Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 51,023 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 |
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect finmap ssralg ssrnum ssrint rat.
From mathcomp Require Import finset.
Require Import boolp mathcomp_extra classical_sets functions.
(******************************************************************************)
(* Cardinality *)
(* *)
(* This file provides an account of cardinality properties of classical sets. *)
(* This includes standard results of set theory such as the Pigeon Hole *)
(* principle, the Cantor-Bernstein Theorem, or lemmas about the cardinal of *)
(* nat, nat * nat, and rat. *)
(* *)
(* Since universe polymorphism is not yet available in our framework, we *)
(* develop a relational theory of cardinals: there is no type for cardinals *)
(* only relations A #<= B and A #= B to compare the cardinals of two sets *)
(* (on two possibly different types). *)
(* *)
(* A #<= B == the cardinal of A is smaller or equal to the one of B *)
(* A #>= B := B #<= A *)
(* A #= B == the cardinal of A is equal to the cardinal of B *)
(* A #!= B := ~~ (A #= B) *)
(* finite_set A == the set A is finite *)
(* := exists n, A #= `I_n *)
(* <-> exists X : {fset T}, A = [set` X] *)
(* <-> ~ ([set: nat] #<= A) *)
(* infinite_set A := ~ finite_set A *)
(* countable A <-> A is countable *)
(* := A #<= [set: nat] *)
(* fset_set A == the finite set corresponding if A : set T is finite, *)
(* set0 otherwise (T : choiceType) *)
(* A.`1 := [fset x.1 | x in A] *)
(* A.`2 := [fset x.2 | x in A] *)
(* {fimfun aT >-> T} == type of functions with a finite image *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Reserved Notation "A '#<=' B" (at level 79, format "A '#<=' B").
Reserved Notation "A '#>=' B" (at level 79, format "A '#>=' B").
Reserved Notation "A '#=' B" (at level 79, format "A '#=' B").
Reserved Notation "A '#!=' B" (at level 79, format "A '#!=' B").
Import Order.Theory GRing.Theory.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Local Open Scope function_scope.
Declare Scope card_scope.
Delimit Scope card_scope with card.
Local Open Scope card_scope.
Definition card_le T U (A : set T) (B : set U) :=
`[< $|{injfun [set: A] >-> [set: B]}| >].
Notation "A '#<=' B" := (card_le A B) : card_scope.
Notation "A '#>=' B" := (card_le B A) (only parsing) : card_scope.
Definition card_eq T U (A : set T) (B : set U) :=
`[< $|{bij [set: A] >-> [set: B]}| >].
Notation "A '#=' B" := (card_eq A B) : card_scope.
Notation "A '#!=' B" := (~~ (card_eq A B)) : card_scope.
Definition finite_set {T} (A : set T) := exists n, A #= `I_n.
Notation infinite_set A := (~ finite_set A).
Lemma injPex {T U} {A : set T} :
$|{inj A >-> U}| <-> exists f : T -> U, set_inj A f.
Proof. by split=> [[f]|[_ /Pinj[f _]]]; first by exists f. Qed.
Lemma surjPex {T U} {A : set T} {B : set U} :
$|{surj A >-> B}| <-> exists f, set_surj A B f.
Proof. by split=> [[f]|[_ /Psurj[f _]]]; first by exists f. Qed.
Lemma bijPex {T U} {A : set T} {B : set U} :
$|{bij A >-> B}| <-> exists f, set_bij A B f.
Proof. by split=> [[f]|[_ /Pbij[f _]]]; first by exists f. Qed.
Lemma surjfunPex {T U} {A : set T} {B : set U} :
$|{surjfun A >-> B}| <-> exists f, B = f @` A.
Proof.
split=> [[f]|[f ->]]; last by squash [fun f in A].
by exists f; apply/seteqP; split=> //; apply: surj.
Qed.
Lemma injfunPex {T U} {A : set T} {B : set U}:
$|{injfun A >-> B}| <-> exists2 f : T -> U, set_fun A B f & set_inj A f.
Proof. by split=> [[f]|[_ /Pfun[? ->] /funPinj[f]]]; [exists f | squash f]. Qed.
Lemma card_leP {T U} {A : set T} {B : set U} :
reflect $|{injfun [set: A] >-> [set: B]}| (A #<= B).
Proof. exact: asboolP. Qed.
Lemma inj_card_le {T U} {A : set T} {B : set U} : {injfun A >-> B} -> (A #<= B).
Proof. by move=> f; apply/card_leP; squash (sigLR f). Qed.
Lemma pcard_leP {T} {U : pointedType} {A : set T} {B : set U} :
reflect $|{injfun A >-> B}| (A #<= B).
Proof.
by apply: (iffP card_leP) => -[f]; [squash (valLR point f) | squash (sigLR f)].
Qed.
Lemma pcard_leTP {T} {U : pointedType} {A : set T} :
reflect $|{inj A >-> U}| (A #<= [set: U]).
Proof.
by apply: (iffP pcard_leP) => -[f]; [squash f | squash ('totalfun_A f)].
Qed.
Lemma pcard_injP {T} {U : pointedType} {A : set T} :
reflect (exists f : T -> U, {in A &, injective f}) (A #<= [set: U]).
Proof. by apply: (iffP pcard_leTP); rewrite injPex. Qed.
Lemma ppcard_leP {T U : pointedType} {A : set T} {B : set U} :
reflect $|{splitinjfun A >-> B}| (A #<= B).
Proof. by apply: (iffP pcard_leP) => -[f]; squash (split f). Qed.
Lemma card_ge0 T U (S : set U) : @set0 T #<= S.
Proof. by apply/card_leP; squash set0fun. Qed.
#[global] Hint Resolve card_ge0 : core.
Lemma card_le0P T U (A : set T) : reflect (A = set0) (A #<= @set0 U).
Proof.
apply: (iffP idP) => [/card_leP[f]|->//].
by rewrite -subset0 => a /mem_set aA; have [x /set_mem] := f (SigSub aA).
Qed.
Lemma card_le0 T U (A : set T) : (A #<= @set0 U) = (A == set0).
Proof. exact/card_le0P/eqP. Qed.
Lemma card_eqP {T U} {A : set T} {B : set U} :
reflect $|{bij [set: A] >-> [set: B]}| (A #= B).
Proof. exact: asboolP. Qed.
Lemma pcard_eq {T U} {A : set T} {B : set U} : {bij A >-> B} -> A #= B.
Proof. by move=> f; apply/card_eqP; squash (sigLR f). Qed.
Lemma pcard_eqP {T} {U : pointedType} {A : set T} {B : set U} :
reflect $| {bij A >-> B} | (A #= B).
Proof.
by apply: (iffP card_eqP) => -[f]; [squash (valLR point f) | squash (sigLR f)].
Qed.
Lemma card_bijP {T U} {A : set T} {B : set U} :
reflect (exists f : A -> B, bijective f) (A #= B).
Proof.
by apply: (iffP card_eqP) => [[f]|[_ /PbijTT[f _]]]; [exists f|squash f].
Qed.
Lemma card_eqVP {T U} {A : set T} {B : set U} :
reflect $|{splitbij [set: A] >-> [set: B]}| (A #= B).
Proof. by apply: (iffP card_bijP) => [[_ /PbijTT[f _]]//|[f]]; exists f. Qed.
Lemma card_set_bijP {T} {U : pointedType} {A : set T} {B : set U} :
reflect (exists f, set_bij A B f) (A #= B).
Proof.
by apply: (iffP pcard_eqP) => [[f]|[_ /Pbij[f _]]]; [exists f|squash f].
Qed.
Lemma ppcard_eqP {T U : pointedType} {A : set T} {B : set U} :
reflect $| {splitbij A >-> B} | (A #= B).
Proof. by apply: (iffP pcard_eqP) => -[f]; [squash (split f)|squash f]. Qed.
Lemma card_eqxx T (A : set T) : A #= A.
Proof. by apply/card_eqP; squash idfun. Qed.
#[global] Hint Resolve card_eqxx : core.
Lemma card_eq00 T U : @set0 T #= @set0 U.
Proof.
apply/card_eqP/squash; apply: @bijection_of_bijective set0fun _.
by exists set0fun => -[x x0]; have := set_mem x0.
Qed.
#[global] Hint Resolve card_eq00 : core.
Section empty1.
Implicit Types (T : emptyType).
Lemma empty_eq0 T : all_equal_to (set0 : set T).
Proof. by move=> X; apply/setF_eq0/no. Qed.
Lemma card_le_emptyl T U (A : set T) (B : set U) : A #<= B.
Proof. by rewrite empty_eq0. Qed.
Lemma card_le_emptyr T U (A : set T) (B : set U) : (B #<= A) = (B == set0).
Proof. by rewrite empty_eq0; apply/idP/eqP=> [/card_le0P|->//]. Qed.
Definition emptyE_subdef := (empty_eq0, card_le_emptyl, card_le_emptyr, eq_opE).
End empty1.
Theorem Cantor_Bernstein T U (A : set T) (B : set U) :
A #<= B -> B #<= A -> A #= B.
Proof.
elim/Ppointed: T => T in A *; first by rewrite !emptyE_subdef => _ ->.
elim/Ppointed: U => U in B *; first by rewrite !emptyE_subdef => ->.
suff {A B} card_eq (A B : set U) : B `<=` A -> A #<= B -> A #= B.
move=> /ppcard_leP[f] /ppcard_leP[g].
have /(_ _)/ppcard_eqP[|h] := card_eq _ _ (fun_image_sub f).
by apply/pcard_leP; squash ([fun f in A] \o g).
by apply/pcard_eqP; squash ((split h)^-1 \o [fun f in A]).
move=> BA /ppcard_leP[u]; have uAB := 'funS_u.
pose C_ := fix C n := if n is n.+1 then u @` C n else A `\` B.
pose C := \bigcup_n C_ n; have CA : C `<=` A.
by move=> + [] => /[swap]; elim=> [|i IH] y _ []// x /IH/uAB/BA + <-; apply.
have uC: {homo u : x / x \in C}.
by move=> x; rewrite !inE => -[i _ Cix]; exists i.+1 => //; exists x.
apply/card_set_bijP; exists (fun x => if x \in C then u x else x); split.
- move=> x Ax; case: ifPn; first by move=> _; apply: uAB.
by move/negP; apply: contra_notP => NBx; rewrite inE; exists 0%N.
- move=> x y xA yA; have := 'inj_u xA yA.
have [xC|] := boolP (x \in C); have [yC|] := boolP (y \in C) => // + _.
by move=> /[swap]<-; rewrite uC// xC.
by move=> /[swap]->; rewrite uC// yC.
- move=> y /[dup] By /BA Ay/=.
case: (boolP (y \in C)); last by exists y; rewrite // ifN.
rewrite inE => -[[|i]/= _ []// x Cix <-]; have Cx : C x by exists i.
by exists x; [exact: CA|rewrite ifT// inE].
Qed.
Lemma card_esym T U (A : set T) (B : set U) : A #= B -> B #= A.
Proof. by move=> /card_eqVP[f]; apply/card_eqP; squash f^-1. Qed.
Lemma card_eq_le T U (A : set T) (B : set U) :
(A #= B) = (A #<= B) && (B #<= A).
Proof.
apply/idP/andP => [/card_eqVP[f]|[]]; last exact: Cantor_Bernstein.
by split; apply/card_leP; [squash f|squash f^-1].
Qed.
Lemma card_eqPle T U (A : set T) (B : set U) :
(A #= B) <-> (A #<= B) /\ (B #<= A).
Proof. by rewrite card_eq_le (rwP andP). Qed.
Lemma card_lexx T (A : set T) : A #<= A.
Proof. by apply/card_leP; squash idfun. Qed.
#[global] Hint Resolve card_lexx : core.
Lemma card_leT T (S : set T) : S #<= [set: T].
Proof. by apply/card_leP; squash (to_setT \o inclT _ \o val). Qed.
Lemma subset_card_le T (A B : set T) : A `<=` B -> A #<= B.
Proof. by move=> AB; apply/card_leP; squash (inclT _ \o subfun AB). Qed.
Lemma card_image_le {T U} (f : T -> U) (A : set T) : f @` A #<= A.
Proof.
elim/Ppointed: T => T in A f *; first by rewrite !emptyE_subdef image_set0.
by apply/pcard_leP; squash (pinv A f).
Qed.
Lemma inj_card_eq {T U} {A} {f : T -> U} : {in A &, injective f} -> f @` A #= A.
Proof. by move=> /inj_bij/pcard_eq/card_esym. Qed.
Arguments inj_card_eq {T U A f}.
Lemma card_some {T} {A : set T} : some @` A #= A.
Proof. exact: inj_card_eq. Qed.
Lemma card_image {T U} {A : set T} (f : {inj A >-> U}) : f @` A #= A.
Proof. exact: inj_card_eq. Qed.
Lemma card_imsub {T U} (A : set T) (f : {inj A >-> U}) X : X `<=` A -> f @` X #= X.
Proof. by move=> XA; rewrite (card_image [inj of f \o incl XA]). Qed.
Lemma card_le_trans (T U V : Type) (B : set U) (A : set T) (C : set V) :
A #<= B -> B #<= C -> A #<= C.
Proof. by move=> /card_leP[f]/card_leP[g]; apply/card_leP; squash (g \o f). Qed.
Lemma card_eq_sym T U (A : set T) (B : set U) : (A #= B) = (B #= A).
Proof. by rewrite !card_eq_le andbC. Qed.
Lemma card_eq_trans T U V (A : set T) (B : set U) (C : set V) :
A #= B -> B #= C -> A #= C.
Proof. by move=> /card_eqP[f]/card_eqP[g]; apply/card_eqP; squash (g \o f). Qed.
Lemma card_le_eql T T' T'' (A : set T) (B : set T') [C : set T''] :
A #= B -> (A #<= C) = (B #<= C).
Proof. by move=> /card_eqPle[*]; apply/idP/idP; apply: card_le_trans. Qed.
Lemma card_le_eqr T T' T'' (A : set T) (B : set T') [C : set T''] :
A #= B -> (C #<= A) = (C #<= B).
Proof. by move=> /card_eqPle[*]; apply/idP/idP => /card_le_trans; apply. Qed.
Lemma card_eql T T' T'' (A : set T) (B : set T') [C : set T''] :
A #= B -> (A #= C) = (B #= C).
Proof. by move=> e; rewrite !card_eq_le (card_le_eql e) (card_le_eqr e). Qed.
Lemma card_eqr T T' T'' (A : set T) (B : set T') [C : set T''] :
A #= B -> (C #= A) = (C #= B).
Proof. by move=> e; rewrite !card_eq_le (card_le_eql e) (card_le_eqr e). Qed.
Lemma card_ge_image {T U V} {A : set T} (f : {inj A >-> U}) X (Y : set V) :
X `<=` A -> (f @` X #<= Y) = (X #<= Y).
Proof. by move=> XA; rewrite (card_le_eql (card_imsub _ _)). Qed.
Lemma card_le_image {T U V} {A : set T} (f : {inj A >-> U}) X (Y : set V) :
X `<=` A -> (Y #<= f @` X) = (Y #<= X).
Proof. by move=> XA; rewrite (card_le_eqr (card_imsub _ _)). Qed.
Lemma card_le_image2 {T U} (A : set T) (f : {inj A >-> U}) X Y :
X `<=` A -> Y `<=` A ->
(f @` X #<= f @` Y) = (X #<= Y).
Proof. by move=> *; rewrite card_ge_image// card_le_image. Qed.
Lemma card_eq_image {T U V} {A : set T} (f : {inj A >-> U}) X (Y : set V) :
X `<=` A -> (f @` X #= Y) = (X #= Y).
Proof. by move=> XA; rewrite (card_eql (card_imsub _ _)). Qed.
Lemma card_eq_imager {T U V} {A : set T} (f : {inj A >-> U}) X (Y : set V) :
X `<=` A -> (Y #= f @` X) = (Y #= X).
Proof. by move=> XA; rewrite (card_eqr (card_imsub _ _)). Qed.
Lemma card_eq_image2 {T U} (A : set T) (f : {inj A >-> U}) X Y :
X `<=` A -> Y `<=` A ->
(f @` X #= f @` Y) = (X #= Y).
Proof. by move=> *; rewrite card_eq_image// card_eq_imager. Qed.
Lemma card_ge_some {T T'} {A : set T} {B : set T'} :
(some @` A #<= B) = (A #<= B).
Proof. by rewrite (card_le_eql card_some). Qed.
Lemma card_le_some {T T'} {A : set T} {B : set T'} :
(A #<= some @` B) = (A #<= B).
Proof. by rewrite (card_le_eqr card_some). Qed.
Lemma card_le_some2 {T T'} {A : set T} {B : set T'} :
(some @` A #<= some @` B) = (A #<= B).
Proof. by rewrite card_ge_some card_le_some. Qed.
Lemma card_eq_somel {T T'} {A : set T} {B : set T'} :
(some @` A #= B) = (A #= B).
Proof. by rewrite (card_eql card_some). Qed.
Lemma card_eq_somer {T T'} {A : set T} {B : set T'} :
(A #= some @` B) = (A #= B).
Proof. by rewrite (card_eqr card_some). Qed.
Lemma card_eq_some2 {T T'} {A : set T} {B : set T'} :
(some @` A #= some @` B) = (A #= B).
Proof. by rewrite card_eq_somel card_eq_somer. Qed.
Lemma card_eq0 {T U} {A : set T} : (A #= @set0 U) = (A == set0).
Proof. by rewrite card_eq_le card_le0 card_ge0 andbT. Qed.
Lemma card_eq_emptyr (T : emptyType) U (A : set T) (B : set U) :
(B #= A) = (B == set0).
Proof. by rewrite empty_eq0; exact: card_eq0. Qed.
Lemma card_eq_emptyl (T : emptyType) U (A : set T) (B : set U) :
(A #= B) = (B == set0).
Proof. by rewrite card_eq_sym card_eq_emptyr. Qed.
Definition emptyE := (emptyE_subdef, card_eq_emptyr, card_eq_emptyl).
Lemma card_setT T (A : set T) : [set: A] #= A.
Proof. by apply/card_esym/card_eqP; squash to_setT. Qed.
#[global] Hint Resolve card_setT : core.
Lemma card_setT_sym T (A : set T) : A #= [set: A].
Proof. exact/card_esym/card_setT. Qed.
#[global] Hint Resolve card_setT : core.
Lemma surj_card_ge {T U} {A : set T} {B : set U} : {surj B >-> A} -> A #<= B.
Proof.
by move=> g; rewrite (card_le_trans (subset_card_le 'surj_g)) ?card_image_le.
Qed.
Arguments surj_card_ge {T U A B} g.
Lemma pcard_surjP {T : pointedType} {U} {A : set T} {B : set U} :
reflect (exists g, set_surj B A g) (A #<= B).
Proof.
apply: (iffP idP) => [|[_ /Psurj[g _]]]; last exact: surj_card_ge.
elim/Ppointed: U => U in B *; first by rewrite ?emptyE => ->; exists any.
by move=> /pcard_leP[f]; exists (pinv A f); apply: subl_surj surj.
Qed.
Lemma pcard_geP {T : pointedType} {U} {A : set T} {B : set U} :
reflect $|{surj B >-> A}| (A #<= B).
Proof. by apply: (iffP pcard_surjP); rewrite surjPex. Qed.
Lemma ocard_geP {T U} {A : set T} {B : set U} :
reflect $|{surj B >-> some @` A}| (A #<= B).
Proof.
by elim/Pchoice: T => T in A *; rewrite -card_ge_some; apply: pcard_geP.
Qed.
Lemma pfcard_geP {T U} {A : set T} {B : set U} :
reflect (A = set0 \/ $|{surjfun B >-> A}|) (A #<= B).
Proof.
apply: (iffP idP); last by move=> [->//|[f]]; apply: surj_card_ge; exact: f.
elim/Ppointed: T => T in A *; first by rewrite !emptyE; left.
elim/Ppointed: U => U in B *; first by rewrite !emptyE => ->; right; squash any.
move=> /pcard_geP[f]; case: (eqVneq A set0); first by left.
move=> /set0P[x Ax]; right; apply/surjfunPex.
exists (fun y => if f y \in A then f y else x).
apply/seteqP; split.
by move=> x' /[dup] /= /'surj_f [y By <-] Afy; exists y; rewrite ?ifT// inE.
by apply/image_subP => y By; case: ifPn; rewrite (inE, notin_set).
Qed.
Lemma card_le_II n m : (`I_n #<= `I_m) = (n <= m)%N.
Proof.
apply/idP/idP=> [/card_leP[f]|?];
last by apply/subset_card_le => k /leq_trans; apply.
by have /leq_card := in2TT 'inj_(IIord \o f \o IIord^-1); rewrite !card_ord.
Qed.
Lemma ocard_eqP {T U} {A : set T} {B : set U} :
reflect $|{bij A >-> some @` B}| (A #= B).
Proof.
elim/Pchoice: U => U in B *.
by rewrite -(card_eqr card_some); exact: (iffP pcard_eqP).
Qed.
Lemma oocard_eqP {T U} {A : set T} {B : set U} :
reflect $|{splitbij some @` A >-> some @` B}| (A #= B).
Proof.
elim/Pchoice: U => U in B *; elim/Pchoice: T => T in A *.
rewrite -(card_eql card_some) -(card_eqr card_some).
exact: (iffP ppcard_eqP).
Qed.
Lemma card_eq_II {n m} : reflect (n = m) (`I_n #= `I_m).
Proof. by rewrite card_eq_le !card_le_II -eqn_leq; apply: eqP. Qed.
Lemma sub_setP {T} {A : set T} (X : set A) : set_val @` X `<=` A.
Proof. by move=> x [/= a Xa <-]; apply: set_valP. Qed.
Arguments sub_setP {T A}.
Arguments image_subset {aT rT} f [A B].
Lemma card_subP T U (A : set T) (B : set U) :
reflect (exists2 C, C #= A & C `<=` B) (A #<= B).
Proof.
apply: (iffP idP) => [/card_leP[f]|[C CA CB]]; last first.
by rewrite -(card_le_eql CA); apply/card_leP; squash (inclT _ \o subfun CB).
exists (set_val @` range f); last exact: (subset_trans (sub_setP _)).
by rewrite ?(card_eql (inj_card_eq _))//; apply: in2W; apply: in2TT; apply: inj.
Qed.
(* remove *)
Lemma pigeonhole m n (f : nat -> nat) : {in `I_m &, injective f} ->
f @` `I_m `<=` `I_n -> (m <= n)%N.
Proof.
move=> /Pinj[{}f->] /subset_card_le.
by rewrite (card_le_eql (inj_card_eq _))// card_le_II.
Qed.
Definition countable T (A : set T) := A #<= @setT nat.
Lemma eq_countable T U (A : set T) (B : set U) :
A #= B -> countable A = countable B.
Proof. by move=> /card_le_eql leA; rewrite /countable leA. Qed.
Lemma countable_setT_countMixin (T : Type) :
countable (@setT T) -> Countable.mixin_of T.
Proof.
by move=> /pcard_leP/unsquash f; exists f 'oinv_f; apply: in1TT 'funoK_f.
Qed.
Lemma countableP (T : countType) (A : set T) : countable A.
Proof. by apply/card_leP; squash (to_setT \o choice.pickle). Qed.
#[global] Hint Resolve countableP : core.
Lemma countable0 T : countable (@set0 T). Proof. exact: card_ge0. Qed.
#[global] Hint Resolve countable0 : core.
Lemma countable_injP T (A : set T) :
reflect (exists f : T -> nat, {in A &, injective f}) (countable A).
Proof. exact: pcard_injP. Qed.
Lemma sub_countable T U (A : set T) (B : set U) : A #<= B ->
countable B -> countable A.
Proof. exact: card_le_trans. Qed.
Lemma finite_setP T (A : set T) : finite_set A <-> exists n, A #= `I_n.
Proof. by []. Qed.
Lemma finite_II n : finite_set `I_n. Proof. by apply/finite_setP; exists n. Qed.
#[global] Hint Resolve finite_II : core.
Lemma card_II {n} : `I_n #= [set: 'I_n].
Proof. by apply/card_esym/pcard_eqP/bijPex; exists val; split. Qed.
Lemma finite_fsetP {T : choiceType} {A : set T} :
finite_set A <-> exists X : {fset T}, A = [set` X].
Proof.
rewrite finite_setP; split=> [[n]|[X {A}->]]; last first.
exists #|{: X}|; rewrite (card_eqr card_II).
by apply/card_eqP; squash (to_setT \o enum_rank \o val_finset).
rewrite (card_eqr card_II) => /card_esym/card_eqVP[f]; pose g := f \o to_setT.
exists [fset val (g i) | i in 'I_n]%fset.
apply/seteqP; split=> [x /mem_set Ax|_ /imfsetP[i _ ->]]; last exact: set_valP.
by apply/imfsetP; exists (g^-1 (SigSub Ax)); rewrite ?[g _]invK//= inE.
Qed.
Lemma finite_subfset {T : choiceType} (X : {fset T}) {A : set T} :
A `<=` [set` X] -> finite_set A.
Proof.
move=> AX; apply/finite_fsetP; exists [fset x in X | x \in A]%fset.
apply/seteqP; split=> x; rewrite /= ?inE; last by move=> /andP[_ /set_mem].
by move=> Ax; rewrite mem_set ?andbT//; apply: AX.
Qed.
Arguments finite_subfset {T} X {A}.
Lemma finite_set0 T : finite_set (set0 : set T).
Proof. by apply/finite_setP; exists 0%N; rewrite II0. Qed.
#[global] Hint Resolve finite_set0 : core.
Lemma finite_seqP {T : eqType} A :
finite_set A <-> exists s : seq T, A = [set` s].
Proof.
elim/eqPchoice: T => T in A *; rewrite finite_fsetP.
split=> [[X ->]|[s ->]]; first by exists X.
by exists [fset x | x in s]%fset; apply/seteqP; split=> x /=; rewrite inE.
Qed.
Lemma finite_seq {T : eqType} (s : seq T) : finite_set [set` s].
Proof. by apply/finite_seqP; exists s. Qed.
#[global] Hint Resolve finite_seq : core.
Lemma finite_fset {T : choiceType} (X : {fset T}) : finite_set [set` X].
Proof. by apply/finite_fsetP; exists X. Qed.
#[global] Hint Resolve finite_fset : core.
Lemma finite_finpred {T : finType} {pT : predType T} (P : pT) :
finite_set [set` P].
Proof.
rewrite finite_seqP; exists (enum P).
by apply/seteqP; split=> x/=; rewrite mem_enum.
Qed.
#[global]
Hint Extern 0 (finite_set [set` _]) => solve [apply: finite_finpred] : core.
Lemma finite_finset {T : finType} {X : set T} : finite_set X.
Proof.
by have -> : X = [set` mem X] by apply/seteqP; split=> x /=; rewrite ?inE.
Qed.
#[global] Hint Resolve finite_finset : core.
Lemma finite_set_countable T (A : set T) : finite_set A -> countable A.
Proof. by move=> /finite_setP[n /eq_countable->]. Qed.
Lemma infiniteP T (A : set T) : infinite_set A <-> [set: nat] #<= A.
Proof.
elim/Ppointed: T => T in A *.
by rewrite !emptyE; split=> // /(congr1 (@^~ 0%N))/=; rewrite propeqE => -[].
split=> [Ainfinite| + /finite_setP[n eqAI]]; last first.
rewrite (card_le_eqr eqAI) => le_nat_n.
suff: `I_n.+1 #<= `I_n by rewrite card_le_II ltnn.
exact: card_le_trans (subset_card_le _) le_nat_n.
have /all_sig2[f Af fX] : forall X : {fset T}, {x | x \in A & x \notin X}.
move=> X; apply/sig2W; apply: contra_notP Ainfinite => nAX; apply/finite_fsetP.
exists [fset x in X | x \in A]%fset; rewrite eqEsubset; split; last first.
by move=> x/=; rewrite !inE => /andP[_]; rewrite inE.
move=> x Ax /=; rewrite !inE/=; apply/andP; split; rewrite ?inE//.
by apply: contra_notT nAX => xNX; exists x; rewrite ?inE.
do [under [forall x : {fset _}, _]eq_forall do rewrite inE] in Af *.
suff [g gE] : exists g : nat -> T,
forall n, g n = f [fset g k | k in iota 0 n]%fset.
have /Pinj[h hE] : {in setT &, injective g}.
move=> i j _ _; apply: contra_eq; wlog lt_ij : i j / (i < j)%N => [hwlog|_].
by case: ltngtP => // ij _; [|rewrite eq_sym];
apply: hwlog=> //; rewrite lt_eqF//.
rewrite [g j]gE; set X := (X in f X); have := fX X.
by apply: contraNneq => <-; apply/imfsetP; exists i => //=; rewrite mem_iota.
have/injPfun[i _] : {homo h : x / setT x >-> A x} by move=> i; rewrite -hE gE.
by apply/pcard_leP; squash i.
pose g := fix g n k := if n isn't n'.+1 then f fset0
else f [fset g n' i | i in iota 0 k]%fset.
exists (fun n => g n n) => n.
suff {n} gn n k : (k <= n)%N -> g n k = f [fset g k k | k in iota 0 k]%fset.
by rewrite gn//; congr f; apply/fsetP => k.
have [m] := ubnP n; elim: m n k => //= m IHm [|n] k /=.
rewrite leqn0 => _ /eqP->/=.
congr f; apply/fsetP => x; rewrite !inE; symmetry.
by apply/imfsetP => /= -[].
rewrite ltnS => ltmn lekSn /=; congr f; apply/fsetP => i.
by apply/imfsetP/imfsetP => /= -[j]; rewrite mem_iota/= => jk ->;
exists j; rewrite ?mem_iota//= ?add0n ?IHm//;
by [rewrite (leq_trans jk)// (leq_trans lekSn)|rewrite -ltnS (leq_trans jk)].
Qed.
Lemma finite_setPn T (A : set T) : finite_set A <-> ~ ([set: nat] #<= A).
Proof. by rewrite -infiniteP notK. Qed.
Lemma card_le_finite T U (A : set T) (B : set U) :
A #<= B -> finite_set B -> finite_set A.
Proof.
by move=> ?; rewrite !finite_setPn; apply: contra_not => /card_le_trans; apply.
Qed.
Lemma sub_finite_set T (A B : set T) : A `<=` B ->
finite_set B -> finite_set A.
Proof. by move=> ?; apply/card_le_finite/subset_card_le. Qed.
Lemma finite_set_leP T (A : set T) : finite_set A <-> exists n, A #<= `I_n.
Proof.
split=> [[n /card_eqPle[]]|[n leAn]]; first by exists n.
by apply: card_le_finite leAn _; exists n.
Qed.
Lemma card_ge_preimage {T U} (B : set U) (f : T -> U) :
{in f @^-1` B &, injective f} -> f @^-1` B #<= B.
Proof.
move=> /Pinj[g eqg]; rewrite -(card_le_eql (card_image g)) -eqg.
by apply: subset_card_le; apply: image_preimage_subset.
Qed.
Corollary finite_preimage {T U} (B : set U) (f : T -> U) :
{in f @^-1` B &, injective f} -> finite_set B -> finite_set (f @^-1` B).
Proof. by move=> /card_ge_preimage fB; apply: card_le_finite. Qed.
Lemma eq_finite_set T U (A : set T) (B : set U) :
A #= B -> finite_set A = finite_set B.
Proof.
move=> eqAB; apply/propeqP.
by split=> -[n Xn]; exists n; move: Xn; rewrite (card_eql eqAB).
Qed.
Lemma card_le_setD T (A B : set T) : A `\` B #<= A.
Proof. by apply: subset_card_le; rewrite setDE; apply: subIset; left. Qed.
Lemma finite_image T T' A (f : T -> T') : finite_set A -> finite_set (f @` A).
Proof. exact/card_le_finite/card_image_le. Qed.
Lemma finite_set1 T (x : T) : finite_set [set x].
Proof.
elim/Pchoice: T => T in x *.
by apply/finite_fsetP; exists (fset1 x); rewrite set_fset1.
Qed.
#[global] Hint Resolve finite_set1 : core.
Lemma finite_setD T (A B : set T) : finite_set A -> finite_set (A `\` B).
Proof. exact/card_le_finite/card_le_setD. Qed.
Lemma finite_setU T (A B : set T) :
finite_set (A `|` B) = (finite_set A /\ finite_set B).
Proof.
pose fP := @finite_fsetP [choiceType of {classic T}]; rewrite propeqE; split.
by move=> finAUB; split; apply: sub_finite_set finAUB.
by case=> /fP[X->]/fP[Y->]; apply/fP; exists (X `|` Y)%fset; rewrite set_fsetU.
Qed.
Lemma finite_set2 T (x y : T) : finite_set [set x; y].
Proof. by rewrite !finite_setU; split; apply: finite_set1. Qed.
#[global] Hint Resolve finite_set2 : core.
Lemma finite_set3 T (x y z : T) : finite_set [set x; y; z].
Proof. by rewrite !finite_setU; do !split; apply: finite_set1. Qed.
#[global] Hint Resolve finite_set3 : core.
Lemma finite_set4 T (x y z t : T) : finite_set [set x; y; z; t].
Proof. by rewrite !finite_setU; do !split; apply: finite_set1. Qed.
#[global] Hint Resolve finite_set4 : core.
Lemma finite_set5 T (x y z t u : T) : finite_set [set x; y; z; t; u].
Proof. by rewrite !finite_setU; do !split; apply: finite_set1. Qed.
#[global] Hint Resolve finite_set5 : core.
Lemma finite_set6 T (x y z t u v : T) : finite_set [set x; y; z; t; u; v].
Proof. by rewrite !finite_setU; do !split; apply: finite_set1. Qed.
#[global] Hint Resolve finite_set6 : core.
Lemma finite_set7 T (x y z t u v w : T) : finite_set [set x; y; z; t; u; v; w].
Proof. by rewrite !finite_setU; do !split; apply: finite_set1. Qed.
#[global] Hint Resolve finite_set7 : core.
Lemma finite_setI T (A B : set T) :
(finite_set A \/ finite_set B) -> finite_set (A `&` B).
Proof.
by case; apply: contraPP; rewrite !infiniteP => /card_le_trans; apply;
apply: subset_card_le.
Qed.
Lemma finite_setIl T (A B : set T) : finite_set A -> finite_set (A `&` B).
Proof. by move=> ?; apply: finite_setI; left. Qed.
Lemma finite_setIr T (A B : set T) : finite_set B -> finite_set (A `&` B).
Proof. by move=> ?; apply: finite_setI; right. Qed.
Lemma finite_setM T T' (A : set T) (B : set T') :
finite_set A -> finite_set B -> finite_set (A `*` B).
Proof.
elim/Pchoice: T => T in A *; elim/Pchoice: T' => T' in B *.
move=> /finite_fsetP[{}A ->] /finite_fsetP[{}B ->].
apply/finite_fsetP; exists (A `*` B)%fset; apply/predeqP => x.
by split; rewrite /= inE => /andP.
Qed.
Lemma finite_image2 [aT bT rT : Type] [A : set aT] [B : set bT] (f : aT -> bT -> rT) :
finite_set A -> finite_set B -> finite_set [set f x y | x in A & y in B]%classic.
Proof. by move=> fA fB; rewrite image2E; apply/finite_image/finite_setM. Qed.
Lemma finite_image11 [xT aT bT rT : Type] [X : set xT]
(g : aT -> bT -> rT) (fa : xT -> aT) (fb : xT -> bT) :
finite_set (fa @` X) -> finite_set (fb @` X) ->
finite_set [set g (fa x) (fb x) | x in X]%classic.
Proof.
move=> /(finite_image2 g) /[apply]; apply: sub_finite_set; rewrite image2E.
by move=> r/= [x Xx <-]; exists (fa x, fb x) => //; split; exists x.
Qed.
Definition fset_set (T : choiceType) (A : set T) :=
if pselect (finite_set A) is left Afin
then projT1 (cid (finite_fsetP.1 Afin)) else fset0.
Lemma fset_setK (T : choiceType) (A : set T) : finite_set A ->
[set` fset_set A] = A.
Proof. by rewrite /fset_set; case: pselect => // Afin _; case: cid. Qed.
Lemma in_fset_set (T : choiceType) (A : set T) : finite_set A ->
fset_set A =i A.
Proof.
by move=> fA x; rewrite -[A in RHS]fset_setK//; apply/idP/idP; rewrite ?inE.
Qed.
Lemma fset_set_sub (T : choiceType) (A B : set T) :
finite_set A -> finite_set B -> A `<=` B = (fset_set A `<=` fset_set B)%fset.
Proof.
move=> finA finB; apply/propext; split=> [AB|/fsubsetP AB t].
by apply/fsubsetP => t; rewrite in_fset_set// in_fset_set// 2!inE => /AB.
by have := AB t; rewrite !in_fset_set// !inE.
Qed.
Lemma fset_set_set0 (T : choiceType) (A : set T) : finite_set A ->
fset_set A = fset0 -> A = set0.
Proof.
move=> finA; rewrite /fset_set; case: pselect => // {}finA.
by case: cid => _/= -> ->; rewrite set_fset0.
Qed.
Lemma fset_set0 {T : choiceType} : fset_set (set0 : set T) = fset0.
Proof.
by apply/fsetP=> x; rewrite in_fset_set ?inE//; apply/negP; rewrite inE.
Qed.
Lemma fset_set1 {T : choiceType} (x : T) : fset_set [set x] = [fset x]%fset.
Proof.
apply/fsetP=> y; rewrite in_fset_set ?inE//.
by apply/idP/idP; rewrite inE => /eqP.
Qed.
Lemma fset_setU {T : choiceType} (A B : set T) :
finite_set A -> finite_set B ->
fset_set (A `|` B) = (fset_set A `|` fset_set B)%fset.
Proof.
move=> fA fB; apply/fsetP=> x.
rewrite ?(inE, in_fset_set)//; last by rewrite finite_setU.
by apply/idP/orP; rewrite ?inE.
Qed.
Lemma fset_setI {T : choiceType} (A B : set T) :
finite_set A -> finite_set B ->
fset_set (A `&` B) = (fset_set A `&` fset_set B)%fset.
Proof.
move=> fA fB; apply/fsetP=> x.
rewrite ?(inE, in_fset_set)//; last by apply: finite_setI; left.
by apply/idP/andP; rewrite ?inE.
Qed.
Lemma fset_setU1 {T : choiceType} (x : T) (A : set T) :
finite_set A -> fset_set (x |` A) = (x |` fset_set A)%fset.
Proof. by move=> fA; rewrite fset_setU// fset_set1. Qed.
Lemma fset_setD {T : choiceType} (A B : set T) :
finite_set A -> finite_set B ->
fset_set (A `\` B) = (fset_set A `\` fset_set B)%fset.
Proof.
move=> fA fB; apply/fsetP=> x.
rewrite ?(inE, in_fset_set)//; last exact: finite_setD.
by apply/idP/andP; rewrite ?inE => -[]; rewrite ?notin_set.
Qed.
Lemma fset_setD1 {T : choiceType} (x : T) (A : set T) :
finite_set A -> fset_set (A `\ x) = (fset_set A `\ x)%fset.
Proof. by move=> fA; rewrite fset_setD// fset_set1. Qed.
Lemma fset_setM {T1 T2 : choiceType} (A : set T1) (B : set T2) :
finite_set A -> finite_set B ->
fset_set (A `*` B) = (fset_set A `*` fset_set B)%fset.
Proof.
move=> Afin Bfin; have ABfin : finite_set (A `*` B) by apply: finite_setM.
apply/fsetP => i; apply/idP/idP; rewrite !(inE, in_fset_set)//=.
by move=> [/mem_set-> /mem_set->].
by move=> /andP[]; rewrite !inE.
Qed.
Definition fst_fset (T1 T2 : choiceType) (A : {fset (T1 * T2)}) : {fset T1} :=
[fset x.1 | x in A]%fset.
Definition snd_fset (T1 T2 : choiceType) (A : {fset (T1 * T2)}) : {fset T2} :=
[fset x.2 | x in A]%fset.
Notation "A .`1" := (fst_fset A) : fset_scope.
Notation "A .`2" := (snd_fset A) : fset_scope.
Lemma finite_set_fst (T1 T2 : choiceType) (A : set (T1 * T2)) :
finite_set A -> finite_set A.`1.
Proof.
move=> /finite_fsetP[B A_B]; apply/finite_fsetP; exists (B.`1)%fset.
by apply/seteqP; split=> [x/= [y]|_/= /imfsetP[[x1 x2]/= +] ->]; rewrite A_B;
[move=> xyB; apply/imfsetP; exists (x, y)|move=> ?; exists x2].
Qed.
Lemma finite_set_snd (T1 T2 : choiceType) (A : set (T1 * T2)) :
finite_set A -> finite_set A.`2.
Proof.
move=> /finite_fsetP[B A_B]; apply/finite_fsetP; exists (B.`2)%fset.
apply/seteqP; split=> [y/= [x]|_/= /imfsetP[[x1 x2]/= +] ->]; rewrite A_B;
by [move=> xyB; apply/imfsetP; exists (x, y)|move=> ?; exists x1].
Qed.
Lemma bigcup_finite {I T} (D : set I) (F : I -> set T) :
finite_set D -> (forall i, D i -> finite_set (F i)) ->
finite_set (\bigcup_(i in D) F i).
Proof.
elim/Pchoice: I => I in D F *.
elim/Ppointed: T => T in F *; first by rewrite emptyE.
move=> Dfin Ffin; pose G (i : fset_set D) := fset_set (F (val i)).
suff: (\bigcup_(i in D) F i #<= [set: {i & G i}])%card.
by move=> /card_le_finite; apply; apply: finite_finset.
apply/pcard_geP/surjPex.
exists (fun (k : {i : fset_set D & G i}) => val (projT2 k)).
move=> y [i Di Fky]/=.
have Dk : i \in fset_set D by rewrite in_fset_set// inE.
pose k : fset_set D := [` Dk]%fset.
have Gy : y \in G k by rewrite in_fset_set ?inE//; apply: Ffin.
by exists (Tagged G [` Gy]%fset).
Qed.
Lemma trivIset_sum_card (T : choiceType) (F : nat -> set T) n :
(forall n, finite_set (F n)) -> trivIset [set: nat] F ->
(\sum_(i < n) #|` fset_set (F i)| =
#|` fset_set (\big[setU/set0]_(k < n) F k)|)%N.
Proof.
move=> finF tF; elim: n => [|n ih]; first by rewrite !big_ord0 fset_set0.
rewrite big_ord_recr//= ih big_ord_recr/= fset_setU//; last first.
by rewrite -bigcup_mkord; exact: bigcup_finite.
rewrite cardfsU [X in (_ - X)%N](_ : _ = O) ?subn0// ?EFinD ?natrD//.
apply/eqP; rewrite cardfs_eq0 -fset_setI//; last first.
by rewrite -bigcup_mkord; exact: bigcup_finite.
rewrite (@trivIset_bigsetUI _ xpredT)// ?fset_set0//.
by rewrite [X in trivIset X F](_ : _ = [set: nat])//; exact/seteqP.
Qed.
Lemma finite_setMR (T T' : choiceType) (A : set T) (B : T -> set T') :
finite_set A -> (forall x, A x -> finite_set (B x)) -> finite_set (A `*`` B).
Proof.
move=> Afin Bfin; rewrite -bigcupM1l.
by apply: bigcup_finite => // i Ai; apply/finite_setM/Bfin.
Qed.
Lemma finite_setML (T T' : choiceType) (A : T' -> set T) (B : set T') :
(forall x, B x -> finite_set (A x)) -> finite_set B -> finite_set (A ``*` B).
Proof.
move=> Afin Bfin; rewrite -bigcupM1r.
by apply: bigcup_finite => // i Ai; apply/finite_setM=> //; apply: Afin.
Qed.
Lemma fset_set_II n : fset_set `I_n = [fset val i | i in 'I_n]%fset.
Proof.
apply/fsetP => i; rewrite /= ?inE in_fset_set//.
apply/idP/imfsetP; rewrite ?inE/=.
by move=> lt_in; exists (Ordinal lt_in).
by move=> [j _ ->].
Qed.
Lemma set_fsetK (T : choiceType) (A : {fset T}) : fset_set [set` A] = A.
Proof.
apply/fsetP => x; rewrite in_fset_set//=.
by apply/idP/idP; rewrite ?inE.
Qed.
Lemma fset_set_image {T U : choiceType} (f : T -> U) (A : set T) :
finite_set A -> fset_set (f @` A) = (f @` fset_set A)%fset.
Proof.
move=> Afset; apply/fsetP=> i.
rewrite !in_fset_set; last exact: finite_image.
apply/idP/imfsetP; rewrite !inE/=.
by move=> [x Ax <-]; exists x; rewrite ?in_fset_set ?inE.
by move=> [x + ->]; rewrite in_fset_set// inE; exists x.
Qed.
Lemma fset_set_inj {T : choiceType} (A B : set T) :
finite_set A -> finite_set B -> fset_set A = fset_set B -> A = B.
Proof. by move=> Afin Bfin /(congr1 pred_set); rewrite !fset_setK. Qed.
Lemma bigsetU_fset_set T (I : choiceType) (A : set I) (F : I -> set T) :
finite_set A -> \big[setU/set0]_(i <- fset_set A) F i =\bigcup_(i in A) F i.
Proof.
move=> finA; rewrite -bigcup_fset /fset_set; case: pselect => [{}finA|//].
apply/seteqP; split=> [x [i /=]|x [i Ai Fix]].
by case: cid => /= B -> iB Fix; exists i.
by exists i => //; case: cid => // B AB /=; move: Ai; rewrite AB.
Qed.
#[deprecated(note="Use -bigsetU_fset_set instead")]
Lemma bigcup_fset_set T (I : choiceType) (A : set I) (F : I -> set T) :
finite_set A -> \bigcup_(i in A) F i = \big[setU/set0]_(i <- fset_set A) F i.
Proof. by move=> /bigsetU_fset_set->. Qed.
Lemma bigsetU_fset_set_cond T (I : choiceType) (A : set I) (F : I -> set T)
(P : pred I) : finite_set A ->
\big[setU/set0]_(i <- fset_set A | P i) F i = \bigcup_(i in A `&` P) F i.
Proof.
by move=> *; rewrite bigcup_mkcondr big_mkcond -bigcup_fset_set ?mem_setE.
Qed.
#[deprecated(note="Use -bigsetU_fset_set_cond instead")]
Lemma bigcup_fset_set_cond T (I : choiceType) (A : set I) (F : I -> set T)
(P : pred I) : finite_set A ->
\bigcup_(i in A `&` P) F i = \big[setU/set0]_(i <- fset_set A | P i) F i.
Proof. by move=> /bigsetU_fset_set_cond->. Qed.
Lemma bigsetI_fset_set T (I : choiceType) (A : set I) (F : I -> set T) :
finite_set A -> \big[setI/setT]_(i <- fset_set A) F i =\bigcap_(i in A) F i.
Proof.
by move=> *; apply: setC_inj; rewrite setC_bigcap setC_bigsetI bigsetU_fset_set.
Qed.
#[deprecated(note="Use -bigsetI_fset_set instead")]
Lemma bigcap_fset_set T (I : choiceType) (A : set I) (F : I -> set T) :
finite_set A -> \bigcap_(i in A) F i = \big[setI/setT]_(i <- fset_set A) F i.
Proof. by move=> /bigsetI_fset_set->. Qed.
Lemma bigsetI_fset_set_cond T (I : choiceType) (A : set I) (F : I -> set T)
(P : pred I) : finite_set A ->
\big[setI/setT]_(i <- fset_set A | P i) F i = \bigcap_(i in A `&` P) F i.
Proof.
by move=> *; rewrite bigcap_mkcondr big_mkcond -bigcap_fset_set ?mem_setE.
Qed.
Lemma super_bij T U (X A : set T) (Y B : set U) (f : {bij X >-> Y}) :
X `<=` A -> Y `<=` B -> A `\` X #= B `\` Y ->
exists g : {bij A >-> B}, {in X, g =1 f}.
Proof.
elim/Ppointed: U => U in Y B f *.
rewrite !emptyE in f * => XA _; rewrite setD_eq0 => AX.
by suff /seteqP->// : A `<=>` X by exists f.
move=> XA YB /pcard_eqP[g].
rewrite -(joinIB X A) -(joinIB Y B) !meetEset.
have /disj_set2P AX : (A `&` X) `&` (A `\` X) = set0 by apply: meetIB.
have /disj_set2P BY : (B `&` Y) `&` (B `\` Y) = set0 by apply: meetIB.
rewrite !(setIidr XA) !(setIidr YB) in AX BY *.
by exists [bij of glue AX BY f g] => x /= xX; rewrite glue1.
Qed.
Lemma card_eq_fsetP {T : choiceType} {A : {fset T}} {n} :
reflect (#|` A| = n) ([set` A] #= `I_n).
Proof.
elim/choicePpointed: T => T in A *.
rewrite -{1}[A]set_fsetK !emptyE fset_set0 cardfs0.
by apply: (iffP eqP) => [/IIn_eq0->//|<-]; rewrite II0.
rewrite (card_eqr card_II) card_eq_sym.
apply: (iffP pcard_eqP) => [[f]|]; last first.
rewrite cardfE => eqAn.
by squash (set_val \o finset_val \o enum_val \o cast_ord (esym eqAn)).
suff -> : A = [fset f i | i in 'I_n]%fset by rewrite card_imfset ?size_enum_ord.
apply/fsetP => x; apply/idP/imfsetP => /= [xA|[i _ ->]].
by have [i _ <-] := 'surj_f xA; exists i.
by have /(_ i I) := 'funS_f.
Qed.
Lemma card_fset_set {T : choiceType} (A : set T) n :
A #= `I_n -> #|`fset_set A| = n.
Proof.
move=> An; apply/card_eq_fsetP; rewrite fset_setK//.
by apply/finite_setP; exists n.
Qed.
Lemma geq_card_fset_set {T : choiceType} (A : set T) n :
A #<= `I_n -> (#|`fset_set A| <= n)%N.
Proof.
move=> An; have /finite_setP[m Am] : finite_set A
by apply/finite_set_leP; exists n.
by rewrite (card_fset_set Am) -card_le_II -(card_le_eql Am).
Qed.
Lemma leq_card_fset_set {T : choiceType} (A : set T) n :
finite_set A -> A #>= `I_n -> (#|`fset_set A| >= n)%N.
Proof.
move=> /finite_setP[m Am]; rewrite (card_fset_set Am).
by rewrite (card_le_eqr Am) card_le_II.
Qed.
Lemma infinite_set_fset {T : choiceType} (A : set T) (n : nat) :
infinite_set A ->
exists2 B : {fset T}, [set` B] `<=` A & (#|` B| >= n)%N.
Proof.
elim/choicePpointed: T => T in A *; first by rewrite emptyE.
move=> /infiniteP/ppcard_leP[f]; exists (fset_set [set f i | i in `I_n]).
rewrite fset_setK//; last exact: finite_image.
by apply: subset_trans (fun_image_sub f); apply: image_subset.
rewrite fset_set_image// card_imfset//= fset_set_II/=.
by rewrite card_imfset//= ?size_enum_ord//; apply: val_inj.
Qed.
Lemma infinite_set_fsetP {T : choiceType} (A : set T) :
infinite_set A <->
forall n, exists2 B : {fset T}, [set` B] `<=` A & (#|` B| >= n)%N.
Proof.
split; first by move=> ? ?; apply: infinite_set_fset.
elim/choicePpointed: T => T in A *.
move=> /(_ 1%N)[B _]; rewrite cardfs_gt0 => /fset0Pn[x xB].
by have: [set` B] x by []; rewrite emptyE.
move=> Bge /finite_setP[n An]; have [B BA] := Bge n.+1.
apply/negP; rewrite -leqNgt -(card_fset_set An) fsubset_leq_card//.
apply/fsubsetP => x /BA; rewrite in_fset_set ?inE//.
by apply/finite_setP; exists n.
Qed.
Lemma fcard_eq {T T' : choiceType} (A : set T) (B : set T') :
finite_set A -> finite_set B ->
reflect (#|`fset_set A| = #|`fset_set B|) (A #= B).
Proof.
move=> /finite_setP/cid[n An] /finite_setP/cid[m Bm].
rewrite (card_fset_set An) (card_fset_set Bm).
by rewrite (card_eql An) (card_eqr Bm); apply: card_eq_II.
Qed.
Lemma card_IID {n k} : `I_n `\` `I_k #= `I_(n - k)%N.
Proof.
apply/fcard_eq => //; first exact: finite_setD.
rewrite fset_setD//= cardfsD/= -fset_setI// setI_II.
rewrite !fset_set_II !card_imfset// /= !size_enum_ord.
by case: leqP; rewrite // subnn => /eqP->.
Qed.
Lemma finite_set_bij T (A : set T) n S : A != set0 ->
A #= `I_n -> S `<=` A ->
exists (f : {bij `I_n >-> A}) k, (k <= n)%N /\ `I_n `&` (f @^-1` S) = `I_k.
Proof.
elim/Ppointed: T => T in A S *; first by rewrite !emptyE eqxx.
move=> AN0 An SA; have [k kn Sk] : exists2 k, (k <= n)%N & S #= `I_k.
have /finite_setP[k Sk]: finite_set S by apply: sub_finite_set SA _; exists n.
exists k => //; rewrite -card_le_II.
by rewrite -(card_le_eqr An) -(card_le_eql Sk); apply: subset_card_le.
have /card_esym/ppcard_eqP[f] := Sk.
have eqAS : A `\` S #= `I_n `\` `I_k.
have An' := An; have Sk' := Sk.
do [have /finite_fsetP[{An'}A ->] : finite_set A by exists n] in An AN0 SA *.
do [have /finite_fsetP[{Sk'}S ->] : finite_set S by exists k] in Sk f SA *.
have [/card_eq_fsetP {}An /card_eq_fsetP {}Sk] := (An, Sk).
rewrite -set_fsetD (card_eqr card_IID); apply/card_eq_fsetP.
by rewrite cardfsD (fsetIidPr _) ?An ?Sk //; apply/fsubsetP.
case: (super_bij [bij of f^-1] SA _ eqAS) => [x /= /leq_trans->// | g].
have [{}g ->] := pPbij 'bij_g => /= gE.
exists [bij of g^-1], k; split=> //=; rewrite -inv_sub_image //= invV.
by under eq_imagel do rewrite /= gE ?inE//; rewrite image_eq.
Qed.
#[deprecated(note="use countable0 instead")]
Notation countable_set0 := countable0.
Lemma countable1 T (x : T) : countable [set x].
Proof. exact: finite_set_countable. Qed.
#[global] Hint Resolve countable1 : core.
Lemma countable_fset (T : choiceType) (X : {fset T}) : countable [set` X].
Proof. exact: finite_set_countable. Qed.
#[global] Hint Resolve countable_fset : core.
Lemma countable_finpred (T : finType) (pT : predType T) (P : pT) : countable [set` P].
Proof. exact: finite_set_countable. Qed.
#[global] Hint Extern 0 (is_true (countable [set` _])) => solve [apply: countable_finpred] : core.
Lemma eq_card_nat T (A : set T):
countable A -> ~ finite_set A -> A #= [set: nat].
Proof. by move=> Acnt /infiniteP leNA; rewrite card_eq_le leNA andbT. Qed.
Lemma infinite_nat : ~ finite_set [set: nat].
Proof. exact/infiniteP/card_lexx. Qed.
Lemma infinite_prod_nat : infinite_set [set: nat * nat].
Proof.
by apply/infiniteP/pcard_leTP/injPex; exists (pair 0%N) => // m n _ _ [].
Qed.
Lemma card_nat2 : [set: nat * nat] #= [set: nat].
Proof. exact/eq_card_nat/infinite_prod_nat/countableP. Qed.
Canonical rat_pointedType := PointedType rat 0.
Lemma infinite_rat : infinite_set [set: rat].
Proof.
apply/infiniteP/pcard_leTP/injPex; exists (GRing.natmul 1) => // m n _ _.
exact/Num.Theory.mulrIn/oner_neq0.
Qed.
Lemma card_rat : [set: rat] #= [set: nat].
Proof. exact/eq_card_nat/infinite_rat/countableP. Qed.
Lemma choicePcountable {T : choiceType} : countable [set: T] ->
{T' : countType | T = T' :> Type}.
Proof.
move=> /pcard_leP/unsquash f.
by exists (CountType T (CountMixin (in1TT 'funoK_f))).
Qed.
Lemma eqPcountable {T : eqType} : countable [set: T] ->
{T' : countType | T = T' :> Type}.
Proof. by elim/eqPchoice: T => T /choicePcountable. Qed.
Lemma Pcountable {T : Type} : countable [set: T] ->
{T' : countType | T = T' :> Type}.
Proof. by elim/Pchoice: T => T /choicePcountable. Qed.
Lemma bigcup_countable {I T} (D : set I) (F : I -> set T) :
countable D -> (forall i, D i -> countable (F i)) ->
countable (\bigcup_(i in D) F i).
Proof.
elim/Ppointed: T => T in F *; first by rewrite emptyE.
rewrite -(eq_countable (card_setT _)) => cD cF; rewrite bigcup_set_type.
set G := (fun i : D => F (val i)).
have {cF}cG i : countable (G i) by apply: cF; apply: set_valP.
move: (D : Type) cD G cG => {F I}_ /Pcountable[{}D ->] G cG.
suff: (\bigcup_i G i #<= [set: {i & G i}])%card.
have cGT i : countable [set: G i] by rewrite (eq_countable (card_setT _)).
have /all_sig[H GE] := fun i => Pcountable (cGT i).
by move=> /sub_countable->//; rewrite (eq_fun GE).
apply/pcard_geP/surjPex; exists (fun (k : {i & G i}) => val (projT2 k)).
by move=> x [i _] Gix/=; exists (Tagged G (SigSub (mem_set Gix))).
Qed.
Lemma countableMR T T' (A : set T) (B : T -> set T') :
countable A -> (forall i, A i -> countable (B i)) -> countable (A `*`` B).
Proof.
elim/Ppointed: T => T in A B *; first by rewrite emptyE -bigcupM1l bigcup_set0.
elim/Ppointed: T' => T' in B *.
by rewrite -bigcupM1l bigcup0// => i; rewrite emptyE setM0.
move=> Ac Bc; rewrite -bigcupM1l bigcup_countable// => i Ai.
have /ppcard_leP[f] := Bc i Ai; apply/pcard_geP/surjPex.
exists (fun k => (i, f^-1%FUN k)) => -[_ j]/= [-> dj].
by exists (f j) => //=; rewrite funK ?inE.
Qed.
Lemma countableM T1 T2 (D1 : set T1) (D2 : set T2) :
countable D1 -> countable D2 -> countable (D1 `*` D2).
Proof. by move=> D1c D2c; apply: countableMR (fun _ _ => D2c). Qed.
Lemma countableML T T' (A : T' -> set T) (B : set T') :
countable B -> (forall i, B i -> countable (A i)) -> countable (A ``*` B).
Proof.
move=> Bc Ac; rewrite -bigcupM1r; apply: bigcup_countable => // i Bi.
by apply: countableM => //; apply: Ac.
Qed.
Lemma infiniteMRl T T' (A : set T) (B : T -> set T') :
infinite_set A -> (forall i, B i !=set0) -> infinite_set (A `*`` B).
Proof.
move=> /infiniteP/pcard_geP[f] /(_ _)/cid-/all_sig[b Bb].
apply/infiniteP/pcard_geP/surjPex; exists (fun x => f x.1).
by move=> i iT; have [a Aa fa] := 'oinvP_f iT; exists (a, b a) => /=.
Qed.
Lemma cardMR_eq_nat T T' (A : set T) (B : T -> set T') :
(A #= [set: nat] -> (forall i, countable (B i) /\ B i !=set0) ->
A `*`` B #= [set: nat])%card.
Proof.
rewrite !card_eq_le => /andP[Acnt /infiniteP Ainfty] /all_and2[Bcnt Bn0].
by rewrite [(_ #<= _)%card]countableMR//=; apply/infiniteP/infiniteMRl.
Qed.
HB.mixin Record FiniteImage aT rT (f : aT -> rT) := {
fimfunP : finite_set (range f)
}.
HB.structure Definition FImFun aT rT := {f of @FiniteImage aT rT f}.
Reserved Notation "{ 'fimfun' aT >-> T }"
(at level 0, format "{ 'fimfun' aT >-> T }").
Reserved Notation "[ 'fimfun' 'of' f ]"
(at level 0, format "[ 'fimfun' 'of' f ]").
Notation "{ 'fimfun' aT >-> T }" := (@FImFun.type aT T) : form_scope.
Notation "[ 'fimfun' 'of' f ]" := [the {fimfun _ >-> _} of f] : form_scope.
#[global] Hint Resolve fimfunP : core.
Lemma fimfun_inP {aT rT} (f : {fimfun aT >-> rT}) (D : set aT) :
finite_set (f @` D).
Proof. by apply: (@sub_finite_set _ _ (range f)) => // y [x]; exists x. Qed.
#[global] Hint Resolve fimfun_inP : core.
Section fimfun_pred.
Context {aT rT : Type}.
Definition fimfun : {pred aT -> rT} := mem [set f | finite_set (range f)].
Definition fimfun_key : pred_key fimfun.
Proof. exact. Qed.
Canonical fimfun_keyed := KeyedPred fimfun_key.
End fimfun_pred.
Section fimfun.
Context {aT rT : Type}.
Notation T := {fimfun aT >-> rT}.
Notation fimfun := (@fimfun aT rT).
Section Sub.
Context (f : aT -> rT) (fP : f \in fimfun).
Definition fimfun_Sub_subproof := @FiniteImage.Build aT rT f (set_mem fP).
#[local] HB.instance Definition _ := fimfun_Sub_subproof.
Definition fimfun_Sub := [fimfun of f].
End Sub.
Lemma fimfun_rect (K : T -> Type) :
(forall f (Pf : f \in fimfun), K (fimfun_Sub Pf)) -> forall u : T, K u.
Proof.
move=> Ksub [f [[Pf]]]/=.
by suff -> : Pf = (set_mem (@mem_set _ [set f | _] f Pf)) by apply: Ksub.
Qed.
Lemma fimfun_valP f (Pf : f \in fimfun) : fimfun_Sub Pf = f :> (_ -> _).
Proof. by []. Qed.
Canonical fimfun_subType := SubType T _ _ fimfun_rect fimfun_valP.
End fimfun.
Lemma fimfuneqP aT rT (f g : {fimfun aT >-> rT}) :
f = g <-> f =1 g.
Proof. by split=> [->//|fg]; apply/val_inj/funext. Qed.
Definition fimfuneqMixin aT (rT : eqType) :=
[eqMixin of {fimfun aT >-> rT} by <:].
Canonical fimfuneqType aT (rT : eqType) :=
EqType {fimfun aT >-> rT} (fimfuneqMixin aT rT).
Definition fimfunchoiceMixin aT (rT : choiceType) :=
[choiceMixin of {fimfun aT >-> rT} by <:].
Canonical fimfunchoiceType aT (rT : choiceType) :=
ChoiceType {fimfun aT >-> rT} (fimfunchoiceMixin aT rT).
Lemma finite_image_cst {aT rT : Type} (x : rT) :
finite_set (range (cst x : aT -> _)).
Proof.
elim/Ppointed: aT => aT; rewrite ?emptyE ?image_set0//.
suff -> : cst x @` [set: aT] = [set x] by apply: finite_set1.
by apply/predeqP => y; split=> [[t' _ <-]//|->//] /=; exists point.
Qed.
Lemma cst_fimfun_subproof aT rT x : @FiniteImage aT rT (cst x).
Proof. by split; exact: finite_image_cst. Qed.
HB.instance Definition _ aT rT x := @cst_fimfun_subproof aT rT x.
Definition cst_fimfun {aT rT} x := [the {fimfun aT >-> rT} of cst x].
Lemma fimfun_cst aT rT x : @cst_fimfun aT rT x =1 cst x. Proof. by []. Qed.
Lemma comp_fimfun_subproof aT rT sT
(f : {fimfun aT >-> rT}) (g : rT -> sT) : @FiniteImage aT sT (g \o f).
Proof. by split; rewrite -(image_comp f g); apply: finite_image. Qed.
HB.instance Definition _ aT rT sT f g := @comp_fimfun_subproof aT rT sT f g.
Section zmod.
Context (aT : Type) (rT : zmodType).
Lemma fimfun_zmod_closed : zmod_closed (@fimfun aT rT).
Proof.
split=> [|f g]; rewrite !inE/=; first exact: finite_image_cst.
by move=> fA gA; apply: (finite_image11 (fun x y => x - y)).
Qed.
Canonical fimfun_add := AddrPred fimfun_zmod_closed.
Canonical fimfun_zmod := ZmodPred fimfun_zmod_closed.
Definition fimfun_zmodMixin := [zmodMixin of {fimfun aT >-> rT} by <:].
Canonical fimfun_zmodType := ZmodType {fimfun aT >-> rT} fimfun_zmodMixin.
Implicit Types (f g : {fimfun aT >-> rT}).
Lemma fimfunD f g : f + g = f \+ g :> (_ -> _). Proof. by []. Qed.
Lemma fimfunN f : - f = \- f :> (_ -> _). Proof. by []. Qed.
Lemma fimfunB f g : f - g = f \- g :> (_ -> _). Proof. by []. Qed.
Lemma fimfun0 : (0 : {fimfun aT >-> rT}) = cst 0 :> (_ -> _). Proof. by []. Qed.
Lemma fimfun_sum I r (P : {pred I}) (f : I -> {fimfun aT >-> rT}) (x : aT) :
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x.
Proof. by elim/big_rec2: _ => //= i y ? Pi <-. Qed.
HB.instance Definition _ f g := FImFun.copy (f \+ g) (f + g).
HB.instance Definition _ f g := FImFun.copy (\- f) (- f).
HB.instance Definition _ f g := FImFun.copy (f \- g) (f - g).
End zmod.
|