set aT) (B : set rT)
(f : {fun A >-> B}) of phantom (_ -> _) f := homo_setP.2 (@funS _ _ _ _ f).
Notation "'mem_fun_ f" := (phant_funS (Phantom (_ -> _) f))
(at level 8, f at level 2) : form_scope.
Lemma some_inv {aT rT} (f : {inv aT >-> rT}) x : Some (f^-1 x) = 'oinv_f x.
Proof. by rewrite -oliftV. Qed.
Definition phant_oinvK aT rT (A : set aT) (B : set rT)
(f : {surj A >-> B}) of phantom (_ -> _) f := @oinvK _ _ _ _ f.
Notation "'oinvK_ f" := (phant_oinvK (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve oinvK : core.
Definition phant_oinvS aT rT (A : set aT) (B : set rT)
(f : {surj A >-> B}) of phantom (_ -> _) f := @oinvS _ _ _ _ f.
Notation "'oinvS_ f" := (phant_oinvS (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve oinvS : core.
Variant oinv_spec {aT} {rT} {A : set aT} {B : set rT} (f : {surj A >-> B}) y :
rT -> option aT -> Type :=
OInvSpec (x : aT) of A x & f x = y : oinv_spec f y (f x) (Some x).
Lemma oinvP aT rT (A : set aT) (B : set rT) (f : {surj A >-> B}) y :
B y -> oinv_spec f y y ('oinv_f y).
Proof.
move=> By; have :='oinvK_f (mem_set By).
by have /cid2 [x Ax <-] := 'oinvS_f By => <-; constructor.
Qed.
Definition phant_oinvP aT rT (A : set aT) (B : set rT)
(f : {surj A >-> B}) of phantom (_ -> _) f := @oinvP _ _ _ _ f.
Notation "'oinvP_ f" := (phant_oinvP (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve oinvP : core.
Lemma oinvT {aT rT} {A : set aT} {B : set rT} {f : {surj A >-> B}} x :
B x -> 'oinv_f x.
Proof. by move=> /'oinvS_f [a Aa <-]. Qed.
Definition phant_oinvT aT rT (A : set aT) (B : set rT)
(f : {surj A >-> B}) of phantom (_ -> _) f := @oinvT _ _ _ _ f.
Notation "'oinvT_ f" := (phant_oinvT (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve oinvT : core.
Lemma invK {aT rT} {A : set aT} {B : set rT} {f : {splitsurj A >-> B}} :
{in B, cancel f^-1 f}.
Proof. by move=> x Bx; rewrite -[x in RHS]'oinvK_f// -some_inv/=. Qed.
Definition phant_invK aT rT (A : set aT) (B : set rT)
(f : {splitsurj A >-> B}) of phantom (_ -> _) f := @invK _ _ _ _ f.
Notation "'invK_ f" := (phant_invK (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve invK : core.
Lemma invS {aT rT} {A : set aT} {B : set rT} {f : {splitsurj A >-> B}} :
{homo f^-1 : x / B x >-> A x}.
Proof. by move=> x /'oinvS_f/= [a Aa]; rewrite -some_inv => -[<-]. Qed.
Definition phant_invS aT rT (A : set aT) (B : set rT)
{f : {splitsurjfun A >-> B}} of phantom (_ -> _) f := @invS _ _ _ _ f.
Notation "'invS_ f" := (phant_invS (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve invS : core.
Definition phant_funoK aT rT (A : set aT) (f : {inj A >-> rT})
of phantom (_ -> _) f := @funoK _ _ _ f.
Notation "'funoK_ f" := (phant_funoK (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve funoK : core.
Definition inj {aT rT : nonPropType} {A : set aT} {f : {inj A >-> rT}} :
{in A &, injective f} := pcan_in_inj funoK.
Definition phant_inj aT rT (A : set aT) (f : {inj A >-> rT}) of
phantom (_ -> _) f := @inj _ _ _ f.
Notation "'inj_ f" := (phant_inj (Phantom (_ -> _) f)) : form_scope.
Definition inj_hint {aT rT} {A : set aT} {f : {inj A >-> rT}} :
{in A &, injective f} := inj.
#[global] Hint Extern 0 {in _ &, injective _} => solve [apply: inj_hint] : core.
#[global] Hint Extern 0 (set_inj _ _) => solve [apply: inj_hint] : core.
Lemma injT {aT rT} {f : {inj [set: aT] >-> rT}} : injective f.
Proof. by apply: in2TT; apply: inj. Qed.
#[global] Hint Extern 0 (injective _) => solve [apply: injT] : core.
Lemma funK {aT rT : Type} {A : set aT} {s : {splitinj A >-> rT}} :
{in A, cancel s s^-1}.
Proof. by move=> x Ax; apply: Some_inj; rewrite some_inv funoK. Qed.
Definition phant_funK aT rT (A : set aT) (f : {splitinj A >-> rT})
of phantom (_ -> _) f := @funK _ _ _ f.
Notation "'funK_ f" := (phant_funK (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve funK : core.
(**********************)
(* Structure Equality *)
(**********************)
Lemma funP {aT rT} {A : set aT} {B : set rT} (f g : {fun A >-> B}) :
f = g <-> f =1 g.
Proof.
case: f g => [f [[ffun]]] [g [[gfun]]]/=; split=> [[->//]|/funext eqfg].
rewrite eqfg in ffun *; congr {| Fun.sort := _; Fun.class := {|
Fun.functions_IsFun_mixin := {|IsFun.funS := _|}|}|}.
exact: Prop_irrelevance.
Qed.
(************************)
(* Preliminary Builders *)
(************************)
HB.factory Record Inv_Can {aT rT} {A : set aT} (f : aT -> rT) of Inv _ _ f :=
{ funK : {in A, cancel f f^-1} }.
HB.builders Context {aT rT} A (f : aT -> rT) of @Inv_Can _ _ A f.
Local Lemma funoK: {in A, pcancel f 'oinv_f}.
Proof. by rewrite -oliftV/=; apply: can_in_pcan; apply: funK. Qed.
HB.instance Definition _ := OInv_Can.Build _ _ A f funoK.
HB.end.
HB.factory Record Inv_CanV {aT rT} {A : set aT} {B : set rT} (f : aT -> rT)
of Inv aT rT f := {
invS : {homo f^-1 : x / B x >-> A x};
invK : {in B, cancel f^-1 f};
}.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT)
of Inv_CanV _ _ A B f.
#[local] Lemma oinvK : {in B, ocancel 'oinv_f f}.
Proof. by move=> x Bx; rewrite -some_inv/= invK. Qed.
#[local] Lemma oinvS : {homo 'oinv_f : x / B x >-> (some @` A) x}.
Proof. by move=> x /invS Af'x; exists (f^-1 x); rewrite // -some_inv. Qed.
HB.instance Definition _ := OInv_CanV.Build _ _ _ _ f oinvS oinvK.
HB.end.
(*********************)
(* Trivial instances *)
(*********************)
Section OInverse.
Context {aT rT : Type} {A : set aT} {B : set rT}.
HB.instance Definition _ {f : {oinv aT >-> rT}} :=
OInv.Build _ _ 'oinv_f (omap f).
Lemma oinvV {f : {oinv aT >-> rT}} : 'oinv_('oinv_f) = omap f.
Proof. by []. Qed.
HB.instance Definition _ (f : {surj A >-> B}) :=
IsFun.Build rT (option aT) B (some @` A) 'oinv_f oinvS.
Lemma surjoinv_inj_subproof (f : {surj A >-> B}) : OInv_Can _ _ B 'oinv_f.
Proof.
split=> x Bx/=; rewrite -[x in RHS]('oinvK_f Bx).
by have := 'oinvT_f (set_mem Bx); case: 'oinv_f.
Qed.
HB.instance Definition _ f := surjoinv_inj_subproof f.
Lemma injoinv_surj_subproof (f : {injfun A >-> B}) :
OInv_CanV _ _ B (some @` A) 'oinv_f.
Proof.
split=> [_|_ /set_mem] [a Aa <-]/=; last by rewrite funoK ?inE.
by exists (f a) => //; apply: funS.
Qed.
HB.instance Definition _ (f : {injfun A >-> B}) := injoinv_surj_subproof f.
HB.instance Definition _ {f : {bij A >-> B}} := InjFun.on 'oinv_f.
End OInverse.
Section Inverse.
Context {aT rT : Type} {A : set aT} {B : set rT}.
HB.instance Definition _ (f : {inv aT >-> rT}) := Inv.Build rT aT f^-1 f.
HB.instance Definition _ (f : {inv aT >-> rT}) := Inversible.copy inv f^-1.
Lemma invV (f : {inv aT >-> rT}) : f^-1^-1 = f. Proof. by []. Qed.
HB.instance Definition _ (f : {splitsurj A >-> B}) :=
IsFun.Build rT aT B A f^-1 invS.
HB.instance Definition _ (f : {splitsurj A >-> B}) := Fun.copy inv f^-1.
HB.instance Definition _ {f : {splitsurj A >-> B}} :=
Inv_Can.Build _ _ _ f^-1 'invK_f.
HB.instance Definition _ (f : {splitinjfun A >-> B}) :=
Inv_CanV.Build _ _ _ _ f^-1 funS funK.
HB.instance Definition _ {f : {splitbij A >-> B}} := InjFun.on f^-1.
End Inverse.
Section Some.
Context {T} {A : set T}.
HB.instance Definition _ := OInv.Build _ _ (@Some T) id.
Lemma oinv_some : 'oinv_(@Some T) = id. Proof. by []. Qed.
Lemma some_can_subproof : @OInv_Can _ _ A (@Some T). Proof. by split. Qed.
HB.instance Definition _ := some_can_subproof.
Lemma some_canV_subproof : OInv_CanV _ _ A (some @` A) (@Some T).
Proof. by split=> [x|x /set_mem] [a Aa <-]//=; exists a. Qed.
HB.instance Definition _ := some_canV_subproof.
Lemma some_fun_subproof : IsFun _ _ A (some @` A) (@Some T).
Proof. by split=> x; exists x. Qed.
HB.instance Definition _ := some_fun_subproof.
End Some.
Section OApply.
Context {aT rT} {A : set aT} {B : set rT} {b0 : rT}.
Local Notation oapp f := (oapp f b0).
HB.instance Definition _ {f : {oinv aT >-> rT}} :=
Inv.Build _ _ (oapp f) 'oinv_f.
Lemma inv_oapp {f : {oinv aT >-> rT}} : (oapp f)^-1 = 'oinv_f.
Proof. by []. Qed.
Lemma oinv_oapp {f : {oinv aT >-> rT}} : 'oinv_(oapp f) = olift 'oinv_f.
Proof. by rewrite -inv_oapp. Qed.
Lemma inv_oappV {f : {inv aT >-> rT}} : olift f^-1 = (oapp f)^-1.
Proof. by rewrite inv_oapp -oliftV. Qed.
Lemma oapp_can_subproof (f : {inj A >-> rT}) : Inv_Can _ _ (some @` A) (oapp f).
Proof. by split=> x /set_mem[a Aa <-]/=; rewrite inv_oapp funoK ?inE. Qed.
HB.instance Definition _ f := oapp_can_subproof f.
Lemma oapp_surj_subproof (f : {surj A >-> B}) : Inv_CanV _ _ (some @` A) B (oapp f).
Proof.
by split=> [b|b /set_mem] Bb/=; rewrite inv_oapp; case: oinvP => // x; exists x.
Qed.
HB.instance Definition _ f := oapp_surj_subproof f.
Lemma oapp_fun_subproof (f : {fun A >-> B}) : IsFun _ _ (some @` A) B (oapp f).
Proof. by split=> x [a Aa <-] /=; apply: funS. Qed.
HB.instance Definition _ f := oapp_fun_subproof f.
HB.instance Definition _ (f : {oinvfun A >-> B}) := Fun.on (oapp f).
HB.instance Definition _ (f : {injfun A >-> B}) := Fun.on (oapp f).
HB.instance Definition _ (f : {surjfun A >-> B}) := Fun.on (oapp f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (oapp f).
HB.instance Definition _ (f : {splitbij A >-> B}) := Fun.on (oapp f).
End OApply.
Section OBind.
Context {aT rT} {A : set aT} {B : set (option rT)}.
Local Notation b f := (oapp f None).
Local Notation orT := (option rT).
HB.instance Definition _ {f : {oinv aT >-> orT}} :=
Inv.Build _ _ (obind f) 'oinv_f.
Lemma inv_obind {f : {oinv aT >-> orT}} : (obind f)^-1 = 'oinv_f.
Proof. by []. Qed.
Lemma oinv_obind {f : {oinv aT >-> orT}} : 'oinv_(obind f) = olift 'oinv_f.
Proof. by []. Qed.
Lemma inv_obindV {f : {inv aT >-> orT}} : (obind f)^-1 = olift f^-1.
Proof. by rewrite inv_obind -oliftV. Qed.
HB.instance Definition _ (f : {fun A >-> B}) := Fun.copy (obind f) (b f).
HB.instance Definition _ (f : {inj A >-> orT}) := Inject.copy (obind f) (b f).
HB.instance Definition _ (f : {injfun A >-> B}) := Fun.on (obind f).
HB.instance Definition _ (f : {surj A >-> B}) := Surject.copy (obind f) (b f).
HB.instance Definition _ (f : {surjfun A >-> B}) := Fun.on (obind f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (obind f).
End OBind.
Section Composition.
Context {aT rT sT} {A : set aT} {B : set rT} {C : set sT}.
Local Lemma comp_fun_subproof (f : {fun A >-> B}) (g : {fun B >-> C}) :
IsFun _ _ A C (g \o f).
Proof. by split => x /'funS_f; apply: funS. Qed.
HB.instance Definition _ f g := comp_fun_subproof f g.
Section OInv.
Context {f : {oinv aT >-> rT}} {g : {oinv rT >-> sT}}.
HB.instance Definition _ := OInv.Build _ _ (g \o f) (obind 'oinv_f \o 'oinv_g).
Lemma oinv_comp : 'oinv_(g \o f) = (obind 'oinv_f) \o 'oinv_g.
Proof. by []. Qed.
End OInv.
Section OInv.
Context {f : {inv aT >-> rT}} {g : {inv rT >-> sT}}.
Lemma some_comp_inv : olift (f^-1 \o g^-1) = 'oinv_(g \o f).
Proof. by rewrite funeqE => x; rewrite oinv_comp -!oliftV. Qed.
HB.instance Definition _ := OInv_Inv.Build aT sT (g \o f) some_comp_inv.
Lemma inv_comp : (g \o f)^-1 = f^-1 \o g^-1. Proof. by []. Qed.
End OInv.
Lemma comp_can_subproof (f : {injfun A >-> B}) (g : {inj B >-> sT}) :
OInv_Can aT sT A (g \o f).
Proof. by split=> x Ax; rewrite oinv_comp/= funoK ?mem_fun//= funoK. Qed.
HB.instance Definition _ f g := comp_can_subproof f g.
HB.instance Definition _ (f : {injfun A >-> B}) (g : {injfun B >-> C}) :=
Inject.on (g \o f).
HB.instance Definition _ (f : {splitinjfun A >-> B})
(g : {splitinj B >-> sT}) := Inject.on (g \o f).
HB.instance Definition _ (f : {splitinjfun A >-> B})
(g : {splitinjfun B >-> C}) := Inject.on (g \o f).
End Composition.
Section Composition.
Context {aT rT sT} {A : set aT} {B : set rT} {C : set sT}.
Lemma comp_surj_subproof (f : {surj A >-> B}) (g : {surj B >-> C}) :
OInv_CanV _ _ A C (g \o f).
Proof.
split; first exact: funS.
apply: (@ocan_in_comp _ _ _ (mem B)) oinvK oinvK.
by move=> ? /set_mem; rewrite pred_oapp_set inE; apply: funS.
Qed.
HB.instance Definition _ f g := comp_surj_subproof f g.
HB.instance Definition _ (f : {splitsurj A >-> B}) (g : {splitsurj B >-> C}) :=
Surject.on (g \o f).
HB.instance Definition _ (f : {surjfun A >-> B}) (g : {surjfun B >-> C}) :=
Surject.on (g \o f).
HB.instance Definition _ (f : {splitsurjfun A >-> B})
(g : {splitsurjfun B >-> C}) := Surject.on (g \o f).
HB.instance Definition _ (f : {bij A >-> B}) (g : {bij B >-> C}) :=
Surject.on (g \o f).
HB.instance Definition _ (f : {splitbij A >-> B}) (g : {splitbij B >-> C}) :=
Surject.on (g \o f).
End Composition.
Section totalfun.
Context {aT rT : Type}.
Definition totalfun_ (A : set aT) (f : aT -> rT) := f.
Context {A : set aT}.
Local Notation totalfun := (totalfun_ A).
HB.instance Definition _ (f : aT -> rT) :=
IsFun.Build _ _ A setT (totalfun f) (fun _ _ => I).
HB.instance Definition _ (f : {inj A >-> rT}) := Inject.on (totalfun f).
HB.instance Definition _ (f : {splitinj A >-> rT}) := SplitInj.on (totalfun f).
HB.instance Definition _ (f : {surj A >-> [set: rT]}) :=
Surject.on (totalfun f).
HB.instance Definition _ (f : {splitsurj A >-> [set: rT]}) :=
SplitSurj.on (totalfun f).
End totalfun.
Notation "''totalfun_' A" := (totalfun_ A) : form_scope.
Notation totalfun := (totalfun_ setT).
Section Olift.
Context {aT rT} {A : set aT} {B : set rT}.
HB.instance Definition _ {f : {oinv aT >-> rT}} := OInversible.on (olift f).
Lemma oinv_olift {f : {oinv aT >-> rT}} : 'oinv_(olift f) = obind 'oinv_f.
Proof. by []. Qed.
HB.instance Definition _ (f : {inj A >-> rT}) :=
Inject.copy (olift f) (olift ('totalfun_A f)).
HB.instance Definition _ (f : {surj A >-> B}) := Surject.on (olift f).
HB.instance Definition _ (f : {fun A >-> B}) := Fun.on (olift f).
HB.instance Definition _ (f : {oinvfun A >-> B}) := Fun.on (olift f).
HB.instance Definition _ (f : {injfun A >-> B}) := Fun.on (olift f).
HB.instance Definition _ (f : {surjfun A >-> B}) := Fun.on (olift f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (olift f).
End Olift.
Section Map.
Context {aT rT} {A : set aT} {B : set rT}.
Local Notation m f := (obind (olift f)).
HB.instance Definition _ (f : {fun A >-> B}) := Fun.copy (omap f) (m f).
HB.instance Definition _ {f : {oinv aT >-> rT}} :=
Inv.Build _ _ (omap f) (obind 'oinv_f).
Lemma inv_omap {f : {oinv aT >-> rT}} : (omap f)^-1 = obind 'oinv_f.
Proof. by []. Qed.
Lemma oinv_omap {f : {oinv aT >-> rT}} : 'oinv_(omap f) = olift (obind 'oinv_f).
Proof. by []. Qed.
Lemma omapV {f : {inv aT >-> rT}} : omap f^-1 = (omap f)^-1.
Proof. by rewrite inv_omap -oliftV. Qed.
HB.instance Definition _ (f : {oinvfun A >-> B}) := Fun.on (omap f).
HB.instance Definition _ (f : {inj A >-> rT}) := Inject.copy (omap f) (m f).
HB.instance Definition _ (f : {injfun A >-> B}) := Fun.on (omap f).
HB.instance Definition _ (f : {surj A >-> B}) := Surject.copy (omap f) (m f).
HB.instance Definition _ (f : {surjfun A >-> B}) := Fun.on (omap f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (omap f).
End Map.
(************)
(* Builders *)
(************)
HB.factory Record CanV {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) :=
{ inv; invS : {homo inv : x / B x >-> A x}; invK : {in B, cancel inv f}; }.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of CanV _ _ A B f.
HB.instance Definition _ := Inv.Build _ _ f inv.
HB.instance Definition _ := Inv_CanV.Build _ _ _ _ f invS invK.
HB.end.
HB.factory Record OInv_Can2 {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@OInv _ _ f :=
{
funS : {homo f : x / A x >-> B x};
oinvS : {homo 'oinv_f : x / B x >-> (some @` A) x};
funoK : {in A, pcancel f 'oinv_f};
oinvK : {in B, ocancel 'oinv_f f};
}.
HB.builders Context {aT rT} A B (f : aT -> rT) of OInv_Can2 _ _ A B f.
HB.instance Definition _ := IsFun.Build aT rT _ _ f funS.
HB.instance Definition _ := OInv_Can.Build aT rT _ f funoK.
HB.instance Definition _ := OInv_CanV.Build aT rT _ _ f oinvS oinvK.
HB.end.
HB.factory Record OCan2 {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) :=
{ oinv; funS : {homo f : x / A x >-> B x};
oinvS : {homo oinv : x / B x >-> (some @` A) x};
funoK : {in A, pcancel f oinv};
oinvK : {in B, ocancel oinv f};
}.
HB.builders Context {aT rT} A B (f : aT -> rT) of OCan2 _ _ A B f.
HB.instance Definition _ := OInv.Build aT rT f oinv.
HB.instance Definition _ := OInv_Can2.Build aT rT _ _ f funS oinvS funoK oinvK.
HB.end.
HB.factory Record Can {aT rT} {A : set aT} (f : aT -> rT) :=
{ inv; funK : {in A, cancel f inv} }.
HB.builders Context {aT rT} A (f : aT -> rT) of @Can _ _ A f. (* bug if swap f and A *)
HB.instance Definition _ := Inv.Build _ _ f inv.
HB.instance Definition _ := Inv_Can.Build _ _ _ f funK.
HB.end.
HB.factory Record Inv_Can2 {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
Inv _ _ f :=
{ funS : {homo f : x / A x >-> B x};
invS : {homo f^-1 : x / B x >-> A x};
funK : {in A, cancel f f^-1};
invK : {in B, cancel f^-1 f};
}.
HB.builders Context {aT rT} A B (f : aT -> rT) of Inv_Can2 _ _ A B f.
HB.instance Definition _ := IsFun.Build aT rT A B f funS.
HB.instance Definition _ := Inv_Can.Build aT rT A f funK.
HB.instance Definition _ := @Inv_CanV.Build aT rT A B f invS invK.
HB.end.
HB.factory Record Can2 {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) :=
{ inv; funS : {homo f : x / A x >-> B x};
invS : {homo inv : x / B x >-> A x};
funK : {in A, cancel f inv};
invK : {in B, cancel inv f};
}.
HB.builders Context {aT rT} A B (f : aT -> rT) of Can2 _ _ A B f.
HB.instance Definition _ := Inv.Build aT rT f inv.
HB.instance Definition _ := Inv_Can2.Build aT rT A B f funS invS funK invK.
HB.end.
HB.factory Record SplitInjFun_CanV {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@SplitInjFun _ _ A B f :=
{ invS : {homo f^-1 : x / B x >-> A x}; injV : {in B &, injective f^-1} }.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of SplitInjFun_CanV _ _ A B f.
Let mem_inv := homo_setP.2 invS.
Local Lemma invK : {in B, cancel f^-1 f}.
Proof. by move=> x Bx; apply: injV; rewrite ?funK ?(mem_fun, mem_inv). Qed.
HB.instance Definition _ := Inv_CanV.Build aT rT A B f invS invK.
HB.end.
HB.factory Record BijTT {aT rT} (f : aT -> rT) := { bij : bijective f }.
HB.builders Context {aT rT} f of BijTT aT rT f.
Local Lemma exg : {g | cancel f g /\ cancel g f}.
Proof. by apply: cid; case: bij => g; exists g. Qed.
HB.instance Definition _ := Can2.Build aT rT setT setT f
(fun x y => y) (fun x y => y)
(in1W (projT2 exg).1) (in1W (projT2 exg).2).
HB.end.
(**********)
(* Fun in *)
(**********)
Section surj_oinv.
Context {aT rT} {A : set aT} {B : set rT} {f : aT -> rT} (fsurj : set_surj A B f).
Let surjective_oinv (y : rT) :=
if pselect (B y) is left By then some (projT1 (cid2 (fsurj By))) else None.
Lemma surjective_oinvK : {in B, ocancel surjective_oinv f}.
Proof.
by rewrite /surjective_oinv => x /set_mem ?; case: pselect => // ?; case: cid2.
Qed.
Lemma surjective_oinvS : set_fun B (some @` A) surjective_oinv.
Proof.
move=> y By /=; rewrite /surjective_oinv; case: pselect => // By'.
by case: cid2 => //= x Ax fxy; exists x.
Qed.
End surj_oinv.
Coercion surjective_ocanV {aT rT} {A : set aT} {B : set rT} {f : aT -> rT}
(fS : set_surj A B f) :=
OCanV.Build aT rT A B f (surjective_oinvS fS) (surjective_oinvK fS).
Section Psurj.
Context {aT rT} {A : set aT} {B : set rT} {f : aT -> rT} (fsurj : set_surj A B f).
#[local] HB.instance Definition _ : OCanV _ _ A B f := fsurj.
Definition surjection_of_surj := [surj of f].
Lemma Psurj : {s : {surj A >-> B} | f = s}. Proof. by exists [surj of f]. Qed.
End Psurj.
Coercion surjection_of_surj : set_surj >-> Surject.type.
Lemma oinv_surj {aT rT} {A : set aT} {B : set rT} {f : aT -> rT}
(fS : set_surj A B f) y :
'oinv_fS y = if pselect (B y) is left By then some (projT1 (cid2 (fS y By))) else None.
Proof. by []. Qed.
Lemma surj {aT rT} {A : set aT} {B : set rT} {f : {surj A >-> B}} : set_surj A B f.
Proof. by move=> b /'oinvP_f[x Ax _]; exists x. Qed.
Definition phant_surj aT rT (A : set aT) (B : set rT) (f : {surj A >-> B})
of phantom (_ -> _) f := @surj _ _ _ _ f.
Notation "'surj_ f" := (phant_surj (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Extern 0 (set_surj _ _ _) => solve [apply: surj] : core.
Section funin_surj.
Context {aT rT : Type}.
Definition funin (A : set aT) (f : aT -> rT) := f.
Context {A : set aT} {B : set rT} (f : aT -> rT).
Lemma set_fun_image : set_fun A (f @` A) f.
Proof. exact/image_subP. Qed.
HB.instance Definition _ :=
@IsFun.Build _ _ _ _ (funin A f) set_fun_image.
HB.instance Definition _ : OCanV _ _ A (f @` A) (funin A f) :=
((fun _ => id) : set_surj A (f @` A) f).
End funin_surj.
Notation "[ 'fun' f 'in' A ]" := (funin A f)
(at level 0, f at next level,
format "[ 'fun' f 'in' A ]") : function_scope.
#[global] Hint Resolve set_fun_image : core.
(*********************)
(* Partial injection *)
(*********************)
Section split.
Context {aT rT} (A : set aT) (B : set rT).
Definition split_ (dflt : rT -> aT) (f : aT -> rT) := f.
Context (dflt : rT -> aT).
Local Notation split := (split_ dflt).
HB.instance Definition _ (f : {fun A >-> B}) := Fun.on (split f).
Section oinv.
Context (f : {oinv aT >-> rT}).
Let g y := odflt (dflt y) ('oinv_f y).
HB.instance Definition _ := Inv.Build _ _ (split f) g.
Lemma splitV : (split f)^-1 = g. Proof. by []. Qed.
End oinv.
HB.instance Definition _ (f : {oinvfun A >-> B}) := Fun.on (split f).
Lemma splitis_inj_subproof (f : {inj A >-> rT}) : Inv_Can _ _ A (split f).
Proof. by split=> x Ax; rewrite splitV funoK. Qed.
HB.instance Definition _ f := splitis_inj_subproof f.
HB.instance Definition _ (f : {injfun A >-> B}) := Inject.on (split f).
Lemma splitid (f : {splitinjfun A >-> B}) : (split f)^-1 = f^-1.
Proof. by apply/funext => x; apply: Some_inj; rewrite splitV -oliftV. Qed.
Lemma splitsurj_subproof (f : {surj A >-> B}) : Inv_CanV _ _ A B (split f).
Proof. by split=> [+|+ /set_mem] => b Bb; rewrite splitV; case: oinvP. Qed.
HB.instance Definition _ f := splitsurj_subproof f.
HB.instance Definition _ (f : {surjfun A >-> B}) := Surject.on (split f).
HB.instance Definition _ (f : {bij A >-> B}) := Surject.on (split f).
End split.
Notation "''split_' a" := (split_ a) : form_scope.
Notation split := 'split_point.
(*****************)
(* More Builders *)
(*****************)
HB.factory Record Inj {aT rT} (A : set aT) (f : aT -> rT) :=
{ inj : {in A &, injective f} }.
HB.builders Context {aT rT} A (f : aT -> rT) of Inj _ _ A f.
HB.instance Definition _ := OInversible.copy f [fun f in A].
Lemma funoK : {in A, pcancel f 'oinv_f}.
Proof.
move=> x /set_mem Ax; rewrite oinv_surj.
case: pselect => //=; last by case; exists x.
by move=> ?; case: cid2 => //= y Ay /inj; rewrite !inE => ->.
Qed.
HB.instance Definition _ := OInv_Can.Build _ _ _ f funoK.
HB.end.
HB.factory Record SurjFun_Inj {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@SurjFun _ _ A B f := { inj : {in A &, injective f} }.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@SurjFun_Inj _ _ A B f.
Let g := f.
HB.instance Definition _ := Inj.Build _ _ A g inj.
Let fcan : OInv_Can aT rT A f.
Proof.
split=> x /set_mem Ax; apply: 'inj_(omap g); rewrite ?mem_fun ?inE//=.
by rewrite /g -oinvV/= funoK// ?mem_fun ?inE.
Qed.
HB.instance Definition _ := fcan.
HB.end.
HB.factory Record SplitSurjFun_Inj {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@SplitSurjFun _ _ A B f :=
{ inj : {in A &, injective f} }.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@SplitSurjFun_Inj _ _ A B f.
Local Lemma funK : {in A, cancel f f^-1%FUN}.
Proof. by move=> x Ax; apply: inj; rewrite ?invK ?mem_fun. Qed.
HB.instance Definition _ := Inv_Can.Build aT rT _ f funK.
HB.end.
Section Inverses.
Context aT rT {A : set aT} {B : set rT}.
HB.instance Definition _ (f : {inj A >-> rT}) :=
SurjFun_Inj.Build _ _ _ _ [fun f in A] 'inj_f.
End Inverses.
(********************)
(* Simple Factories *)
(********************)
Section Pinj.
Context {aT rT} {A : set aT} {f : aT -> rT} (finj : {in A &, injective f}).
#[local] HB.instance Definition _ := Inj.Build _ _ _ f finj.
Lemma Pinj : {i : {inj A >-> rT} | f = i}. Proof. by exists [inj of f]. Qed.
End Pinj.
Section Pfun.
Context {aT rT} {A : set aT} {B : set rT} {f : aT -> rT}
(ffun : {homo f : x / A x >-> B x}).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := IsFun.Build _ _ _ _ g ffun.
Lemma Pfun : {i : {fun A >-> B} | f = i}. Proof. by exists [fun of g]. Qed.
End Pfun.
Section injPfun.
Context {aT rT} {A : set aT} {B : set rT} {f : {inj A >-> rT}}
(ffun : {homo f : x / A x >-> B x}).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := Inject.on g.
#[local] HB.instance Definition _ := IsFun.Build _ _ A B g ffun.
Lemma injPfun : {i : {injfun A >-> B} | f = i :> (_ -> _)}.
Proof. by exists [injfun of g]. Qed.
End injPfun.
Section funPinj.
Context {aT rT} {A : set aT} {B : set rT} {f : {fun A >-> B}}
(finj : {in A &, injective f}).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := Fun.on g.
#[local] HB.instance Definition _ := Inj.Build _ _ _ g finj.
Lemma funPinj : {i : {injfun A >-> B} | f = i}.
Proof. by exists [injfun of g]; apply/funP. Qed.
End funPinj.
Section funPsurj.
Context {aT rT} {A : set aT} {B : set rT} {f : {fun A >-> B}}
(fsurj : set_surj A B f).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := Fun.on g.
#[local] HB.instance Definition _ : OCanV _ _ A B g := fsurj.
Lemma funPsurj : {s : {surjfun A >-> B} | f = s}.
Proof. by exists [surjfun of g]; apply/funP. Qed.
End funPsurj.
Section surjPfun.
Context {aT rT} {A : set aT} {B : set rT} {f : {surj A >-> B}}
(ffun : {homo f : x / A x >-> B x}).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := Surject.on g.
#[local] HB.instance Definition _ := IsFun.Build _ _ A B g ffun.
Lemma surjPfun : {s : {surjfun A >-> B} | f = s :> (_ -> _)}.
Proof. by exists [surjfun of g]. Qed.
End surjPfun.
Section Psplitinj.
Context {aT rT} {A : set aT} {f : aT -> rT} {g} (funK : {in A, cancel f g}).
#[local] HB.instance Definition _ := Can.Build _ _ A f funK.
Lemma Psplitinj : {i : {splitinj A >-> rT} | f = i}.
Proof. by exists [splitinj of f]. Qed.
End Psplitinj.
Section funPsplitinj.
Context {aT rT} {A : set aT} {B : set rT} {f : {fun A >-> B}}.
Context {g} (funK : {in A, cancel f g}).
Let f' : _ -> _ := f.
#[local] HB.instance Definition _ := Fun.on f'.
#[local] HB.instance Definition _ := Can.Build _ _ A f' funK.
Lemma funPsplitinj : {i : {splitinjfun A >-> B} | f = i}.
Proof. by exists [splitinjfun of f']; apply/funP. Qed.
End funPsplitinj.
Lemma PsplitinjT {aT rT} {f : aT -> rT} {g} : cancel f g ->
{i : {splitinj [set: aT] >-> rT} | f = i}.
Proof. by move/in1W/Psplitinj. Qed.
Section funPsplitsurj.
Context {aT rT} {A : set aT} {B : set rT} {f : {fun A >-> B}}.
Context {g : {fun B >-> A}} (funK : {in B, cancel g f}).
Let f' : _ -> _ := f.
#[local] HB.instance Definition _ := Fun.on f'.
#[local] HB.instance Definition _ := CanV.Build _ _ A B f' funS funK.
Lemma funPsplitsurj : {s : {splitsurjfun A >-> B} | f = s :> (_ -> _)}.
Proof. by exists [splitsurjfun of f']. Qed.
End funPsplitsurj.
Lemma PsplitsurjT {aT rT} {f : aT -> rT} {g} : cancel g f ->
{s : {splitsurjfun [set: aT] >-> [set: rT]} | f = s}.
Proof.
by move/in1W/(@funPsplitsurj _ _ _ _ [fun of totalfun f] [fun of totalfun g]).
Qed.
(*************)
(* Instances *)
(*************)
(*************************************)
(* The identity is a split bijection *)
(*************************************)
HB.instance Definition _ T A := @Can2.Build T T A A idfun idfun
(fun x y => y) (fun x y => y) (fun _ _ => erefl) (fun _ _ => erefl).
(**********************************************************)
(* Iteration preserves Fun, Injectivity, and Surjectivity *)
(**********************************************************)
Section iter_inv.
Context {aT} {A : set aT}.
Local Lemma iter_fun_subproof n (f : {fun A >-> A}) : IsFun _ _ A A (iter n f).
Proof.
split => x; elim: n => // n /[apply] ?; apply/(fun_image_sub f).
by exists (iter n f x).
Qed.
HB.instance Definition _ n f := iter_fun_subproof n f.
Section OInv.
Context {f : {oinv aT >-> aT}}.
HB.instance Definition _ n := OInv.Build _ _ (iter n f)
(iter n (obind 'oinv_f) \o some).
Lemma oinv_iter n : 'oinv_(iter n f) = iter n (obind 'oinv_f) \o some.
Proof. by []. Qed.
End OInv.
Section OInv.
Context {f : {inv aT >-> aT}}.
Lemma some_iter_inv n : olift (iter n f^-1) = 'oinv_(iter n f).
Proof.
elim: n => // n IH; rewrite iterfSr olift_comp IH ?oinv_iter -compA.
rewrite (_ : Some \o f^-1 = 'oinv_f); first by rewrite iterfSr; congr (_ \o _).
by apply/funeqP => ? /=; rewrite some_inv.
Qed.
HB.instance Definition _ n := OInv_Inv.Build _ _ (iter n f) (some_iter_inv n).
Lemma inv_iter n : (iter n f)^-1 = iter n f^-1. Proof. by []. Qed.
End OInv.
Lemma iter_can_subproof n (f : {injfun A >-> A}) : OInv_Can aT aT A (iter n f).
Proof.
split=> x Ax; rewrite oinv_iter /=; elim: n=> // n IH.
rewrite iterfSr /= funoK //; exact: mem_fun.
Qed.
HB.instance Definition _ f g := iter_can_subproof f g.
HB.instance Definition _ n (f : {injfun A >-> A}) := Inject.on (iter n f).
HB.instance Definition _ n (f : {splitinjfun A >-> A}) := Inject.on (iter n f).
End iter_inv.
Section iter_surj.
Context {aT} {A : set aT}.
Lemma iter_surj_subproof n (f : {surj A >-> A}) : OInv_CanV _ _ A A (iter n f).
Proof.
split; first exact: funS.
elim: n=> // n IH; rewrite oinv_iter iterfSr iterfS.
apply: (@ocan_in_comp _ _ _ (mem A)) => //; last exact: oinvK.
elim: n {IH} => // n IH x Ax; move: (IH _ Ax); rewrite pred_oapp_set ?inE.
case=> y Ay /= ynf; case: (@oinvS _ _ _ _ f _ Ay) => z ? zfinv; exists z => //.
by rewrite zfinv /= -ynf.
Qed.
HB.instance Definition _ n f := iter_surj_subproof n f.
HB.instance Definition _ n (f : {splitsurj A >-> A}) := Surject.on (iter n f).
HB.instance Definition _ n (f : {surjfun A >-> A}) := Surject.on (iter n f).
HB.instance Definition _ n (f : {splitsurjfun A >-> A}) :=
Surject.on (iter n f).
HB.instance Definition _ n (f : {bij A >-> A}) := Surject.on (iter n f).
HB.instance Definition _ n (f : {splitbij A >-> A}) := Surject.on (iter n f).
End iter_surj.
(**********)
(* Unbind *)
(**********)
Section Unbind.
Context {aT rT} {A : set aT} {B : set rT} (dflt : aT -> rT).
Definition unbind (f : aT -> option rT) x := odflt (dflt x) (f x).
Lemma unbind_fun_subproof (f : {fun A >-> some @` B}) : IsFun _ _ A B (unbind f).
Proof. by rewrite /unbind; split=> x /'funS_f [y Bu <-]. Qed.
HB.instance Definition _ f := unbind_fun_subproof f.
Section Oinv.
Context (f : {oinv aT >-> option rT}).
HB.instance Definition _ := OInv.Build _ _ (unbind f) ('oinv_f \o some).
Lemma oinv_unbind : 'oinv_(unbind f) = 'oinv_f \o some. Proof. by []. Qed.
End Oinv.
HB.instance Definition _ (f : {oinvfun A >-> some @` B}) := Fun.on (unbind f).
Section Inv.
Context (f : {inv aT >-> option rT}).
Lemma inv_unbind_subproof : olift (f^-1 \o some) = 'oinv_(unbind f).
Proof. by rewrite olift_comp oliftV. Qed.
HB.instance Definition _ := OInv_Inv.Build _ _ (unbind f) inv_unbind_subproof.
Lemma inv_unbind : (unbind f)^-1 = f^-1 \o some. Proof. by []. Qed.
End Inv.
HB.instance Definition _ (f : {invfun A >-> some @` B}) := Fun.on (unbind f).
Lemma unbind_inj_subproof (f : {injfun A >-> some @` B}) :
@OInv_Can _ _ A (unbind f).
Proof.
split=> x Ax; rewrite oinv_unbind /unbind/=; have <- := 'funoK_f Ax.
by have [y By /= <-] := 'funS_f (set_mem Ax).
Qed.
HB.instance Definition _ f := unbind_inj_subproof f.
HB.instance Definition _ (f : {splitinjfun A >-> some @` B}) :=
Inject.on (unbind f).
Lemma unbind_surj_subproof (f : {surj A >-> some @` B}) :
@OInv_CanV _ _ A B (unbind f).
Proof.
split=> [b|b /set_mem] Bb; rewrite oinv_unbind /unbind/=.
by case: oinvP => [|a]; [exists b | exists a].
by case: oinvP => [|a Aa /= ->]; first by exists b.
Qed.
HB.instance Definition _ f := unbind_surj_subproof f.
HB.instance Definition _ (f : {surjfun A >-> some @` B}) :=
Surject.on (unbind f).
HB.instance Definition _ (f : {splitsurj A >-> some @` B}) :=
Surject.on (unbind f).
HB.instance Definition _ (f : {splitsurjfun A >-> some @` B}) :=
Surject.on (unbind f).
HB.instance Definition _ (f : {bij A >-> some @` B}) := Surject.on (unbind f).
HB.instance Definition _ (f : {splitbij A >-> some @` B}) := Bij.on (unbind f).
End Unbind.
(*********)
(* Odflt *)
(*********)
Section Odflt.
Context {T} {A : set T} (x : T).
Lemma odflt_unbind : odflt x = unbind (fun=> x) idfun. Proof. by []. Qed.
HB.instance Definition _ := Inv.Build _ _ (odflt x) some.
HB.instance Definition _ := SplitBij.copy (odflt x)
[the {bij some @` A >-> A} of unbind (fun=> x) idfun].
End Odflt.
(************)
(* Subtypes *)
(************)
Section SubType.
Context {T : Type} {P : pred T} (sT : subType P) (x0 : sT).
HB.instance Definition _ := OInv.Build sT T val insub.
Lemma oinv_val : 'oinv_val = insub. Proof. by []. Qed.
Lemma val_bij_subproof : OInv_Can2 sT T setT [set` P] val.
Proof.
apply: (OInv_Can2.Build _ _ _ _ val (fun x _ => valP x)
_ (in1W valK) (in1W (insubK _))).
by move=> x Px /=; exists (Sub x Px) => //; rewrite oinv_val insubT.
Qed.
HB.instance Definition _ := val_bij_subproof.
HB.instance Definition _ := Bij.copy insub 'oinv_val.
HB.instance Definition _ := SplitBij.copy (insubd x0)
(odflt x0 \o 'split_(fun=> val x0) insub).
Lemma inv_insubd : (insubd x0)^-1 = val. Proof. by []. Qed.
End SubType.
(***********)
(* To setT *)
(***********)
Definition to_setT {T} (x : T) : [set: T] :=
@SigSub _ _ _ x (mem_set I : x \in setT).
HB.instance Definition _ T := Can.Build T [set: T] setT to_setT
((fun _ _ => erefl) : {in setT, cancel to_setT val}).
HB.instance Definition _ T := IsFun.Build T _ setT setT to_setT (fun _ _ => I).
HB.instance Definition _ T :=
SplitInjFun_CanV.Build T _ _ _ to_setT (fun x y => I) inj.
Definition setTbij {T} := [splitbij of @to_setT T].
Lemma inv_to_setT T : (@to_setT T)^-1 = val. Proof. by []. Qed.
(**********)
(* Subfun *)
(**********)
Section subfun.
Context {T} {A B : set T}.
Definition subfun (AB : A `<=` B) (a : A) : B :=
SigSub (mem_set (AB _ (set_valP a))).
Lemma subfun_inj {AB : A `<=` B} : injective (subfun AB).
Proof. by move=> x y /(congr1 val)/= /val_inj. Qed.
HB.instance Definition _ (AB : A `<=` B) :=
SurjFun.copy (subfun AB) [fun subfun AB in setT].
HB.instance Definition _ (AB : A `<=` B) :=
SurjFun_Inj.Build A B setT (subfun AB @` setT) (subfun AB) (in2W subfun_inj).
End subfun.
Section subfun_eq.
Context {T} {A B : set T}.
Lemma subfun_imageT (AB : A `<=` B) (BA : B `<=` A) : subfun AB @` setT = setT.
Proof.
by apply/seteqP; split=> x //= _; exists (subfun BA x) => //; exact/val_inj.
Qed.
Lemma subfun_inv_subproof (AB : A = B) :
olift (subfun (subsetCW AB)) = 'oinv_(subfun (subsetW AB)).
Proof.
set g := subfun _; set f := subfun _; apply/funext => x /=.
apply: 'inj_(oapp f x) => //=.
- by rewrite inE/=; eexists.
- by rewrite inE/=; apply: 'oinvS_f; exists (g x) => //; apply/val_inj.
rewrite oinvK ?inE//=; first exact/val_inj.
by exists (g x) => //; apply/val_inj.
Qed.
(* Add a Inj_Can factory *)
HB.instance Definition _ (AB : A = B) :=
OInv_Inv.Build A B (subfun (subsetW AB)) (subfun_inv_subproof AB).
End subfun_eq.
Section seteqfun.
Context {T : Type}.
Definition seteqfun {A B : set T} (AB : A = B) := subfun (subsetW AB).
Context {A B : set T} (AB : A = B).
HB.instance Definition _ := Inv.Build A B (seteqfun AB) (seteqfun (esym AB)).
Lemma seteqfun_can2_subproof : Inv_Can2 A B setT setT (seteqfun AB).
Proof. by split; rewrite /seteqfun//; move=> x _; apply/val_inj. Qed.
HB.instance Definition _ := seteqfun_can2_subproof.
End seteqfun.
(*************)
(* Inclusion *)
(*************)
Section incl.
Context {T} {A B : set T}.
Definition incl (AB : A `<=` B) := @id T.
HB.instance Definition _ (AB : A `<=` B) := Inv.Build _ _ (incl AB) id.
HB.instance Definition _ (AB : A `<=` B) := IsFun.Build _ _ A B (incl AB) AB.
HB.instance Definition _ (AB : A `<=` B) :=
Inv_Can.Build _ _ A (incl AB) (fun _ _ => erefl).
Definition eqincl (AB : A = B) := incl (subsetW AB).
HB.instance Definition _ AB := Inversible.on (eqincl AB).
Lemma eqincl_surj AB : Inv_Can2 _ _ A B (eqincl AB).
Proof. by split=> // x; rewrite /eqincl /incl/= /(_^-1)/inv/= AB. Qed.
HB.instance Definition _ AB := eqincl_surj AB.
End incl.
Notation inclT A := (incl (@subsetT _ _)).
(*******************)
(* Ad hoc function *)
(*******************)
Section mkfun.
Context {aT} {rT} {A : set aT} {B : set rT}.
Notation isfun f := {homo f : x / A x >-> B x}.
Definition mkfun f (fAB : isfun f) := f.
HB.instance Definition _ f fAB := @IsFun.Build _ _ A B (@mkfun f fAB) fAB.
Definition mkfun_fun f fAB := [fun of @mkfun f fAB].
HB.instance Definition _ (f : {inj A >-> rT}) fAB := Inject.on (@mkfun f fAB).
HB.instance Definition _ (f : {splitinj A >-> rT}) fAB :=
SplitInj.on (@mkfun f fAB).
HB.instance Definition _ (f : {surj A >-> B}) fAB :=
Surject.on (@mkfun f fAB).
HB.instance Definition _ (f : {splitsurj A >-> B}) fAB :=
SplitSurj.on (@mkfun f fAB).
End mkfun.
(***********)
(* set_val *)
(***********)
Section set_val.
Context {T} {A : set T}.
Definition set_val : A -> T := eqincl (set_mem_set A) \o val.
HB.instance Definition _ := Bij.on set_val.
Lemma oinv_set_val : 'oinv_set_val = insub. Proof. by []. Qed.
Lemma set_valE : set_val = val. Proof. by []. Qed.
End set_val.
#[global]
Hint Extern 0 (is_true (set_val _ \in _)) => solve [apply: valP] : core.
(**********)
(* Squash *)
(**********)
HB.instance Definition _ T := CanV.Build T $|T| setT setT squash (fun _ _ => I)
(in1W unsquashK).
HB.instance Definition _ T := SplitInj.copy (@unsquash T) squash^-1%FUN.
Definition ssquash {T} := [splitsurj of @squash T].
(***********************)
(* pickle and unpickle *)
(***********************)
HB.instance Definition _ (T : countType) :=
Inj.Build _ _ setT (@choice.pickle T) (in2W (pcan_inj choice.pickleK)).
HB.instance Definition _ (T : countType) :=
IsFun.Build _ _ setT setT (@choice.pickle T) (fun _ _ => I).
(***********)
(* set0fun *)
(***********)
Lemma set0fun_inj {P T} : injective (@set0fun P T).
Proof. by case=> x x0; have := set_mem x0. Qed.
HB.instance Definition _ P T :=
Inj.Build (@set0 T) P setT set0fun (in2W set0fun_inj).
HB.instance Definition _ P T :=
IsFun.Build _ _ setT setT (@set0fun P T) (fun _ _ => I).
(************)
(* cast_ord *)
(************)
HB.instance Definition _ {m n} {eq_mn : m = n} :=
Can2.Build 'I_m 'I_n setT setT (cast_ord eq_mn)
(fun _ _ => I) (fun _ _ => I)
(in1W (cast_ordK _)) (in1W (cast_ordKV _)).
(************************)
(* enum_val & enum_rank *)
(************************)
HB.instance Definition _ (T : finType) :=
Can2.Build T _ setT setT enum_rank (fun _ _ => I) (fun _ _ => I)
(in1W enum_rankK) (in1W enum_valK).
HB.instance Definition _ (T : finType) :=
Can2.Build _ T setT setT enum_val (fun _ _ => I) (fun _ _ => I)
(in1W enum_valK) (in1W enum_rankK).
(**************)
(* Finset val *)
(**************)
Definition finset_val {T : choiceType} {X : {fset T}} (x : X) : [set` X] :=
exist (fun x => x \in [set` X]) (val x) (mem_set (valP x)).
Definition val_finset {T : choiceType} {X : {fset T}} (x : [set` X]) : X :=
[` set_mem (valP x)]%fset.
Lemma finset_valK {T : choiceType} {X : {fset T}} :
cancel (@finset_val T X) val_finset.
Proof. by move=> x; apply/val_inj. Qed.
Lemma val_finsetK {T : choiceType} {X : {fset T}} :
cancel (@val_finset T X) finset_val.
Proof. by move=> x; apply/val_inj. Qed.
HB.instance Definition _ {T : choiceType} {X : {fset T}} :=
Can2.Build X _ setT setT finset_val (fun _ _ => I) (fun _ _ => I)
(in1W finset_valK) (in1W val_finsetK).
HB.instance Definition _ {T : choiceType} {X : {fset T}} :=
Can2.Build _ X setT setT val_finset (fun _ _ => I) (fun _ _ => I)
(in1W val_finsetK) (in1W finset_valK).
(*****************)
(* 'I_n and `I_n *)
(*****************)
HB.instance Definition _ n := Can2.Build _ _ setT setT (@ordII n)
(fun _ _ => I) (fun _ _ => I) (in1W ordIIK) (in1W IIordK).
HB.instance Definition _ n := SplitBij.copy (@IIord n) (ordII^-1).
(***********)
(* Glueing *)
(***********)
Definition glue {T T'} {X Y : set T} {A B : set T'}
of [disjoint X & Y] & [disjoint A & B] :=
fun (f g : T -> T') (u : T) => if u \in X then f u else g u.
Section Glue12.
Context {T T'} {X Y : set T} {A B : set T'}.
Context {XY : [disjoint X & Y]} {AB : [disjoint A & B]}.
Local Notation gl := (glue XY AB).
Definition glue1 (f g : T -> T') : {in X, gl f g =1 f}.
Proof. by move=> x; rewrite /glue => ->. Qed.
Definition glue2 (f g : T -> T') : {in Y, gl f g =1 g}.
Proof.
move=> x /set_mem Yx; rewrite /glue; case: ifPn => // /set_mem Xx.
by move: XY => /disj_setPS/(_ x (conj Xx Yx)).
Qed.
End Glue12.
Section Glue.
Context {T T'} {X Y : set T} {A B : set T'}.
Context {XY : [disjoint X & Y]} {AB : [disjoint A & B]}.
Local Notation gl := (glue XY AB).
Lemma glue_fun_subproof (f : {fun X >-> A}) (g : {fun Y >-> B}) :
IsFun T T' (X `|` Y) (A `|` B) (gl f g).
Proof.
by split=> x []xP; [left; rewrite glue1|right; rewrite glue2];
rewrite ?inE//; apply: funS.
Qed.
HB.instance Definition _ f g := glue_fun_subproof f g.
HB.instance Definition _ (f g : {oinv T >-> T'}) :=
OInv.Build _ _ (gl f g) (glue AB (eqbRL disj_set_some XY) 'oinv_f 'oinv_g).
HB.instance Definition _ (f : {oinvfun X >-> A}) (g : {oinvfun Y >-> B}) :=
OInversible.on (gl f g).
Lemma oinv_glue (f : {oinv T >-> T'}) (g : {oinv T >-> T'}) :
'oinv_(gl f g) = glue AB (eqbRL disj_set_some XY) 'oinv_f 'oinv_g.
Proof. by []. Qed.
Lemma some_inv_glue_subproof (f g : {inv T >-> T'}) :
some \o (glue AB XY f^-1 g^-1) = 'oinv_(gl f g).
Proof.
by apply/funext => y; rewrite oinv_glue /glue /= [LHS]fun_if !some_inv.
Qed.
HB.instance Definition _ (f g : {inv T >-> T'}) :=
OInv_Inv.Build T T' (gl f g) (some_inv_glue_subproof f g).
HB.instance Definition _ (f : {invfun X >-> A}) (g : {invfun Y >-> B}) :=
Inversible.on (gl f g).
Lemma inv_glue (f : {invfun X >-> A}) (g : {invfun Y >-> B}) :
(gl f g)^-1 = glue AB XY f^-1 g^-1.
Proof. by []. Qed.
Lemma glueo_can_subproof (f : {injfun X >-> A}) (g : {injfun Y >-> B}) :
OInv_Can _ _ (X `|` Y) (gl f g).
Proof.
split=> x; rewrite inE => -[] xP; rewrite oinv_glue.
by rewrite [glue _ _ _ _ x]glue1 ?inE// glue1 ?funoK ?inE//; apply: funS.
by rewrite [glue _ _ _ _ x]glue2 ?inE// glue2 ?funoK ?inE//; apply: funS.
Qed.
HB.instance Definition _ f g := glueo_can_subproof f g.
HB.instance Definition _ (f : {splitinjfun X >-> A})
(g : {splitinjfun Y >-> B}) := Inject.on (gl f g).
Lemma glue_canv_subproof (f : {surj X >-> A}) (g : {surj Y >-> B}) :
OInv_CanV _ _ (X `|` Y) (A `|` B) (gl f g).
Proof.
split=> [z|y /set_mem [] yP]; rewrite oinv_glue.
- by move=> [] zP /=; [rewrite glue1|rewrite glue2]; rewrite ?inE//;
case: oinvP=> // x xX _; exists x => //; [left|right].
- by rewrite glue1 ?inE//; case: oinvP=> //= x xX _; rewrite glue1 ?inE.
- by rewrite glue2 ?inE//; case: oinvP=> //= x xX _; rewrite glue2 ?inE.
Qed.
HB.instance Definition _ f g := glue_canv_subproof f g.
HB.instance Definition _ (f : {surjfun X >-> A}) (g : {surjfun Y >-> B}) :=
Surject.on (gl f g).
HB.instance Definition _ (f : {splitsurj X >-> A}) (g : {splitsurj Y >-> B}) :=
Surject.on (gl f g).
HB.instance Definition _ (f : {splitsurjfun X >-> A}) (g : {splitsurjfun Y >-> B}) :=
Surject.on (gl f g).
HB.instance Definition _ (f : {bij X >-> A}) (g : {bij Y >-> B}) :=
Surject.on (gl f g).
HB.instance Definition _ (f : {splitbij X >-> A}) (g : {splitbij Y >-> B}) :=
Surject.on (gl f g).
End Glue.
(************************************)
(* Z-module addition is a bijection *)
(************************************)
Section addition.
Context {V : zmodType} (x : V).
HB.instance Definition _ := Inv.Build V V (+%R x) (+%R (- x)).
Lemma inv_addr : (+%R x)^-1 = (+%R (- x)). Proof. by []. Qed.
Lemma addr_can2_subproof : Inv_Can2 V V setT setT (+%R x).
Proof. by split => // y _; rewrite inv_addr ?GRing.addKr ?GRing.addNKr. Qed.
HB.instance Definition _ := addr_can2_subproof.
End addition.
(*************)
(* emtpyType *)
(*************)
Section empty.
Context {T : emptyType} {T' : Type} {X : set T}.
Implicit Type Y : set T'.
HB.instance Definition _ := OInv.Build _ _ (@any T T') (fun=> None).
Lemma empty_can_subproof : OInv_Can T T' X any.
Proof. by split=> x; rewrite empty_eq0 inE. Qed.
HB.instance Definition _ := empty_can_subproof.
Lemma empty_fun_subproof Y : IsFun T T' X Y any.
Proof. by split=> x; rewrite empty_eq0. Qed.
HB.instance Definition _ Y := empty_fun_subproof Y.
Lemma empty_canv_subproof : OInv_CanV T T' X set0 any. Proof. by split. Qed.
HB.instance Definition _ := empty_canv_subproof.
End empty.
(************************)
(* Theory of surjection *)
(************************)
Section surj_lemmas.
Variables aT rT : Type.
Implicit Types (A : set aT) (B : set rT) (f : aT -> rT).
Lemma surj_id A : set_surj A A (@idfun aT). Proof. exact: surj. Qed.
Lemma surj_set0 B f : set_surj set0 B f -> B = set0.
Proof. by move=> Bf; rewrite predeqE => u; split => // /Bf [t []]. Qed.
Lemma surjE f A B : set_surj A B f = (B `<=` f @` A). Proof. by []. Qed.
Lemma surj_image_eq B A f : f @` A `<=` B -> set_surj A B f -> f @` A = B.
Proof. by move=> fAB; rewrite eqEsubset => BfA. Qed.
Lemma subl_surj A A' B f : A `<=` A' -> set_surj A B f -> set_surj A' B f.
Proof. by move=> /(@image_subset _ _ f)/(subset_trans _); apply. Qed.
Lemma subr_surj A B B' f : B' `<=` B -> set_surj A B f -> set_surj A B' f.
Proof. exact: subset_trans. Qed.
Lemma can_surj g f (A : set aT) (B : set rT) :
{in B, cancel g f} -> g @` B `<=` A ->
set_surj A B f.
Proof.
move=> gK gBA y By; suff : A (g y) by exists (g y); rewrite ?gK ?inE.
by have := image_subP.1 gBA y; apply.
Qed.
Lemma surj_epi sT A B (f : aT -> rT) (g g' : rT -> sT) :
set_surj A B f -> {in A, g \o f =1 g' \o f} -> {in B, g =1 g'}.
Proof.
move=> fS eqfg y /set_mem By; suff: B `<=` [set y | g y = g' y] by exact.
by apply: subset_trans fS _ => _ [a /mem_set Aa <-] /=; rewrite [LHS]eqfg.
Qed.
Lemma epiP A B (f : aT -> rT) : set_surj A B f <->
forall sT (g g' : rT -> sT), {in A, g \o f =1 g' \o f} -> {in B, g =1 g'}.
Proof.
split=> [*| f_epi y By]; first exact: (@surj_epi _ A B f).
have -> // := f_epi _ [set f x | x in A] setT; last exact: mem_set.
by move=> x /set_mem xA; apply/propT; exists x.
Qed.
End surj_lemmas.
Arguments can_surj {aT rT} g [f A B].
Arguments surj_epi {aT rT sT} A {B} f {g}.
Lemma surj_comp T1 T2 T3 (A : set T1) (B : set T2) (C : set T3) f g:
set_surj A B f -> set_surj B C g -> set_surj A C (g \o f).
Proof. by move=> fS gS; apply: 'surj_(gS \o fS). Qed.
Lemma image_eq {aT rT} {A : set aT} {B : set rT} (f : {surjfun A >-> B}) : f @` A = B.
Proof. exact: surj_image_eq. Qed.
Lemma oinv_image_sub {aT rT : Type} {A : set aT} {B : set rT}
(f : {surj A >-> B}) {C : set rT} :
C `<=` B -> 'oinv_f @` C `<=` some @` (f @^-1` C).
Proof.
move=> CB x [/= y Cy <-]; case: 'oinvP_f => [|a Aa fay]; first exact: CB.
by exists a => //; rewrite fay.
Qed.
Arguments oinv_image_sub {aT rT A B} f {C} _.
Lemma oinv_Iimage_sub {aT rT : Type} {A : set aT} (f : {inj A >-> rT}) {C : set rT} :
C `<=` f @` A -> some @` (A `&` f @^-1` C) `<=` 'oinv_f @` C.
Proof. by move=> ? _ [a [? ?] <-]; exists (f a) => //; rewrite funoK ?inE. Qed.
Arguments oinv_Iimage_sub {aT rT A} f {C} _.
Lemma oinv_sub_image {aT rT} {A : set aT} {B : set rT} {f : {bij A >-> B}}
{C : set rT} (CB : C `<=` B) : 'oinv_f @` C = some @` (A `&` f @^-1` C).
Proof.
apply/seteqP; split; last by apply: oinv_Iimage_sub; rewrite image_eq.
rewrite some_setI subsetI; split; last by apply: oinv_image_sub.
by apply: (subset_trans (image_subset CB)); rewrite image_eq.
Qed.
Arguments oinv_sub_image {aT rT A B} f {C} _.
Lemma inv_image_sub {aT rT : Type} {A : set aT} {B : set rT}
(f : {splitsurj A >-> B}) {C : set rT} :
C `<=` B -> f^-1 @` C `<=` f @^-1` C.
Proof. by move=> CB x [/= y Cy <-]; rewrite invK// mem_set//; apply: CB. Qed.
Arguments inv_image_sub {aT rT A B} f {C} _.
Lemma inv_Iimage_sub {aT rT : Type} {A : set aT} (f : {splitinj A >-> rT}) {C : set rT} :
C `<=` f @` A -> A `&` f @^-1` C `<=` f^-1 @` C.
Proof. by move=> CB x [Ax Cfx]; exists (f x) => //; rewrite funK// mem_set. Qed.
Arguments inv_Iimage_sub {aT rT A} f {C} _.
Lemma inv_sub_image {aT rT} {A : set aT} {B : set rT} {f : {splitbij A >-> B}}
{C : set rT} (CB : C `<=` B) :
f^-1 @` C = A `&` f @^-1` C.
Proof.
by apply: image_some_inj; rewrite image_comp [Some \o _]oliftV oinv_sub_image.
Qed.
Arguments inv_sub_image {aT rT A B} f {C} _.
Lemma reindex_bigcup {aT rT I} (f : aT -> I) (P : set aT) (Q : set I)
(F : I -> set rT) : set_fun P Q f -> set_surj P Q f ->
\bigcup_(x in Q) F x = \bigcup_(x in P) F (f x).
Proof.
by move=> /image_subP fPQ /(surj_image_eq fPQ)<-; rewrite bigcup_image.
Qed.
Arguments reindex_bigcup {aT rT I} f P Q.
Lemma reindex_bigcap {aT rT I} (f : aT -> I) (P : set aT) (Q : set I)
(F : I -> set rT) : set_fun P Q f -> set_surj P Q f ->
\bigcap_(x in Q) F x = \bigcap_(x in P) F (f x).
Proof.
by move=> /image_subP fPQ /(surj_image_eq fPQ)<-; rewrite bigcap_image.
Qed.
Arguments reindex_bigcap {aT rT I} f P Q.
Lemma bigcap_bigcup T I J (D : set I) (E : set J) (F : I -> J -> set T) :
J ->
\bigcap_(i in D) \bigcup_(j in E) F i j =
\bigcup_(f in set_fun D E) \bigcap_(i in D) F i (f i).
Proof.
move=> j; apply/seteqP; split=> x.
move=> /(_ _ _)/cid2 ff.
have /(all_sig2_cond j) (i : I) : i \in D -> {x0 : J | E x0 & F i x0 x}.
by move=> /set_mem; apply: ff.
by move=> [f /(_ _ (mem_set _))Ef /(_ _ (mem_set _))Ff]; exists f.
by move=> [f fDE fF i Fi]; exists (f i); [apply: fDE|apply: fF].
Qed.
(**************)
(* Injections *)
(**************)
Lemma trivIset_inj T I (D : set I) (F : I -> set T) :
(forall i, D i -> F i !=set0) -> trivIset D F -> set_inj D F.
Proof.
move=> FN0 Ftriv i j; rewrite !inE => Di Dj Fij.
by apply: Ftriv Di (Dj) _; rewrite Fij setIid; apply: FN0.
Qed.
(**************)
(* Bijections *)
(**************)
Section set_bij_lemmas.
Context {aT rT : Type} {A : set aT} {B : set rT} {f : aT -> rT}.
Definition fun_set_bij of set_bij A B f := f.
Context (fbij : set_bij A B f).
Local Notation g := (fun_set_bij fbij).
Lemma set_bij_inj : {in A &, injective f}. Proof. by case: fbij. Qed.
Lemma set_bij_homo : {homo f : x / A x >-> B x}. Proof. by case: fbij. Qed.
Lemma set_bij_sub : f @` A `<=` B. Proof. exact/image_subP/set_bij_homo. Qed.
Lemma set_bij_surj : set_surj A B f. Proof. by case: fbij. Qed.
HB.instance Definition _ : OCanV _ _ _ _ g := set_bij_surj.
HB.instance Definition _ := IsFun.Build _ _ A B g set_bij_homo.
HB.instance Definition _ := SurjFun_Inj.Build _ _ A B g set_bij_inj.
End set_bij_lemmas.
Coercion fun_set_bij : set_bij >-> Funclass.
Coercion set_bij_bijfun aT rT (A : set aT) (B : set rT) (f : aT -> rT)
(fS : set_bij A B f) := Bij.on (fun_set_bij fS).
Section Pbij.
Context {aT rT} {A : set aT} {B : set rT} {f : aT -> rT} (fbij : set_bij A B f).
#[local] HB.instance Definition _ : @Bij _ _ A B f := fbij.
Definition bij_of_set_bijection := [bij of f].
Lemma Pbij : {s : {bij A >-> B} | f = s}. Proof. by exists [bij of f]. Qed.
End Pbij.
Coercion bij_of_set_bijection : set_bij >-> Bij.type.
Lemma bij {aT rT} {A : set aT} {B : set rT} {f : {bij A >-> B}} : set_bij A B f.
Proof. split=> //. Qed.
Definition phant_bij aT rT (A : set aT) (B : set rT) (f : {bij A >-> B}) of
phantom (_ -> _) f := @bij _ _ _ _ f.
Notation "''bij_' f" := (phant_bij (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Extern 0 (set_bij _ _ _) => solve [apply: bij] : core.
Section PbijTT.
Context {aT rT} {f : aT -> rT} (fbijTT : bijective f).
#[local] HB.instance Definition _ := @BijTT.Build _ _ f fbijTT.
Definition bijection_of_bijective := [splitbij of f].
Lemma PbijTT : {s : {splitbij [set: aT] >-> [set: rT]} | f = s}.
Proof. by exists [splitbij of f]. Qed.
End PbijTT.
Lemma setTT_bijective aT rT (f : aT -> rT) :
set_bij [set: aT] [set: rT] f = bijective f.
Proof.
apply/propext; split=> [[]|/PbijTT[{}f ->]].
move=> _ fI /(_ _ I)-/(_ _)/cid2-/all_sig2[g _ gK].
by exists g => // x; apply: fI; rewrite ?inE.
by split=> // [x y _ _ /'inj_f//|y _]; exists (f^-1 y) => //; rewrite funK.
Qed.
Lemma bijTT {aT rT} {f : {bij [set: aT] >-> [set: rT]}} : bijective f.
Proof. by rewrite -setTT_bijective. Qed.
Definition phant_bijTT aT rT (f : {bij [set: aT] >-> [set: rT]})
of phantom (_ -> _) f := @bijTT _ _ f.
Notation "''bijTT_' f" := (phant_bijTT (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Extern 0 (bijective _) => solve [apply: bijTT] : core.
(*****************************)
(* Patching and restrictions *)
(*****************************)
Section patch.
Context {aT rT : Type} (d : aT -> rT) (A : set aT).
Definition patch (f : aT -> rT) u := if u \in A then f u else d u.
Lemma patchT f : {in A, patch f =1 f}. Proof. by rewrite /patch => x ->. Qed.
Lemma patchN f : {in [predC A], patch f =1 d}.
Proof. by rewrite /patch => x /negPf/= ->. Qed.
Lemma patchC f : {in ~` A, patch f =1 d}.
Proof. by move=> u /set_mem/= NAu; rewrite patchN ?inE//= notin_set. Qed.
HB.instance Definition _ f :=
SurjFun.copy (patch f) [fun patch f in A].
Section inj.
Context (f : {inj A >-> rT}).
Let g := patch f.
Lemma patch_inj_subproof : Inj aT rT A g.
Proof. by split=> x y xA yA; rewrite /g !patchT//; apply: inj. Qed.
HB.instance Definition _ := patch_inj_subproof.
HB.instance Definition _ := Inject.copy (patch f) [fun g in A].
End inj.
End patch.
Notation restrict := (patch (fun=> point)).
Notation "f \_ D" := (restrict D f) : fun_scope.
Lemma patch_pred {I T} (D : {pred I}) (d f : I -> T) :
patch d D f = fun i => if D i then f i else d i.
Proof. by apply/funext => i; rewrite /patch mem_setE. Qed.
Lemma preimage_restrict (aT : Type) (rT : pointedType)
(f : aT -> rT) (D : set aT) (B : set rT) :
(f \_ D) @^-1` B = (if point \in B then ~` D else set0) `|` D `&` f @^-1` B.
Proof.
rewrite /preimage/= /patch; apply/predeqP => x /=; split.
case: ifPn; rewrite ?(inE, notin_set); first by right.
by move=> NDx Bp; rewrite ifT ?inE//=; left.
move=> [|[Dx Bfx]]; last by rewrite ifT ?inE.
by case: ifP; rewrite // inE => Bp NDx; case: ifPn; rewrite // inE.
Qed.
Lemma comp_patch {aT rT sT : Type} (g : aT -> rT) D (f : aT -> rT) (h : rT -> sT) :
h \o patch g D f = patch (h \o g) D (h \o f).
Proof. by apply/funext => x; rewrite /patch/=; case: ifP. Qed.
Lemma patch_setI {aT rT : Type} (g : aT -> rT) D D' (f : aT -> rT) :
patch g (D `&` D') f = patch g D (patch g D' f).
Proof.
apply/funext => x; rewrite /patch/= in_setI.
by case: (x \in D) (x \in D') => [] [].
Qed.
Lemma patch_set0 {aT rT : Type} (g : aT -> rT) (f : aT -> rT) :
patch g set0 f = g.
Proof. by apply/funext => x; rewrite /patch in_set0. Qed.
Lemma patch_setT {aT rT : Type} (g : aT -> rT) (f : aT -> rT) :
patch g setT f = f.
Proof. by apply/funext => x; rewrite /patch in_setT. Qed.
Lemma restrict_comp {aT} {rT sT : pointedType} (h : rT -> sT) (f : aT -> rT) D :
h point = point -> (h \o f) \_ D = h \o (f \_ D).
Proof. by move=> hp; apply/funext => x; rewrite /patch/=; case: ifP. Qed.
Arguments restrict_comp {aT rT sT} h f D.
Lemma trivIset_restr (T I : Type) (D D' : set I) (F : I -> set T) :
trivIset D' (F \_ D) = trivIset (D `&` D') F.
Proof.
apply/propext; split=> FDtriv i j.
move=> [Di D'i] [Dj D'j] [x [Fix Fjx]]; apply: FDtriv => //.
by exists x; split => /=; rewrite ?patchT ?in_setE.
move=> D'i D'j [x []]; rewrite /patch.
do 2![case: ifPn => //]; rewrite !in_setE => Di Dj Fix Fjx.
by apply: FDtriv => //; exists x.
Qed.
(**************************************)
(* Restriction of domain and codomain *)
(**************************************)
Section RestrictionLeft.
Context {U V : Type} (v : V) {A : set U} {B : set V}.
Local Notation restrict := (patch (fun=> v) A).
Definition sigL (f : U -> V) : A -> V := f \o set_val.
Lemma sigL_isfun (f : {fun A >-> B}) : IsFun _ _ [set: A] B (sigL f).
Proof. by split=> x _; apply: funS. Qed.
HB.instance Definition _ (f : {fun A >-> B}) := sigL_isfun f.
Definition sigLfun (f : {fun A >-> B}) := [fun of sigL f].
Definition valL_ (f : A -> V) : U -> V := ((@oapp _ _)^~ v) f \o 'oinv_set_val.
Lemma valL_isfun (f : {fun [set: A] >-> B}) :
IsFun _ _ A B (valL_ (f : _ -> _)).
Proof. by split=> x Ax; apply: funS. Qed.
HB.instance Definition _ (f : {fun [set: A] >-> B}) := valL_isfun f.
Definition valLfun_ (f : {fun [set: A] >-> B}) := [fun of valL_ f].
Lemma sigLE (f : U -> V) x (xA : x \in A) :
sigL f (SigSub xA) = f x.
Proof. done. Qed.
Lemma eq_sigLP (f g : U -> V):
{in A, f =1 g} <-> sigL f = sigL g.
Proof.
split=> [eq_f_g | Rfg u uA]; first by apply/funext => -[x]; apply: eq_f_g.
by have := congr1 (@^~ (exist _ u uA)) Rfg.
Qed.
Lemma eq_sigLfunP (f g : {fun A >-> B}) :
{in A, f =1 g} <-> sigLfun f = sigLfun g.
Proof. by rewrite eq_sigLP funP funeqP. Qed.
Lemma sigLK : valL_ \o sigL = restrict.
Proof.
rewrite funeq2E => f u; rewrite /valL_ /sigL /restrict.
by rewrite oinv_set_val/=; case: ifPn => uA; [rewrite insubT|rewrite insubN].
Qed.
Lemma valLK : cancel valL_ sigL.
Proof.
move=> f; rewrite /valL_ /sigL /restrict oinv_set_val.
apply/funext=> a /=; have aA : set_val a \in A by apply: valP.
by rewrite insubT//=; congr f; apply/val_inj.
Qed.
Lemma valLfunK : cancel valLfun_ sigLfun.
Proof. by move=> f; apply/funP/funeqP; exact: valLK. Qed.
Lemma sigL_valL : sigL \o valL_ = id.
Proof. exact/funext/valLK. Qed.
Lemma sigL_valLfun : sigLfun \o valLfun_ = id.
Proof. exact/funext/valLfunK. Qed.
Lemma sigL_restrict : sigL \o restrict = sigL.
Proof.
rewrite funeq2E => f -[u Au] /=.
by rewrite /sigL /restrict /valL_ /patch /= Au.
Qed.
Lemma image_sigL : range sigL = setT.
Proof.
rewrite eqEsubset; split=> //= f _; exists (valL_ f)=>//.
exact: valLK.
Qed.
Lemma eq_restrictP (f g : U -> V): {in A, f =1 g} <-> restrict f = restrict g.
Proof. by rewrite eq_sigLP -sigLK/=; split => [->//|/(can_inj valLK)]. Qed.
End RestrictionLeft.
Arguments sigL {U V} A f u /.
Arguments sigLE {U V} A f x.
Arguments valL_ {U V} v {A} f u /.
Notation "''valL_' v" := (valL_ v) : form_scope.
Notation "''valLfun_' v" := (valLfun_ v) : form_scope.
Notation valL := (valL_ point).
Section RestrictionRight.
Context {U V : Type} {A : set V}.
Definition sigR (f : {fun [set: U] >-> A}) (u : U) : A :=
SigSub (mem_set ('funS_f I) : f u \in A).
HB.instance Definition _ f := Fun.copy (sigR f) (totalfun _).
Definition valR (f : U -> A) := set_val \o totalfun f.
HB.instance Definition _ f := Fun.on (valR f).
Definition valR_fun (f : U -> A) : {fun [set: U] >-> A} := [fun of valR f].
Lemma sigRK (f : {fun [set: U] >-> A}) : valR (sigR f) = f.
Proof. by []. Qed.
Lemma sigR_funK (f : {fun [set: U] >-> A}) : valR_fun (sigR f) = f.
Proof. by apply/funP/funeqP; apply: sigRK. Qed.
Lemma valRP (f : U -> A) x : A (valR f x). Proof. exact: set_valP. Qed.
Lemma valRK : cancel valR_fun sigR.
Proof. by move=> f; apply/funext => x; apply/val_inj. Qed.
End RestrictionRight.
Arguments sigR {U V A} f u /.
Section RestrictionLeftInv.
Context {U V : Type} (v : V) {A : set U} {B : set V}.
Local Notation rl := (sigL A).
Local Notation rr := sigR.
Local Notation el := 'valL_v.
Local Notation er := valR.
HB.instance Definition _ (f : {oinv U >-> V}) :=
@OInv.Build _ _ (rl f) (obind insub \o 'oinv_f).
HB.instance Definition _ (f : {oinvfun A >-> B}) := Fun.on (rl f).
Lemma oinv_sigL (f : {oinv U >-> V}) : 'oinv_(rl f) = obind insub \o 'oinv_f.
Proof. by []. Qed.
Lemma sigL_inj_subproof (f : {inj A >-> V}) : @OInv_Can _ _ setT (rl f).
Proof.
by split=> x _; rewrite oinv_sigL/= funoK//= [insub _]'funoK_val ?inE.
Qed.
HB.instance Definition _ f := sigL_inj_subproof f.
HB.instance Definition _ (f : {injfun A >-> B}) := Fun.on (rl f).
Lemma sigL_surj_subproof (f : {surj A >-> B}) : @OInv_CanV _ _ setT B (rl f).
Proof.
split=> [b|b /set_mem] Bb; rewrite ?oinv_sigL/=.
have [x /mem_set Ax <-]/= := 'oinvS_f Bb; exists (SigSub Ax) => //=.
case: insubP => [a Aa/= eqx|]; last by rewrite Ax.
by congr Some; apply/val_inj.
by rewrite /rl/= oapp_comp/= -oinv_val -inv_omap/= invK ?oinvK ?mem_fun ?inE.
Qed.
HB.instance Definition _ f := sigL_surj_subproof f.
HB.instance Definition _ (f : {surjfun A >-> B}) := Fun.on (rl f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (rl f).
HB.instance Definition _ (f : {oinvfun [set: V] >-> A}) :=
@OInv.Build _ _ (rr f) (rl 'oinv_f).
Lemma oinv_sigR (f : {oinvfun [set: V] >-> A}) :
'oinv_(rr f) = (rl 'oinv_f).
Proof. by []. Qed.
Lemma sigR_inj_subproof (f : {injfun [set: V] >-> A}) :
@OInv_Can _ _ setT (rr f).
Proof. by split=> x _; rewrite oinv_sigR/= set_valE/= funoK ?inE. Qed.
HB.instance Definition _ f := sigR_inj_subproof f.
Lemma sigR_surj_subproof (f : {surjfun [set: V] >-> A}) :
@OInv_CanV _ _ setT setT (rr f).
Proof.
split=> a _; rewrite ?oinv_sigL/=.
by have [x _ xeq] := 'oinvS_f (set_valP a); exists x.
apply/val_inj=> /=; rewrite oinv_sigR/=.
by case: oinvP=> //=; apply: set_valP.
Qed.
HB.instance Definition _ f := sigR_surj_subproof f.
Lemma sigR_some_inv (f : {invfun [set: V] >-> A}) :
olift (rl f^-1) = 'oinv_(rr f).
Proof. by rewrite oinv_sigR olift_comp oliftV. Qed.
HB.instance Definition _ (f : {bij [set: V] >-> A}) := Fun.on (rr f).
HB.instance Definition _ (f : {invfun [set: V] >-> A}) :=
@OInv_Inv.Build _ _ (rr f) (rl f^-1) (sigR_some_inv f).
Lemma inv_sigR (f : {invfun [set: V] >-> A}) : (rr f)^-1 = (rl f^-1).
Proof. by []. Qed.
HB.instance Definition _ (f : {splitinjfun [set: V] >-> A}) := Inject.on (rr f).
(* HB Bug, if Fun.on instead of Surject.on *)
HB.instance Definition _ (f : {splitsurjfun [set: V] >-> A}) := Surject.on (rr f).
HB.instance Definition _ (f : {splitbij [set: V] >-> A}) := Fun.on (rr f).
Lemma sigL_some_inv (f : {splitbij A >-> [set: V]}) :
olift (rr [fun of f^-1]) = 'oinv_(rl f).
Proof.
apply/funext=> x /=; rewrite oinv_sigL /= /sigR/= /olift/=.
case: oinvP => //= u Au _; rewrite insubT ?inE// => memAu.
by congr (Some _); apply/val_inj=> /=; rewrite funK.
Qed.
HB.instance Definition _ (f : {splitbij A >-> [set: V]}) :=
OInv_Inv.Build _ _ (rl f) (sigL_some_inv f).
Lemma inv_sigL (f : {splitbij A >-> [set: V]}) :
(rl f)^-1 = (rr [fun of f^-1]).
Proof. by []. Qed.
HB.instance Definition _ (f : {oinv A >-> V}) :=
@OInv.Build _ _ (el f) (omap set_val \o 'oinv_f).
HB.instance Definition _ (f : {oinvfun [set: A] >-> B}) := Fun.on (el f).
Lemma oinv_valL (f : {oinv A >-> V}) :
'oinv_(el f) = omap set_val \o 'oinv_f.
Proof. by []. Qed.
Lemma oapp_comp_x {aT rT sT} (f : aT -> rT) (g : rT -> sT) (x : rT) y :
oapp (g \o f) (g x) y = g (oapp f x y).
Proof. by case: y. Qed.
Lemma valL_inj_subproof (f : {inj [set: A] >-> V}) : @OInv_Can _ _ A (el f).
Proof.
split=> x /set_mem xA; rewrite oinv_valL/= -oapp_comp_x.
by case: oinvP=> //= a _ _; rewrite funoK ?inE.
Qed.
HB.instance Definition _ f := valL_inj_subproof f.
HB.instance Definition _ (f : {injfun [set: A] >-> B}) := Inject.on (el f).
Lemma valL_surj_subproof (f : {surj [set: A] >-> B}) : @OInv_CanV _ _ A B (el f).
Proof.
split=> [b|b /set_mem] Bb; rewrite ?oinv_valL/=.
by case: oinvP => // => a; exists (set_val a) => //; apply: set_valP.
by case: oinvP => //= a _ _; rewrite funoK// inE.
Qed.
HB.instance Definition _ f := valL_surj_subproof f.
HB.instance Definition _ (f : {surjfun [set: A] >-> B}) := Surject.on (el f).
HB.instance Definition _ (f : {bij [set: A] >-> B}) := Surject.on (el f).
Lemma valL_some_inv (f : {inv A >-> V}) : olift (er f^-1) = 'oinv_(el f).
Proof. by rewrite oinv_valL/= olift_comp -oliftV. Qed.
HB.instance Definition _ (f : {inv A >-> V}) :=
OInv_Inv.Build _ _ (el f) (valL_some_inv f).
HB.instance Definition _ (f : {invfun [set: A] >-> B}) := Fun.on (el f).
Lemma inv_valL (f : {inv A >-> V}) : (el f)^-1 = er f^-1.
Proof. by []. Qed.
HB.instance Definition _ (f : {splitinj [set: A] >-> V}) := Inject.on (el f).
HB.instance Definition _ (f : {splitinjfun [set: A] >-> B}) := Fun.on (el f).
(* HB Bug, if Fun.on instead of Surject.on *)
HB.instance Definition _ (f : {splitsurj [set: A] >-> B}) := Surject.on (el f).
HB.instance Definition _ (f : {splitsurjfun [set: A] >-> B}) := Fun.on (el f).
HB.instance Definition _ (f : {splitbij [set: A] >-> B}) := Fun.on (el f).
Lemma sigL_injP (f : U -> V) :
injective (rl f) <-> {in A &, injective f}.
Proof.
split=> [f_inj x y Ax Ay|/Pinj[{}f-> //]]; last first.
by move=> eqfxy; suff [->] : SigSub Ax = SigSub Ay by []; apply: f_inj.
Qed.
Lemma sigL_surjP (f : U -> V) :
set_surj [set: A] B (rl f) <-> set_surj A B f.
Proof.
split=> [fsurj b Bb/=|/Psurj[{}f->]//].
by have [a _ <-] := fsurj _ Bb; exists (set_val a) => //; apply: set_valP.
Qed.
Lemma sigL_funP (f : U -> V) :
set_fun [set: A] B (rl f) <-> set_fun A B f.
Proof.
split=> [ffun u Au/=|/Pfun[{}f->]//].
exact: (ffun (SigSub (mem_set Au))).
Qed.
Lemma sigL_bijP (f : U -> V) :
set_bij [set: A] B (rl f) <-> set_bij A B f.
Proof.
split=> [[F /in2TT I S]|/Pbij[{}f->]//].
by split; [exact/sigL_funP|exact/sigL_injP|exact/sigL_surjP].
Qed.
Lemma valL_injP (f : A -> V) : {in A &, injective (el f)} <-> injective f.
Proof. by rewrite -sigL_injP valLK. Qed.
Lemma valL_surjP (f : A -> V) :
set_surj A B (el f) <-> set_surj setT B f.
Proof. by rewrite -sigL_surjP valLK. Qed.
Lemma valLfunP (f : A -> V) :
set_fun A B (el f) <-> set_fun setT B f.
Proof. by rewrite -sigL_funP valLK. Qed.
Lemma valL_bijP (f : A -> V) :
set_bij A B (el f) <-> set_bij setT B f.
Proof. by rewrite -sigL_bijP valLK. Qed.
End RestrictionLeftInv.
Section ExtentionLeftInv.
Context {U V : Type} {A : set U} {B : set V}.
Local Notation el := 'valL_None.
Local Notation er := valR.
HB.instance Definition _ (f : {oinv V >-> A}) :=
@OInv.Build _ _ (er f) (el 'oinv_f).
Lemma oinv_valR (f : {oinv V >-> A}) : 'oinv_(er f) = (el 'oinv_f).
Proof. by []. Qed.
Lemma valR_inj_subproof (f : {inj [set: V] >-> A}) :
@OInv_Can _ _ setT (er f).
Proof. by split=> x _; rewrite /er oinv_valR/= funoK/= ?funoK ?inE. Qed.
HB.instance Definition _ f := valR_inj_subproof f.
Lemma valR_surj_subproof (f : {surj [set: V] >-> [set: A]}) :
@OInv_CanV _ _ setT A (er f).
Proof.
split=> [a|a /set_mem] Aa; rewrite ?oinv_valR/= oinv_set_val.
by rewrite insubT ?inE// => memaA /=; case: oinvP => //= x; exists x.
rewrite insubT ?inE// => memaA/=; case: oinvP => //= x _.
by rewrite /er/= /totalfun => ->.
Qed.
HB.instance Definition _ f := valR_surj_subproof f.
HB.instance Definition _ (f : {bij [set: V] >-> [set: A]}) := Fun.on (er f).
End ExtentionLeftInv.
Section Restrictions2.
Context {U V : Type} (v : V) {A : set U} {B : set V}.
Local Notation valL := 'valL_v.
Local Notation valLfun := 'valLfun_v.
Definition sigLR := sigR \o (@sigLfun U V A B).
HB.instance Definition _ (f : {fun A >-> B}) :=
Fun.copy (sigLR f) (totalfun _).
Definition valLR : (A -> B) -> U -> V := valL \o valR_fun.
Definition valLRfun : (A -> B) -> {fun A >-> B} := valLfun \o valR_fun.
Lemma valLRE (f : A -> B) : valLR f = valL (valR f). Proof. by []. Qed.
Lemma valLRfunE (f : A -> B) : valLRfun f = [fun of valLR f]. Proof. by []. Qed.
Lemma sigL2K (f : {fun A >-> B}) : {in A, valLR (sigLR f) =1 f}.
Proof. by apply/eq_sigLP; rewrite valLK sigR_funK. Qed.
Lemma valLRK : cancel valLRfun sigLR.
Proof. by move=> f; rewrite /sigLR /valLR /= valLfunK valRK. Qed.
Lemma valLRfun_inj : injective valLRfun.
Proof. by move=> f g eqefg; rewrite -[LHS]valLRK eqefg valLRK. Qed.
HB.instance Definition _ (f : {oinvfun A >-> B}) := OInversible.on (sigLR f).
HB.instance Definition _ (f : {injfun A >-> B}) := Inject.on (sigLR f).
HB.instance Definition _ (f : {surjfun A >-> B}) := Surject.on (sigLR f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (sigLR f).
HB.instance Definition _ (f : {oinv A >-> B}) := OInvFun.on (valLR f).
HB.instance Definition _ (f : {inj [set: A] >-> B}) := Inject.on (valLR f).
HB.instance Definition _ (f : {surj [set: A] >-> [set: B]}) := Surject.on (valLR f).
HB.instance Definition _ (f : {bij [set: A] >-> [set: B]}) := Fun.on (valLR f).
Lemma sigLR_injP (f : {fun A >-> B}) :
injective (sigLR f) <-> {in A &, injective f}.
Proof.
split=> [f_inj x y Ax Ay|/funPinj[{}f-> //]]; last first.
move=> eqfxy; suff [->] : SigSub Ax = SigSub Ay by [].
by apply: f_inj; apply/val_inj.
Qed.
Lemma valLR_injP (f : A -> B) :
{in A &, injective (valLR f)} <-> injective f.
Proof. by rewrite -sigLR_injP valLRK. Qed.
Lemma sigLR_surjP (f : {fun A >-> B}) :
set_surj setT setT (sigLR f) <-> set_surj A B f.
Proof.
split=> [fsurj b Bb/=|/funPsurj[{}f->]//].
have [x _ /(congr1 val)/= <-] := fsurj (SigSub (mem_set Bb)) I.
by exists (set_val x) => //; apply: set_valP.
Qed.
Lemma valLR_surjP (f : A -> B) :
set_surj A B (valLR f) <-> set_surj setT setT f.
Proof. by rewrite -sigLR_surjP valLRK. Qed.
Lemma sigLR_bijP (f : U -> V) :
set_bij A B f <->
exists (fAB : {homo f : x / A x >-> B x}),
bijective (sigLR [fun of mkfun fAB]).
Proof.
split=> [[F I S]|[fAB]].
exists F; rewrite -setTT_bijective.
by split; [|apply: in2W; apply/sigLR_injP|apply/sigLR_surjP].
rewrite -setTT_bijective /set_bij.
set g := [fun of mkfun fAB] => -[_ /in2TT I S]; pose h : _ -> _ := g.
rewrite -[f]/h {}/h; move: g => g in I S *.
by split; [apply/image_subP|apply/sigLR_injP|apply/sigLR_surjP].
Qed.
Lemma sigLRfun_bijP f : bijective (sigLR f) <-> set_bij A B f.
Proof.
rewrite sigLR_bijP; split=> [fbij|[fAB]]; [exists funS|];
by rewrite (_ : [fun of _] = f)//; apply/funP.
Qed.
Lemma valLR_bijP f : set_bij A B (valLR f) <-> bijective f.
Proof. by rewrite -sigLRfun_bijP valLRK. Qed.
End Restrictions2.
Lemma subsetP {T} {A B : set T} : {subset A <= B} <-> (A `<=` B).
Proof. by split => + x => /(_ x); rewrite ?inE. Qed.
Section set_bij_basic_lemmas.
Context {aT rT : Type}.
Implicit Types (A : set aT) (B : set rT) (f : aT -> rT).
Lemma eq_set_bijRL A B f g : {in A, f =1 g} -> set_bij A B f -> set_bij A B g.
Proof. by move=> /eq_sigLP + /sigL_bijP => -> /sigL_bijP. Qed.
Lemma eq_set_bijLR A B f g : {in A, f =1 g} -> set_bij A B g -> set_bij A B f.
Proof. by move=> /eq_sigLP + /sigL_bijP => <- /sigL_bijP. Qed.
Lemma eq_set_bij A B f g : {in A, f =1 g} -> set_bij A B f = set_bij A B g.
Proof.
by move=> eqfg; apply/propeqP; split; [apply: eq_set_bijRL | apply: eq_set_bijLR].
Qed.
Lemma bij_omap A B f :
set_bij (some @` A) (some @` B) (omap f) <-> set_bij A B f.
Proof.
split=> [/Pbij[b mapfb]|/Pbij[{}f->//]].
suff -> : f = unbind f (b \o some) :> (_ -> _) by [].
by apply/funext=> x; rewrite -mapfb.
Qed.
Lemma bij_olift A B f : set_bij A (some @` B) (olift f) <-> set_bij A B f.
Proof.
split=> [/Pbij[b liftfb]|/Pbij[{}f->//]].
suff -> : f = unbind f b :> (_ -> _) by [].
by apply/funext=> x; rewrite -liftfb.
Qed.
End set_bij_basic_lemmas.
Lemma bij_sub_sym {aT rT} {A C : set aT} {B D : set rT}
(f : {bij A >-> B}) : C `<=` A -> D `<=` B ->
set_bij D (some @` C) 'oinv_f <-> set_bij C D f.
Proof.
move=> CA DB; gen have oinv_bij : aT rT A C B D CA DB f /
set_bij C D f -> set_bij D (some @` C) 'oinv_f; last first.
split=> bij_oinv; last exact: oinv_bij.
by apply/bij_omap; rewrite -oinvV; apply: oinv_bij => //; apply: image_subset.
move=> /Pbij[fC ffC]; suff /eq_set_bij-> : {in D, 'oinv_f =1 'oinv_fC} by [].
move=> x xD; apply: 'inj_(oapp f x); rewrite ?mem_fun//=.
- by apply/subsetP : x xD.
- by have := mem_set ((image_subset CA) _ ('oinvS_fC (set_mem xD))).
by rewrite oinvK ?ffC ?oinvK// ?(subsetP.2 _ _ xD).
Qed.
Lemma splitbij_sub_sym {aT rT} {A C : set aT} {B D : set rT}
(f : {splitbij A >-> B}) : C `<=` A -> D `<=` B ->
set_bij D C f^-1 <-> set_bij C D f.
Proof. by move=> CA DB; rewrite -bij_sub_sym// -oliftV bij_olift. Qed.
Section set_bij_lemmas.
Context {aT rT : Type}.
Implicit Types (A : set aT) (B : set rT) (f : aT -> rT).
Lemma set_bij00 T U (f : T -> U) : set_bij set0 set0 f.
Proof. by split=> [_ []//|x y|//]; rewrite inE. Qed.
Hint Resolve set_bij00 : core.
Lemma inj_bij A f : {in A &, injective f} -> set_bij A (f @` A) f.
Proof. by move=> /Pinj[{}f->]; apply: 'bij_[fun f in A]. Qed.
Lemma bij_subl A B C D (f : {bij A >-> B}) : C `<=` A -> f @` C = D ->
set_bij C D f.
Proof. by move=> /homo_setP CA <-; split=> // x y /CA + /CA +; apply: inj. Qed.
End set_bij_lemmas.
Section set_bij_lemmas.
Context {aT rT : Type}.
Implicit Types (A : set aT) (B : set rT) (f : aT -> rT).
Lemma bij_subr A B C D (f : {bij A >-> B}) : C = A `&` (f @^-1` D) -> D `<=` B ->
set_bij C D f.
Proof.
move=> -> DB; apply/bij_sub_sym=> //; apply: bij_subl => //=.
by rewrite oinv_sub_image.
Qed.
Lemma bij_sub A B C D (f : {bij A >-> B}) : C `<=` A -> D `<=` B ->
{homo f : x / C x >-> D x} ->
{homo 'oinv_f : x / D x >-> (some @` C) x} ->
set_bij C D f.
Proof.
move=> CA DB fCD fDC; apply: bij_subl => //; apply/seteqP; split.
by apply/image_subP.
move=> y /[dup]/[dup] Dy /DB By /fDC [x Cx]/= xfy; exists x => //; move: xfy.
by case: oinvP => // a Aa _ [->].
Qed.
Lemma splitbij_sub A B C D (f : {splitbij A >-> B}) : C `<=` A -> D `<=` B ->
{homo f : x / C x >-> D x} ->
{homo f^-1 : x / D x >-> C x} ->
set_bij C D f.
Proof.
move=> CA DB /(bij_sub CA DB) /[swap] fDC; apply=> x Dx.
by rewrite -some_inv/=; exists (f^-1 x) => //; apply: fDC.
Qed.
Lemma can2_bij A B (f : {fun A >-> B}) (g : {fun B >-> A}) :
{in A, cancel f g} -> {in B, cancel g f} -> set_bij A B f.
Proof. by move=> /can_in_inj finj /can_surj gK; split => //; apply: gK. Qed.
Lemma bij_sub_setUrl A B B' f : [disjoint B & B'] ->
set_bij A (B `|` B') f -> set_bij (A `\` f @^-1` B') B f.
Proof.
move=> /disj_setPS BB' /Pbij[{}f->]; apply: bij_subr; last exact: subsetUl.
apply/seteqP; split=> x /= [Ax Bfx]; split=> //; first by have [] := 'funS_f Ax.
by move=> B'fx; apply: (BB' (f x)).
Qed.
Lemma bij_sub_setUrr A B B' f : [disjoint B & B'] ->
set_bij A (B `|` B') f -> set_bij (A `\` f @^-1` B) B' f.
Proof. by rewrite setUC disj_set_sym; apply: bij_sub_setUrl. Qed.
Lemma bij_sub_setUll A A' B f : [disjoint A & A'] ->
set_bij (A `|` A') B f -> set_bij A (B `\` f @` A') f.
Proof.
move=> /disj_setPS AA' /Pbij[{}f->].
apply: bij_sub => [|? []//||]; first exact: subsetUl.
move=> x Ax /=; split; first by apply: funS; left.
move=> [y] A'y /inj; rewrite !inE/= =>yx; apply: (AA' x).
by split=> //; rewrite -yx //; [right|left].
move=> z [Bz /= /not_exists2P /contrapT] A'fxz.
case: oinvP=> // x AA'x fxz; exists x => //.
by have := A'fxz x; rewrite fxz => -[|//]; case: AA'x.
Qed.
Lemma bij_sub_setUlr A A' B f : [disjoint A & A'] ->
set_bij (A `|` A') B f -> set_bij A' (B `\` f @` A) f.
Proof. by rewrite setUC disj_set_sym; apply: bij_sub_setUll. Qed.
End set_bij_lemmas.
Lemma bij_II_D1 T n (A : set T) (f : nat -> T) :
set_bij `I_n.+1 A f -> set_bij `I_n (A `\ f n) f.
Proof.
rewrite IIS -image_set1; apply: bij_sub_setUll.
by apply/disj_setPS => i [/= /[swap]->]; rewrite ltnn.
Qed.
Lemma set_bij_comp T1 T2 T3 (A : set T1) (B : set T2) (C : set T3) f g :
set_bij A B f -> set_bij B C g -> set_bij A C (g \o f).
Proof. by move=> /Pbij[{}f->] /Pbij[{}g->]; apply: 'bij_(g \o f). Qed.
Section pointed_inverse.
Context {T U} (dflt : U -> T) (A : set T).
Implicit Types (f : T -> U) (i : {inj A >-> U}).
Definition pinv_ f := ('split_dflt [fun f in A])^-1.
Local Notation pinv := pinv_.
HB.instance Definition _ f := Inv.Build _ _ (pinv f) f.
HB.instance Definition _ f := Fun.on (pinv f).
HB.instance Definition _ f := SplitInjFun.on (pinv f).
HB.instance Definition _ i := SplitBij.on (pinv i).
Lemma pinvK f : {in f @` A, cancel (pinv f) f}.
Proof. exact: 'funK_(pinv f). Qed.
Lemma pinvKV f : {in A &, injective f} -> {in A, cancel f (pinv f)}.
Proof. by move=> /Pinj[{}f->]; apply: funK. Qed.
Lemma injpinv_surj f : {in A &, injective f} ->
set_surj (f @` A) A (pinv f).
Proof. by move=> /Pinj[{}f->]; apply: surj. Qed.
Lemma injpinv_image f : {in A &, injective f} ->
pinv f @` (f @` A) = A.
Proof. by move=> /Pinj[{}f->]; rewrite image_eq. Qed.
Lemma injpinv_bij f : {in A &, injective f} ->
set_bij (f @` A) A (pinv f).
Proof. by move=> /Pinj[{}f->]; apply: bij. Qed.
Lemma surjpK B f : set_surj A B f -> {in B, cancel (pinv f) f}.
Proof. by move=> /homo_setP BfA; move=> x /BfA xfA; rewrite pinvK. Qed.
Lemma surjpinv_image_sub B f : set_surj A B f -> pinv f @` B `<=` A.
Proof. by move=> fsurj; apply: (subset_trans (image_subset fsurj)). Qed.
Lemma surjpinv_inj B f : set_surj A B f -> {in B &, injective (pinv f)}.
Proof. by move=> /homo_setP/sub_in2; apply. Qed.
Lemma surjpinv_bij B f (g := pinv f) : set_surj A B f ->
set_bij B (g @` B) g.
Proof. by move=> f_surj; split=> //; apply: surjpinv_inj. Qed.
Lemma bijpinv_bij B f : set_bij A B f -> set_bij B A (pinv f).
Proof. by move=> /Pbij[{}f->]; have /= := 'bij_(pinv f); rewrite image_eq. Qed.
Section pPbij.
Context {B: set U} {f : T -> U} (fbij : set_bij A B f).
Lemma pPbij_ : {s : {splitbij A >-> B} | f = s}.
Proof.
pose h := [splitbij of 'split_dflt [fun fbij in A]]; have : f = h by [].
by move: h; rewrite /= (image_eq fbij) => h; exists h.
Qed.
End pPbij.
Section pPinj.
Context {f : T -> U} (finj : {in A &, injective f}).
Lemma pPinj_ : {i : {splitinj A >-> U} | f = i}.
Proof.
by move: finj => /Pinj[g ->]; exists [splitinj of 'split_dflt [fun g in A]].
Qed.
End pPinj.
Section injpPfun.
Context {B : set U} {f : {inj A >-> U}} (ffun : {homo f : x / A x >-> B x}).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := SplitInj.copy g ('split_dflt [fun g in A]).
#[local] HB.instance Definition _ := IsFun.Build _ _ _ _ g ffun.
Lemma injpPfun_ : {i : {splitinjfun A >-> B} | f = i :> (_ -> _)}.
Proof. by exists [splitinjfun of g]. Qed.
End injpPfun.
Section funpPinj.
Context {B : set U} {f : {fun A >-> B}} (finj : {in A &, injective f}).
Lemma funpPinj_ : {i : {splitinjfun A >-> B} | f = i :> (_ -> _)}.
Proof. by move: finj 'funS_f => /pPinj_[g ->]/injpPfun_. Qed.
End funpPinj.
End pointed_inverse.
Notation "''pinv_' dflt" := (pinv_ dflt) : form_scope.
Notation pinv := 'pinv_point.
Notation "''pPbij_' dflt" := (pPbij_ dflt) : form_scope.
Notation pPbij := 'pPbij_point.
Notation selfPbij := 'pPbij_id.
Notation "''pPinj_' dflt" := (pPinj_ dflt) : form_scope.
Notation pPinj := 'pPinj_point.
Notation "''injpPfun_' dflt" := (injpPfun_ dflt) : form_scope.
Notation injpPfun := 'injpPfun_point.
Notation "''funpPinj_' dflt" := (funpPinj_ dflt) : form_scope.
Notation funpPinj := 'funpPinj_point.
Section function_space.
Local Open Scope ring_scope.
Import GRing.Theory.
Definition cst {T T' : Type} (x : T') : T -> T' := fun=> x.
Lemma preimage_cst {aT rT : Type} (a : aT) (A : set aT) :
@cst rT _ a @^-1` A = if a \in A then setT else set0.
Proof.
apply/seteqP; rewrite /preimage; split; first by move=> *; rewrite mem_set.
by case: ifPn => [/[!inE] ?//|_]; exact: sub0set.
Qed.
Obligation Tactic := idtac.
Program Definition fct_zmodMixin (T : Type) (M : zmodType) :=
@ZmodMixin (T -> M) \0 (fun f x => - f x) (fun f g => f \+ g) _ _ _ _.
Next Obligation. by move=> T M f g h; rewrite funeqE=> x /=; rewrite addrA. Qed.
Next Obligation. by move=> T M f g; rewrite funeqE=> x /=; rewrite addrC. Qed.
Next Obligation. by move=> T M f; rewrite funeqE=> x /=; rewrite add0r. Qed.
Next Obligation. by move=> T M f; rewrite funeqE=> x /=; rewrite addNr. Qed.
Canonical fct_zmodType T (M : zmodType) := ZmodType (T -> M) (fct_zmodMixin T M).
Program Definition fct_ringMixin (T : pointedType) (M : ringType) :=
@RingMixin [zmodType of T -> M] (cst 1) (fun f g => f \* g)
_ _ _ _ _ _.
Next Obligation. by move=> T M f g h; rewrite funeqE=> x /=; rewrite mulrA. Qed.
Next Obligation. by move=> T M f; rewrite funeqE=> x /=; rewrite mul1r. Qed.
Next Obligation. by move=> T M f; rewrite funeqE=> x /=; rewrite mulr1. Qed.
Next Obligation. by move=> T M f g h; rewrite funeqE=> x/=; rewrite mulrDl. Qed.
Next Obligation. by move=> T M f g h; rewrite funeqE=> x/=; rewrite mulrDr. Qed.
Next Obligation.
by move=> T M ; apply/eqP; rewrite funeqE => /(_ point) /eqP; rewrite oner_eq0.
Qed.
Canonical fct_ringType (T : pointedType) (M : ringType) :=
RingType (T -> M) (fct_ringMixin T M).
Program Canonical fct_comRingType (T : pointedType) (M : comRingType) :=
ComRingType (T -> M) _.
Next Obligation. by move=> T M f g; rewrite funeqE => x/=; rewrite mulrC. Qed.
Program Definition fct_lmodMixin (U : Type) (R : ringType) (V : lmodType R)
:= @LmodMixin R [zmodType of U -> V] (fun k f => k \*: f) _ _ _ _.
Next Obligation. by move=> U R V k f v; rewrite funeqE=> x; exact: scalerA. Qed.
Next Obligation. by move=> U R V f; rewrite funeqE=> x /=; rewrite scale1r. Qed.
Next Obligation.
by move=> U R V f g h; rewrite funeqE => x /=; rewrite scalerDr.
Qed.
Next Obligation.
by move=> U R V f g h; rewrite funeqE => x /=; rewrite scalerDl.
Qed.
Canonical fct_lmodType U (R : ringType) (V : lmodType R) :=
LmodType _ (U -> V) (fct_lmodMixin U V).
Lemma fct_sumE (I T : Type) (M : zmodType) r (P : {pred I}) (f : I -> T -> M)
(x : T) :
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x.
Proof. by elim/big_rec2: _ => //= i y ? Pi <-. Qed.
End function_space.
Section function_space_lemmas.
Local Open Scope ring_scope.
Import GRing.Theory.
Lemma addrfctE (T : Type) (K : zmodType) (f g : T -> K) :
f + g = (fun x => f x + g x).
Proof. by []. Qed.
Lemma opprfctE (T : Type) (K : zmodType) (f : T -> K) : - f = (fun x => - f x).
Proof. by []. Qed.
Lemma mulrfctE (T : pointedType) (K : ringType) (f g : T -> K) :
f * g = (fun x => f x * g x).
Proof. by []. Qed.
Lemma scalrfctE (T : pointedType) (K : ringType) (L : lmodType K)
k (f : T -> L) :
k *: f = (fun x : T => k *: f x).
Proof. by []. Qed.
Lemma cstE (T T': Type) (x : T) : cst x = fun _: T' => x.
Proof. by []. Qed.
Lemma exprfctE (T : pointedType) (K : ringType) (f : T -> K) n :
f ^+ n = (fun x => f x ^+ n).
Proof. by elim: n => [|n h]; rewrite funeqE=> ?; rewrite ?expr0 ?exprS ?h. Qed.
Lemma compE (T1 T2 T3 : Type) (f : T1 -> T2) (g : T2 -> T3) :
g \o f = fun x => g (f x).
Proof. by []. Qed.
Definition fctE :=
(cstE, compE, opprfctE, addrfctE, mulrfctE, scalrfctE, exprfctE).
End function_space_lemmas.
|