Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 34,014 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 |
From mathcomp Require Import all_ssreflect all_fingroup all_algebra.
From mathcomp Require Import all_solvable all_field.
From Abel Require Import various char0.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory.
Local Open Scope ring_scope.
Local Notation "p ^^ f" := (map_poly f p)
(at level 30, f at level 30, format "p ^^ f").
Section Prodv.
Import AEnd_FinGroup.
Variables (F0 : fieldType) (L : splittingFieldType F0).
Implicit Types (K E F : {subfield L}).
Lemma galois_subW E F : galois E F -> (E <= F)%VS. Proof. by case/andP. Qed.
Lemma galois_normalW E F : galois E F -> (normalField E F)%VS.
Proof. by case/and3P. Qed.
Lemma galois_separableW E F : galois E F -> (separable E F)%VS.
Proof. by case/and3P. Qed.
Lemma normalField_refl E : normalField E E.
Proof.
apply/forallP => /= u; apply/implyP; rewrite in_set.
by move=> /andP[/andP[_ /fixedSpace_limg->]].
Qed.
Hint Resolve normalField_refl : core.
Lemma galois_refl E : galois E E.
Proof. by rewrite /galois subvv separable_refl normalField_refl. Qed.
Lemma gal1 K (g : gal_of K) : g \in 'Gal(K / 1%VS)%g.
Proof. by rewrite gal_kHom ?sub1v// k1HomE ahomWin. Qed.
Lemma Fadjoin_sub E x y : x \in <<E; y>>%VS -> (<<E; x>> <= <<E; y>>)%VS.
Proof. by move=> xEy; apply/FadjoinP; rewrite subv_adjoin. Qed.
Lemma galvv E : ('Gal(E / E) = 1)%g.
Proof.
apply/trivgP/subsetP=> u uG; rewrite inE.
by apply/gal_eqP => x xE; rewrite gal_id (fixed_gal _ uG).
Qed.
Program Canonical prodv_aspace_law :=
@Monoid.Law {subfield L} 1%AS (@prodv_aspace _ _) _ _ _.
Next Obligation. by move=> *; apply/val_inj/prodvA. Qed.
Next Obligation. by move=> *; apply/val_inj/prod1v. Qed.
Next Obligation. by move=> *; apply/val_inj/prodv1. Qed.
Program Canonical prodv_aspace_com_law :=
@Monoid.ComLaw {subfield L} 1%AS prodv_aspace_law _.
Next Obligation. by move=> *; apply/val_inj/prodvC. Qed.
Lemma big_prodv_eq_aspace I (r : seq I) (P : {pred I}) (F : I -> {aspace L}) :
(\big[@prodv _ _/1%VS]_(i <- r | P i) F i) =
(\big[@prodv_aspace _ _/1%AS]_(i <- r | P i) F i).
Proof. by elim/big_rec2: _ => // i U V _ ->. Qed.
Lemma separable_mulv K x y :
separable_element K x -> separable_element K y -> separable_element K (x * y).
Proof.
move/(separable_elementS (subv_adjoin K y))=> sepKy_x sepKy.
have [z defKz] := Primitive_Element_Theorem x sepKy.
have /(adjoin_separableP _): x * y \in <<K; z>>%VS.
by rewrite -defKz rpredM ?memv_adjoin // subvP_adjoin ?memv_adjoin.
apply; apply: adjoin_separable sepKy (adjoin_separable sepKy_x _).
by rewrite defKz base_separable ?memv_adjoin.
Qed.
Lemma separable_prod I r (P : pred I) (v_ : I -> L) (K : {subfield L}) :
(forall i, P i -> separable_element K (v_ i)) ->
separable_element K (\prod_(i <- r | P i) v_ i).
Proof.
move=> sepKi.
by elim/big_ind: _; [apply/base_separable/mem1v | apply: separable_mulv |].
Qed.
Lemma separable_prodv (k K1 K2 : {subfield L}) :
separable k (K1 * K2) = (separable k K1 && separable k K2).
Proof.
apply/separableP/andP => [sepK12|].
split; apply/separableP => y yK; rewrite sepK12//.
by apply: (subv_trans yK); rewrite field_subvMr.
by apply: (subv_trans yK); rewrite field_subvMl.
move=> [/separableP sepK1 /separableP sepK2].
move=> x /memv_mulP[n [us [vs [/allP/= usK /allP/= vsK ->]]]].
rewrite separable_sum// => i _; rewrite separable_mulv//.
by rewrite sepK1 ?usK ?mem_tnth.
by rewrite sepK2 ?vsK ?mem_tnth.
Qed.
Lemma separable_super (k K : {subfield L}) : (k <= K)%VS ->
separable K k.
Proof. by move=> /separableSr->//; rewrite separable_refl. Qed.
Lemma separable1 (k : {subfield L}) : separable k 1.
Proof. by rewrite separable_super// ?sub1v. Qed.
Lemma separable_big_prodv I r (P : {pred I}) (k : {subfield L})
(K : I -> {subfield L}) :
separable k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i) =
\big[andb/true]_(i <- r | P i) separable k (K i).
Proof.
rewrite big_prodv_eq_aspace; elim/big_rec2: _ => [|i E b _].
by rewrite separable1.
by rewrite separable_prodv => ->.
Qed.
Lemma separable_big_prodvW I r (P : {pred I}) (k : {subfield L})
(K : I -> {subfield L}) :
(forall i, P i -> separable k (K i)) ->
separable k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i).
Proof.
move=> sepKi; rewrite separable_big_prodv big_tnth big_andE.
by apply/'forall_implyP => i /sepKi.
Qed.
Lemma separable_prodvr (k K F : {subfield L}) : (k <= F)%VS ->
separable k K -> separable F (K * F).
Proof.
by move=> kF sepkK; rewrite separable_prodv separable_refl (separableSl kF).
Qed.
Lemma normal_prodvr (k K F : {subfield L}) : (k <= K)%VS -> (k <= F)%VS ->
normalField k K -> normalField F (K * F).
Proof.
move=> kK kF /(splitting_normalField kK) [p pk [rs p_eq krs]].
apply/splitting_normalField; rewrite ?field_subvMl//; exists p.
by apply: polyOverS pk => x; apply: subvP.
exists rs => //; apply/eqP; rewrite eqEsubv; apply/andP; split.
apply/Fadjoin_seqP; rewrite field_subvMl; split => //= r rrs.
by apply: (subvP (field_subvMr _ _)); rewrite -krs seqv_sub_adjoin.
apply/prodvP => x y xK yF; rewrite rpredM//; last first.
by rewrite (subvP (subv_adjoin_seq _ _))//.
by rewrite -krs in xK; apply: subvP xK; apply: adjoin_seqSl.
Qed.
Lemma galois_prodvr (k K F : {subfield L}) : (k <= F)%VS ->
galois k K -> galois F (K * F).
Proof.
move=> kF /and3P[kK sep norm]; rewrite /galois field_subvMl/=.
by rewrite (separable_prodvr kF)// (normal_prodvr kK kF).
Qed.
(** N/A **)
Lemma capv_galois (k K F : {subfield L}) : (k <= F)%VS ->
galois k K -> galois (K :&: F) K.
Proof.
move=> kF /splitting_galoisField [p [pk p_sep [rs p_eq krs]]].
have k_subKF: (k <= K :&: F)%VS.
apply/subvP => x xk.
by rewrite memv_cap (subvP kF)// -krs (subvP (subv_adjoin_seq _ _)).
apply/splitting_galoisField; exists p; split => //.
by apply: polyOverS pk; apply/subvP.
exists rs => //; apply/eqP; rewrite -krs eqEsubv andbC adjoin_seqSl//=.
by apply/Fadjoin_seqP; split; [rewrite /= krs capvSl|apply: seqv_sub_adjoin].
Qed.
Lemma kAutEnormal (K E : {subfield L}) (f : 'End(L)) :
(K <= E)%VS -> normalField K E -> kAut K E f = kHom K E f.
Proof.
move=> KE normalKE; rewrite kAutE; have [f_hom|]//= := boolP (kHom _ _ _).
apply/subvP => _/memv_imgP[x Ex ->].
have := kHom_to_gal _ normalKE f_hom; rewrite subvv KE => -[//|g gK ->//].
by rewrite memv_gal.
Qed.
Lemma fixedField_sub (K E : {subfield L}) (A : {set gal_of E}) :
galois K E -> (('Gal(E / K))%g \subset A) -> (fixedField A <= K)%VS.
Proof. by move=> /galois_fixedField{2}<- subA; apply: fixedFieldS. Qed.
Lemma galois_sub (K E : {subfield L}) (A : {group gal_of E}) :
galois K E -> (('Gal(E / K))%g \subset A) = (fixedField A <= K)%VS.
Proof.
move=> galKE; apply/idP/idP; first exact: fixedField_sub.
move=> /galS-/(_ E)/=/subset_trans->//.
by apply/subsetP => u; rewrite gal_fixedField.
Qed.
Lemma galois_eq (K E : {subfield L}) (A : {group gal_of E}) :
galois K E -> ('Gal(E / K)%g == A) = (fixedField A == K)%VS.
Proof.
move=> galKE; have KE := galois_subW galKE.
by rewrite eqEsubset eqEsubv galois_sub// galois_connection.
Qed.
Lemma galois_misom (k K F : {subfield L})
(H := 'Gal((K * F) / F)%g) (H' := 'Gal (K / (K :&: F))%g) :
galois k K -> (k <= F)%VS -> misom H H' (normalField_cast K).
Proof.
move=> gal_kK kF; have kK := galois_subW gal_kK.
have normal_kK := galois_normalW gal_kK.
have KF u : u \in H -> (u @: K <= K)%VS.
move=> Hu; suff : kHom k K u by rewrite -kAutEnormal// kAutE => /andP[].
by apply/kAHomP => x kx; rewrite (fixed_gal _ Hu) ?field_subvMl ?(subvP kF).
have r_H_morphic : morphic H (normalField_cast K).
apply/morphicP => u v uH vH; apply/eqP/gal_eqP => x Kx.
rewrite galM// [LHS]galK ?KF ?groupM//.
rewrite 2?galK ?KF//; last by apply/(subvP (KF u uH)); rewrite memv_img.
by rewrite galM//; apply: subvP Kx; apply: field_subvMr.
apply/misomP; exists r_H_morphic; apply/isomP; split.
apply/subsetP => /= u ker_u; have Hu := dom_ker ker_u.
apply/set1gP/eqP/gal_eqP => _ /memv_mulP[n [xs [ys [xsP ysP ->]]]].
rewrite rmorph_sum/= gal_id; apply: eq_bigr => i _; rewrite rmorphM/=.
have [xiK yiK] := (allP xsP _ (mem_tnth i _), allP ysP _ (mem_tnth i _)).
have /eqP/gal_eqP/(_ _ xiK) := mker ker_u.
rewrite /normalField_cast galK ?KF// => ->; rewrite gal_id.
by rewrite (fixed_gal _ Hu)// field_subvMl.
apply/eqP; rewrite eq_sym galois_eq ?(capv_galois kF gal_kK)//.
rewrite eqEsubv; apply/andP; split; apply/subvP => x; last first.
rewrite memv_cap => /andP[Kx Fx].
apply/fixedFieldP => // _ /morphimP[/= v Hv _ ->].
rewrite morphmE /normalField_cast galK// ?KF//.
by rewrite (fixed_gal _ Hv)// field_subvMl.
move=> /mem_fixedFieldP[Kx xP]; rewrite memv_cap Kx/=.
rewrite -(galois_fixedField (galois_prodvr kF gal_kK)).
apply/fixedFieldP; first by rewrite -[x]mulr1 memv_mul// rpred1.
move=> u Hu; have := xP (normalField_cast _ u).
by rewrite /normalField_cast galK ?KF//; apply; apply/morphimP; exists u.
Qed.
Lemma galois_isog (k K F : {subfield L}) : galois k K -> (k <= F)%VS ->
'Gal((K * F) / F) \isog 'Gal (K / K :&: F).
Proof. by move=> galkK /(galois_misom galkK) /misom_isog. Qed.
Lemma subv_big_prodv_seq I r (P : {pred I}) (k : {subfield L})
(K : I -> {subfield L}) :
(forall i, P i -> (k <= K i)%VS) ->
~~ nilp [seq i <- r | P i] ->
(k <= \big[@prodv _ _/1]_(i <- r | P i) K i)%VS.
Proof.
move=> normkK; elim: r => [|i r IHr]; rewrite !(big_nil, big_cons)//=.
case: ifP IHr => //= Pi; rewrite -big_filter.
have [->|_ IHr]//= := altP nilP; first by rewrite big_nil prodv1 normkK.
by rewrite -[X in (X <= _)%VS]prodv_id prodvS ?IHr ?normkK.
Qed.
Lemma subv_big_prodv (I : finType) (D : {pred I}) (k : {subfield L})
(K : I -> {subfield L}) :
(#|D| > 0)%N -> (forall i, D i -> k <= K i)%VS ->
(k <= \big[@prodv _ _/1]_(i in D) K i)%VS.
Proof.
move=> D_gt0 DK; apply: subv_big_prodv_seq => //.
by rewrite /nilp size_filter -sum1_count sum1_card -lt0n.
Qed.
Lemma normal_prodv (k K1 K2 : {subfield L}) :
normalField k K1 -> normalField k K2 -> normalField k (K1 * K2).
Proof.
move=> /'forall_implyP/(_ _ _)/eqP endK1 /'forall_implyP/(_ _ _)/eqP endK2.
by apply/'forall_implyP => s s_end; rewrite aimgM endK1// endK2.
Qed.
Lemma normal_big_prodv I r (P : {pred I}) (k : {subfield L})
(K : I -> {subfield L}) :
(forall i, P i -> normalField k (K i)) ->
normalField k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i).
Proof.
move=> normkK; elim: r => [|i r IHr]; rewrite !(big_nil, big_cons).
apply/normalFieldP => a a1; exists [:: a]; rewrite /= ?a1//.
rewrite big_cons big_nil mulr1; apply: minPoly_XsubC.
by apply: subvP a1; rewrite sub1v.
rewrite big_prodv_eq_aspace in IHr *; case: ifP => // Pi.
by rewrite normal_prodv// normkK.
Qed.
Lemma galois_prodv (k K1 K2 : {subfield L}) :
galois k K1 -> galois k K2 -> galois k (K1 * K2).
Proof.
rewrite /galois => /and3P[kK1 sepK1 normK1] /and3P[kK2 sepK2 normK2].
rewrite -[X in (X <= _)%VS]prodv_id prodvS//=.
by rewrite separable_prodv ?sepK1 ?sepK2// normal_prodv.
Qed.
Lemma galois_big_prodv_seq I r (P : {pred I}) (k : {subfield L})
(K : I -> {subfield L}) :
(forall i, P i -> galois k (K i)) ->
~~ nilp [seq i <- r | P i] ->
galois k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i).
Proof.
move=> galkK brP; pose gW := (galois_subW, galois_normalW, galois_separableW).
pose bpv := (subv_big_prodv_seq, separable_big_prodvW, normal_big_prodv).
by rewrite /galois !bpv// => i Pi; rewrite /= gW ?galkK.
Qed.
Lemma galois_big_prodv (I : finType) (D : {pred I}) (k : {subfield L})
(K : I -> {subfield L}) :
(#|D| > 0)%N -> (forall i, D i -> galois k (K i)) ->
galois k (\big[@prodv _ _/1%VS]_(i in D) K i).
Proof.
move=> D_gt0 galkK; apply: galois_big_prodv_seq => //.
by rewrite /nilp size_filter -sum1_count sum1_card -lt0n.
Qed.
Definition gal_big_prodv_cast_subdef {n} {K : 'I_n -> {subfield L}}
(s : gal_of (\big[@prodv_aspace _ _/1%AS]_(i < n) K i)) :
{dffun forall i, gal_of (K i)} :=
[ffun i => normalField_cast (K i) s].
Lemma gal_big_prodv_cast_morphic n (k : {subfield L}) (K : 'I_n -> {subfield L}) :
(forall i, galois k (K i)) ->
morphic 'Gal((\big[@prodv_aspace _ _/1%AS]_(i < n) K i)%VS / k)
gal_big_prodv_cast_subdef.
Proof.
rewrite /gal_big_prodv_cast_subdef => galK.
apply/'forall_implyP => -[s t]; rewrite inE => /andP[sG tG].
apply/eqP/ffunP => i; rewrite !ffunE/=.
have n_gt0 : (n > 0)%N by case: {+}n i => -[].
rewrite (@normalField_castM _ _ _ k) ?galois_normalW//.
by rewrite [(k <= _)%VS]galois_subW//= (bigD1 i)//= field_subvMr.
Qed.
Definition gal_big_prodv_cast n (k : {subfield L}) (K : 'I_n -> {subfield L})
(galK : forall i, galois k (K i)) :=
[morphism of morphm (gal_big_prodv_cast_morphic galK)].
Lemma gal_big_prodv_cast_inj n (k : {subfield L}) (K : 'I_n -> {subfield L})
(galK : forall i, galois k (K i)) :
('injm (gal_big_prodv_cast galK))%g.
Proof.
apply/subsetP => /= s s_ker; rewrite inE; apply/gal_eqP => x xK.
suff: x \in fixedField [set s].
by move=> /mem_fixedFieldP [_ /(_ s)]; rewrite inE gal_id; apply.
apply/subvP: x xK; rewrite /= -[X in (X <= _)%VS]big_prodv_eq_aspace.
apply/big_prod_subfieldP => u uK /=; rewrite rpred_prod// => i _.
apply/fixedFieldP; first by rewrite (bigD1 i)// -[u i]mulr1 memv_mul ?rpred1 ?uK.
move=> s'; rewrite inE => /eqP->{s'}; have /mker := s_ker.
rewrite /gal_big_prodv_cast/= morphmE /gal_big_prodv_cast_subdef.
move=> /ffunP-/(_ i); rewrite !ffunE.
move=> /eqP/gal_eqP/(_ _ (uK _ _))-/(_ isT); rewrite gal_id.
rewrite (@normalField_cast_eq _ _ _ k) ?uK ?galois_normalW ?(dom_ker s_ker)//=.
by rewrite [(k <= _)%VS]galois_subW//= (bigD1 i)//= field_subvMr.
Qed.
Lemma img_gal_big_prodv_cast_sub n (k : {subfield L}) (K : 'I_n -> {subfield L})
(galK : forall i, galois k (K i))
(E := (\big[@prodv_aspace _ _/1%AS]_(i < n) K i)%AS)
(G := 'Gal(E / k)%g):
(gal_big_prodv_cast galK @* G \subset setXn (fun i => 'Gal(K i / k)))%g.
Proof.
case: n => [|n] in K galK E G *.
rewrite setX0; apply/subsetP => /= x _; rewrite !inE.
by apply/eqP/ffunP => -[].
apply/subsetP => /= x; rewrite !inE morphimEdom => /imsetP[s sG ->]/=.
apply/forallP => i/=; rewrite morphmE/= ffunE/=.
rewrite -(@normalField_img _ _ E)// ?galois_normalW//.
- by rewrite (galois_subW (galK _))//= /E (bigD1 i)//= field_subvMr.
- by move=> ? ?/=; rewrite mem_morphim//.
- by rewrite /E/= -big_prodv_eq_aspace galois_big_prodv//= card_ord.
Qed.
End Prodv.
Hint Resolve normalField_refl : core.
Section map_hom.
Variables (F0 : fieldType) (L L' : splittingFieldType F0).
Variable (iota : 'Hom(L, L')).
Definition map_hom (f : 'End(L)) := (iota \o f \o iota^-1)%VF.
Definition inv_map_hom (f : 'End(L')) := (iota^-1 \o f \o iota)%VF.
Lemma map_hom_is_linear : linear map_hom.
Proof.
move=> /= k a b; apply/lfunP => x; rewrite /map_hom.
by rewrite !(comp_lfunE, add_lfunE, scale_lfunE) linearP.
Qed.
Canonical map_hom_linear := Linear map_hom_is_linear.
Lemma inv_map_hom_is_linear : linear inv_map_hom.
Proof.
move=> /= k a b; apply/lfunP => x; rewrite /map_hom.
by rewrite !(comp_lfunE, add_lfunE, scale_lfunE) linearP.
Qed.
Canonical inv_map_hom_linear := Linear inv_map_hom_is_linear.
Lemma lker0_map_homC (f : 'End(L)) : lker iota == 0%VS ->
(map_hom f \o iota = iota \o f)%VF.
Proof. by move=> kiota0; apply/lfunP => x; rewrite !comp_lfunE lker0_lfunK. Qed.
Lemma lker0_map_homE (f : 'End(L)) (x : L) : lker iota == 0%VS ->
map_hom f (iota x) = iota (f x).
Proof. by rewrite !comp_lfunE => /lker0_lfunK->. Qed.
Lemma inv_map_homC (f : 'End(L')) : (f @: limg iota <= limg iota)%VS ->
(iota \o inv_map_hom f = f \o iota)%VF.
Proof.
move=> fiota; apply/lfunP => x. rewrite !comp_lfunE limg_lfunVK//.
by rewrite memvE (subv_trans _ fiota)// -memvE !memv_img ?memvf.
Qed.
Lemma inv_map_homE (f : 'End(L')) (x : L) :
f (iota x) \in (limg iota)%VS ->
iota (inv_map_hom f x) = f (iota x).
Proof. by move=> fiotax; rewrite !comp_lfunE limg_lfunVK. Qed.
End map_hom.
Section map_ahom.
Variables (F0 : fieldType) (L L' : splittingFieldType F0).
Variable (iota : 'AHom(L, L')).
Lemma map_hom_algE (f : 'End(L)) (x : L) :
map_hom iota f (iota x) = iota (f x).
Proof. by rewrite lker0_map_homE// AHom_lker0. Qed.
Lemma map_hom_algC (f : 'End(L)) : (map_hom iota f \o iota = iota \o f)%VF.
Proof. by rewrite lker0_map_homC// AHom_lker0. Qed.
Lemma map_ahom_in (f : 'End(L)) (E : {vspace L}) :
ahom_in (iota @: E) (map_hom iota f) = ahom_in E f.
Proof.
apply/ahom_inP/ahom_inP => -[mfM mf1]; last first.
split; last by rewrite -(rmorph1 [rmorphism of iota]) map_hom_algE mf1.
move=> _ _ /memv_imgP[u uE ->] /memv_imgP[v vE ->].
by rewrite !(map_hom_algE, =^~rmorphM)/= mfM.
split=> [x y xE yE|]; last first.
have : map_hom iota f (iota 1) = iota 1 by rewrite rmorph1.
by rewrite map_hom_algE => /fmorph_inj.
have := mfM _ _ (memv_img iota xE) (memv_img iota yE).
by rewrite !(map_hom_algE, =^~rmorphM)/= => /fmorph_inj.
Qed.
Lemma map_ahom_subproof (f : 'AEnd(L)) :
{g : 'AEnd(L') | (g \o iota)%VF = (iota \o f)%VF }.
Proof.
have : kHom 1%VS (iota @: {: L})%VS (map_hom iota f).
by rewrite k1HomE map_ahom_in ahomWin.
move=> /kHom_to_AEnd[g gP]; exists g.
apply/lfunP => x; rewrite !comp_lfunE/=.
by rewrite -map_hom_algE gP ?memv_img// memvf.
Qed.
Lemma inv_map_hom_kHom (E F : {subfield L}) (f : 'End(L')) :
(E <= F)%VS -> ((f @: (iota @: F)) <= (limg iota))%VS ->
kHom E F (inv_map_hom iota f) = kHom (iota @: E) (iota @: F) f.
Proof.
move=> EF fiotaF; have fiotaf u : u \in F -> f (iota u) \in limg iota.
by move=> uF; apply: subv_trans fiotaF; do !apply: memv_img.
apply/kHomP/kHomP => -[/= fM s_id].
split=> [_ _/memv_imgP[x xF ->]|_] /memv_imgP[y yF ->].
rewrite -!rmorphM/= -3?inv_map_homE ?memv_img ?memvf ?fiotaf ?rpredM//.
by rewrite fM// rmorphM.
by rewrite -inv_map_homE ?s_id// fiotaf//; apply: subv_trans EF.
split=> [x y xF yF|x xF]; apply: (fmorph_inj [rmorphism of iota]) => /=.
by rewrite rmorphM/= !inv_map_homE ?fiotaf ?rpredM// rmorphM fM ?memv_img.
by rewrite inv_map_homE s_id ?memv_img ?memvf.
Qed.
Lemma limg_inv_map_ahom (E : {subfield L}) (f : 'End(L')) :
((f @: (iota @: E)) <= (iota @: E))%VS ->
(iota @: (inv_map_hom iota f @: E))%VS = (f @: (iota @: E))%VS.
Proof.
move=> fiotaE; rewrite -!limg_comp; apply/vspaceP => x.
have fiota u : u \in E -> f (iota u) \in limg iota.
move=> uE; rewrite memvE (@subv_trans _ _ (f @: (iota @: E))%VS) //.
by rewrite -memvE !(memv_img, limgS).
by rewrite (subv_trans fiotaE) ?limgS ?subvf.
by apply/memv_imgP/memv_imgP => -[u uE ->]; exists u => //;
rewrite [LHS]comp_lfunE [RHS]comp_lfunE inv_map_homE// ?fiota.
Qed.
Lemma inv_map_hom_kAut (E F : {subfield L}) (f : 'End(L')) :
(E <= F)%VS -> ((f @: (iota @: F)) <= (iota @: F))%VS ->
kAut E F (inv_map_hom iota f) = kAut (iota @: E) (iota @: F) f.
Proof.
move=> EF fiotaF; rewrite !kAutE -limg_inv_map_ahom// limg_ker0 ?AHom_lker0//.
by rewrite inv_map_hom_kHom// (subv_trans fiotaF) ?limgS ?subvf.
Qed.
Lemma inv_map_ahom_in (f : 'End(L')) (E : {subfield L}) :
(f @: (iota @: E) <= limg iota)%VS ->
ahom_in E (inv_map_hom iota f) = ahom_in (iota @: E) f.
Proof.
by move=> fiotaE; rewrite -!k1HomE inv_map_hom_kHom ?sub1v// aimg1.
Qed.
Lemma inv_map_is_ahom (E : {subfield L}) (f : gal_of (iota @: E)) :
ahom_in E (inv_map_hom iota f).
Proof.
rewrite inv_map_ahom_in ?limg_gal ?limgS ?subvf//.
by rewrite -k1HomE -gal_kHom ?sub1v ?gal1.
Qed.
Canonical inv_map_ahom (f : gal_of (limg iota)) := AHom (inv_map_is_ahom f).
Import AEnd_FinGroup.
Definition map_ahom (f : 'AEnd(L)) := projT1 (map_ahom_subproof f).
Lemma map_ahomC (f : 'AEnd(L)) :
(map_ahom f \o iota)%VF = (iota \o f)%VF.
Proof. by rewrite /map_ahom; case: map_ahom_subproof. Qed.
Lemma map_ahomE (f : 'AEnd(L)) x : map_ahom f (iota x) = iota (f x).
Proof. by rewrite -!comp_lfunE map_ahomC. Qed.
Lemma limg_map_ahom (f : 'AEnd(L)) (E : {vspace L}) :
(map_ahom f @: (iota @: E))%VS = (iota @: (f @: E))%VS.
Proof. by rewrite -!limg_comp map_ahomC. Qed.
Lemma map_ahom_kAut s (E F : {subfield L}) :
kAut (iota @: E)%VS (iota @: F)%VS (map_ahom s) = kAut E F s.
Proof.
rewrite !kAutE limg_map_ahom limg_ker0 ?AHom_lker0// [LHS]andbC [RHS]andbC.
have [sF_sub_F|]//= := boolP (s @: F <= F)%VS.
apply/kAHomP/kAHomP => [s_id x xE|s_id _/memv_imgP[x xE ->]]; last first.
by rewrite map_ahomE s_id.
apply: (fmorph_inj [rmorphism of iota]).
by rewrite /= -map_ahomE s_id// memv_img.
Qed.
Lemma map_ahom_kAEnd s (E F : {subfield L}) :
(map_ahom s \in kAEnd (iota @: E)%VS (iota @: F)%VS) = (s \in kAEnd E F).
Proof. by rewrite !inE map_ahom_kAut. Qed.
Lemma map_ahom_kEnd_img s : map_ahom s \in kAEnd 1 (iota @: {: L})%AS.
Proof.
rewrite inE -(aimg1 iota) map_ahom_kAut// kAutfE.
exact/kHom_lrmorphism/ahom_is_lrmorphism.
Qed.
End map_ahom.
Section gal_kAEnd.
Variables (F0 : fieldType) (L : splittingFieldType F0).
Import AEnd_FinGroup.
Lemma kAEndSl (k K F : {subfield L}) : (k <= K)%VS -> (kAEnd K F \subset kAEnd k F).
Proof. by move=> EK; apply/subsetP => x; rewrite !inE; apply: kAutS. Qed.
Lemma ker_gal (E : {subfield L}) : ('ker (gal E))%g = kAEndf E.
Proof.
apply/setP => g; rewrite !inE kAut1E/= !kAutE subvf andbT subfield_closed.
apply/andP/idP => [[gE /gal_eqP galg1]|/kAHomP g_id].
by apply/kAHomP => x xE; have := galg1 _ xE; rewrite gal_id galK// => ->.
have gE : (g @: E <= E)%VS by apply/subvP => _/memv_imgP[x ? ->]; rewrite g_id.
by split=> //; apply/gal_eqP => x xE; rewrite gal_id galK// g_id.
Qed.
Lemma kAEnd_split (K E : {subfield L}) : kAEnd K E = kAEnd 1 E :&: kAEndf K.
Proof.
apply/setP => f; rewrite !inE kAut1E !kAutE subvf andbT andbC.
by case fE : (f @: E <= E)%VS => //=; apply/kAHomP/kAHomP.
Qed.
Lemma gal_kAEndf (K E : {subfield L}) : (K <= E)%VS ->
(gal E @* kAEndf K)%g = (gal E @* kAEnd K E)%g :> {set _}.
Proof.
move=> KE; rewrite kAEnd_split morphimIG ?ker_gal ?kAEndSl// (setIidPr _)//=.
by rewrite (subset_trans (morphim_sub _ _))//= morphimS// subfield_closed.
Qed.
End gal_kAEnd.
Section map_gal.
Variables (F0 : fieldType) (L L' : splittingFieldType F0).
Variable (iota : 'AHom(L, L')).
Variables (E : {subfield L}).
Let iota_ker0 := AHom_lker0 iota.
Definition map_gal (g : gal_of E) : gal_of (iota @: E) :=
gal (iota @: E) (map_ahom iota g).
Lemma map_galE (g : gal_of E) :
{in E, forall x, map_gal g (iota x) = iota (g x)}.
Proof.
move=> x xE /=; rewrite galK ?memv_img ?memvf//=.
by rewrite -!comp_lfunE map_ahomC.
by rewrite limg_map_ahom limg_gal.
Qed.
Definition map_gal_is_morphism : {in setT &,
{morph map_gal : x y / (x * y)%g >-> (x * y)%g}}.
Proof.
move=> /= f g _ _; apply/eqP/gal_eqP => _/memv_imgP[x xE ->].
rewrite galM ?memv_img// 3?map_galE// ?galM//.
by rewrite -[in X in _ \in X](limg_gal f) memv_img.
Qed.
Canonical map_gal_morphism := Morphism map_gal_is_morphism.
Import AEnd_FinGroup.
Lemma map_galK :
{in kAEnd 1 E, map_gal \o gal E =1 gal (iota @: E) \o map_ahom iota }.
Proof.
move=> s; rewrite inE kAut1E => sE.
apply/eqP/gal_eqP => _/memv_imgP[x xE ->]/=.
rewrite map_galE// !galK ?memv_img ?map_ahomE//.
by rewrite -limg_comp map_ahomC limg_comp limgS.
Qed.
Lemma map_gal_inj : ('injm map_gal)%g.
Proof.
apply/injmP => /= f g _ _ eq_fg; apply/eqP/gal_eqP => x xE.
have /eqP/gal_eqP/(_ _ (memv_img iota xE)) := eq_fg.
by rewrite !map_galE// => /fmorph_inj.
Qed.
Lemma img_map_gal (K : {subfield L}) :
(map_gal @* 'Gal(E / K))%g = 'Gal(iota @: E / iota @: K)%g.
Proof.
wlog subKE : K / (K <= E)%VS => [hwlog|].
by rewrite gal_cap hwlog ?capvSr// aimg_cap -gal_cap.
rewrite /'Gal(_ / _)%g -aimg_cap !genGid/= (capv_idPl _)//.
rewrite -!gal_kAEndf ?limgS// -morphim_comp/=.
apply/setP => u; apply/imsetP/imsetP => /= [[f faut ->]|[f' f'aut ->]] {u}.
have := faut; rewrite !inE !kAut1E !kAutE/= !subfield_closed !subvf !andbT.
move=> /andP[fE /kAHomP fK].
exists (map_ahom iota f).
rewrite !inE !kAut1E !kAutE/= !subvf !andbT limg_map_ahom limgS//=.
by apply/kAHomP => _/memv_imgP[x xK ->]; rewrite map_ahomE ?fK.
apply/eqP/gal_eqP => _/memv_imgP[x xK ->].
by rewrite map_galE// !galK ?memv_img ?limg_map_ahom ?map_ahomE// limg_ker0//.
have := f'aut; rewrite !inE !kAut1E !kAutE/= !subvf !andbT.
have -> : agenv (iota @: E) = (iota @: E)%VS by rewrite subfield_closed.
move=> /andP[f'E /kAHomP f'K].
have /kHom_to_AEnd[f eqf] : kHom K E (inv_map_hom iota f').
by rewrite inv_map_hom_kHom ?(subv_trans f'E) ?limgS ?subvf//; apply/kAHomP.
have fE : (f @: E <= E)%VS.
rewrite -(eq_in_limg eqf) -(limg_ker0 _ _ (AHom_lker0 iota)).
by rewrite limg_inv_map_ahom//.
exists f; rewrite ?inE ?kAut1E ?kAutE/= ?subfield_closed ?subvf ?andbT ?fE.
apply/kAHomP => x xK; rewrite -eqf ?(subvP subKE)// !comp_lfunE.
by rewrite f'K ?memv_img// lker0_lfunK.
apply/eqP/gal_eqP => _/memv_imgP[x xE ->]; rewrite map_galE//.
rewrite !galK ?memv_img// -eqf//= inv_map_homE//.
apply: subv_trans (limgS _ (subvf E)); apply: subv_trans f'E.
by do !apply: memv_img.
Qed.
Lemma reflexiveW T (r : rel T) : reflexive r -> forall x y, x = y -> r x y.
Proof. by move=> ? ? ? ->. Qed.
Lemma normalField_aimg (K : {subfield L}) : (K <= E)%VS ->
normalField (iota @: K) (iota @: E) = normalField K E.
Proof.
move=> KE; have iotaKS : (iota @: K <= iota @: E)%VS by rewrite limgS.
apply/splitting_normalField/splitting_normalField => //= -[p pK [rs peq Krs]].
have /polyOver_aimg [q qK pE] := pK.
have /subset_limgP [rs' _ rsE] : {subset rs <= (iota @: E)%VS}.
by rewrite -Krs; apply/seqv_sub_adjoin.
exists q => //; exists rs'.
by have := peq; rewrite pE rsE -map_prod_XsubC/= eqp_map.
by do [rewrite rsE -aimg_adjoin_seq => /eqP;
rewrite eq_limg_ker0// => /eqP] in Krs.
exists (map_poly iota p) => //; first by rewrite mapf_polyOver.
by apply/splittingFieldFor_aimg; exists rs.
Qed.
Lemma galois_aimg (K : {subfield L}) :
galois (iota @: K) (iota @: E) = galois K E.
Proof.
rewrite /galois limg_ker0 ?AHom_lker0// separable_aimg.
by case: (boolP (K <= E)%VS) => // /normalField_aimg->.
Qed.
End map_gal.
Import AEnd_FinGroup.
Section normalClosure.
Variable (F0 : fieldType) (L : splittingFieldType F0).
Implicit Types (K E F : {subfield L}).
Lemma separable_aimgr E F s : s \in kAEndf E ->
separable E (s @: F) = separable E F.
Proof.
rewrite inE => /kHom_kAut_sub/kAHomP s_id; rewrite -(separable_aimg _ _ s).
suff /eq_in_limg->: {in E, s =1 \1%VF} by rewrite lim1g.
by move=> x xE; rewrite lfunE/= s_id.
Qed.
Definition normalClosure (U V : {vspace L}) :=
(\big[@prodv _ _/1]_(s in kAEndf U) (s @: (U * V)))%VS.
Definition normalClosure_is_aspace E F : is_aspace (normalClosure E F).
Proof.
by rewrite /normalClosure big_prodv_eq_aspace; case: (\big[_/_]_(_ in _) _).
Qed.
Canonical normalClosure_aspace E F := ASpace (normalClosure_is_aspace E F).
Lemma prodv_sub_normalClosure E F : (E * F <= normalClosure E F)%VS.
Proof.
rewrite /normalClosure (bigD1 \1%AF) ?group1//= lim1g.
by rewrite big_prodv_eq_aspace field_subvMr.
Qed.
Lemma normalClosureSl E F : (E <= normalClosure E F)%VS.
Proof.
by rewrite (subv_trans (field_subvMr _ _) (prodv_sub_normalClosure _ _)).
Qed.
Hint Resolve normalClosureSl : core.
Lemma normalClosureSr E F : (F <= normalClosure E F)%VS.
Proof. exact: subv_trans (field_subvMl _ _) (prodv_sub_normalClosure _ _). Qed.
Hint Resolve normalClosureSr : core.
Lemma normalClosure_normal E F : normalField E (normalClosure E F).
Proof.
apply/'forall_implyP => s s_end; apply/eqP.
rewrite /normalClosure (big_morph _ (aimgM _) (aimg1 _)).
under eq_bigr => s' do rewrite -limg_comp.
under eq_bigr => s' do have -> : (s \o s')%VF = 'R%act s' s by [].
have /(reindex_astabs 'R _) : s \in ('N(kAEndf E | 'R))%g by rewrite astabsR/=.
by move/(_ _ _ _ (fun i => i @: (E * F))%AS); rewrite !big_prodv_eq_aspace => <-.
Qed.
Hint Resolve normalClosure_normal : core.
Lemma normalClosure_separable E F : separable E F ->
separable E (normalClosure E F).
Proof.
move=> sepEF; rewrite separable_big_prodv big_andE; apply/forall_inP => g ggal.
by rewrite separable_aimgr// separable_prodv separable_refl.
Qed.
Lemma normalClosure_galois E F : separable E F -> galois E (normalClosure E F).
Proof.
move=> sepEF; rewrite /galois.
by rewrite normalClosureSl normalClosure_separable// normalClosure_normal.
Qed.
Hint Resolve normalClosure_galois : core.
Lemma normalClosureP E F K' : (E <= K')%VS -> (F <= K')%VS ->
normalField E K' -> (normalClosure E F <= K')%VS.
Proof.
move=> EK' FK' /'forall_implyP/(_ _ _)/eqP/= sK'.
apply/big_prod_subfieldP => /= u uEF; rewrite rpred_prod// => s s_end.
by apply/subvP: (uEF s s_end); rewrite -(sK' _ s_end) limgS// prodv_sub.
Qed.
Lemma galoisClosureP E F K' : (F <= K')%VS ->
galois E K' -> (normalClosure E F <= K')%VS.
Proof. by move=> EK' /and3P[FK' _ ] /normalClosureP; apply. Qed.
Lemma normalClosure_id E F : (E <= F)%VS -> normalField E F ->
normalClosure E F = F.
Proof.
by move=> EF nEF; apply/eqP; rewrite eqEsubv/= normalClosureSr normalClosureP.
Qed.
Lemma galoisClosure_id E F : galois E F -> normalClosure E F = F.
Proof. by move=> /and3P[EF _ /normalClosure_id->]. Qed.
Definition solvable_ext (E F : {vspace L}) :=
separable E F && solvable 'Gal(normalClosure E F / E).
Lemma char0_solvable_extE E F : has_char0 L ->
solvable_ext E F = solvable 'Gal(normalClosure E F / E).
Proof. by rewrite /solvable_ext => /char0_separable->. Qed.
Lemma solvable_extP (E F : {subfield L}) :
reflect (exists K : {subfield L},
[&& (F <= K)%VS, galois E K & solvable 'Gal(K / E)])
(solvable_ext E F).
Proof.
apply: (iffP idP) => [/andP[sepEF solEF]|[K /and3P[FK galEK solEK]]].
exists [aspace of normalClosure E F].
by rewrite normalClosure_galois ?normalClosureSr.
have MsubK := galoisClosureP FK galEK; rewrite /solvable_ext.
have sepEF : separable E F by case/and3P: galEK => [_ /separableSr->].
have /and3P [EsubM _ EnormM] := (normalClosure_galois sepEF).
by rewrite -(isog_sol (normalField_isog galEK _ _)) ?EsubM ?quotient_sol ?andbT.
Qed.
Lemma solvable_ext_refl E : solvable_ext E E.
Proof.
by apply/solvable_extP; exists E; rewrite subvv galois_refl/= galvv solvable1.
Qed.
Hint Resolve solvable_ext_refl : core.
Lemma sub_solvable_ext F K E :
(E <= F)%VS -> solvable_ext K F -> solvable_ext K E.
Proof.
move=> EF /solvable_extP[M /and3P[Msuper galKM solKM]].
by apply/solvable_extP; exists M; rewrite (subv_trans EF) ?galKM.
Qed.
Lemma solvable_prodv (k E F : {subfield L}) :
(k <= F)%VS -> solvable_ext k E -> solvable_ext F (E * F)%AS.
Proof.
move=> kF /andP[sepkE solkE]; apply/solvable_extP => //.
exists ([aspace of normalClosure k E] * F)%AS.
rewrite (@galois_prodvr _ _ k) ?normalClosure_galois//.
rewrite ?prodvSl ?sub_normalClosure//=.
rewrite (isog_sol (galois_isog (normalClosure_galois _) _))//.
rewrite (solvableS _ solkE)// galS// subv_cap kF.
by rewrite galois_subW ?normalClosure_galois.
Qed.
Import AEnd_FinGroup.
Lemma solvable_ext_trans (F k E : {subfield L}) : (k <= F <= E)%VS ->
solvable_ext k F -> solvable_ext F E -> solvable_ext k E.
Proof.
move=> /andP[kF FE] solkF solFE.
move: (solkF) (solFE) => /andP[sepkF solmkF] /andP[sepFE solmFE].
have sepkE := separable_trans sepFE.
have /solvable_extP [/= l /and3P[EKl galKl subl]] :=
solvable_prodv (normalClosureSr k F) solFE.
apply/solvable_extP; exists [aspace of normalClosure k l] => /=.
have galkK := normalClosure_galois sepkF.
set K := normalClosure k F in galkK galKl subl EKl *.
have /and3P [kK sepkK normkK] := galkK.
have /and3P [Kl sepKl normKl] := galKl.
have sepkl := separable_trans sepkK sepKl.
have kl := subv_trans kK Kl.
rewrite normalClosure_galois ?(subv_trans _ (normalClosureSr _ _))//=; last first.
by rewrite (subv_trans _ EKl)//= field_subvMr.
have KM : (K <= normalClosure k l)%VS := subv_trans Kl (normalClosureSr _ _).
have kKM : (k <= K <= normalClosure k l)%VS by rewrite kK KM.
rewrite (series_sol (normalField_normal _ normkK))//= -/K.
rewrite (isog_sol (normalField_isog _ _ _)) ?normalClosure_galois//=.
rewrite [X in _ && X]solmkF andbT /normalClosure.
under eq_bigr do rewrite /= (prodv_idPr _)//.
rewrite big_prodv_eq_aspace big_enum_val/=.
have /'forall_implyP/(_ _ _)/eqP/= sK := galois_normalW galkK.
have gKl (i : 'I_#|kAEndf k|) : galois K (enum_val i @: l)%AS.
move: (enum_val _) (enum_valP i) => s s_end.
have /splitting_galoisField[/= p [pK p_sep [rs p_eq <-]]] := galKl.
apply/splitting_galoisField; exists (map_poly s p); split => //=.
- by rewrite -(sK _ s_end) mapf_polyOver.
- by rewrite separable_map.
- rewrite aimg_adjoin_seq -{1}(sK _ s_end); exists (map s rs) => //.
by rewrite -map_prod_XsubC eqp_map.
rewrite -(injm_sol (gal_big_prodv_cast_inj gKl))//.
rewrite (solvableS (img_gal_big_prodv_cast_sub _)) ?sol_setXn// => i /=.
move: (enum_val _) (enum_valP i) => s s_end; rewrite -(sK _ s_end).
by rewrite -img_map_gal/= morphim_sol.
Qed.
End normalClosure.
Hint Resolve normalClosureSl : core.
Hint Resolve normalClosureSr : core.
Hint Resolve normalClosure_normal : core.
Hint Resolve solvable_ext_refl : core.
Lemma aimg_normalClosure (F0 : fieldType) (L L' : splittingFieldType F0)
(iota : 'AHom(L, L')) (K E : {subfield L}) :
(iota @: normalClosure K E)%VS = normalClosure (iota @: K) (iota @: E).
Proof.
set M' := normalClosure (iota @: _) _; have iK0 := AHom_lker0 iota.
have M'sub : (M' <= iota @: normalClosure K E)%VS.
by rewrite normalClosureP ?limgS//= normalField_aimg/=.
apply/eqP; rewrite eqEsubv M'sub /M'.
have /sub_aimgP[/= M ME] : (M' <= iota @: fullv)%VS.
by apply: subv_trans M'sub _; rewrite limgS ?subvf.
have KM : (K <= M)%VS by rewrite -(limg_ker0 _ _ iK0) ME/= normalClosureSl.
rewrite -ME limgS// normalClosureP//.
by rewrite -(limg_ker0 _ _ iK0) ME/= normalClosureSr.
by rewrite -(normalField_aimg iota)// ME// normalClosure_normal.
Qed.
Lemma solvable_ext_aimg (F0 : fieldType) (L L' : splittingFieldType F0)
(iota : 'AHom(L, L')) (E F : {subfield L}) :
solvable_ext (iota @: E) (iota @: F) = solvable_ext E F.
Proof.
rewrite /solvable_ext separable_aimg; have [sepEF|]//= := boolP (separable _ _).
by rewrite -aimg_normalClosure// -img_map_gal injm_sol ?map_gal_inj ?subsetT.
Qed.
|