Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 49,503 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 |
From mathcomp Require Import all_ssreflect all_fingroup all_algebra all_solvable.
From mathcomp Require Import all_field.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(*********************)
(* package ssreflect *)
(*********************)
(***********)
(* ssrbool *)
(***********)
Lemma classicPT (P : Type) : classically P <-> ((P -> False) -> False).
Proof.
split; first by move=>/(_ false) PFF PF; suff: false by []; apply: PFF => /PF.
by move=> PFF []// Pf; suff: False by []; apply: PFF => /Pf.
Qed.
Lemma classic_sigW T (P : T -> Prop) :
classically (exists x, P x) <-> classically (sig P).
Proof. by split; apply: classic_bind => -[x Px]; apply/classicW; exists x. Qed.
Lemma classic_ex T (P : T -> Prop) :
~ (forall x, ~ P x) -> classically (ex P).
Proof.
move=> NfNP; apply/classicPT => exPF; apply: NfNP => x Px.
by apply: exPF; exists x.
Qed.
(*******)
(* seq *)
(*******)
Lemma subset_mapP (X Y : eqType) (f : X -> Y) (s : seq X) (s' : seq Y) :
{subset s' <= map f s} <-> exists2 t, all (mem s) t & s' = map f t.
Proof.
split => [|[r /allP/= rE ->] _ /mapP[x xr ->]]; last by rewrite map_f ?rE.
elim: s' => [|x s' IHs'] subss'; first by exists [::].
have /mapP[y ys ->] := subss' _ (mem_head _ _).
have [x' x's'|t st ->] := IHs'; first by rewrite subss'// inE x's' orbT.
by exists (y :: t); rewrite //= ys st.
Qed.
Arguments subset_mapP {X Y}.
(*********)
(* bigop *)
(*********)
Lemma big_rcons_idx (R : Type) (idx : R) (op : R -> R -> R) (I : Type)
(i : I) (r : seq I) (P : pred I) (F : I -> R)
(idx' := if P i then op (F i) idx else idx) :
\big[op/idx]_(j <- rcons r i | P j) F j = \big[op/idx']_(j <- r | P j) F j.
Proof. by elim: r => /= [|j r]; rewrite ?(big_nil, big_cons)// => ->. Qed.
Lemma big_change_idx (R : Type) (idx : R) (op : Monoid.law idx) (I : Type)
(x : R) (r : seq I) (P : pred I) (F : I -> R) :
op (\big[op/idx]_(j <- r | P j) F j) x = \big[op/x]_(j <- r | P j) F j.
Proof.
elim: r => [|i r]; rewrite ?(big_nil, big_cons, Monoid.mul1m)// => <-.
by case: ifP => // Pi; rewrite Monoid.mulmA.
Qed.
Lemma big_rcons (R : Type) (idx : R) (op : Monoid.law idx) (I : Type)
i r (P : pred I) F :
\big[op/idx]_(j <- rcons r i | P j) F j =
op (\big[op/idx]_(j <- r | P j) F j) (if P i then F i else idx).
Proof. by rewrite big_rcons_idx -big_change_idx Monoid.mulm1. Qed.
(********)
(* path *)
(********)
Lemma sortedP T x (s : seq T) (r : rel T) :
reflect (forall i, i.+1 < size s -> r (nth x s i) (nth x s i.+1)) (sorted r s).
Proof.
elim: s => [|y [|z s]//= IHs]/=; do ?by constructor.
apply: (iffP andP) => [[ryz rzs] [|i]// /IHs->//|rS].
by rewrite (rS 0); split=> //; apply/IHs => i /(rS i.+1).
Qed.
(*********)
(* tuple *)
(*********)
Section tnth_shift.
Context {T : Type} {n1 n2} (t1 : n1.-tuple T) (t2 : n2.-tuple T).
Lemma tnth_lshift i : tnth [tuple of t1 ++ t2] (lshift n2 i) = tnth t1 i.
Proof.
have x0 := tnth_default t1 i; rewrite !(tnth_nth x0).
by rewrite nth_cat size_tuple /= ltn_ord.
Qed.
Lemma tnth_rshift j : tnth [tuple of t1 ++ t2] (rshift n1 j) = tnth t2 j.
Proof.
have x0 := tnth_default t2 j; rewrite !(tnth_nth x0).
by rewrite nth_cat size_tuple ltnNge leq_addr /= addKn.
Qed.
End tnth_shift.
(*********)
(* prime *)
(*********)
Lemma primeNsig (n : nat) : ~~ prime n -> (2 <= n)%N ->
{ d : nat | (1 < d < n)%N & (d %| n)%N }.
Proof.
move=> primeN_n le2n; case/pdivP: {+}le2n => d /primeP[lt1d prime_d] dvd_dn.
exists d => //; rewrite lt1d /= ltn_neqAle dvdn_leq 1?andbT //; last first.
by apply: (leq_trans _ le2n).
by apply: contra primeN_n => /eqP <-; apply/primeP.
Qed.
Lemma totient_gt1 n : (totient n > 1)%N = (n > 2)%N.
Proof.
case: n => [|[|[|[|n']]]]//=; set n := n'.+4; rewrite [RHS]isT.
have [pn2|/allPn[p]] := altP (@allP _ (eq_op^~ 2%N) (primes n)); last first.
rewrite mem_primes/=; move: p => [|[|[|p']]]//; set p := p'.+3.
move=> /andP[p_prime dvdkn].
have [//|[|k]// cpk ->] := (@pfactor_coprime _ n p_prime).
rewrite totient_coprime ?coprimeXr 1?coprime_sym//.
rewrite totient_pfactor ?logn_gt0 ?mem_primes ?p_prime// mulnCA.
by rewrite (@leq_trans p.-1) ?leq_pmulr ?muln_gt0 ?expn_gt0 ?totient_gt0.
have pnNnil : primes n != [::].
apply: contraTneq isT => pn0.
by have := @prod_prime_decomp n isT; rewrite prime_decompE pn0/= big_nil.
have := @prod_prime_decomp n isT; rewrite prime_decompE.
case: (primes n) pnNnil pn2 (primes_uniq n) => [|p [|p' r]]//=; last first.
move=> _ eq2; rewrite !inE [p](eqP (eq2 _ _)) ?inE ?eqxx//.
by rewrite [p'](eqP (eq2 _ _)) ?inE ?eqxx// orbT.
move=> _ /(_ _ (mem_head _ _))/eqP-> _; rewrite big_cons big_nil muln1/=.
case: (logn 2 n) => [|[|k]]// ->.
by rewrite totient_pfactor//= expnS mul1n leq_pmulr ?expn_gt0.
Qed.
(********************)
(* package fingroup *)
(********************)
(*************)
(* gproduct? *)
(*************)
Section ExternalNDirProd.
Variables (n : nat) (gT : 'I_n -> finGroupType).
Notation gTn := {dffun forall i, gT i}.
Definition extnprod_mulg (x y : gTn) : gTn := [ffun i => (x i * y i)%g].
Definition extnprod_invg (x : gTn) : gTn := [ffun i => (x i)^-1%g].
Lemma extnprod_mul1g : left_id [ffun=> 1%g] extnprod_mulg.
Proof. by move=> x; apply/ffunP => i; rewrite !ffunE mul1g. Qed.
Lemma extnprod_mulVg : left_inverse [ffun=> 1%g] extnprod_invg extnprod_mulg.
Proof. by move=> x; apply/ffunP => i; rewrite !ffunE mulVg. Qed.
Lemma extnprod_mulgA : associative extnprod_mulg.
Proof. by move=> x y z; apply/ffunP => i; rewrite !ffunE mulgA. Qed.
Definition extnprod_groupMixin :=
Eval hnf in FinGroup.Mixin extnprod_mulgA extnprod_mul1g extnprod_mulVg.
Canonical extnprod_baseFinGroupType :=
Eval hnf in BaseFinGroupType gTn extnprod_groupMixin.
Canonical prod_group := FinGroupType extnprod_mulVg.
End ExternalNDirProd.
Definition setXn n (fT : 'I_n -> finType) (A : forall i, {set fT i}) :
{set {dffun forall i, fT i}} :=
[set x : {dffun forall i, fT i} | [forall i : 'I_n, x i \in A i]].
Lemma setXn_group_set n (gT : 'I_n -> finGroupType) (G : forall i, {group gT i}) :
group_set (setXn G).
Proof.
apply/andP => /=; split.
by rewrite inE; apply/forallP => i; rewrite ffunE group1.
apply/subsetP => x /mulsgP[u v]; rewrite !inE => /forallP uG /forallP vG {x}->.
by apply/forallP => x; rewrite ffunE groupM ?uG ?vG.
Qed.
Canonical setXn_group n (gT : 'I_n -> finGroupType) (G : forall i, {group gT i}) :=
Group (setXn_group_set G).
Lemma setX0 (gT : 'I_0 -> finGroupType) (G : forall i, {group gT i}) :
setXn G = 1%g.
Proof.
apply/setP => x; rewrite !inE; apply/forallP/idP => [_|? []//].
by apply/eqP/ffunP => -[].
Qed.
(********)
(* perm *)
(********)
Lemma tpermJt (X : finType) (x y z : X) : x != z -> y != z ->
(tperm x z ^ tperm x y)%g = tperm y z.
Proof.
by move=> neq_xz neq_yz; rewrite tpermJ tpermL [tperm _ _ z]tpermD.
Qed.
Lemma gen_tperm (X : finType) x :
<<[set tperm x y | y in X]>>%g = [set: {perm X}].
Proof.
apply/eqP; rewrite eqEsubset subsetT/=; apply/subsetP => s _.
have [ts -> _] := prod_tpermP s; rewrite group_prod// => -[/= y z] _.
have [<-|Nyz] := eqVneq y z; first by rewrite tperm1 group1.
have [<-|Nxz] := eqVneq x z; first by rewrite tpermC mem_gen ?imset_f.
by rewrite -(tpermJt Nxz Nyz) groupJ ?mem_gen ?imset_f.
Qed.
Lemma prime_orbit (X : finType) x c :
prime #|X| -> #[c]%g = #|X| -> orbit 'P <[c]> x = [set: X].
Proof.
move=> X_prime ord_c; have dvd_orbit y : (#|orbit 'P <[c]> y| %| #|X|)%N.
by rewrite (dvdn_trans (dvdn_orbit _ _ _))// [#|<[_]>%g|]ord_c.
have [] := boolP [forall y, #|orbit 'P <[c]> y| == 1%N].
move=> /'forall_eqP-/(_ _)/card_orbit1 orbit1; suff c_eq_1 : c = 1%g.
by rewrite c_eq_1 ?order1 in ord_c; rewrite -ord_c in X_prime.
apply/permP => y; rewrite perm1.
suff: c y \in orbit 'P <[c]> y by rewrite orbit1 inE => /eqP->.
by apply/orbitP; exists c => //; rewrite mem_gen ?inE.
move=> /forallPn[y orbit_y_neq0]; have orbit_y : orbit 'P <[c]> y = [set: X].
apply/eqP; rewrite eqEcard subsetT cardsT.
by have /(prime_nt_dvdP X_prime orbit_y_neq0)<-/= := dvd_orbit y.
by have /orbit_in_eqP-> : x \in orbit 'P <[c]> y; rewrite ?subsetT ?orbit_y.
Qed.
Lemma prime_astab (X : finType) (x : X) (c : {perm X}) :
prime #|X| -> #[c]%g = #|X| -> 'C_<[c]>[x | 'P]%g = 1%g.
Proof.
move=> X_prime ord_c; have /= := card_orbit_stab 'P [group of <[c]>%g] x.
rewrite prime_orbit// cardsT [#|<[_]>%g|]ord_c -[RHS]muln1 => /eqP.
by rewrite eqn_mul2l gtn_eqF ?prime_gt0//= -trivg_card1 => /eqP.
Qed.
(*******************)
(* package algebra *)
(*******************)
Import GRing.Theory.
Local Open Scope ring_scope.
Notation has_char0 L := ([char L] =i pred0).
(**********)
(* ssralg *)
(**********)
Lemma iter_addr (V : zmodType) n x y : iter n (+%R x) y = x *+ n + y :> V.
Proof. by elim: n => [|n ih]; rewrite ?add0r //= ih mulrS addrA. Qed.
Lemma prodrMl {R : comRingType} {I : finType} (A : pred I) (x : R) F :
\prod_(i in A) (x * F i) = x ^+ #|A| * \prod_(i in A) F i.
Proof.
rewrite -sum1_card; elim/big_rec3: _; first by rewrite expr0 mulr1.
by move=> i y p z iA ->; rewrite mulrACA exprS.
Qed.
Lemma expr_sum {R : ringType} {T : Type} (x : R) (F : T -> nat) P s :
x ^+ (\sum_(i <- s | P i) F i) = \prod_(i <- s | P i) x ^+ (F i).
Proof. by apply: big_morph; [exact: exprD | exact: expr0]. Qed.
Lemma prim_root_natf_neq0 (F : fieldType) n (w : F) :
n.-primitive_root w -> (n%:R != 0 :> F).
Proof.
have [->//|n_gt0] := posnP n => x_prim; apply/negPf/negP => nFneq0.
have /natf0_char[//|p char_p] := nFneq0.
have p_prime : prime p := charf_prime char_p.
move: nFneq0; rewrite -(dvdn_charf char_p) => dvdpn.
have [k cpk nE] := pfactor_coprime p_prime n_gt0.
have k_gt0 : (k > 0)%N by move: n_gt0; rewrite nE muln_gt0 => /andP[].
have /prim_expr_order/eqP := x_prim; rewrite nE exprM.
elim: (logn p n) => [|i IHi]; last first.
rewrite expnSr exprM -subr_eq0 -Frobenius_autE -(Frobenius_aut1 char_p).
by rewrite -rmorphB fmorph_eq0 subr_eq0.
rewrite -(prim_order_dvd x_prim) nE mulnC Gauss_dvd ?coprimeXl//.
rewrite pfactor_dvdn// ltn_geF// -[k]muln1 logn_Gauss ?logn1//.
by rewrite logn_gt0 mem_primes p_prime dvdpn n_gt0.
Qed.
(**********)
(* ssrnum *)
(**********)
Section ssrnum.
Import Num.Theory.
Lemma CrealJ (C : numClosedFieldType) :
{mono (@conjC C) : x / x \is Num.real}.
Proof.
suff realK : {homo (@conjC C) : x / x \is Num.real}.
by move=> x; apply/idP/idP => /realK//; rewrite conjCK.
by move=> x xreal; rewrite conj_Creal.
Qed.
End ssrnum.
(**********)
(* ssrint *)
(**********)
Lemma dvdz_charf (R : ringType) (p : nat) :
p \in [char R] -> forall n : int, (p %| n)%Z = (n%:~R == 0 :> R).
Proof.
move=> charRp [] n; rewrite [LHS](dvdn_charf charRp)//.
by rewrite NegzE abszN rmorphN// oppr_eq0.
Qed.
(********)
(* poly *)
(********)
Local Notation "p ^^ f" := (map_poly f p)
(at level 30, f at level 30, format "p ^^ f").
Lemma irredp_XaddC (F : fieldType) (x : F) : irreducible_poly ('X + x%:P).
Proof. by rewrite -[x]opprK rmorphN; apply: irredp_XsubC. Qed.
Lemma lead_coef_XnsubC {R : ringType} n (c : R) : (0 < n)%N ->
lead_coef ('X^n - c%:P) = 1.
Proof.
move=> gt0_n; rewrite lead_coefDl ?lead_coefXn //.
by rewrite size_opp size_polyC size_polyXn ltnS (leq_trans (leq_b1 _)).
Qed.
Lemma lead_coef_XsubC {R : ringType} (c : R) :
lead_coef ('X - c%:P) = 1.
Proof. by apply: (@lead_coef_XnsubC _ 1%N). Qed.
Lemma monic_XsubC {R : ringType} (c : R) : 'X - c%:P \is monic.
Proof. by rewrite monicE lead_coef_XsubC. Qed.
Lemma monic_XnsubC {R : ringType} n (c : R) : (0 < n)%N -> 'X^n - c%:P \is monic.
Proof. by move=> gt0_n; rewrite monicE lead_coef_XnsubC. Qed.
Lemma size_XnsubC {R : ringType} n (c : R) : (0 < n)%N -> size ('X^n - c%:P) = n.+1.
Proof.
move=> gt0_n; rewrite size_addl ?size_polyXn //.
by rewrite size_opp size_polyC; case: (c =P 0).
Qed.
Lemma map_polyXsubC (aR rR : ringType) (f : {rmorphism aR -> rR}) x :
map_poly f ('X - x%:P) = 'X - (f x)%:P.
Proof. by rewrite rmorphB/= map_polyX map_polyC. Qed.
Lemma poly_XsubC_over {R : ringType} c (S : {pred R}) (addS : subringPred S)
(kS : keyed_pred addS): c \in kS -> 'X - c%:P \is a polyOver kS.
Proof. by move=> cS; rewrite rpredB ?polyOverC ?polyOverX. Qed.
Lemma poly_XnsubC_over {R : ringType} n c (S : {pred R}) (addS : subringPred S)
(kS : keyed_pred addS): c \in kS -> 'X^n - c%:P \is a polyOver kS.
Proof. by move=> cS; rewrite rpredB ?rpredX ?polyOverX ?polyOverC. Qed.
Lemma lead_coef_prod {R : idomainType} (ps : seq {poly R}) :
lead_coef (\prod_(p <- ps) p) = \prod_(p <- ps) lead_coef p.
Proof. by apply/big_morph/lead_coef1; apply: lead_coefM. Qed.
Lemma lead_coef_prod_XsubC {R : idomainType} (cs : seq R) :
lead_coef (\prod_(c <- cs) ('X - c%:P)) = 1.
Proof.
rewrite -(big_map (fun c : R => 'X - c%:P) xpredT idfun) /=.
rewrite lead_coef_prod big_seq (eq_bigr (fun=> 1)) ?big1 //=.
by move=> i /mapP[c _ ->]; apply: lead_coef_XsubC.
Qed.
Lemma coef0M {R : ringType} (p q : {poly R}) : (p * q)`_0 = p`_0 * q`_0.
Proof. by rewrite coefM big_ord1. Qed.
Lemma coef0_prod {R : ringType} {T : Type} (ps : seq T) (F : T -> {poly R}) P :
(\prod_(p <- ps | P p) F p)`_0 = \prod_(p <- ps | P p) (F p)`_0.
Proof.
by apply: (big_morph (fun p : {poly R} => p`_0));
[apply: coef0M | rewrite coefC eqxx].
Qed.
Lemma map_prod_XsubC (aR rR : ringType) (f : {rmorphism aR -> rR}) rs :
map_poly f (\prod_(x <- rs) ('X - x%:P)) =
\prod_(x <- map f rs) ('X - x%:P).
Proof.
by rewrite rmorph_prod big_map; apply/eq_bigr => x /=; rewrite map_polyXsubC.
Qed.
Lemma eq_in_map_poly_id0 (aR rR : ringType) (f g : aR -> rR)
(S0 : {pred aR}) (addS : addrPred S0) (kS : keyed_pred addS) :
f 0 = 0 -> g 0 = 0 ->
{in kS, f =1 g} -> {in polyOver kS, map_poly f =1 map_poly g}.
Proof.
move=> f0 g0 eq_fg p pP; apply/polyP => i.
by rewrite !coef_map_id0// eq_fg// (polyOverP _).
Qed.
Lemma eq_in_map_poly (aR rR : ringType) (f g : {additive aR -> rR})
(S0 : {pred aR}) (addS : addrPred S0) (kS : keyed_pred addS) :
{in kS, f =1 g} -> {in polyOver kS, map_poly f =1 map_poly g}.
Proof. by move=> /eq_in_map_poly_id0; apply; rewrite //?raddf0. Qed.
Lemma mapf_root (F : fieldType) (R : ringType) (f : {rmorphism F -> R})
(p : {poly F}) (x : F) :
root (p ^^ f) (f x) = root p x.
Proof. by rewrite !rootE horner_map fmorph_eq0. Qed.
Section multiplicity.
Variable (L : fieldType).
Definition mup (x : L) (p : {poly L}) :=
[arg max_(n > 0 : 'I_(size p).+1 | ('X - x%:P) ^+ n %| p) n] : nat.
Lemma mup_geq x q n : q != 0 -> (n <= mup x q)%N = (('X - x%:P) ^+ n %| q).
Proof.
move=> q_neq0; rewrite /mup; symmetry.
case: arg_maxnP; rewrite ?expr0 ?dvd1p//= => i i_dvd gti.
case: ltnP => [|/dvdp_exp2l/dvdp_trans]; last exact.
apply: contraTF => dvdq; rewrite -leqNgt.
suff n_small : (n < (size q).+1)%N by exact: (gti (Ordinal n_small)).
by rewrite ltnS ltnW// -(size_exp_XsubC _ x) dvdp_leq.
Qed.
Lemma mup_leq x q n : q != 0 -> (mup x q <= n)%N = ~~ (('X - x%:P) ^+ n.+1 %| q).
Proof. by move=> qN0; rewrite leqNgt mup_geq. Qed.
Lemma mup_ltn x q n : q != 0 -> (mup x q < n)%N = ~~ (('X - x%:P) ^+ n %| q).
Proof. by move=> qN0; rewrite ltnNge mup_geq. Qed.
Lemma XsubC_dvd x q : q != 0 -> ('X - x%:P %| q) = (0 < mup x q)%N.
Proof. by move=> /mup_geq-/(_ _ 1%N)/esym; apply. Qed.
Lemma mup_XsubCX n (x y : L) :
mup x (('X - y%:P) ^+ n) = (if (y == x) then n else 0)%N.
Proof.
have Xxn0 : ('X - y%:P) ^+ n != 0 by rewrite ?expf_neq0 ?polyXsubC_eq0.
apply/eqP; rewrite eqn_leq mup_leq ?mup_geq//.
have [->|Nxy] := eqVneq x y.
by rewrite /= dvdpp ?dvdp_Pexp2l ?size_XsubC ?ltnn.
by rewrite dvd1p dvdp_XsubCl /root horner_exp !hornerE expf_neq0// subr_eq0.
Qed.
Lemma mupNroot (x : L) q : ~~ root q x -> mup x q = 0%N.
Proof.
move=> qNx; have qN0 : q != 0 by apply: contraNneq qNx => ->; rewrite root0.
by move: qNx; rewrite -dvdp_XsubCl XsubC_dvd// lt0n negbK => /eqP.
Qed.
Lemma mupMl x q1 q2 : ~~ root q1 x -> mup x (q1 * q2) = mup x q2.
Proof.
move=> q1Nx; have q1N0 : q1 != 0 by apply: contraNneq q1Nx => ->; rewrite root0.
have [->|q2N0] := eqVneq q2 0; first by rewrite mulr0.
apply/esym/eqP; rewrite eqn_leq mup_geq ?mulf_neq0// dvdp_mull -?mup_geq//=.
rewrite mup_leq ?mulf_neq0// Gauss_dvdpr -?mup_ltn//.
by rewrite coprimep_expl// coprimep_sym coprimep_XsubC.
Qed.
Lemma mupM x q1 q2 : q1 != 0 -> q2 != 0 ->
mup x (q1 * q2) = (mup x q1 + mup x q2)%N.
Proof.
move=> q1N0 q2N0; apply/eqP; rewrite eqn_leq mup_leq ?mulf_neq0//.
rewrite mup_geq ?mulf_neq0// exprD ?dvdp_mul; do ?by rewrite -mup_geq.
have [m1 [r1]] := multiplicity_XsubC q1 x; rewrite q1N0 /= => r1Nx ->.
have [m2 [r2]] := multiplicity_XsubC q2 x; rewrite q2N0 /= => r2Nx ->.
rewrite !mupMl// ?mup_XsubCX eqxx/= mulrACA exprS exprD.
rewrite dvdp_mul2r ?mulf_neq0 ?expf_neq0 ?polyXsubC_eq0//.
by rewrite dvdp_XsubCl rootM negb_or r1Nx r2Nx.
Qed.
Lemma mu_prod_XsubC (x : L) (s : seq L) :
mup x (\prod_(x <- s) ('X - x%:P)) = count_mem x s.
Proof.
elim: s => [|y s IHs]; rewrite (big_cons, big_nil)/=.
by rewrite mupNroot// root1.
rewrite mupM ?polyXsubC_eq0// ?monic_neq0 ?monic_prod_XsubC//.
by rewrite IHs (@mup_XsubCX 1).
Qed.
Lemma prod_XsubC_eq (s t : seq L) :
\prod_(x <- s) ('X - x%:P) = \prod_(x <- t) ('X - x%:P) -> perm_eq s t.
Proof.
move=> eq_prod; apply/allP => x _ /=; apply/eqP.
by have /(congr1 (mup x)) := eq_prod; rewrite !mu_prod_XsubC.
Qed.
End multiplicity.
Lemma primitive_root_eq0 (F : fieldType) n (w : F) :
n.-primitive_root w -> (w == 0) = (n == 0%N).
Proof.
move=> wp; apply/eqP/idP => [w0|/eqP p0]; move: wp; rewrite ?w0 ?p0; last first.
by move=> /prim_order_gt0//.
move=> /prim_expr_order/esym/eqP.
by rewrite expr0n; case: (n =P 0%N); rewrite ?oner_eq0.
Qed.
Lemma dvdp_exp_XsubC (R : idomainType) (p : {poly R}) (c : R) n :
reflect (exists2 k, (k <= n)%N & p %= ('X - c%:P) ^+ k)
(p %| ('X - c%:P) ^+ n).
Proof.
apply: (iffP idP) => [|[k lkn /eqp_dvdl->]]; last by rewrite dvdp_exp2l.
move=> /Pdiv.WeakIdomain.dvdpP[[/= a q] a_neq0].
have [m [r]] := multiplicity_XsubC p c; have [->|pN0]/= := eqVneq p 0.
rewrite mulr0 => _ _ /eqP; rewrite scale_poly_eq0 (negPf a_neq0)/=.
by rewrite expf_eq0/= andbC polyXsubC_eq0.
move=> rNc ->; rewrite mulrA => eq_qrm; exists m.
have: ('X - c%:P) ^+ m %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm dvdp_mull.
by rewrite (eqp_dvdr _ (eqp_scale _ _))// dvdp_Pexp2l// size_XsubC.
suff /eqP : size r = 1%N.
by rewrite size_poly_eq1 => /eqp_mulr/eqp_trans->//; rewrite mul1r eqpxx.
have : r %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm mulrAC dvdp_mull.
rewrite (eqp_dvdr _ (eqp_scale _ _))//.
move: rNc; rewrite -coprimep_XsubC => /(coprimep_expr n) /coprimepP.
by move=> /(_ _ (dvdpp _)); rewrite -size_poly_eq1 => /(_ _)/eqP.
Qed.
Lemma eisenstein (p : nat) (q : {poly int}) : prime p -> (size q != 1)%N ->
(~~ (p %| lead_coef q))%Z -> (~~ ((p : int) ^+ 2 %| q`_0))%Z ->
(forall i, (i < (size q).-1)%N -> p %| q`_i)%Z ->
irreducible_poly (map_poly (intr : int -> rat) q).
Proof.
move=> p_prime qN1 Ndvd_pql Ndvd_pq0 dvd_pq.
have qN0 : q != 0 by rewrite -lead_coef_eq0; apply: contraNneq Ndvd_pql => ->.
split.
rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0//.
by rewrite ltn_neqAle eq_sym qN1 size_poly_gt0.
move=> f' +/dvdpP_rat_int[f [d dN0 feq]]; rewrite {f'}feq size_scale// => fN1.
move=> /= [g q_eq]; rewrite q_eq (eqp_trans (eqp_scale _ _))//.
have fN0 : f != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mul0r.
have gN0 : g != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mulr0.
rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0// in fN1.
have [/eqP/size_poly1P[c cN0 ->]|gN1] := eqVneq (size g) 1%N.
by rewrite mulrC mul_polyC map_polyZ/= eqp_sym eqp_scale// intr_eq0.
have c_neq0 : (lead_coef q)%:~R != 0 :> 'F_p
by rewrite -(dvdz_charf (char_Fp _)).
have : map_poly (intr : int -> 'F_p) q = (lead_coef q)%:~R *: 'X^(size q).-1.
apply/val_inj/(@eq_from_nth _ 0) => [|i]; rewrite size_map_poly_id0//.
by rewrite size_scale// size_polyXn -polySpred.
move=> i_small; rewrite coef_poly i_small coefZ coefXn lead_coefE.
move: i_small; rewrite polySpred// ltnS/=.
case: ltngtP => // [i_lt|->]; rewrite (mulr1, mulr0)//= => _.
by apply/eqP; rewrite -(dvdz_charf (char_Fp _))// dvd_pq.
rewrite [in LHS]q_eq rmorphM/=.
set c := (X in X *: _); set n := (_.-1).
set pf := map_poly _ f; set pg := map_poly _ g => pfMpg.
have dvdXn (r : {poly _}) : size r != 1%N -> r %| c *: 'X^n -> r`_0 = 0.
move=> rN1; rewrite (eqp_dvdr _ (eqp_scale _ _))//.
rewrite -['X]subr0; move=> /dvdp_exp_XsubC[k lekn]; rewrite subr0.
move=> /eqpP[u /andP[u1N0 u2N0]]; have [->|k_gt0] := posnP k.
move=> /(congr1 (size \o val))/eqP.
by rewrite /= !size_scale// size_polyXn (negPf rN1).
move=> /(congr1 (fun p : {poly _} => p`_0))/eqP.
by rewrite !coefZ coefXn ltn_eqF// mulr0 mulf_eq0 (negPf u1N0) => /eqP.
suff : ((p : int) ^+ 2 %| q`_0)%Z by rewrite (negPf Ndvd_pq0).
have := c_neq0; rewrite q_eq coefM big_ord1.
rewrite lead_coefM rmorphM mulf_eq0 negb_or => /andP[lpfN0 qfN0].
have pfN1 : size pf != 1%N by rewrite size_map_poly_id0.
have pgN1 : size pg != 1%N by rewrite size_map_poly_id0.
have /(dvdXn _ pgN1) /eqP : pg %| c *: 'X^n by rewrite -pfMpg dvdp_mull.
have /(dvdXn _ pfN1) /eqP : pf %| c *: 'X^n by rewrite -pfMpg dvdp_mulr.
by rewrite !coef_map// -!(dvdz_charf (char_Fp _))//; apply: dvdz_mul.
Qed.
(***********)
(* polydiv *)
(***********)
Lemma eqpW (R : idomainType) (p q : {poly R}) : p = q -> p %= q.
Proof. by move->; rewrite eqpxx. Qed.
Lemma horner_mod (R : fieldType) (p q : {poly R}) x : root q x ->
(p %% q).[x] = p.[x].
Proof.
by move=> /eqP qx0; rewrite [p in RHS](divp_eq p q) !hornerE qx0 mulr0 add0r.
Qed.
Lemma root_dvdp (F : idomainType) (p q : {poly F}) (x : F) :
root p x -> p %| q -> root q x.
Proof. rewrite -!dvdp_XsubCl; exact: dvdp_trans. Qed.
(**********)
(* vector *)
(**********)
Lemma SubvsE (F0 : fieldType) (L : vectType F0) (k : {vspace L}) x (xk : x \in k) :
Subvs xk = vsproj k x.
Proof. by apply/val_inj; rewrite /= vsprojK. Qed.
(*****************)
(* package field *)
(*****************)
(************)
(* falgebra *)
(************)
Lemma adjoin_cat (K : fieldType) (aT : FalgType K) (V : {vspace aT})
(rs1 rs2 : seq aT) :
<<V & rs1 ++ rs2>>%VS = <<<<V & rs1>> & rs2>>%VS.
Proof.
elim: rs1 => /= [|r rs1 ih] in V *.
- by rewrite adjoin_nil agenv_add_id.
- by rewrite !adjoin_cons ih.
Qed.
Lemma eq_adjoin (K : fieldType) (aT : FalgType K) (U : {vspace aT})
(rs1 rs2 : seq aT) : rs1 =i rs2 ->
<<U & rs1>>%VS = <<U & rs2>>%VS.
Proof.
by move=> rs12; apply/eqP; rewrite eqEsubv !adjoin_seqSr// => x; rewrite rs12.
Qed.
Lemma memv_mulP (K : fieldType) (aT : FalgType K) (U V : {vspace aT}) w :
reflect (exists n (us vs : n.-tuple aT),
[/\ all (mem U) us, all (mem V) vs &
w = \sum_(i < n) tnth us i * tnth vs i])
(w \in (U * V)%VS).
Proof.
apply: (iffP idP) => [|[b [us [vs [usU vsV ->]]]]]; last first.
by rewrite rpred_sum// => i _; rewrite memv_mul//; apply/all_tnthP.
rewrite unlock span_def big_tuple => /memv_sumP[/= w_ w_mem ->].
have wP_ i : exists2 uv, (uv.1 \in U) && (uv.2 \in V) & w_ i = uv.1 * uv.2.
have /vlineP[k ->] := w_mem i isT; set UV := (X in tnth X _).
have /allpairsP[[u v] [uP vP ->]] := mem_tnth i UV.
by exists (k *: u, v); rewrite /= ?rpredZ ?vbasis_mem// scalerAl.
pose d := (\dim U * \dim V)%N; pose uv i := (projT1 (sig2_eqW (wP_ i))).
exists d, [tuple (uv i).1 | i < _], [tuple (uv i).2 | i < _]; rewrite /uv.
split; do ?by apply/allP => _/mapP[i _ ->]; case: sig2_eqW => /= ? /andP[].
by apply: eq_bigr => i; rewrite !tnth_map/= tnth_ord_tuple; case: sig2_eqW.
Qed.
Lemma big_prodv_seqP (I : eqType) (r : seq I) (P : {pred I})
(K : fieldType) (aT : FalgType K) (U : {vspace aT})
(V : I -> {vspace aT}) (W : {vspace aT}) : uniq r ->
reflect (forall u (v : I -> aT), u \in U -> (forall i, P i -> v i \in V i) ->
\big[*%R/u]_(i <- r | P i) v i \in W)
(\big[@prodv _ _/U]_(i <- r | P i) V i <= W)%VS.
Proof.
elim/last_ind: r => [|r i IHr] //= in U W * => [_|].
apply: (iffP idP) => [+ v u uP vP|]; rewrite !big_nil; first by move/subvP->.
move=> WP; apply/subvP => u /(WP _ (fun=> 0)); rewrite big_nil; apply.
by move=> i; rewrite mem0v.
rewrite rcons_uniq => /andP[iNr r_uniq].
apply: (iffP idP) => [+ u v uU vV|WP]; rewrite !big_rcons_idx.
by move=> /IHr; apply => //; case: ifP => Pi//; rewrite memv_mul// vV.
case: ifP => Pi; last first.
by apply/IHr => // u v uU vV; have := WP _ _ uU vV; rewrite big_rcons_idx Pi.
apply/IHr => //w v /memv_mulP[n [vs [us [/allP/= vsP /allP/= usP ->]]]] vV.
rewrite -big_change_idx/= mulr_sumr rpred_sum// => j _; rewrite big_change_idx.
have := WP (tnth us j) (fun k : I => if k == i then tnth vs j else v k).
rewrite big_rcons_idx Pi eqxx big_seq_cond.
under eq_bigr => k /andP[kr]
do [rewrite ifN; last by apply: contraNneq iNr => <-].
rewrite -big_seq_cond; apply; first by rewrite usP ?mem_tnth.
by move=> k Pk; case: eqP => [->|]; rewrite ?vV ?vsP ?mem_tnth.
Qed.
(************)
(* fieldext *)
(************)
Lemma dim_aimg (F : fieldType) (L L' : fieldExtType F) (iota : 'AHom(L, L'))
(E : {subfield L}) : \dim (iota @: E) = \dim E.
Proof.
suff /size_basis -> : basis_of (iota @: E) (map iota (vbasis E)) by [].
by rewrite limg_basis_of// ?vbasisP// ?(eqP (AHom_lker0 _)) capv0.
Qed.
Lemma Fadjoin_seq_idP (F0 : fieldType) (L : fieldExtType F0) (K : {subfield L})
(xs : seq L) :
reflect (<<K & xs>>%VS = K) (all (mem K) xs).
Proof.
apply: (iffP idP) => [|<-]; last by apply/allP => x ?; apply: seqv_sub_adjoin.
elim: xs => /= [|x xs ih]; first by rewrite Fadjoin_nil.
by case/andP=> xK {}/ih ih; rewrite adjoin_cons (Fadjoin_idP _).
Qed.
Arguments Fadjoin_seq_idP {F0 L K xs}.
Lemma big_prod_subfield_seqP (I : eqType) (r : seq I) (r_uniq : uniq r)
(P : {pred I}) (K : fieldType) (aT : fieldExtType K)
(U : I -> {vspace aT}) (W : {subfield aT}) :
reflect (forall u : I -> aT, (forall i, P i -> u i \in U i) ->
\prod_(i <- r | P i) u i \in W)
(\big[@prodv _ _/1%VS]_(i <- r | P i) U i <= W)%VS.
Proof.
apply: (iffP (big_prodv_seqP _ _ _ _ _)) => // [WP u uU|WP u v uU vV].
by apply: WP; rewrite ?mem1v.
by rewrite -big_change_idx/= memvM ?WP//; apply/subvP: uU; rewrite sub1v.
Qed.
Lemma big_prod_subfieldP (I : finType) (D : {pred I}) (K : fieldType)
(aT : fieldExtType K) (U : I -> {vspace aT}) (W : {subfield aT}) :
reflect (forall u : I -> aT, (forall i, D i -> u i \in U i) ->
\prod_(i in D) u i \in W)
(\big[@prodv _ _/1%VS]_(i in D) U i <= W)%VS.
Proof. by apply/big_prod_subfield_seqP/index_enum_uniq. Qed.
Lemma prodv_Fadjoinl (F0 : fieldType) (L : fieldExtType F0)
(K F : {subfield L}) (x : L) : (<<K; x>> * F)%VS = <<K * F; x>>%VS.
Proof.
apply/eqP; rewrite eqEsubv; apply/andP; split.
apply/prodvP => y z /Fadjoin_polyP[p pK ->] zF.
have -> : p.[x] * z = (z *: p).[x] by rewrite hornerZ mulrC.
rewrite mempx_Fadjoin// polyOverZ//=.
by apply/subvP: zF; rewrite field_subvMl.
by move: pK; apply/polyOverS/subvP; rewrite field_subvMr.
apply/subvP => y /Fadjoin_polyP [p /polyOverP pKF ->].
rewrite horner_coef rpred_sum// => i _.
have /memv_mulP[n [us [vs [/allP/= usP /allP/= vsP ->]]]] := pKF i.
rewrite mulr_suml rpred_sum // => j _.
rewrite mulrAC memv_mul ?rpredM ?rpredX ?memv_adjoin ?vsP ?mem_tnth//.
by rewrite subvP_adjoin// usP ?mem_tnth.
Qed.
Lemma prodv_Fadjoinr (F0 : fieldType) (L : fieldExtType F0)
(K F : {subfield L}) (x : L) : (F * <<K; x>>)%VS = <<F * K; x>>%VS.
Proof. by rewrite prodvC prodv_Fadjoinl prodvC. Qed.
Lemma prodv_idPl (F0 : fieldType) (L : fieldExtType F0)
(K F : {subfield L}) : reflect (F * K = F)%VS (K <= F)%VS.
Proof.
apply: (iffP idP) => [KF|<-]; last by rewrite field_subvMl.
by apply/eqP; rewrite eqEsubv prodv_sub//= field_subvMr.
Qed.
Arguments prodv_idPl {F0 L K F}.
Lemma prodv_idPr (F0 : fieldType) (L : fieldExtType F0)
(K F : {subfield L}) : reflect (K * F = F)%VS (K <= F)%VS.
Proof. by rewrite prodvC; apply: prodv_idPl. Qed.
Arguments prodv_idPr {F0 L K F}.
Section canonicals.
Variables (F0 : fieldType) (L : fieldExtType F0).
Lemma vsproj_is_lrmorphism : lrmorphism (vsproj {:L}).
Proof.
split; last exact/linearZZ.
split; first exact/raddfB.
by split => [v w|]; apply/val_inj; rewrite /= !vsprojK ?memvf ?algid1.
Qed.
Canonical vsproj_lrmorphism := LRMorphism vsproj_is_lrmorphism.
Canonical vsproj_rmorphism := RMorphism vsproj_is_lrmorphism.
Definition vssub (k K : {vspace L}) of (k <= K)%VS :
subvs_of k -> subvs_of K := vsproj _ \o vsval.
Variables (k K : {subfield L}) (kK : (k <= K)%VS).
Lemma vssub_is_lrmorphism : lrmorphism (vssub kK).
split; last exact/linearZZ.
split; first exact/raddfB.
split => [v w|]; apply/val_inj => /=; last first.
by rewrite vsprojK ?algid1 ?rmorph1 ?rpred1//.
by rewrite /= !vsprojK/= ?rpredM//= (subvP kK _ (subvsP _)) .
Qed.
Canonical vssub_additive := Additive vssub_is_lrmorphism.
Canonical vssub_linear := Linear vssub_is_lrmorphism.
Canonical vssub_rmorphism := RMorphism vssub_is_lrmorphism.
Canonical vssub_lrmorphism := LRMorphism vssub_is_lrmorphism.
Lemma vsval_sub (v : subvs_of k) : vsval (vssub kK v) = vsval v.
Proof. by rewrite vsprojK// (subvP kK)// subvsP. Qed.
End canonicals.
Lemma splitting_ahom (F0 : fieldType) (L L' : fieldExtType F0)
(p : {poly F0}) (E' : {subfield L'}) :
splittingFieldFor 1 (p ^^ in_alg L) fullv ->
splittingFieldFor 1 (p ^^ in_alg L') E' ->
{iota : 'AHom(L, L') | limg iota = E'}.
Proof.
do [suff init (p : {poly L}) (k : {subfield L})
(K := [FalgType F0 of subvs_of k]) (f : 'AHom(K, L')) :
p \is a polyOver k -> splittingFieldFor k p fullv ->
splittingFieldFor (limg f) (p ^^ (f \o vsproj k)) E' ->
{g : 'AHom(L, L') | limg g = E'}] in p *.
move=> pf pE'; pose K := [FalgType F0 of subvs_of (1%VS : {vspace L})].
have [idF0 idF0E] : {f : 'AHom(K, L') | forall x : F0, f x%:A = x%:A}.
have flr : lrmorphism
(fun v : K => in_alg L' (projT1 (sig_eqW (vlineP _ _ (valP v))))).
do ![split] => [? ?|? ?||a ?]/=.
- case: sig_eqW => x; case: sig_eqW => /= v->; case: sig_eqW => /= w->.
by rewrite -!in_algE -raddfB => /fmorph_inj<-//; rewrite raddfB.
- case: sig_eqW => x; case: sig_eqW => /= v->; case: sig_eqW => /= w->.
by rewrite -!in_algE -rmorphM => /fmorph_inj<-//; rewrite rmorphM.
- case: sig_eqW => /= one /esym/eqP; rewrite algid1.
by rewrite -in_algE fmorph_eq1 => /eqP->; rewrite scale1r.
- case: sig_eqW => x; case: sig_eqW => /= v->.
rewrite -mulr_algl -in_algE -rmorphM => /fmorph_inj<-.
by rewrite -in_algE rmorphM mulr_algl.
exists (linfun_ahom (LRMorphism flr)) => v; rewrite lfunE/=.
by case: sig_eqW => /= x; rewrite algid1 -in_algE => /fmorph_inj->.
apply: (init (p ^^ in_alg L) 1%AS idF0) => //.
by apply/polyOver1P; exists p.
suff -> : limg idF0 = 1%VS.
rewrite -!map_poly_comp/= (@eq_map_poly _ _ _ (in_alg L'))//.
move=> v /=; rewrite -[RHS]idF0E; congr (idF0 _).
by apply/val_inj; rewrite /= algid1 vsprojK ?rpredZ ?rpred1//.
apply/eqP; rewrite eqEsubv sub1v andbT; apply/subvP => _/memv_imgP[v _ ->].
suff [u ->] : exists u : F0, v = in_alg K u.
by rewrite idF0E; apply/vlineP; exists u.
case: v => u u1; rewrite SubvsE; move: u1 => /vlineP[{}u ->]; exists u.
by apply/val_inj; rewrite /= vsprojK ?algid1// rpredZ ?rpred1.
move=> /polyOver_subvs/sig_eqW[/= {}p ->]; rewrite map_poly_comp/=.
rewrite -(map_poly_comp _ vsval) (eq_map_poly vsvalK) map_poly_id//.
move=> /sig2_eqW[rs prs rsf] /sig2_eqW [rs' prs' <-]{E'}; apply/sig_eqW.
elim: rs => [|x rs IHrs]//= in k @K f p rs' prs rsf prs' *.
rewrite ?Fadjoin_nil ?big_nil/= in rsf prs.
move=> /(@val_inj _ _ _ k) in rsf; rewrite {k}rsf in K f p prs prs' *.
have: p %= 1 by rewrite -(eqp_map [rmorphism of vsval]) rmorph1.
rewrite -(eqp_map [rmorphism of f]) rmorph1 (eqp_ltrans prs')//.
move=> /eqp_size; rewrite size_prod_XsubC size_poly1 => -[].
case: {+}rs' => // _; rewrite Fadjoin_nil/=.
exists (linfun_ahom [lrmorphism of f \o vsproj _]).
apply/vspaceP => v; apply/memv_imgP/memv_imgP => -[u _ ->]/=.
by exists (vsproj fullv u); rewrite ?memvf//= lfunE/=.
by exists (val u); rewrite ?memvf//= lfunE/= ?vsvalK.
have [xk|xNk] := boolP (x \in k).
do [rewrite -[x]/(val (Subvs xk)); move: (Subvs xk) => {xk}x] in prs rsf.
rewrite adjoin_cons (Fadjoin_idP _) ?subvsP//= in rsf.
have xrs' : f x \in rs'.
rewrite -root_prod_XsubC -(eqp_root prs') mapf_root.
rewrite -(mapf_root [lrmorphism of vsval]) (eqp_root prs).
by rewrite root_prod_XsubC mem_head.
have -> : <<limg f & rs'>>%VS = <<limg f & rem (f x) rs'>>%VS.
rewrite (eq_adjoin _ (perm_mem (perm_to_rem xrs'))).
by rewrite adjoin_cons (Fadjoin_idP _)//= memv_img ?memvf.
apply: (IHrs k f (p %/ ('X - x%:P))) => //.
rewrite map_divp/= (eqp_trans (eqp_divl _ prs))//.
by rewrite map_polyXsubC/= big_cons mulKp ?polyXsubC_eq0// eqpxx.
rewrite map_divp/= (eqp_trans (eqp_divl _ prs'))// (big_rem _ xrs').
by rewrite map_polyXsubC/= mulKp ?polyXsubC_eq0// eqpxx.
have /polyOver_subvs[q eq_q] := minPolyOver k x.
have rpx : root (p ^^ vsval) x.
by rewrite (eqp_root prs) root_prod_XsubC mem_head.
pose psize := [fun p : {poly _} => size p].
have q_monic : q \is monic.
by have /(congr1 (mem monic))/= := eq_q; rewrite map_monic monic_minPoly.
have size_q : (size q > 1)%N.
have /(congr1 (psize _))/= := eq_q; rewrite size_minPoly size_map_poly => <-.
by rewrite ltnS adjoin_degreeE divn_gt0 ?adim_gt0 ?dimvS ?subv_adjoin.
have [x' x'rs qx'0] : exists2 x', x' \in rs' & root (q ^^ f) x'.
have : q ^^ vsval %| p ^^ vsval.
by rewrite -eq_q minPoly_dvdp//; apply/polyOver_subvs; exists p.
rewrite dvdp_map -(dvdp_map [rmorphism of f]) (eqp_dvdr _ prs').
move=> /dvdp_prod_XsubC[m]; rewrite eqp_monic ?map_monic ?monic_prod_XsubC//.
move=> /eqP; case rs'_eq : mask => [|x' rs'x].
move=> /(congr1 (psize _))/=.
by rewrite big_nil size_map_poly size_poly1 => /eqP; rewrite gtn_eqF.
rewrite big_cons => q_eq; exists x'.
by rewrite (@mem_mask _ _ m)// rs'_eq mem_head.
by rewrite q_eq rootE !hornerE subrr mul0r.
have rpx' : root (p ^^ f) x' by rewrite (eqp_root prs') root_prod_XsubC.
pose Kx := [fieldExtType F0 of subvs_of <<k; x>>].
pose mpsI := map_inj_poly subvs_inj (rmorph0 _).
pose x0 := Subvs (memv_adjoin k x).
pose KKx := vssub (subv_adjoin k x).
have KxE : forall (v : Kx), exists p, v = (p ^^ KKx).[x0].
move=> [u ukx]; have /Fadjoin_polyP[_ /polyOver_subvs[p' -> ueq]] := ukx.
exists p'; apply/val_inj; rewrite /= -horner_map/=.
by rewrite -map_poly_comp (eq_map_poly (vsval_sub (subv_adjoin _ _))).
suff [h hx0 hC] : {h : 'AHom(Kx, L') | h x0 = x' & h \o KKx =1 f}.
have imgfx' : <<limg f; x'>>%VS = limg h.
apply/vspaceP => v; apply/idP/idP => [/Fadjoin_polyP|/memv_imgP] [u uP ->].
rewrite rpred_horner//=; last by rewrite -hx0 ?memv_img ?memvf.
by apply/polyOverS: uP => _/memv_imgP[a _ ->]; rewrite -hC memv_img ?memvf.
have [{uP}u->] := KxE u; rewrite -horner_map -map_poly_comp (eq_map_poly hC).
rewrite rpred_horner//= ?hx0 ?memv_adjoin//; apply/polyOverP => i.
by rewrite coef_map/= (subvP (subv_adjoin _ _))// memv_img ?memvf.
rewrite (eq_adjoin _ (perm_mem (perm_to_rem x'rs))) adjoin_cons imgfx'.
apply: (IHrs <<k; x>>%AS h (p ^^ vssub (subv_adjoin k x) %/ ('X - x0%:P))).
- rewrite map_divp -map_poly_comp (eq_map_poly (vsval_sub _)).
rewrite map_polyXsubC/= (eqp_trans (eqp_divl _ prs))// big_cons.
by rewrite mulKp ?polyXsubC_eq0// eqpxx.
- by rewrite -adjoin_cons.
rewrite map_divp -map_poly_comp map_polyXsubC/= hx0 (eq_map_poly hC).
rewrite (eqp_trans (eqp_divl _ prs'))// (big_rem _ x'rs)/=.
by rewrite mulKp ?polyXsubC_eq0// eqpxx.
have /(_ _)/polyOver_subvs/sig_eqW/=-/all_sig[pol polE] := Fadjoin_polyOver k x.
have polB (v w : L) : pol (v - w) = pol v - pol w.
by apply: mpsI; rewrite raddfB/= -!polE raddfB.
have polZ (c : F0) (v : L) : pol (c *: v) = c%:A *: pol v.
by apply: mpsI; rewrite linearZ/= -!polE linearZ/= algid1.
have polC (c : K) : pol (val c) = c%:P.
by apply: mpsI; rewrite -polE/= Fadjoin_polyC ?subvsP// map_polyC.
have pol1 : pol 1 = 1 by rewrite -[RHS]polC/= algid1.
have polX : pol x = 'X by apply: mpsI; rewrite map_polyX -polE Fadjoin_polyX.
have polM (v w : Kx) : pol (val v * val w) = pol (val v) * pol (val w) %% q.
apply: mpsI; rewrite map_modp rmorphM/= -!polE/= -eq_q.
apply: Fadjoin_poly_unique.
- by rewrite modp_polyOver// ?minPolyOver// rpredM ?Fadjoin_polyOver.
- by rewrite -ltnS -size_minPoly ltn_modp ?monic_neq0 ?monic_minPoly//.
rewrite -Fadjoin_poly_mod ?rpredM ?Fadjoin_polyOver//.
by rewrite hornerM !Fadjoin_poly_eq//= ?rpredM ?subvsP.
have hlr : lrmorphism (fun v : Kx => (pol (val v) ^^ f).[x']).
do ![split] => [v w|v w||w v]/=.
- by rewrite -raddfB/= polB raddfB !hornerE.
- by rewrite -rmorphM/= polM map_modp/= horner_mod// rmorphM hornerE.
- by rewrite algid1 pol1 rmorph1 hornerE.
- by rewrite polZ linearZ/= rmorph_alg hornerE mulr_algl.
pose h := linfun_ahom (LRMorphism hlr).
exists h; first by rewrite lfunE/= polX map_polyX hornerX.
by move=> v; rewrite /comp lfunE/= vsval_sub/= polC map_polyC hornerC.
Qed.
Lemma lker0_img_cap (K : fieldType) (aT rT : vectType K) (f : 'Hom(aT, rT))
(U V : {vspace aT}) : lker f == 0%VS ->
(f @: (U :&: V) = f @: U :&: f @: V)%VS.
Proof.
move=> kf0; apply/eqP; rewrite eqEsubv limg_cap/=; apply/subvP => x.
rewrite memv_cap => /andP[/memv_imgP[u uU ->]] /memv_imgP[v vV].
by move=> /(lker0P kf0) eq_uv; rewrite memv_img// memv_cap uU eq_uv vV.
Qed.
Lemma aimg_cap (K : fieldType) (aT rT : fieldExtType K) (f : 'AHom(aT, rT))
(U V : {vspace aT}) : (f @: (U :&: V) = f @: U :&: f @: V)%VS.
Proof. exact/lker0_img_cap/AHom_lker0. Qed.
Lemma sub_aimgP (F0 : fieldType) (L L' : splittingFieldType F0)
(iota : 'AHom(L, L')) (F : {subfield L'}) :
reflect (exists E : {subfield L}, (iota @: E)%VS = F) (F <= iota @: fullv)%VS.
Proof.
apply: (iffP idP) => [Fiota|[E <-]]; last by rewrite limgS ?subvf.
suff F_is_aspace : is_aspace (iota @^-1: F)%VS.
by exists (ASpace F_is_aspace); apply/eqP; rewrite eqEsubv/= lpreimK ?subvv.
apply/andP => /=; split.
by apply/has_algid1; rewrite -memv_preim rmorph1 rpred1.
by apply/prodvP => u v; rewrite -!memv_preim => uF vF; rewrite rmorphM rpredM.
Qed.
Lemma polyOver_aimg (K : fieldType) (L L' : fieldExtType K)
(E : {vspace L}) (f : 'AHom(L, L')) (p' : {poly L'}) :
reflect (exists2 p, p \is a polyOver E & p' = p ^^ f)
(p' \is a polyOver (f @: E)%VS).
Proof.
apply: (iffP polyOverP) => [|[p pE -> i]]; last first.
by rewrite coef_map memv_img ?(polyOverP pE).
move=> /(_ _)/memv_imgP/sig2_eqW-/all_sig[p_ pP].
exists (\poly_(i < size p') p_ i).
apply/polyOverP => i; rewrite coef_poly; case: ifP => _; rewrite ?rpred0//.
by case: (pP i).
apply/polyP => i; rewrite coef_map/= coef_poly.
by case: ltnP => ip'; [case: (pP i) | rewrite nth_default ?rmorph0].
Qed.
Arguments polyOver_aimg {K L L' E f p'}.
Lemma mapf_polyOver (K : fieldType) (L L' : fieldExtType K)
(E : {vspace L}) (f : 'AHom(L, L')) (p : {poly L}) :
(p ^^ f \is a polyOver (f @: E)%VS) = (p \is a polyOver E).
Proof.
apply/polyOverP/polyOverP => piE i; last by rewrite coef_map/= memv_img.
by have := piE i; rewrite coef_map/= memvE -limg_line limg_ker0 ?AHom_lker0.
Qed.
Lemma separable_aimg (F0 : fieldType) (L L' : fieldExtType F0)
(E F : {subfield L}) (f : 'AHom(L, L')) :
separable (f @: E) (f @: F) = separable E F.
Proof.
apply/separableP/separableP => [sepEF x xF|sepEF _ /memv_imgP[x xF ->]].
have /separable_elementP[_ [/polyOver_aimg[p pE ->]]] :=
sepEF (f x) (memv_img f xF).
rewrite mapf_root separable_map => root_p sep_p.
by apply/separable_elementP; exists p; split.
have /(_ _ xF)/separable_elementP[p [pE rpx sepp]] := sepEF.
apply/separable_elementP; exists (p ^^ f).
by rewrite ?mapf_polyOver ?rmorph_root ?separable_map.
Qed.
Lemma subset_limgP (F0 : fieldType) (L L' : fieldExtType F0)
(E : {subfield L}) (f : 'AHom(L, L')) (r' : seq L') :
{subset r' <= (f @: E)%VS} <-> (exists2 r, all (mem E) r & r' = map f r).
Proof.
split => [|[r /allP/= rE ->] _ /mapP[x xr ->]]; last by rewrite memv_img ?rE.
move=> /(_ _ _)/memv_imgP/sig2_eqW-/(all_sig_cond (0 : L))[f' f'P].
exists (map f' r'); first by apply/allP => _ /mapP [x /f'P[? ?] ->].
by symmetry; rewrite -map_comp; apply: map_id_in => x /f'P[].
Qed.
Lemma splittingFieldFor_aimg (F0 : fieldType) (L L' : fieldExtType F0)
(E F : {subfield L}) p (f : 'AHom(L, L')) :
splittingFieldFor (f @: E) (p ^^ f) (f @: F) <-> splittingFieldFor E p F.
Proof.
split=> -[rs' pE EF]; last first.
by exists (map f rs'); rewrite -?map_prod_XsubC ?eqp_map -?aimg_adjoin_seq ?EF.
have /subset_limgP[rs _ rs'E] : {subset rs' <= (f @: F)%VS}.
by rewrite -EF; apply: seqv_sub_adjoin.
exists rs; first by have := pE; rewrite rs'E -map_prod_XsubC ?eqp_map.
have := EF; rewrite rs'E -aimg_adjoin_seq => /eqP.
by rewrite eq_limg_ker0 ?AHom_lker0// => /eqP.
Qed.
(********************)
(* package solvable *)
(********************)
(*******************)
(* new sym library *)
(*******************)
Lemma gen_tperm_step n (k : 'I_n.+2) : coprime n.+2 k ->
<<[set tperm i (i + k) | i : 'I_n.+2]>>%g = [set: 'S_n.+2].
Proof.
rewrite -unitZpE// natr_Zp => k_unit.
apply/eqP; rewrite eqEsubset subsetT/= -(gen_tperm 0)/= gen_subG.
apply/subsetP => s /imsetP[/= i _ ->].
rewrite -[i](mulVKr k_unit) -[_ * i]natr_Zp mulr_natr.
elim: (val _) => //= {i} [|[|i] IHi]; first by rewrite tperm1 group1.
by rewrite mulrSr mem_gen//; apply/imsetP; exists 0.
have [->|kS2N0] := eqVneq (k *+ i.+2) 0; first by rewrite tperm1 group1.
have kSSneqkS : k *+ i.+2 != k *+ i.+1.
rewrite -subr_eq0 -mulrnBr// subSnn mulr1n.
by apply: contraTneq k_unit => ->; rewrite unitr0.
rewrite -(@tpermJt _ (k *+ i.+1)) 1?eq_sym//.
rewrite groupJ// 1?tpermC// mulrSr 1?tpermC.
by rewrite mem_gen//; apply/imsetP; exists (k *+ i.+1).
Qed.
Lemma gen_tpermS n : <<[set tperm i (i + 1) | i : 'I_n.+2]>>%g = [set: 'S_n.+2].
Proof. by rewrite gen_tperm_step// coprimen1. Qed.
Lemma perm_add1X n (j k : 'I_n.+2) : (perm (addrI 1%R) ^+ j)%g k = j + k.
Proof. by rewrite permX (eq_iter (permE _)) iter_addr natr_Zp. Qed.
Lemma gen_tpermn_cycle n (i j : 'I_n.+2)
(c := perm (addrI 1)) : coprime n.+2 (j - i)%R ->
<<[set tperm i j ; c]>>%g = [set: 'S_n.+2].
Proof.
move=> jBi_coprime; apply/eqP; rewrite eqEsubset subsetT/=.
rewrite -(gen_tperm_step jBi_coprime) gen_subG.
apply/subsetP => s /imsetP[/= k _ ->].
suff -> : tperm k (k + (j - i)) = (tperm i j ^ c ^+ (k - i)%R)%g.
by rewrite groupJ ?groupX ?mem_gen ?inE ?eqxx ?orbT.
by rewrite tpermJ !perm_add1X addrNK addrAC addrA.
Qed.
Lemma gen_tperm01_cycle n (c := perm (addrI 1)) :
<<[set tperm 0 1%R ; c]>>%g = [set: 'S_n.+2].
Proof. by rewrite gen_tpermn_cycle// subr0 coprimen1. Qed.
Lemma expgDzmod (gT : finGroupType) (x : gT) d (n m : 'Z_d) : (d > 0)%N ->
(#[x]%g %| d)%N -> (x ^+ (n + m)%R)%g = (x ^+ n * x ^+ m)%g.
Proof.
move=> d_gt0 xdvd; apply/eqP; rewrite -expgD eq_expg_mod_order/= modn_dvdm//.
by case: d d_gt0 {m n} xdvd => [|[|[]]]//= _; rewrite dvdn1 => /eqP->.
Qed.
Lemma eq_expg_ord (gT : finGroupType) (x : gT) d (n m : 'I_d) :
(d <= #[x]%g)%N -> ((x ^+ m)%g == (x ^+ n)%g) = (m == n).
Proof.
by move=> d_leq; rewrite eq_expg_mod_order !modn_small// (leq_trans _ d_leq).
Qed.
Lemma gen_tperm_cycle (X : finType) x y c : prime #|X| ->
x != y -> #[c]%g = #|X| ->
<<[set tperm x y; c]>>%g = ('Sym_X)%g.
Proof.
move=> Xprime neq_xy ord_c; apply/eqP; rewrite eqEsubset subsetT/=.
have c_gt1 : (1 < #[c]%g)%N by rewrite ord_c prime_gt1.
have cppSS : #[c]%g.-2.+2 = #|X| by rewrite ?prednK ?ltn_predRL.
pose f (i : 'Z_#[c]%g) : X := Zpm i x.
have [g fK gK] : bijective f.
apply: inj_card_bij; rewrite ?cppSS ?card_ord// /f /Zpm => i j cijx.
pose stabx := ('C_<[c]>[x | 'P])%g.
have cjix : (c ^+ (j - i)%R)%g x = x.
by apply: (@perm_inj _ (c ^+ i)%g); rewrite -permM -expgDzmod// addrNK.
have : (c ^+ (j - i)%R)%g \in stabx.
by rewrite !inE ?groupX ?mem_gen ?sub1set ?inE// ['P%act _ _]cjix eqxx.
rewrite [stabx]prime_astab// => /set1gP.
move=> /(congr1 (mulg (c ^+ i))); rewrite -expgDzmod// addrC addrNK mulg1.
by move=> /eqP; rewrite eq_expg_ord// ?cppSS ?ord_c// => /eqP->.
pose gsf s := g \o s \o f.
have gsf_inj (s : {perm X}) : injective (gsf s).
apply: inj_comp; last exact: can_inj fK.
by apply: inj_comp; [exact: can_inj gK|exact: perm_inj].
pose fsg s := f \o s \o g.
have fsg_inj (s : {perm _}) : injective (fsg s).
apply: inj_comp; last exact: can_inj gK.
by apply: inj_comp; [exact: can_inj fK|exact: perm_inj].
have gsf_morphic : morphic 'Sym_X (fun s => perm (gsf_inj s)).
apply/morphicP => u v _ _; apply/permP => /= i.
by rewrite !permE/= !permE /gsf /= gK permM.
pose phi := morphm gsf_morphic; rewrite /= in phi.
have phi_inj : ('injm phi)%g.
apply/subsetP => /= u /mker/=; rewrite morphmE => gsfu1.
apply/set1gP/permP=> z; have /permP/(_ (g z)) := gsfu1.
by rewrite !perm1 permE /gsf/= gK => /(can_inj gK).
have phiT : (phi @* 'Sym_X)%g = [set: {perm 'Z_#[c]%g}].
apply/eqP; rewrite eqEsubset subsetT/=; apply/subsetP => /= u _.
apply/morphimP; exists (perm (fsg_inj u)); rewrite ?in_setT//.
by apply/permP => /= i; rewrite morphmE permE /gsf/fsg/= permE/= !fK.
have f0 : f 0 = x by rewrite /f /Zpm permX.
pose k := g y; have k_gt0 : (k > 0)%N.
by rewrite lt0n (val_eqE k 0) -(can_eq fK) eq_sym gK f0.
have phixy : phi (tperm x y) = tperm 0 k.
apply/permP => i; rewrite permE/= /gsf/=; apply: (canLR fK).
by rewrite !permE/= -f0 -[y]gK !(can_eq fK) -!fun_if.
have phic : phi c = perm (addrI 1%R).
apply/permP => i; rewrite permE /gsf/=; apply: (canLR fK).
by rewrite !permE /f /Zpm -permM addrC expgDzmod.
rewrite -(injmSK phi_inj)//= morphim_gen/= ?subsetT//= -/phi.
rewrite phiT /morphim !setTI/= -/phi imsetU1 imset_set1/= phixy phic.
suff /gen_tpermn_cycle<- : coprime #[c]%g.-2.+2 (k - 0)%R by [].
by rewrite subr0 prime_coprime ?gtnNdvd// ?cppSS.
Qed.
(************)
(* solvable *)
(************)
Lemma sol_setXn n (gT : 'I_n -> finGroupType) (G : forall i, {group gT i}) :
(forall i, solvable (G i)) -> solvable (setXn G).
Proof.
elim: n => [|n IHn] in gT G * => solG; first by rewrite setX0 solvable1.
pose gT' (i : 'I_n) := gT (lift ord0 i).
pose f (x : prod_group gT) : prod_group gT' := [ffun i => x (lift ord0 i)].
have fm : morphic (setXn G) f.
apply/'forall_implyP => -[a b]; rewrite !inE/=.
by move=> /andP[/forallP aG /forallP bG]; apply/eqP/ffunP => i; rewrite !ffunE.
rewrite (@series_sol _ [group of setXn G] ('ker (morphm fm))) ?ker_normal//=.
rewrite (isog_sol (first_isog _))/=.
have -> : (morphm fm @* setXn G)%g = setXn (fun i => G (lift ord0 i)).
apply/setP => v; rewrite !inE morphimEdom; apply/idP/forallP => /=.
move=> /imsetP[/=x]; rewrite inE => /forallP/= xG ->.
by move=> i; rewrite morphmE ffunE xG.
move=> vG; apply/imsetP.
pose w : prod_group gT := [ffun i : 'I_n.+1 =>
match unliftP ord0 i with
| UnliftSome j i_eq => ecast i (gT i) (esym i_eq) (v j)
| UnliftNone i0 => 1%g
end].
have wl i : w (lift ord0 i) = v i.
rewrite ffunE; case: unliftP => //= j elij.
have eij : i = j by case: elij; apply/val_inj.
by rewrite [elij](eq_irrelevance _ (congr1 _ eij)); case: _ / eij.
have w0 : w ord0 = 1%g by rewrite ffunE; case: unliftP.
exists w; last by apply/ffunP => i; rewrite morphmE ffunE/= wl.
rewrite inE; apply/forallP => i.
by case: (unliftP ord0 i) => [j|]->; rewrite ?wl ?w0 ?vG.
rewrite IHn ?andbT//; last by move=> i; apply: solG.
pose k (x : gT ord0) : prod_group gT :=
[ffun i : 'I_n.+1 => if (ord0 =P i) is ReflectT P then ecast i (gT i) P x else 1%g].
have km : morphic (G ord0) k.
apply/'forall_implyP => -[a b]; rewrite !inE/= => /andP[aG bG].
apply/eqP/ffunP => i; rewrite !ffunE; case: eqP => //; rewrite ?mulg1//.
by case: _ /.
suff -> : ('ker (morphm fm) = morphm km @* G ord0)%g by rewrite morphim_sol.
apply/setP => x; rewrite morphimEdom; apply/idP/imsetP => [xker|].
exists (x ord0).
by have := dom_ker xker; rewrite inE => /forallP/(_ ord0).
rewrite /= morphmE; apply/ffunP => i; rewrite ffunE; case: eqP => //=.
by case: _ /.
move/eqP; rewrite eq_sym; have /mker/= := xker; rewrite morphmE => /ffunP.
by case: (@unliftP _ ord0 i) => [j|] ->//= /(_ j); rewrite !ffunE.
move=> [x0 xG0 -> /=]; rewrite morphmE; apply/kerP; rewrite ?inE.
by apply/forallP => i; rewrite ffunE; case: eqP => //=; case: _ /.
by rewrite /= morphmE; apply/ffunP => i; rewrite !ffunE; case: eqP.
Qed.
Section Perm_solvable.
Local Open Scope nat_scope.
Variable T : finType.
Lemma solvable_AltF : 4 < #|T| -> solvable 'Alt_T = false.
Proof.
move=> card_T; apply/negP => Alt_solvable.
have/simple_Alt5 Alt_simple := card_T.
have := simple_sol_prime Alt_solvable Alt_simple.
have lt_T n : n <= 4 -> n < #|T| by move/leq_ltn_trans; apply.
have -> : #|('Alt_T)%G| = #|T|`! %/ 2 by rewrite -card_Alt ?mulKn ?lt_T.
move/even_prime => [/eqP|]; apply/negP.
rewrite neq_ltn leq_divRL // mulnC -[2 * 3]/(3`!).
by apply/orP; right; apply/ltnW/fact_smonotone/lt_T.
by rewrite -dvdn2 dvdn_divRL dvdn_fact //=; apply/ltnW/lt_T.
Qed.
Lemma solvable_SymF : 4 < #|T| -> solvable 'Sym_T = false.
Proof. by rewrite (series_sol (Alt_normal T)) => /solvable_AltF->. Qed.
End Perm_solvable.
|