Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 49,503 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
From mathcomp Require Import all_ssreflect all_fingroup all_algebra all_solvable.
From mathcomp Require Import all_field.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

(*********************)
(* package ssreflect *)
(*********************)

(***********)
(* ssrbool *)
(***********)

Lemma classicPT (P : Type) : classically P <-> ((P -> False) -> False).
Proof.
split; first by move=>/(_ false) PFF PF; suff: false by []; apply: PFF => /PF.
by move=> PFF []// Pf; suff: False by []; apply: PFF => /Pf.
Qed.

Lemma classic_sigW T (P : T -> Prop) :
  classically (exists x, P x) <-> classically (sig P).
Proof. by split; apply: classic_bind => -[x Px]; apply/classicW; exists x. Qed.

Lemma classic_ex T (P : T -> Prop) :
   ~ (forall x, ~ P x) -> classically (ex P).
Proof.
move=> NfNP; apply/classicPT => exPF; apply: NfNP => x Px.
by apply: exPF; exists x.
Qed.

(*******)
(* seq *)
(*******)

Lemma subset_mapP (X Y : eqType) (f : X -> Y) (s : seq X) (s' : seq Y) :
    {subset s' <= map f s} <-> exists2 t, all (mem s) t & s' = map f t.
Proof.
split => [|[r /allP/= rE ->] _ /mapP[x xr ->]]; last by rewrite map_f ?rE.
elim: s' => [|x s' IHs'] subss'; first by exists [::].
have /mapP[y ys ->] := subss' _ (mem_head _ _).
have [x' x's'|t st ->] := IHs'; first by rewrite subss'// inE x's' orbT.
by exists (y :: t); rewrite //= ys st.
Qed.
Arguments subset_mapP {X Y}.

(*********)
(* bigop *)
(*********)

Lemma big_rcons_idx (R : Type) (idx : R) (op : R -> R -> R) (I : Type)
    (i : I) (r : seq I) (P : pred I) (F : I -> R)
    (idx' := if P i then op (F i) idx else idx) :
  \big[op/idx]_(j <- rcons r i | P j) F j = \big[op/idx']_(j <- r | P j) F j.
Proof. by elim: r => /= [|j r]; rewrite ?(big_nil, big_cons)// => ->. Qed.

Lemma big_change_idx (R : Type) (idx : R) (op : Monoid.law idx) (I : Type)
    (x : R)  (r : seq I) (P : pred I) (F : I -> R) :
   op (\big[op/idx]_(j <- r | P j) F j) x = \big[op/x]_(j <- r | P j) F j.
Proof.
elim: r => [|i r]; rewrite ?(big_nil, big_cons, Monoid.mul1m)// => <-.
by case: ifP => // Pi; rewrite Monoid.mulmA.
Qed.
Lemma big_rcons (R : Type) (idx : R) (op : Monoid.law idx) (I : Type)
   i r (P : pred I) F :
  \big[op/idx]_(j <- rcons r i | P j) F j =
  op (\big[op/idx]_(j <- r | P j) F j) (if P i then F i else idx).
Proof. by rewrite big_rcons_idx -big_change_idx Monoid.mulm1. Qed.

(********)
(* path *)
(********)

Lemma sortedP T x (s : seq T) (r : rel T) :
  reflect (forall i, i.+1 < size s -> r (nth x s i) (nth x s i.+1)) (sorted r s).
Proof.
elim: s => [|y [|z s]//= IHs]/=; do ?by constructor.
apply: (iffP andP) => [[ryz rzs] [|i]// /IHs->//|rS].
by rewrite (rS 0); split=> //; apply/IHs => i /(rS i.+1).
Qed.

(*********)
(* tuple *)
(*********)

Section tnth_shift.
Context {T : Type} {n1 n2} (t1 : n1.-tuple T) (t2 : n2.-tuple T).

Lemma tnth_lshift i : tnth [tuple of t1 ++ t2] (lshift n2 i) = tnth t1 i.
Proof.
have x0 := tnth_default t1 i; rewrite !(tnth_nth x0).
by rewrite nth_cat size_tuple /= ltn_ord.
Qed.

Lemma tnth_rshift j : tnth [tuple of t1 ++ t2] (rshift n1 j) = tnth t2 j.
Proof.
have x0 := tnth_default t2 j; rewrite !(tnth_nth x0).
by rewrite nth_cat size_tuple ltnNge leq_addr /= addKn.
Qed.
End tnth_shift.

(*********)
(* prime *)
(*********)

Lemma primeNsig (n : nat) : ~~ prime n -> (2 <= n)%N ->
  { d : nat | (1 < d < n)%N & (d %| n)%N }.
Proof.
move=> primeN_n le2n; case/pdivP: {+}le2n => d /primeP[lt1d prime_d] dvd_dn.
exists d => //; rewrite lt1d /= ltn_neqAle dvdn_leq 1?andbT //; last first.
  by apply: (leq_trans _ le2n).
by apply: contra primeN_n => /eqP <-; apply/primeP.
Qed.

Lemma totient_gt1 n : (totient n > 1)%N = (n > 2)%N.
Proof.
case: n => [|[|[|[|n']]]]//=; set n := n'.+4; rewrite [RHS]isT.
have [pn2|/allPn[p]] := altP (@allP _ (eq_op^~ 2%N) (primes n)); last first.
  rewrite mem_primes/=; move: p => [|[|[|p']]]//; set p := p'.+3.
  move=> /andP[p_prime dvdkn].
  have [//|[|k]// cpk ->] := (@pfactor_coprime _ n p_prime).
  rewrite totient_coprime ?coprimeXr 1?coprime_sym//.
  rewrite totient_pfactor ?logn_gt0 ?mem_primes ?p_prime// mulnCA.
  by rewrite (@leq_trans p.-1) ?leq_pmulr ?muln_gt0 ?expn_gt0 ?totient_gt0.
have pnNnil : primes n != [::].
  apply: contraTneq isT => pn0.
  by have := @prod_prime_decomp n isT; rewrite prime_decompE pn0/= big_nil.
have := @prod_prime_decomp n isT; rewrite prime_decompE.
case: (primes n) pnNnil pn2 (primes_uniq n) => [|p [|p' r]]//=; last first.
  move=> _ eq2; rewrite !inE [p](eqP (eq2 _ _)) ?inE ?eqxx//.
  by rewrite [p'](eqP (eq2 _ _)) ?inE ?eqxx// orbT.
move=> _ /(_ _ (mem_head _ _))/eqP-> _; rewrite big_cons big_nil muln1/=.
case: (logn 2 n) => [|[|k]]// ->.
by rewrite totient_pfactor//= expnS mul1n leq_pmulr ?expn_gt0.
Qed.

(********************)
(* package fingroup *)
(********************)

(*************)
(* gproduct? *)
(*************)

Section ExternalNDirProd.

Variables (n : nat) (gT : 'I_n -> finGroupType).
Notation gTn := {dffun forall i, gT i}.

Definition extnprod_mulg (x y : gTn) : gTn := [ffun i => (x i * y i)%g].
Definition extnprod_invg (x : gTn) : gTn := [ffun i => (x i)^-1%g].

Lemma extnprod_mul1g : left_id [ffun=> 1%g] extnprod_mulg.
Proof. by move=> x; apply/ffunP => i; rewrite !ffunE mul1g. Qed.

Lemma extnprod_mulVg : left_inverse [ffun=> 1%g] extnprod_invg extnprod_mulg.
Proof. by move=> x; apply/ffunP => i; rewrite !ffunE mulVg. Qed.

Lemma extnprod_mulgA : associative extnprod_mulg.
Proof. by move=> x y z; apply/ffunP => i; rewrite !ffunE mulgA. Qed.

Definition extnprod_groupMixin :=
  Eval hnf in FinGroup.Mixin extnprod_mulgA extnprod_mul1g extnprod_mulVg.
Canonical extnprod_baseFinGroupType :=
  Eval hnf in BaseFinGroupType gTn extnprod_groupMixin.
Canonical prod_group := FinGroupType extnprod_mulVg.

End ExternalNDirProd.

Definition setXn n (fT : 'I_n -> finType) (A : forall i, {set fT i}) :
   {set {dffun forall i, fT i}} :=
   [set x : {dffun forall i, fT i} | [forall i : 'I_n, x i \in A i]].

Lemma setXn_group_set n (gT : 'I_n -> finGroupType) (G : forall i, {group gT i}) :
  group_set (setXn G).
Proof.
apply/andP => /=; split.
  by rewrite inE; apply/forallP => i; rewrite ffunE group1.
apply/subsetP => x /mulsgP[u v]; rewrite !inE => /forallP uG /forallP vG {x}->.
by apply/forallP => x; rewrite ffunE groupM ?uG ?vG.
Qed.

Canonical setXn_group n (gT : 'I_n -> finGroupType) (G : forall i, {group gT i}) :=
  Group (setXn_group_set G).

Lemma setX0 (gT : 'I_0 -> finGroupType) (G : forall i, {group gT i}) :
  setXn G = 1%g.
Proof.
apply/setP => x; rewrite !inE; apply/forallP/idP => [_|? []//].
by apply/eqP/ffunP => -[].
Qed.

(********)
(* perm *)
(********)

Lemma tpermJt (X : finType) (x y z : X) : x != z -> y != z ->
   (tperm x z ^ tperm x y)%g = tperm y z.
Proof.
by move=> neq_xz neq_yz; rewrite tpermJ tpermL [tperm _ _ z]tpermD.
Qed.

Lemma gen_tperm (X : finType) x :
  <<[set tperm x y | y in X]>>%g = [set: {perm X}].
Proof.
apply/eqP; rewrite eqEsubset subsetT/=; apply/subsetP => s _.
have [ts -> _] := prod_tpermP s; rewrite group_prod// => -[/= y z] _.
have [<-|Nyz] := eqVneq y z; first by rewrite tperm1 group1.
have [<-|Nxz] := eqVneq x z; first by rewrite tpermC mem_gen ?imset_f.
by rewrite -(tpermJt Nxz Nyz) groupJ ?mem_gen ?imset_f.
Qed.

Lemma prime_orbit (X : finType) x c :
  prime #|X| -> #[c]%g = #|X| -> orbit 'P <[c]> x = [set: X].
Proof.
move=> X_prime ord_c; have dvd_orbit y : (#|orbit 'P <[c]> y| %| #|X|)%N.
  by rewrite (dvdn_trans (dvdn_orbit _ _ _))// [#|<[_]>%g|]ord_c.
have [] := boolP [forall y, #|orbit 'P <[c]> y| == 1%N].
  move=> /'forall_eqP-/(_ _)/card_orbit1 orbit1; suff c_eq_1 : c = 1%g.
    by rewrite c_eq_1 ?order1 in ord_c; rewrite -ord_c in X_prime.
  apply/permP => y; rewrite perm1.
  suff: c y \in orbit 'P <[c]> y by rewrite orbit1 inE => /eqP->.
  by apply/orbitP; exists c => //; rewrite mem_gen ?inE.
move=> /forallPn[y orbit_y_neq0]; have orbit_y : orbit 'P <[c]> y = [set: X].
  apply/eqP; rewrite eqEcard subsetT cardsT.
  by have /(prime_nt_dvdP X_prime orbit_y_neq0)<-/= := dvd_orbit y.
by have /orbit_in_eqP-> : x \in orbit 'P <[c]> y; rewrite ?subsetT ?orbit_y.
Qed.

Lemma prime_astab (X : finType) (x : X) (c : {perm X}) :
  prime #|X| -> #[c]%g = #|X| -> 'C_<[c]>[x | 'P]%g = 1%g.
Proof.
move=> X_prime ord_c; have /= := card_orbit_stab 'P [group of <[c]>%g] x.
rewrite prime_orbit// cardsT [#|<[_]>%g|]ord_c -[RHS]muln1 => /eqP.
by rewrite eqn_mul2l gtn_eqF ?prime_gt0//= -trivg_card1 => /eqP.
Qed.

(*******************)
(* package algebra *)
(*******************)

Import GRing.Theory.
Local Open Scope ring_scope.
Notation has_char0 L := ([char L] =i pred0).

(**********)
(* ssralg *)
(**********)

Lemma iter_addr (V : zmodType) n x y : iter n (+%R x) y = x *+ n + y :> V.
Proof. by elim: n => [|n ih]; rewrite ?add0r //= ih mulrS addrA. Qed.

Lemma prodrMl {R : comRingType} {I : finType} (A : pred I) (x : R) F :
  \prod_(i in A) (x * F i) = x ^+ #|A| * \prod_(i in A) F i.
Proof.
rewrite -sum1_card; elim/big_rec3: _; first by rewrite expr0 mulr1.
by move=> i y p z iA ->; rewrite mulrACA exprS.
Qed.

Lemma expr_sum {R : ringType} {T : Type} (x : R) (F : T -> nat) P s :
  x ^+ (\sum_(i <- s | P i) F i) = \prod_(i <- s | P i) x ^+ (F i).
Proof. by apply: big_morph; [exact: exprD | exact: expr0]. Qed.

Lemma prim_root_natf_neq0 (F : fieldType) n (w : F) :
  n.-primitive_root w -> (n%:R != 0 :> F).
Proof.
have [->//|n_gt0] := posnP n => x_prim; apply/negPf/negP => nFneq0.
have /natf0_char[//|p char_p] := nFneq0.
have p_prime : prime p := charf_prime char_p.
move: nFneq0; rewrite -(dvdn_charf char_p) => dvdpn.
have [k cpk nE] := pfactor_coprime p_prime n_gt0.
have k_gt0 : (k > 0)%N by move: n_gt0; rewrite nE muln_gt0 => /andP[].
have /prim_expr_order/eqP := x_prim; rewrite nE exprM.
elim: (logn p n) => [|i IHi]; last first.
  rewrite expnSr exprM -subr_eq0 -Frobenius_autE -(Frobenius_aut1 char_p).
  by rewrite -rmorphB fmorph_eq0 subr_eq0.
rewrite -(prim_order_dvd x_prim) nE mulnC Gauss_dvd ?coprimeXl//.
rewrite pfactor_dvdn// ltn_geF// -[k]muln1 logn_Gauss ?logn1//.
by rewrite logn_gt0 mem_primes p_prime dvdpn n_gt0.
Qed.

(**********)
(* ssrnum *)
(**********)

Section ssrnum.
Import Num.Theory.

Lemma CrealJ (C : numClosedFieldType) :
  {mono (@conjC C) : x / x \is Num.real}.
Proof.
suff realK : {homo (@conjC C) : x / x \is Num.real}.
  by move=> x; apply/idP/idP => /realK//; rewrite conjCK.
by move=> x xreal; rewrite conj_Creal.
Qed.
End ssrnum.

(**********)
(* ssrint *)
(**********)

Lemma dvdz_charf (R : ringType) (p : nat) :
  p \in [char R] -> forall n : int, (p %| n)%Z = (n%:~R == 0 :> R).
Proof.
move=> charRp [] n; rewrite [LHS](dvdn_charf charRp)//.
by rewrite NegzE abszN rmorphN// oppr_eq0.
Qed.

(********)
(* poly *)
(********)

Local Notation "p ^^ f" := (map_poly f p)
  (at level 30, f at level 30, format "p  ^^  f").

Lemma irredp_XaddC (F : fieldType) (x : F) : irreducible_poly ('X + x%:P).
Proof. by rewrite -[x]opprK rmorphN; apply: irredp_XsubC. Qed.

Lemma lead_coef_XnsubC {R : ringType} n (c : R) : (0 < n)%N ->
  lead_coef ('X^n - c%:P) = 1.
Proof.
move=> gt0_n; rewrite lead_coefDl ?lead_coefXn //.
by rewrite size_opp size_polyC size_polyXn ltnS (leq_trans (leq_b1 _)).
Qed.

Lemma lead_coef_XsubC {R : ringType} (c : R) :
  lead_coef ('X - c%:P) = 1.
Proof. by apply: (@lead_coef_XnsubC _ 1%N). Qed.

Lemma monic_XsubC {R : ringType} (c : R) : 'X - c%:P \is monic.
Proof. by rewrite monicE lead_coef_XsubC. Qed.

Lemma monic_XnsubC {R : ringType} n (c : R) : (0 < n)%N -> 'X^n - c%:P \is monic.
Proof. by move=> gt0_n; rewrite monicE lead_coef_XnsubC. Qed.

Lemma size_XnsubC {R : ringType} n (c : R) : (0 < n)%N -> size ('X^n - c%:P) = n.+1.
Proof.
move=> gt0_n; rewrite size_addl ?size_polyXn //.
by rewrite size_opp size_polyC; case: (c =P 0).
Qed.

Lemma map_polyXsubC (aR rR : ringType) (f : {rmorphism aR -> rR}) x :
   map_poly f ('X - x%:P) = 'X - (f x)%:P.
Proof. by rewrite rmorphB/= map_polyX map_polyC. Qed.

Lemma poly_XsubC_over {R : ringType} c (S : {pred R}) (addS : subringPred S)
  (kS : keyed_pred addS): c \in kS -> 'X - c%:P \is a polyOver kS.
Proof. by move=> cS; rewrite rpredB ?polyOverC ?polyOverX. Qed.

Lemma poly_XnsubC_over {R : ringType} n c (S : {pred R}) (addS : subringPred S)
  (kS : keyed_pred addS): c \in kS -> 'X^n - c%:P \is a polyOver kS.
Proof. by move=> cS; rewrite rpredB ?rpredX ?polyOverX ?polyOverC. Qed.

Lemma lead_coef_prod {R : idomainType} (ps : seq {poly R}) :
  lead_coef (\prod_(p <- ps) p) = \prod_(p <- ps) lead_coef p.
Proof. by apply/big_morph/lead_coef1; apply: lead_coefM. Qed.

Lemma lead_coef_prod_XsubC {R : idomainType} (cs : seq R) :
  lead_coef (\prod_(c <- cs) ('X - c%:P)) = 1.
Proof.
rewrite -(big_map (fun c : R => 'X - c%:P) xpredT idfun) /=.
rewrite lead_coef_prod big_seq (eq_bigr (fun=> 1)) ?big1 //=.
by move=> i /mapP[c _ ->]; apply: lead_coef_XsubC.
Qed.

Lemma coef0M {R : ringType} (p q : {poly R}) : (p * q)`_0 = p`_0 * q`_0.
Proof. by rewrite coefM big_ord1. Qed.

Lemma coef0_prod {R : ringType} {T : Type} (ps : seq T) (F : T -> {poly R}) P :
  (\prod_(p <- ps | P p) F p)`_0 = \prod_(p <- ps | P p) (F p)`_0.
Proof.
by apply: (big_morph (fun p : {poly R} => p`_0));
   [apply: coef0M | rewrite coefC eqxx].
Qed.

Lemma map_prod_XsubC (aR rR : ringType) (f : {rmorphism aR -> rR}) rs :
  map_poly f (\prod_(x <- rs) ('X - x%:P)) =
  \prod_(x <- map f rs) ('X - x%:P).
Proof.
by rewrite rmorph_prod big_map; apply/eq_bigr => x /=; rewrite map_polyXsubC.
Qed.

Lemma eq_in_map_poly_id0 (aR rR : ringType) (f g : aR -> rR)
  (S0 : {pred aR}) (addS : addrPred S0) (kS : keyed_pred addS) :
  f 0 = 0 -> g 0 = 0 ->
  {in kS, f =1 g} -> {in polyOver kS, map_poly f =1 map_poly g}.
Proof.
move=> f0 g0 eq_fg p pP; apply/polyP => i.
by rewrite !coef_map_id0// eq_fg// (polyOverP _).
Qed.

Lemma eq_in_map_poly (aR rR : ringType) (f g : {additive aR -> rR})
  (S0 : {pred aR}) (addS : addrPred S0) (kS : keyed_pred addS) :
  {in kS, f =1 g} -> {in polyOver kS, map_poly f =1 map_poly g}.
Proof. by move=> /eq_in_map_poly_id0; apply; rewrite //?raddf0. Qed.

Lemma mapf_root (F : fieldType) (R : ringType) (f : {rmorphism F -> R})
    (p : {poly F}) (x : F) :
  root (p ^^ f) (f x) = root p x.
Proof. by rewrite !rootE horner_map fmorph_eq0. Qed.

Section multiplicity.
Variable (L : fieldType).

Definition mup (x : L) (p : {poly L}) :=
  [arg max_(n > 0 : 'I_(size p).+1 | ('X - x%:P) ^+ n %| p) n] : nat.

Lemma mup_geq x q n : q != 0 -> (n <= mup x q)%N = (('X - x%:P) ^+ n %| q).
Proof.
move=> q_neq0; rewrite /mup; symmetry.
case: arg_maxnP; rewrite ?expr0 ?dvd1p//= => i i_dvd gti.
case: ltnP => [|/dvdp_exp2l/dvdp_trans]; last exact.
apply: contraTF => dvdq; rewrite -leqNgt.
suff n_small : (n < (size q).+1)%N by exact: (gti (Ordinal n_small)).
by rewrite ltnS ltnW// -(size_exp_XsubC _ x) dvdp_leq.
Qed.

Lemma mup_leq x q n : q != 0 -> (mup x q <= n)%N = ~~ (('X - x%:P) ^+ n.+1 %| q).
Proof. by move=> qN0; rewrite leqNgt mup_geq. Qed.

Lemma mup_ltn x q n : q != 0 -> (mup x q < n)%N = ~~ (('X - x%:P) ^+ n %| q).
Proof. by move=> qN0; rewrite ltnNge mup_geq. Qed.

Lemma XsubC_dvd x q : q != 0 -> ('X - x%:P %| q) = (0 < mup x q)%N.
Proof. by move=> /mup_geq-/(_ _ 1%N)/esym; apply. Qed.

Lemma mup_XsubCX n (x y : L) :
  mup x (('X - y%:P) ^+ n) = (if (y == x) then n else 0)%N.
Proof.
have Xxn0 : ('X - y%:P) ^+ n != 0 by rewrite ?expf_neq0 ?polyXsubC_eq0.
apply/eqP; rewrite eqn_leq mup_leq ?mup_geq//.
have [->|Nxy] := eqVneq x y.
  by rewrite /= dvdpp ?dvdp_Pexp2l ?size_XsubC ?ltnn.
by rewrite dvd1p dvdp_XsubCl /root horner_exp !hornerE expf_neq0// subr_eq0.
Qed.

Lemma mupNroot (x : L) q : ~~ root q x -> mup x q = 0%N.
Proof.
move=> qNx; have qN0 : q != 0 by apply: contraNneq qNx => ->; rewrite root0.
by move: qNx; rewrite -dvdp_XsubCl XsubC_dvd// lt0n negbK => /eqP.
Qed.

Lemma mupMl x q1 q2 : ~~ root q1 x -> mup x (q1 * q2) = mup x q2.
Proof.
move=> q1Nx; have q1N0 : q1 != 0 by apply: contraNneq q1Nx => ->; rewrite root0.
have [->|q2N0] := eqVneq q2 0; first by rewrite mulr0.
apply/esym/eqP; rewrite eqn_leq mup_geq ?mulf_neq0// dvdp_mull -?mup_geq//=.
rewrite mup_leq ?mulf_neq0// Gauss_dvdpr -?mup_ltn//.
by rewrite coprimep_expl// coprimep_sym coprimep_XsubC.
Qed.

Lemma mupM x q1 q2 : q1 != 0 -> q2 != 0 ->
   mup x (q1 * q2) = (mup x q1 + mup x q2)%N.
Proof.
move=> q1N0 q2N0; apply/eqP; rewrite eqn_leq mup_leq ?mulf_neq0//.
rewrite mup_geq ?mulf_neq0// exprD ?dvdp_mul; do ?by rewrite -mup_geq.
have [m1 [r1]] := multiplicity_XsubC q1 x; rewrite q1N0 /= => r1Nx ->.
have [m2 [r2]] := multiplicity_XsubC q2 x; rewrite q2N0 /= => r2Nx ->.
rewrite !mupMl// ?mup_XsubCX eqxx/= mulrACA exprS exprD.
rewrite dvdp_mul2r ?mulf_neq0 ?expf_neq0 ?polyXsubC_eq0//.
by rewrite dvdp_XsubCl rootM negb_or r1Nx r2Nx.
Qed.

Lemma mu_prod_XsubC (x : L) (s : seq L) :
   mup x (\prod_(x <- s) ('X - x%:P)) = count_mem x s.
Proof.
elim: s => [|y s IHs]; rewrite (big_cons, big_nil)/=.
  by rewrite mupNroot// root1.
rewrite mupM ?polyXsubC_eq0// ?monic_neq0 ?monic_prod_XsubC//.
by rewrite IHs (@mup_XsubCX 1).
Qed.

Lemma prod_XsubC_eq (s t : seq L) :
  \prod_(x <- s) ('X - x%:P) = \prod_(x <- t) ('X - x%:P) -> perm_eq s t.
Proof.
move=> eq_prod; apply/allP => x _ /=; apply/eqP.
by have /(congr1 (mup x)) := eq_prod; rewrite !mu_prod_XsubC.
Qed.

End multiplicity.

Lemma primitive_root_eq0 (F : fieldType) n (w : F) :
  n.-primitive_root w -> (w == 0) = (n == 0%N).
Proof.
move=> wp; apply/eqP/idP => [w0|/eqP p0]; move: wp; rewrite ?w0 ?p0; last first.
  by move=> /prim_order_gt0//.
move=> /prim_expr_order/esym/eqP.
by rewrite expr0n; case: (n =P 0%N); rewrite ?oner_eq0.
Qed.

Lemma dvdp_exp_XsubC (R : idomainType) (p : {poly R}) (c : R) n :
  reflect (exists2 k, (k <= n)%N & p %= ('X - c%:P) ^+ k)
          (p %| ('X - c%:P) ^+ n).
Proof.
apply: (iffP idP) => [|[k lkn /eqp_dvdl->]]; last by rewrite dvdp_exp2l.
move=> /Pdiv.WeakIdomain.dvdpP[[/= a q] a_neq0].
have [m [r]] := multiplicity_XsubC p c; have [->|pN0]/= := eqVneq p 0.
  rewrite mulr0 => _ _ /eqP;  rewrite scale_poly_eq0 (negPf a_neq0)/=.
  by rewrite expf_eq0/= andbC polyXsubC_eq0.
move=> rNc ->; rewrite mulrA => eq_qrm; exists m.
  have: ('X - c%:P) ^+ m %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm dvdp_mull.
  by rewrite (eqp_dvdr _ (eqp_scale _ _))// dvdp_Pexp2l// size_XsubC.
suff /eqP : size r = 1%N.
  by rewrite size_poly_eq1 => /eqp_mulr/eqp_trans->//; rewrite mul1r eqpxx.
have : r %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm mulrAC dvdp_mull.
rewrite (eqp_dvdr _ (eqp_scale _ _))//.
move: rNc; rewrite -coprimep_XsubC => /(coprimep_expr n) /coprimepP.
by move=> /(_ _ (dvdpp _)); rewrite -size_poly_eq1 => /(_ _)/eqP.
Qed.

Lemma eisenstein (p : nat) (q : {poly int}) : prime p -> (size q != 1)%N ->
  (~~ (p %| lead_coef q))%Z -> (~~ ((p : int) ^+ 2 %| q`_0))%Z ->
  (forall i, (i < (size q).-1)%N -> p %| q`_i)%Z ->
  irreducible_poly (map_poly (intr : int -> rat) q).
Proof.
move=> p_prime qN1 Ndvd_pql Ndvd_pq0 dvd_pq.
have qN0 : q != 0 by rewrite -lead_coef_eq0; apply: contraNneq Ndvd_pql => ->.
split.
   rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0//.
   by rewrite ltn_neqAle eq_sym qN1 size_poly_gt0.
move=> f' +/dvdpP_rat_int[f [d dN0 feq]]; rewrite {f'}feq size_scale// => fN1.
move=> /= [g q_eq]; rewrite q_eq (eqp_trans (eqp_scale _ _))//.
have fN0 : f != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mul0r.
have gN0 : g != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mulr0.
rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0// in fN1.
have [/eqP/size_poly1P[c cN0 ->]|gN1] := eqVneq (size g) 1%N.
  by rewrite mulrC mul_polyC map_polyZ/= eqp_sym eqp_scale// intr_eq0.
have c_neq0 : (lead_coef q)%:~R != 0 :> 'F_p
   by rewrite -(dvdz_charf (char_Fp _)).
have : map_poly (intr : int -> 'F_p) q = (lead_coef q)%:~R *: 'X^(size q).-1.
  apply/val_inj/(@eq_from_nth _ 0) => [|i]; rewrite size_map_poly_id0//.
    by rewrite size_scale// size_polyXn -polySpred.
  move=> i_small; rewrite coef_poly i_small coefZ coefXn lead_coefE.
  move: i_small; rewrite polySpred// ltnS/=.
  case: ltngtP => // [i_lt|->]; rewrite (mulr1, mulr0)//= => _.
  by apply/eqP; rewrite -(dvdz_charf (char_Fp _))// dvd_pq.
rewrite [in LHS]q_eq rmorphM/=.
set c := (X in X *: _); set n := (_.-1).
set pf := map_poly _ f; set pg := map_poly _ g => pfMpg.
have dvdXn (r : {poly _}) : size r != 1%N -> r %| c *: 'X^n -> r`_0 = 0.
  move=> rN1; rewrite (eqp_dvdr _ (eqp_scale _ _))//.
  rewrite -['X]subr0; move=> /dvdp_exp_XsubC[k lekn]; rewrite subr0.
  move=> /eqpP[u /andP[u1N0 u2N0]]; have [->|k_gt0] := posnP k.
    move=> /(congr1 (size \o val))/eqP.
    by rewrite /= !size_scale// size_polyXn (negPf rN1).
  move=> /(congr1 (fun p : {poly _} => p`_0))/eqP.
  by rewrite !coefZ coefXn ltn_eqF// mulr0 mulf_eq0 (negPf u1N0) => /eqP.
suff : ((p : int) ^+ 2 %| q`_0)%Z by rewrite (negPf Ndvd_pq0).
have := c_neq0; rewrite q_eq coefM big_ord1.
rewrite lead_coefM rmorphM mulf_eq0 negb_or => /andP[lpfN0 qfN0].
have pfN1 : size pf != 1%N by rewrite size_map_poly_id0.
have pgN1 : size pg != 1%N by rewrite size_map_poly_id0.
have /(dvdXn _ pgN1) /eqP : pg %| c *: 'X^n by rewrite -pfMpg dvdp_mull.
have /(dvdXn _ pfN1) /eqP : pf %| c *: 'X^n by rewrite -pfMpg dvdp_mulr.
by rewrite !coef_map// -!(dvdz_charf (char_Fp _))//; apply: dvdz_mul.
Qed.

(***********)
(* polydiv *)
(***********)

Lemma eqpW (R : idomainType) (p q : {poly R}) : p = q -> p %= q.
Proof. by move->; rewrite eqpxx. Qed.

Lemma horner_mod (R : fieldType) (p q : {poly R}) x : root q x ->
  (p %% q).[x] = p.[x].
Proof.
by move=> /eqP qx0; rewrite [p in RHS](divp_eq p q) !hornerE qx0 mulr0 add0r.
Qed.

Lemma root_dvdp (F : idomainType) (p q : {poly F}) (x : F) :
  root p x -> p %| q -> root q x.
Proof. rewrite -!dvdp_XsubCl; exact: dvdp_trans. Qed.

(**********)
(* vector *)
(**********)

Lemma SubvsE (F0 : fieldType) (L : vectType F0) (k : {vspace L}) x (xk : x \in k) :
  Subvs xk = vsproj k x.
Proof. by apply/val_inj; rewrite /= vsprojK. Qed.

(*****************)
(* package field *)
(*****************)

(************)
(* falgebra *)
(************)

Lemma adjoin_cat (K : fieldType) (aT : FalgType K) (V : {vspace aT})
    (rs1 rs2 : seq aT) :
  <<V & rs1 ++ rs2>>%VS = <<<<V & rs1>> & rs2>>%VS.
Proof.
elim: rs1 => /= [|r rs1 ih] in V *.
- by rewrite adjoin_nil agenv_add_id.
- by rewrite !adjoin_cons ih.
Qed.

Lemma eq_adjoin (K : fieldType) (aT : FalgType K) (U : {vspace aT})
    (rs1 rs2 : seq aT) : rs1 =i rs2 ->
  <<U & rs1>>%VS = <<U & rs2>>%VS.
Proof.
by move=> rs12; apply/eqP; rewrite eqEsubv !adjoin_seqSr// => x; rewrite rs12.
Qed.

Lemma memv_mulP (K : fieldType) (aT : FalgType K) (U V : {vspace aT}) w :
  reflect (exists n (us vs : n.-tuple aT),
             [/\ all (mem U) us, all (mem V) vs &
                 w = \sum_(i < n) tnth us i * tnth vs i])
          (w \in (U * V)%VS).
Proof.
apply: (iffP idP) => [|[b [us [vs [usU vsV ->]]]]]; last first.
  by rewrite rpred_sum// => i _; rewrite memv_mul//; apply/all_tnthP.
rewrite unlock span_def big_tuple => /memv_sumP[/= w_ w_mem ->].
have wP_ i : exists2 uv, (uv.1 \in U) && (uv.2 \in V) & w_ i = uv.1 * uv.2.
  have /vlineP[k ->] := w_mem i isT; set UV := (X in tnth X _).
  have /allpairsP[[u v] [uP vP ->]] := mem_tnth i UV.
  by exists (k *: u, v); rewrite /= ?rpredZ ?vbasis_mem// scalerAl.
pose d := (\dim U * \dim V)%N; pose uv i := (projT1 (sig2_eqW (wP_ i))).
exists d, [tuple (uv i).1 | i < _], [tuple (uv i).2 | i < _]; rewrite /uv.
split; do ?by apply/allP => _/mapP[i _ ->]; case: sig2_eqW => /= ? /andP[].
by apply: eq_bigr => i; rewrite !tnth_map/= tnth_ord_tuple; case: sig2_eqW.
Qed.

Lemma big_prodv_seqP (I : eqType) (r : seq I)  (P : {pred I})
  (K : fieldType) (aT : FalgType K) (U : {vspace aT})
  (V : I -> {vspace aT}) (W : {vspace aT}) : uniq r ->
  reflect (forall u (v : I -> aT), u \in  U -> (forall i, P i -> v i \in V i) ->
                               \big[*%R/u]_(i <- r | P i) v i \in W)
  (\big[@prodv _ _/U]_(i <- r | P i) V i <= W)%VS.
Proof.
elim/last_ind: r => [|r i IHr] //= in U W * => [_|].
  apply: (iffP idP) => [+ v u uP vP|]; rewrite !big_nil; first by move/subvP->.
  move=> WP; apply/subvP => u /(WP _ (fun=> 0)); rewrite big_nil; apply.
  by move=> i; rewrite mem0v.
rewrite rcons_uniq => /andP[iNr r_uniq].
apply: (iffP idP) => [+ u v uU vV|WP]; rewrite !big_rcons_idx.
  by move=> /IHr; apply => //; case: ifP => Pi//; rewrite memv_mul// vV.
case: ifP => Pi; last first.
  by apply/IHr => // u v uU vV; have := WP _  _ uU vV; rewrite big_rcons_idx Pi.
apply/IHr => //w v /memv_mulP[n [vs [us [/allP/= vsP /allP/= usP ->]]]] vV.
rewrite -big_change_idx/= mulr_sumr rpred_sum// => j _; rewrite big_change_idx.
have := WP (tnth us j) (fun k : I => if k == i then tnth vs j else v k).
rewrite big_rcons_idx Pi eqxx big_seq_cond.
under eq_bigr => k /andP[kr]
   do [rewrite ifN; last by apply: contraNneq iNr => <-].
rewrite -big_seq_cond; apply; first by rewrite usP ?mem_tnth.
by move=> k Pk; case: eqP => [->|]; rewrite ?vV ?vsP ?mem_tnth.
Qed.

(************)
(* fieldext *)
(************)

Lemma dim_aimg (F : fieldType) (L L' : fieldExtType F) (iota : 'AHom(L, L'))
  (E : {subfield L}) : \dim (iota @: E) = \dim E.
Proof.
suff /size_basis -> : basis_of (iota @: E) (map iota (vbasis E)) by [].
by rewrite limg_basis_of// ?vbasisP// ?(eqP (AHom_lker0 _)) capv0.
Qed.

Lemma Fadjoin_seq_idP (F0 : fieldType) (L : fieldExtType F0) (K : {subfield L})
    (xs : seq L) :
  reflect (<<K & xs>>%VS = K) (all (mem K) xs).
Proof.
apply: (iffP idP) => [|<-]; last by apply/allP => x ?; apply: seqv_sub_adjoin.
elim: xs => /= [|x xs ih]; first by  rewrite Fadjoin_nil.
by case/andP=> xK {}/ih ih; rewrite adjoin_cons (Fadjoin_idP _).
Qed.
Arguments Fadjoin_seq_idP {F0 L K xs}.


Lemma big_prod_subfield_seqP (I : eqType) (r : seq I) (r_uniq : uniq r)
    (P : {pred I}) (K : fieldType) (aT : fieldExtType K)
    (U : I -> {vspace aT}) (W : {subfield aT}) :
  reflect (forall u : I -> aT, (forall i, P i -> u i \in U i) ->
                               \prod_(i <- r | P i) u i \in W)
          (\big[@prodv _ _/1%VS]_(i <- r | P i) U i <= W)%VS.
Proof.
apply: (iffP (big_prodv_seqP _ _ _ _ _)) => // [WP u uU|WP u v uU vV].
  by apply: WP; rewrite ?mem1v.
by rewrite -big_change_idx/= memvM ?WP//; apply/subvP: uU; rewrite sub1v.
Qed.

Lemma big_prod_subfieldP (I : finType) (D : {pred I}) (K : fieldType)
    (aT : fieldExtType K) (U : I -> {vspace aT}) (W : {subfield aT}) :
  reflect (forall u : I -> aT, (forall i, D i -> u i \in U i) ->
                               \prod_(i in D) u i \in W)
          (\big[@prodv _ _/1%VS]_(i in D) U i <= W)%VS.
Proof. by apply/big_prod_subfield_seqP/index_enum_uniq. Qed.

Lemma prodv_Fadjoinl (F0 : fieldType) (L : fieldExtType F0)
  (K F : {subfield L}) (x : L) : (<<K; x>> * F)%VS = <<K * F; x>>%VS.
Proof.
apply/eqP; rewrite eqEsubv; apply/andP; split.
  apply/prodvP => y z /Fadjoin_polyP[p pK ->] zF.
  have -> : p.[x] * z = (z *: p).[x] by rewrite hornerZ mulrC.
  rewrite mempx_Fadjoin// polyOverZ//=.
    by apply/subvP: zF; rewrite field_subvMl.
  by move: pK; apply/polyOverS/subvP; rewrite field_subvMr.
apply/subvP => y /Fadjoin_polyP [p /polyOverP pKF ->].
rewrite horner_coef rpred_sum// => i _.
have /memv_mulP[n [us [vs [/allP/= usP /allP/= vsP ->]]]] := pKF i.
rewrite mulr_suml rpred_sum // => j _.
rewrite mulrAC memv_mul ?rpredM ?rpredX ?memv_adjoin ?vsP ?mem_tnth//.
by rewrite subvP_adjoin// usP ?mem_tnth.
Qed.

Lemma prodv_Fadjoinr (F0 : fieldType) (L : fieldExtType F0)
  (K F : {subfield L}) (x : L) : (F * <<K; x>>)%VS = <<F * K; x>>%VS.
Proof. by rewrite prodvC prodv_Fadjoinl prodvC. Qed.

Lemma prodv_idPl  (F0 : fieldType) (L : fieldExtType F0)
  (K F : {subfield L}) :  reflect (F * K = F)%VS (K <= F)%VS.
Proof.
apply: (iffP idP) => [KF|<-]; last by rewrite field_subvMl.
by apply/eqP; rewrite eqEsubv prodv_sub//= field_subvMr.
Qed.
Arguments prodv_idPl {F0 L K F}.

Lemma prodv_idPr  (F0 : fieldType) (L : fieldExtType F0)
  (K F : {subfield L}) :  reflect (K * F = F)%VS (K <= F)%VS.
Proof. by rewrite prodvC; apply: prodv_idPl. Qed.
Arguments prodv_idPr {F0 L K F}.

Section canonicals.
Variables  (F0 : fieldType) (L : fieldExtType F0).
Lemma vsproj_is_lrmorphism :  lrmorphism (vsproj {:L}).
Proof.
split; last exact/linearZZ.
split; first exact/raddfB.
by split => [v w|]; apply/val_inj; rewrite /= !vsprojK ?memvf ?algid1.
Qed.
Canonical vsproj_lrmorphism := LRMorphism vsproj_is_lrmorphism.
Canonical vsproj_rmorphism := RMorphism vsproj_is_lrmorphism.

Definition vssub (k K : {vspace L}) of (k <= K)%VS :
  subvs_of k -> subvs_of K := vsproj _ \o vsval.

Variables (k K : {subfield L}) (kK : (k <= K)%VS).

Lemma vssub_is_lrmorphism : lrmorphism (vssub kK).
split; last exact/linearZZ.
split; first exact/raddfB.
split => [v w|]; apply/val_inj => /=; last first.
  by rewrite vsprojK ?algid1 ?rmorph1 ?rpred1//.
by rewrite /= !vsprojK/= ?rpredM//= (subvP kK _ (subvsP _)) .
Qed.
Canonical vssub_additive := Additive vssub_is_lrmorphism.
Canonical vssub_linear := Linear vssub_is_lrmorphism.
Canonical vssub_rmorphism := RMorphism vssub_is_lrmorphism.
Canonical vssub_lrmorphism := LRMorphism vssub_is_lrmorphism.

Lemma vsval_sub (v : subvs_of k) : vsval (vssub kK v) = vsval v.
Proof. by rewrite vsprojK// (subvP kK)// subvsP. Qed.

End canonicals.

Lemma splitting_ahom (F0 : fieldType) (L L' : fieldExtType F0)
    (p : {poly F0}) (E' : {subfield L'}) :
    splittingFieldFor 1 (p ^^ in_alg L) fullv ->
    splittingFieldFor 1 (p ^^ in_alg L') E' ->
  {iota : 'AHom(L, L') | limg iota = E'}.
Proof.
do [suff init (p : {poly L}) (k : {subfield L})
    (K := [FalgType F0 of subvs_of k]) (f : 'AHom(K, L')) :
    p \is a polyOver k ->  splittingFieldFor k p fullv ->
    splittingFieldFor (limg f) (p ^^ (f \o vsproj k)) E' ->
      {g : 'AHom(L, L') | limg g = E'}] in p *.
  move=> pf pE'; pose K := [FalgType F0 of subvs_of (1%VS : {vspace L})].
  have [idF0 idF0E] : {f : 'AHom(K, L') | forall x : F0, f x%:A = x%:A}.
    have flr : lrmorphism
        (fun v : K => in_alg L' (projT1 (sig_eqW (vlineP _ _ (valP v))))).
      do ![split] => [? ?|? ?||a ?]/=.
      - case: sig_eqW => x; case: sig_eqW => /= v->; case: sig_eqW => /= w->.
        by rewrite -!in_algE -raddfB => /fmorph_inj<-//; rewrite raddfB.
      - case: sig_eqW => x; case: sig_eqW => /= v->; case: sig_eqW => /= w->.
        by rewrite -!in_algE -rmorphM => /fmorph_inj<-//; rewrite rmorphM.
      - case: sig_eqW => /= one /esym/eqP; rewrite algid1.
        by rewrite -in_algE fmorph_eq1 => /eqP->; rewrite scale1r.
      - case: sig_eqW => x; case: sig_eqW => /= v->.
        rewrite -mulr_algl -in_algE -rmorphM => /fmorph_inj<-.
        by rewrite -in_algE rmorphM mulr_algl.
    exists (linfun_ahom (LRMorphism flr)) => v; rewrite lfunE/=.
    by case: sig_eqW => /= x; rewrite algid1 -in_algE => /fmorph_inj->.
  apply: (init (p ^^ in_alg L) 1%AS idF0) => //.
    by apply/polyOver1P; exists p.
  suff -> : limg idF0 = 1%VS.
    rewrite -!map_poly_comp/= (@eq_map_poly _ _ _ (in_alg L'))//.
    move=> v /=; rewrite -[RHS]idF0E; congr (idF0 _).
    by apply/val_inj; rewrite /= algid1 vsprojK ?rpredZ ?rpred1//.
  apply/eqP; rewrite eqEsubv sub1v andbT; apply/subvP => _/memv_imgP[v _ ->].
  suff [u ->] : exists u : F0, v = in_alg K u.
      by rewrite idF0E; apply/vlineP; exists u.
  case: v => u u1; rewrite SubvsE; move: u1 => /vlineP[{}u ->]; exists u.
  by apply/val_inj; rewrite /= vsprojK ?algid1// rpredZ ?rpred1.
move=> /polyOver_subvs/sig_eqW[/= {}p ->]; rewrite map_poly_comp/=.
rewrite -(map_poly_comp _ vsval) (eq_map_poly vsvalK) map_poly_id//.
move=> /sig2_eqW[rs prs rsf] /sig2_eqW [rs' prs' <-]{E'}; apply/sig_eqW.
elim: rs => [|x rs IHrs]//= in k @K f p rs' prs rsf prs' *.
  rewrite ?Fadjoin_nil ?big_nil/= in rsf prs.
  move=> /(@val_inj _ _ _ k) in rsf; rewrite {k}rsf in K f p prs prs' *.
  have: p %= 1 by rewrite -(eqp_map [rmorphism of vsval]) rmorph1.
  rewrite -(eqp_map [rmorphism of f]) rmorph1 (eqp_ltrans prs')//.
  move=> /eqp_size; rewrite size_prod_XsubC size_poly1 => -[].
  case: {+}rs' => // _; rewrite Fadjoin_nil/=.
  exists (linfun_ahom [lrmorphism of f \o vsproj _]).
  apply/vspaceP => v; apply/memv_imgP/memv_imgP => -[u _ ->]/=.
    by exists (vsproj fullv u); rewrite ?memvf//= lfunE/=.
  by exists (val u); rewrite ?memvf//= lfunE/= ?vsvalK.
have [xk|xNk] := boolP (x \in k).
  do [rewrite -[x]/(val (Subvs xk)); move: (Subvs xk) => {xk}x] in prs rsf.
  rewrite adjoin_cons (Fadjoin_idP _) ?subvsP//= in rsf.
  have xrs' : f x \in rs'.
    rewrite -root_prod_XsubC -(eqp_root prs') mapf_root.
    rewrite -(mapf_root [lrmorphism of vsval]) (eqp_root prs).
    by rewrite root_prod_XsubC mem_head.
  have -> : <<limg f & rs'>>%VS = <<limg f & rem (f x) rs'>>%VS.
    rewrite (eq_adjoin _ (perm_mem (perm_to_rem xrs'))).
    by rewrite adjoin_cons (Fadjoin_idP _)//= memv_img ?memvf.
  apply: (IHrs k f (p %/ ('X - x%:P))) => //.
    rewrite map_divp/= (eqp_trans (eqp_divl _ prs))//.
    by rewrite map_polyXsubC/= big_cons mulKp ?polyXsubC_eq0// eqpxx.
  rewrite map_divp/= (eqp_trans (eqp_divl _ prs'))// (big_rem _ xrs').
  by rewrite map_polyXsubC/= mulKp ?polyXsubC_eq0// eqpxx.
have /polyOver_subvs[q eq_q] := minPolyOver k x.
have rpx : root (p ^^ vsval) x.
  by rewrite (eqp_root prs) root_prod_XsubC mem_head.
pose psize := [fun p : {poly _} => size p].
have q_monic : q \is monic.
  by have /(congr1 (mem monic))/= := eq_q; rewrite map_monic monic_minPoly.
have size_q : (size q > 1)%N.
  have /(congr1 (psize _))/= := eq_q; rewrite size_minPoly size_map_poly => <-.
  by rewrite ltnS adjoin_degreeE divn_gt0 ?adim_gt0 ?dimvS ?subv_adjoin.
have [x' x'rs qx'0] : exists2 x', x' \in rs' & root (q ^^ f) x'.
  have : q ^^ vsval %| p ^^ vsval.
    by rewrite -eq_q minPoly_dvdp//; apply/polyOver_subvs; exists p.
  rewrite dvdp_map -(dvdp_map [rmorphism of f]) (eqp_dvdr _ prs').
  move=> /dvdp_prod_XsubC[m]; rewrite eqp_monic ?map_monic ?monic_prod_XsubC//.
  move=> /eqP; case rs'_eq : mask => [|x' rs'x].
    move=> /(congr1 (psize _))/=.
    by rewrite big_nil size_map_poly size_poly1 => /eqP; rewrite gtn_eqF.
  rewrite big_cons => q_eq; exists x'.
    by rewrite (@mem_mask _ _ m)// rs'_eq mem_head.
  by rewrite q_eq rootE !hornerE subrr mul0r.
have rpx' : root (p ^^ f) x' by rewrite (eqp_root prs') root_prod_XsubC.
pose Kx := [fieldExtType F0 of subvs_of <<k; x>>].
pose mpsI := map_inj_poly subvs_inj (rmorph0 _).
pose x0 := Subvs (memv_adjoin k x).
pose KKx :=  vssub (subv_adjoin k x).
have KxE : forall (v : Kx), exists p, v = (p ^^ KKx).[x0].
  move=> [u ukx]; have /Fadjoin_polyP[_ /polyOver_subvs[p' -> ueq]] := ukx.
  exists p'; apply/val_inj; rewrite /= -horner_map/=.
  by rewrite -map_poly_comp (eq_map_poly (vsval_sub (subv_adjoin _ _))).
suff [h hx0 hC] : {h : 'AHom(Kx, L') | h x0 = x' & h \o KKx =1 f}.
  have imgfx' : <<limg f; x'>>%VS = limg h.
    apply/vspaceP => v; apply/idP/idP => [/Fadjoin_polyP|/memv_imgP] [u uP ->].
      rewrite rpred_horner//=; last by rewrite -hx0 ?memv_img ?memvf.
      by apply/polyOverS: uP => _/memv_imgP[a _ ->]; rewrite -hC memv_img ?memvf.
    have [{uP}u->] := KxE u; rewrite -horner_map -map_poly_comp (eq_map_poly hC).
    rewrite rpred_horner//= ?hx0 ?memv_adjoin//; apply/polyOverP => i.
    by rewrite coef_map/= (subvP (subv_adjoin _ _))// memv_img ?memvf.
  rewrite (eq_adjoin _ (perm_mem (perm_to_rem x'rs))) adjoin_cons imgfx'.
  apply: (IHrs <<k; x>>%AS h (p ^^ vssub (subv_adjoin k x) %/ ('X - x0%:P))).
  - rewrite map_divp -map_poly_comp (eq_map_poly (vsval_sub _)).
    rewrite map_polyXsubC/= (eqp_trans (eqp_divl _ prs))// big_cons.
    by rewrite mulKp ?polyXsubC_eq0// eqpxx.
  - by rewrite -adjoin_cons.
  rewrite map_divp -map_poly_comp map_polyXsubC/= hx0 (eq_map_poly hC).
  rewrite (eqp_trans (eqp_divl _ prs'))// (big_rem _ x'rs)/=.
  by rewrite mulKp ?polyXsubC_eq0// eqpxx.
have /(_ _)/polyOver_subvs/sig_eqW/=-/all_sig[pol polE] := Fadjoin_polyOver k x.
have polB (v w : L) : pol (v - w) = pol v - pol w.
  by apply: mpsI; rewrite raddfB/= -!polE raddfB.
have polZ (c : F0) (v : L) : pol (c *: v) = c%:A *: pol v.
  by apply: mpsI; rewrite linearZ/= -!polE linearZ/= algid1.
have polC (c : K) : pol (val c) = c%:P.
  by apply: mpsI; rewrite -polE/= Fadjoin_polyC ?subvsP// map_polyC.
have pol1 : pol 1 = 1 by rewrite -[RHS]polC/= algid1.
have polX : pol x = 'X by apply: mpsI; rewrite map_polyX -polE Fadjoin_polyX.
have polM (v w : Kx) : pol (val v * val w) = pol (val v) * pol (val w) %% q.
  apply: mpsI; rewrite map_modp rmorphM/= -!polE/= -eq_q.
  apply: Fadjoin_poly_unique.
  - by rewrite modp_polyOver// ?minPolyOver// rpredM ?Fadjoin_polyOver.
  - by rewrite -ltnS -size_minPoly ltn_modp ?monic_neq0 ?monic_minPoly//.
  rewrite -Fadjoin_poly_mod ?rpredM ?Fadjoin_polyOver//.
  by rewrite hornerM !Fadjoin_poly_eq//= ?rpredM ?subvsP.
have hlr : lrmorphism (fun v : Kx => (pol (val v) ^^ f).[x']).
  do ![split] => [v w|v w||w v]/=.
  - by rewrite -raddfB/= polB raddfB !hornerE.
  - by rewrite -rmorphM/= polM map_modp/= horner_mod// rmorphM hornerE.
  - by rewrite algid1 pol1 rmorph1 hornerE.
  - by rewrite polZ linearZ/= rmorph_alg hornerE mulr_algl.
pose h := linfun_ahom (LRMorphism hlr).
exists h; first by rewrite lfunE/= polX map_polyX hornerX.
by move=> v; rewrite /comp lfunE/= vsval_sub/= polC map_polyC hornerC.
Qed.

Lemma lker0_img_cap (K : fieldType) (aT rT : vectType K) (f : 'Hom(aT, rT))
    (U V : {vspace aT}) : lker f == 0%VS ->
  (f @: (U :&: V) = f @: U :&: f @: V)%VS.
Proof.
move=> kf0; apply/eqP; rewrite eqEsubv limg_cap/=; apply/subvP => x.
rewrite memv_cap => /andP[/memv_imgP[u uU ->]] /memv_imgP[v vV].
by move=> /(lker0P kf0) eq_uv; rewrite memv_img// memv_cap uU eq_uv vV.
Qed.

Lemma aimg_cap (K : fieldType) (aT rT : fieldExtType K) (f : 'AHom(aT, rT))
    (U V : {vspace aT}) : (f @: (U :&: V) = f @: U :&: f @: V)%VS.
Proof. exact/lker0_img_cap/AHom_lker0. Qed.

Lemma sub_aimgP (F0 : fieldType) (L L' : splittingFieldType F0)
  (iota : 'AHom(L, L')) (F : {subfield L'}) :
  reflect (exists E : {subfield L}, (iota @: E)%VS = F) (F <= iota @: fullv)%VS.
Proof.
apply: (iffP idP) => [Fiota|[E <-]]; last by rewrite limgS ?subvf.
suff F_is_aspace : is_aspace (iota @^-1: F)%VS.
  by exists (ASpace F_is_aspace); apply/eqP; rewrite eqEsubv/= lpreimK ?subvv.
apply/andP => /=; split.
  by apply/has_algid1; rewrite -memv_preim rmorph1 rpred1.
by apply/prodvP => u v; rewrite -!memv_preim => uF vF; rewrite rmorphM rpredM.
Qed.

Lemma polyOver_aimg (K : fieldType) (L L' : fieldExtType K)
    (E : {vspace L}) (f : 'AHom(L, L')) (p' : {poly L'}) :
  reflect (exists2 p, p \is a polyOver E & p' = p ^^ f)
          (p' \is a polyOver (f @: E)%VS).
Proof.
apply: (iffP polyOverP) => [|[p pE -> i]]; last first.
  by rewrite coef_map memv_img ?(polyOverP pE).
move=> /(_ _)/memv_imgP/sig2_eqW-/all_sig[p_ pP].
exists (\poly_(i < size p') p_ i).
  apply/polyOverP => i; rewrite coef_poly; case: ifP => _; rewrite ?rpred0//.
  by case: (pP i).
apply/polyP => i; rewrite coef_map/= coef_poly.
by case: ltnP => ip'; [case: (pP i) | rewrite nth_default ?rmorph0].
Qed.
Arguments polyOver_aimg {K L L' E f p'}.

Lemma mapf_polyOver (K : fieldType) (L L' : fieldExtType K)
    (E : {vspace L}) (f : 'AHom(L, L')) (p : {poly L}) :
  (p ^^ f \is a polyOver (f @: E)%VS) = (p \is a polyOver E).
Proof.
apply/polyOverP/polyOverP => piE i; last by rewrite coef_map/= memv_img.
by have := piE i; rewrite coef_map/= memvE -limg_line limg_ker0 ?AHom_lker0.
Qed.

Lemma separable_aimg  (F0 : fieldType) (L L' : fieldExtType F0)
  (E F : {subfield L}) (f : 'AHom(L, L')) :
   separable (f @: E) (f @: F) = separable E F.
Proof.
apply/separableP/separableP => [sepEF x xF|sepEF _ /memv_imgP[x xF ->]].
  have /separable_elementP[_ [/polyOver_aimg[p pE ->]]] :=
    sepEF (f x) (memv_img f xF).
  rewrite mapf_root separable_map => root_p sep_p.
  by apply/separable_elementP; exists p; split.
have /(_ _ xF)/separable_elementP[p [pE rpx sepp]] := sepEF.
apply/separable_elementP; exists (p ^^ f).
by rewrite ?mapf_polyOver ?rmorph_root ?separable_map.
Qed.

Lemma subset_limgP (F0 : fieldType) (L L' : fieldExtType F0)
    (E : {subfield L}) (f : 'AHom(L, L')) (r' : seq L') :
  {subset r' <= (f @: E)%VS} <-> (exists2 r, all (mem E) r & r' = map f r).
Proof.
split => [|[r /allP/= rE ->] _ /mapP[x xr ->]]; last by rewrite memv_img ?rE.
move=> /(_ _ _)/memv_imgP/sig2_eqW-/(all_sig_cond (0 : L))[f' f'P].
exists (map f' r'); first by apply/allP => _ /mapP [x /f'P[? ?] ->].
by symmetry; rewrite -map_comp; apply: map_id_in => x /f'P[].
Qed.

Lemma splittingFieldFor_aimg  (F0 : fieldType) (L L' : fieldExtType F0)
  (E F : {subfield L}) p (f : 'AHom(L, L')) :
   splittingFieldFor (f @: E) (p ^^ f) (f @: F) <-> splittingFieldFor E p F.
Proof.
split=> -[rs' pE EF]; last first.
  by exists (map f rs'); rewrite -?map_prod_XsubC ?eqp_map -?aimg_adjoin_seq ?EF.
have /subset_limgP[rs _ rs'E] : {subset rs' <= (f @: F)%VS}.
  by rewrite -EF; apply: seqv_sub_adjoin.
exists rs; first by have := pE; rewrite rs'E -map_prod_XsubC ?eqp_map.
have := EF; rewrite rs'E -aimg_adjoin_seq => /eqP.
by rewrite eq_limg_ker0 ?AHom_lker0// => /eqP.
Qed.

(********************)
(* package solvable *)
(********************)

(*******************)
(* new sym library *)
(*******************)

Lemma gen_tperm_step n (k : 'I_n.+2) : coprime n.+2 k ->
  <<[set tperm i (i + k) | i : 'I_n.+2]>>%g = [set: 'S_n.+2].
Proof.
rewrite -unitZpE// natr_Zp => k_unit.
apply/eqP; rewrite eqEsubset subsetT/= -(gen_tperm 0)/= gen_subG.
apply/subsetP => s /imsetP[/= i _ ->].
rewrite -[i](mulVKr k_unit) -[_ * i]natr_Zp mulr_natr.
elim: (val _) => //= {i} [|[|i] IHi]; first by rewrite tperm1 group1.
  by rewrite mulrSr mem_gen//; apply/imsetP; exists 0.
have [->|kS2N0] := eqVneq (k *+ i.+2) 0; first by rewrite tperm1 group1.
have kSSneqkS : k *+ i.+2 != k *+ i.+1.
  rewrite -subr_eq0 -mulrnBr// subSnn mulr1n.
  by apply: contraTneq k_unit => ->; rewrite unitr0.
rewrite -(@tpermJt _ (k *+ i.+1)) 1?eq_sym//.
rewrite groupJ// 1?tpermC// mulrSr 1?tpermC.
by rewrite mem_gen//; apply/imsetP; exists (k *+ i.+1).
Qed.

Lemma gen_tpermS n : <<[set tperm i (i + 1) | i : 'I_n.+2]>>%g = [set: 'S_n.+2].
Proof. by rewrite gen_tperm_step// coprimen1. Qed.

Lemma perm_add1X n (j k : 'I_n.+2) : (perm (addrI 1%R) ^+ j)%g k = j + k.
Proof. by rewrite permX (eq_iter (permE _)) iter_addr natr_Zp. Qed.

Lemma gen_tpermn_cycle n (i j : 'I_n.+2)
    (c := perm (addrI 1)) : coprime n.+2 (j - i)%R ->
  <<[set tperm i j ; c]>>%g = [set: 'S_n.+2].
Proof.
move=> jBi_coprime; apply/eqP; rewrite eqEsubset subsetT/=.
rewrite -(gen_tperm_step jBi_coprime) gen_subG.
apply/subsetP => s /imsetP[/= k _ ->].
suff -> : tperm k (k + (j - i)) = (tperm i j ^ c ^+ (k - i)%R)%g.
  by rewrite groupJ ?groupX ?mem_gen ?inE ?eqxx ?orbT.
by rewrite tpermJ !perm_add1X addrNK addrAC addrA.
Qed.

Lemma gen_tperm01_cycle n (c := perm (addrI 1)) :
  <<[set tperm 0 1%R ; c]>>%g = [set: 'S_n.+2].
Proof. by rewrite gen_tpermn_cycle// subr0 coprimen1. Qed.

Lemma expgDzmod (gT : finGroupType) (x : gT) d (n m : 'Z_d) : (d > 0)%N ->
  (#[x]%g %| d)%N -> (x ^+ (n + m)%R)%g = (x ^+ n * x ^+ m)%g.
Proof.
move=> d_gt0 xdvd; apply/eqP; rewrite -expgD eq_expg_mod_order/= modn_dvdm//.
by case: d d_gt0 {m n} xdvd => [|[|[]]]//= _; rewrite dvdn1 => /eqP->.
Qed.

Lemma eq_expg_ord (gT : finGroupType) (x : gT) d (n m : 'I_d) :
  (d <= #[x]%g)%N -> ((x ^+ m)%g == (x ^+ n)%g) = (m == n).
Proof.
by move=> d_leq; rewrite eq_expg_mod_order !modn_small// (leq_trans _ d_leq).
Qed.

Lemma gen_tperm_cycle (X : finType) x y c : prime #|X| ->
  x != y -> #[c]%g = #|X| ->
  <<[set tperm x y; c]>>%g = ('Sym_X)%g.
Proof.
move=> Xprime neq_xy ord_c; apply/eqP; rewrite eqEsubset subsetT/=.
have c_gt1 : (1 < #[c]%g)%N by rewrite ord_c prime_gt1.
have cppSS : #[c]%g.-2.+2 = #|X| by rewrite ?prednK ?ltn_predRL.
pose f (i : 'Z_#[c]%g) : X := Zpm i x.
have [g fK gK] : bijective f.
  apply: inj_card_bij; rewrite ?cppSS ?card_ord// /f /Zpm => i j cijx.
  pose stabx := ('C_<[c]>[x | 'P])%g.
  have cjix : (c ^+ (j - i)%R)%g x = x.
    by apply: (@perm_inj _ (c ^+ i)%g); rewrite -permM -expgDzmod// addrNK.
  have : (c ^+ (j - i)%R)%g \in stabx.
    by rewrite !inE ?groupX ?mem_gen ?sub1set ?inE// ['P%act _ _]cjix eqxx.
  rewrite [stabx]prime_astab// => /set1gP.
  move=> /(congr1 (mulg (c ^+ i))); rewrite -expgDzmod// addrC addrNK mulg1.
  by move=> /eqP; rewrite eq_expg_ord// ?cppSS ?ord_c// => /eqP->.
pose gsf s := g \o s \o f.
have gsf_inj (s : {perm X}) : injective (gsf s).
  apply: inj_comp; last exact: can_inj fK.
  by apply: inj_comp; [exact: can_inj gK|exact: perm_inj].
pose fsg s := f \o s \o g.
have fsg_inj (s : {perm _}) : injective (fsg s).
  apply: inj_comp; last exact: can_inj gK.
  by apply: inj_comp; [exact: can_inj fK|exact: perm_inj].
have gsf_morphic : morphic 'Sym_X (fun s => perm (gsf_inj s)).
  apply/morphicP => u v _ _; apply/permP => /= i.
  by rewrite !permE/= !permE /gsf /= gK permM.
pose phi := morphm gsf_morphic; rewrite /= in phi.
have phi_inj : ('injm phi)%g.
  apply/subsetP => /= u /mker/=; rewrite morphmE => gsfu1.
  apply/set1gP/permP=> z; have /permP/(_ (g z)) := gsfu1.
  by rewrite !perm1 permE /gsf/= gK => /(can_inj gK).
have phiT : (phi @* 'Sym_X)%g = [set: {perm 'Z_#[c]%g}].
  apply/eqP; rewrite eqEsubset subsetT/=; apply/subsetP => /= u _.
  apply/morphimP; exists (perm (fsg_inj u)); rewrite ?in_setT//.
  by apply/permP => /= i; rewrite morphmE permE /gsf/fsg/= permE/= !fK.
have f0 : f 0 = x by rewrite /f /Zpm permX.
pose k := g y; have k_gt0 : (k > 0)%N.
  by rewrite lt0n (val_eqE k 0) -(can_eq fK) eq_sym gK f0.
have phixy : phi (tperm x y) = tperm 0 k.
  apply/permP => i; rewrite permE/= /gsf/=; apply: (canLR fK).
  by rewrite !permE/= -f0 -[y]gK !(can_eq fK) -!fun_if.
have phic : phi c = perm (addrI 1%R).
  apply/permP => i; rewrite permE /gsf/=; apply: (canLR fK).
  by rewrite !permE /f /Zpm -permM addrC expgDzmod.
rewrite -(injmSK phi_inj)//= morphim_gen/= ?subsetT//= -/phi.
rewrite phiT /morphim !setTI/= -/phi imsetU1 imset_set1/= phixy phic.
suff /gen_tpermn_cycle<- : coprime #[c]%g.-2.+2 (k - 0)%R by [].
by rewrite subr0 prime_coprime ?gtnNdvd// ?cppSS.
Qed.

(************)
(* solvable *)
(************)

Lemma sol_setXn n (gT : 'I_n -> finGroupType) (G : forall i, {group gT i}) :
  (forall i, solvable (G i)) -> solvable (setXn G).
Proof.
elim: n => [|n IHn] in gT G * => solG; first by rewrite setX0 solvable1.
pose gT' (i : 'I_n) := gT (lift ord0 i).
pose f (x : prod_group gT) : prod_group gT' := [ffun i => x (lift ord0 i)].
have fm : morphic (setXn G) f.
  apply/'forall_implyP => -[a b]; rewrite !inE/=.
  by move=> /andP[/forallP aG /forallP bG]; apply/eqP/ffunP => i; rewrite !ffunE.
rewrite (@series_sol _ [group of setXn G] ('ker (morphm fm))) ?ker_normal//=.
rewrite (isog_sol (first_isog _))/=.
have -> : (morphm fm @* setXn G)%g = setXn (fun i => G (lift ord0 i)).
  apply/setP => v; rewrite !inE morphimEdom; apply/idP/forallP => /=.
    move=> /imsetP[/=x]; rewrite inE => /forallP/= xG ->.
    by move=> i; rewrite morphmE ffunE xG.
  move=> vG; apply/imsetP.
  pose w : prod_group gT := [ffun i : 'I_n.+1 =>
             match unliftP ord0 i with
             | UnliftSome j i_eq => ecast i (gT i) (esym i_eq) (v j)
             | UnliftNone i0 => 1%g
             end].
  have wl i : w (lift ord0 i) = v i.
    rewrite ffunE; case: unliftP => //= j elij.
    have eij : i = j by case: elij; apply/val_inj.
    by rewrite [elij](eq_irrelevance _ (congr1 _ eij)); case: _ / eij.
  have w0 : w ord0 = 1%g by rewrite ffunE; case: unliftP.
  exists w; last by apply/ffunP => i; rewrite morphmE ffunE/= wl.
  rewrite inE; apply/forallP => i.
  by case: (unliftP ord0 i) => [j|]->; rewrite ?wl ?w0 ?vG.
rewrite IHn ?andbT//; last by move=> i; apply: solG.
pose k (x : gT ord0) : prod_group gT :=
   [ffun i : 'I_n.+1 => if (ord0 =P i) is ReflectT P then ecast i (gT i) P x else 1%g].
have km : morphic (G ord0) k.
  apply/'forall_implyP => -[a b]; rewrite !inE/= => /andP[aG bG].
  apply/eqP/ffunP => i; rewrite !ffunE; case: eqP => //; rewrite ?mulg1//.
  by case: _ /.
suff -> : ('ker (morphm fm) = morphm km @* G ord0)%g by rewrite morphim_sol.
apply/setP => x; rewrite morphimEdom; apply/idP/imsetP => [xker|].
  exists (x ord0).
     by have := dom_ker xker; rewrite inE => /forallP/(_ ord0).
  rewrite /= morphmE; apply/ffunP => i; rewrite ffunE; case: eqP => //=.
    by case: _ /.
  move/eqP; rewrite eq_sym; have /mker/= := xker; rewrite morphmE => /ffunP.
  by case: (@unliftP _ ord0 i) => [j|] ->//= /(_ j); rewrite !ffunE.
move=> [x0 xG0 -> /=]; rewrite morphmE; apply/kerP; rewrite ?inE.
  by apply/forallP => i; rewrite ffunE; case: eqP => //=; case: _ /.
by rewrite /= morphmE; apply/ffunP => i; rewrite !ffunE; case: eqP.
Qed.

Section Perm_solvable.
Local Open Scope nat_scope.

Variable T : finType.

Lemma solvable_AltF : 4 < #|T| -> solvable 'Alt_T = false.
Proof.
move=> card_T; apply/negP => Alt_solvable.
have/simple_Alt5 Alt_simple := card_T.
have := simple_sol_prime Alt_solvable Alt_simple.
have lt_T n : n <= 4 -> n < #|T| by move/leq_ltn_trans; apply.
have -> : #|('Alt_T)%G| = #|T|`! %/ 2 by rewrite -card_Alt ?mulKn ?lt_T.
move/even_prime => [/eqP|]; apply/negP.
  rewrite neq_ltn leq_divRL // mulnC -[2 * 3]/(3`!).
  by apply/orP; right; apply/ltnW/fact_smonotone/lt_T.
by rewrite -dvdn2 dvdn_divRL dvdn_fact //=; apply/ltnW/lt_T.
Qed.

Lemma solvable_SymF : 4 < #|T| -> solvable 'Sym_T = false.
Proof. by rewrite (series_sol (Alt_normal T)) => /solvable_AltF->. Qed.

End Perm_solvable.