Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 34,014 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
From mathcomp Require Import all_ssreflect all_fingroup all_algebra.
From mathcomp Require Import all_solvable all_field.
From Abel Require Import various char0.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GRing.Theory.

Local Open Scope ring_scope.

Local Notation "p ^^ f" := (map_poly f p)
  (at level 30, f at level 30, format "p  ^^  f").

Section Prodv.
Import AEnd_FinGroup.

Variables (F0 : fieldType) (L : splittingFieldType F0).
Implicit Types (K E F : {subfield L}).

Lemma galois_subW E F : galois E F -> (E <= F)%VS. Proof. by case/andP. Qed.

Lemma galois_normalW E F : galois E F -> (normalField E F)%VS.
Proof. by case/and3P. Qed.

Lemma galois_separableW E F : galois E F -> (separable E F)%VS.
Proof. by case/and3P. Qed.

Lemma normalField_refl E : normalField E E.
Proof.
apply/forallP => /= u; apply/implyP; rewrite in_set.
by move=> /andP[/andP[_ /fixedSpace_limg->]].
Qed.
Hint Resolve normalField_refl : core.

Lemma galois_refl E : galois E E.
Proof. by rewrite /galois subvv separable_refl normalField_refl. Qed.

Lemma gal1 K (g : gal_of K) : g \in 'Gal(K / 1%VS)%g.
Proof. by rewrite gal_kHom ?sub1v// k1HomE ahomWin. Qed.

Lemma Fadjoin_sub E x y : x \in <<E; y>>%VS -> (<<E; x>> <= <<E; y>>)%VS.
Proof. by move=> xEy; apply/FadjoinP; rewrite subv_adjoin. Qed.

Lemma galvv E : ('Gal(E / E) = 1)%g.
Proof.
apply/trivgP/subsetP=> u uG; rewrite inE.
by apply/gal_eqP => x xE; rewrite gal_id (fixed_gal _ uG).
Qed.

Program Canonical prodv_aspace_law :=
  @Monoid.Law {subfield L} 1%AS (@prodv_aspace _ _) _ _ _.
Next Obligation. by move=> *; apply/val_inj/prodvA. Qed.
Next Obligation. by move=> *; apply/val_inj/prod1v. Qed.
Next Obligation. by move=> *; apply/val_inj/prodv1. Qed.

Program Canonical prodv_aspace_com_law :=
  @Monoid.ComLaw {subfield L} 1%AS prodv_aspace_law _.
Next Obligation. by move=> *; apply/val_inj/prodvC. Qed.

Lemma big_prodv_eq_aspace I (r : seq I) (P : {pred I}) (F : I -> {aspace L}) :
  (\big[@prodv _ _/1%VS]_(i <- r | P i) F i) =
  (\big[@prodv_aspace _ _/1%AS]_(i <- r | P i) F i).
Proof. by elim/big_rec2: _ => // i U V _ ->. Qed.

Lemma separable_mulv K x y :
  separable_element K x -> separable_element K y -> separable_element K (x * y).
Proof.
move/(separable_elementS (subv_adjoin K y))=> sepKy_x sepKy.
have [z defKz] := Primitive_Element_Theorem x sepKy.
have /(adjoin_separableP _): x * y \in <<K; z>>%VS.
  by rewrite -defKz rpredM ?memv_adjoin // subvP_adjoin ?memv_adjoin.
apply; apply: adjoin_separable sepKy (adjoin_separable sepKy_x _).
by rewrite defKz base_separable ?memv_adjoin.
Qed.

Lemma separable_prod I r (P : pred I) (v_ : I -> L) (K : {subfield L}) :
    (forall i, P i -> separable_element K (v_ i)) ->
  separable_element K (\prod_(i <- r | P i) v_ i).
Proof.
move=> sepKi.
by elim/big_ind: _; [apply/base_separable/mem1v | apply: separable_mulv |].
Qed.

Lemma separable_prodv (k K1 K2 : {subfield L}) :
  separable k (K1 * K2) = (separable k K1 && separable k K2).
Proof.
apply/separableP/andP => [sepK12|].
  split; apply/separableP => y yK; rewrite sepK12//.
    by apply: (subv_trans yK); rewrite field_subvMr.
  by apply: (subv_trans yK); rewrite field_subvMl.
move=> [/separableP sepK1 /separableP sepK2].
move=> x /memv_mulP[n [us [vs [/allP/= usK /allP/= vsK ->]]]].
rewrite separable_sum// => i _; rewrite separable_mulv//.
  by rewrite sepK1 ?usK ?mem_tnth.
by rewrite sepK2 ?vsK ?mem_tnth.
Qed.

Lemma separable_super (k K : {subfield L}) : (k <= K)%VS ->
  separable K k.
Proof. by move=> /separableSr->//; rewrite separable_refl. Qed.

Lemma separable1 (k : {subfield L}) : separable k 1.
Proof. by rewrite separable_super// ?sub1v. Qed.

Lemma separable_big_prodv I r (P : {pred I}) (k : {subfield L})
  (K : I -> {subfield L}) :
  separable k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i) =
  \big[andb/true]_(i <- r | P i) separable k (K i).
Proof.
rewrite big_prodv_eq_aspace; elim/big_rec2: _ => [|i E b _].
  by rewrite separable1.
by rewrite separable_prodv => ->.
Qed.

Lemma separable_big_prodvW I r (P : {pred I}) (k : {subfield L})
  (K : I -> {subfield L}) :
  (forall i, P i -> separable k (K i)) ->
  separable k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i).
Proof.
move=> sepKi; rewrite separable_big_prodv big_tnth big_andE.
by apply/'forall_implyP => i /sepKi.
Qed.

Lemma separable_prodvr (k K F : {subfield L}) : (k <= F)%VS ->
  separable k K -> separable F (K * F).
Proof.
by move=> kF sepkK; rewrite separable_prodv separable_refl (separableSl kF).
Qed.

Lemma normal_prodvr (k K F : {subfield L}) : (k <= K)%VS -> (k <= F)%VS ->
  normalField k K -> normalField F (K * F).
Proof.
move=> kK kF /(splitting_normalField kK) [p pk [rs p_eq krs]].
apply/splitting_normalField; rewrite ?field_subvMl//; exists p.
  by apply: polyOverS pk => x; apply: subvP.
exists rs => //; apply/eqP; rewrite eqEsubv; apply/andP; split.
  apply/Fadjoin_seqP; rewrite field_subvMl; split => //= r rrs.
  by apply: (subvP (field_subvMr _ _)); rewrite -krs seqv_sub_adjoin.
apply/prodvP => x y xK yF; rewrite rpredM//; last first.
  by rewrite (subvP (subv_adjoin_seq _ _))//.
by rewrite -krs in xK; apply: subvP xK; apply: adjoin_seqSl.
Qed.

Lemma galois_prodvr (k K F : {subfield L}) : (k <= F)%VS ->
  galois k K -> galois F (K * F).
Proof.
move=> kF /and3P[kK sep norm]; rewrite /galois field_subvMl/=.
by rewrite (separable_prodvr kF)// (normal_prodvr kK kF).
Qed.

(** N/A **)
Lemma capv_galois (k K F : {subfield L}) : (k <= F)%VS ->
  galois k K -> galois (K :&: F) K.
Proof.
move=> kF /splitting_galoisField [p [pk p_sep [rs p_eq krs]]].
have k_subKF: (k <= K :&: F)%VS.
  apply/subvP => x xk.
  by rewrite memv_cap (subvP kF)// -krs (subvP (subv_adjoin_seq _ _)).
apply/splitting_galoisField; exists p; split => //.
  by apply: polyOverS pk; apply/subvP.
exists rs => //; apply/eqP; rewrite -krs eqEsubv andbC adjoin_seqSl//=.
by apply/Fadjoin_seqP; split; [rewrite /= krs capvSl|apply: seqv_sub_adjoin].
Qed.

Lemma kAutEnormal (K E : {subfield L}) (f : 'End(L)) :
  (K <= E)%VS -> normalField K E -> kAut K E f = kHom K E f.
Proof.
move=> KE normalKE; rewrite kAutE; have [f_hom|]//= := boolP (kHom _ _ _).
apply/subvP => _/memv_imgP[x Ex ->].
have := kHom_to_gal _ normalKE f_hom; rewrite subvv KE => -[//|g gK ->//].
by rewrite memv_gal.
Qed.

Lemma fixedField_sub  (K E : {subfield L}) (A : {set gal_of E}) :
  galois K E -> (('Gal(E / K))%g \subset A) -> (fixedField A <= K)%VS.
Proof. by move=> /galois_fixedField{2}<- subA; apply: fixedFieldS. Qed.

Lemma galois_sub  (K E : {subfield L}) (A : {group gal_of E}) :
  galois K E -> (('Gal(E / K))%g \subset A) = (fixedField A <= K)%VS.
Proof.
move=> galKE; apply/idP/idP; first exact: fixedField_sub.
move=> /galS-/(_ E)/=/subset_trans->//.
by apply/subsetP => u; rewrite gal_fixedField.
Qed.

Lemma galois_eq  (K E : {subfield L}) (A : {group gal_of E}) :
  galois K E -> ('Gal(E / K)%g == A) = (fixedField A == K)%VS.
Proof.
move=> galKE; have KE := galois_subW galKE.
by rewrite eqEsubset eqEsubv galois_sub// galois_connection.
Qed.

Lemma galois_misom (k K F : {subfield L})
  (H := 'Gal((K * F) / F)%g) (H' := 'Gal (K / (K :&: F))%g) :
  galois k K -> (k <= F)%VS -> misom H H' (normalField_cast K).
Proof.
move=> gal_kK kF; have kK := galois_subW gal_kK.
have normal_kK := galois_normalW gal_kK.
have KF u : u \in H -> (u @: K <= K)%VS.
  move=> Hu; suff : kHom k K u by rewrite -kAutEnormal// kAutE => /andP[].
  by apply/kAHomP => x kx; rewrite (fixed_gal _ Hu) ?field_subvMl ?(subvP kF).
have r_H_morphic : morphic H (normalField_cast K).
  apply/morphicP => u v uH vH; apply/eqP/gal_eqP => x Kx.
  rewrite galM// [LHS]galK ?KF ?groupM//.
  rewrite 2?galK ?KF//; last by apply/(subvP (KF u uH)); rewrite memv_img.
  by rewrite galM//; apply: subvP Kx; apply: field_subvMr.
apply/misomP; exists r_H_morphic; apply/isomP; split.
  apply/subsetP => /= u ker_u; have Hu := dom_ker ker_u.
  apply/set1gP/eqP/gal_eqP => _ /memv_mulP[n [xs [ys [xsP ysP ->]]]].
  rewrite rmorph_sum/= gal_id; apply: eq_bigr => i _; rewrite rmorphM/=.
  have [xiK yiK] := (allP xsP _ (mem_tnth i _), allP ysP _ (mem_tnth i _)).
  have /eqP/gal_eqP/(_ _ xiK) := mker ker_u.
  rewrite /normalField_cast galK ?KF// => ->; rewrite gal_id.
  by rewrite (fixed_gal _ Hu)// field_subvMl.
apply/eqP; rewrite eq_sym galois_eq ?(capv_galois kF gal_kK)//.
rewrite eqEsubv; apply/andP; split; apply/subvP => x; last first.
  rewrite memv_cap => /andP[Kx Fx].
  apply/fixedFieldP => // _ /morphimP[/= v Hv _ ->].
  rewrite morphmE /normalField_cast galK// ?KF//.
  by rewrite (fixed_gal _ Hv)// field_subvMl.
move=> /mem_fixedFieldP[Kx xP]; rewrite memv_cap Kx/=.
rewrite -(galois_fixedField (galois_prodvr kF gal_kK)).
apply/fixedFieldP; first by rewrite -[x]mulr1 memv_mul// rpred1.
move=> u Hu; have := xP (normalField_cast _ u).
by rewrite /normalField_cast galK ?KF//; apply; apply/morphimP; exists u.
Qed.

Lemma galois_isog (k K F : {subfield L}) : galois k K -> (k <= F)%VS ->
  'Gal((K * F) / F) \isog 'Gal (K / K :&: F).
Proof. by move=> galkK /(galois_misom galkK) /misom_isog. Qed.

Lemma subv_big_prodv_seq I r (P : {pred I}) (k : {subfield L})
  (K : I -> {subfield L}) :
  (forall i, P i -> (k <= K i)%VS) ->
  ~~ nilp [seq i <- r | P i] ->
  (k <= \big[@prodv _ _/1]_(i <- r | P i) K i)%VS.
Proof.
move=> normkK; elim: r => [|i r IHr]; rewrite !(big_nil, big_cons)//=.
case: ifP IHr => //= Pi; rewrite -big_filter.
have [->|_ IHr]//= := altP nilP; first by rewrite big_nil prodv1 normkK.
by rewrite -[X in (X <= _)%VS]prodv_id prodvS ?IHr ?normkK.
Qed.

Lemma subv_big_prodv (I : finType) (D : {pred I}) (k : {subfield L})
  (K : I -> {subfield L}) :
  (#|D| > 0)%N -> (forall i, D i -> k <= K i)%VS ->
  (k <= \big[@prodv _ _/1]_(i in D) K i)%VS.
Proof.
move=> D_gt0 DK; apply: subv_big_prodv_seq => //.
by rewrite /nilp size_filter -sum1_count sum1_card -lt0n.
Qed.

Lemma normal_prodv (k K1 K2 : {subfield L}) :
  normalField k K1 -> normalField k K2 -> normalField k (K1 * K2).
Proof.
move=> /'forall_implyP/(_ _ _)/eqP endK1  /'forall_implyP/(_ _ _)/eqP endK2.
by apply/'forall_implyP => s s_end; rewrite aimgM endK1// endK2.
Qed.

Lemma normal_big_prodv I r (P : {pred I}) (k : {subfield L})
    (K : I -> {subfield L}) :
    (forall i, P i -> normalField k (K i)) ->
  normalField k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i).
Proof.
move=> normkK; elim: r => [|i r IHr]; rewrite !(big_nil, big_cons).
  apply/normalFieldP => a a1; exists [:: a]; rewrite /= ?a1//.
  rewrite big_cons big_nil mulr1; apply: minPoly_XsubC.
  by apply: subvP a1; rewrite sub1v.
rewrite big_prodv_eq_aspace in IHr *; case: ifP => // Pi.
by rewrite normal_prodv// normkK.
Qed.

Lemma galois_prodv (k K1 K2 : {subfield L}) :
  galois k K1 -> galois k K2 -> galois k (K1 * K2).
Proof.
rewrite /galois => /and3P[kK1 sepK1 normK1] /and3P[kK2 sepK2 normK2].
rewrite -[X in (X <= _)%VS]prodv_id prodvS//=.
by rewrite separable_prodv ?sepK1 ?sepK2// normal_prodv.
Qed.

Lemma galois_big_prodv_seq I r (P : {pred I}) (k : {subfield L})
  (K : I -> {subfield L}) :
  (forall i, P i -> galois k (K i)) ->
  ~~ nilp [seq i <- r | P i] ->
  galois k (\big[@prodv _ _/1%VS]_(i <- r | P i) K i).
Proof.
move=> galkK brP; pose gW := (galois_subW, galois_normalW, galois_separableW).
pose bpv := (subv_big_prodv_seq, separable_big_prodvW, normal_big_prodv).
by rewrite /galois !bpv// => i Pi; rewrite /= gW ?galkK.
Qed.

Lemma galois_big_prodv (I : finType) (D : {pred I}) (k : {subfield L})
    (K : I -> {subfield L}) :
    (#|D| > 0)%N -> (forall i, D i -> galois k (K i)) ->
  galois k (\big[@prodv _ _/1%VS]_(i in D) K i).
Proof.
move=> D_gt0 galkK; apply: galois_big_prodv_seq => //.
by rewrite /nilp size_filter -sum1_count sum1_card -lt0n.
Qed.

Definition gal_big_prodv_cast_subdef {n} {K : 'I_n -> {subfield L}}
   (s : gal_of (\big[@prodv_aspace _ _/1%AS]_(i < n) K i)) :
    {dffun forall i, gal_of (K i)} :=
  [ffun i => normalField_cast (K i) s].

Lemma gal_big_prodv_cast_morphic n (k : {subfield L}) (K : 'I_n -> {subfield L}) :
  (forall i, galois k (K i)) ->
  morphic 'Gal((\big[@prodv_aspace _ _/1%AS]_(i < n) K i)%VS / k)
          gal_big_prodv_cast_subdef.
Proof.
rewrite /gal_big_prodv_cast_subdef => galK.
apply/'forall_implyP => -[s t]; rewrite inE => /andP[sG tG].
apply/eqP/ffunP => i; rewrite !ffunE/=.
have n_gt0 : (n > 0)%N by case: {+}n i => -[].
rewrite (@normalField_castM _ _ _ k) ?galois_normalW//.
by rewrite [(k <= _)%VS]galois_subW//= (bigD1 i)//= field_subvMr.
Qed.

Definition gal_big_prodv_cast n (k : {subfield L}) (K : 'I_n -> {subfield L})
  (galK : forall i, galois k (K i)) :=
  [morphism of morphm (gal_big_prodv_cast_morphic galK)].

Lemma gal_big_prodv_cast_inj n (k : {subfield L}) (K : 'I_n -> {subfield L})
  (galK : forall i, galois k (K i)) :
  ('injm (gal_big_prodv_cast galK))%g.
Proof.
apply/subsetP => /= s s_ker; rewrite inE; apply/gal_eqP => x xK.
suff: x \in fixedField [set s].
  by move=> /mem_fixedFieldP [_ /(_ s)]; rewrite inE gal_id; apply.
apply/subvP: x xK; rewrite /= -[X in (X <= _)%VS]big_prodv_eq_aspace.
apply/big_prod_subfieldP => u uK /=; rewrite rpred_prod// => i _.
apply/fixedFieldP; first by rewrite (bigD1 i)// -[u i]mulr1 memv_mul ?rpred1 ?uK.
move=> s'; rewrite inE => /eqP->{s'}; have /mker := s_ker.
rewrite /gal_big_prodv_cast/= morphmE /gal_big_prodv_cast_subdef.
move=> /ffunP-/(_ i); rewrite !ffunE.
move=> /eqP/gal_eqP/(_ _ (uK _ _))-/(_ isT); rewrite gal_id.
rewrite (@normalField_cast_eq _ _ _ k) ?uK ?galois_normalW ?(dom_ker s_ker)//=.
by rewrite [(k <= _)%VS]galois_subW//= (bigD1 i)//= field_subvMr.
Qed.

Lemma img_gal_big_prodv_cast_sub n (k : {subfield L}) (K : 'I_n -> {subfield L})
  (galK : forall i, galois k (K i))
  (E := (\big[@prodv_aspace _ _/1%AS]_(i < n) K i)%AS)
  (G := 'Gal(E / k)%g):
  (gal_big_prodv_cast galK @* G \subset setXn (fun i => 'Gal(K i / k)))%g.
Proof.
case: n => [|n] in K galK E G *.
  rewrite setX0; apply/subsetP => /= x _; rewrite !inE.
  by apply/eqP/ffunP => -[].
apply/subsetP => /= x; rewrite !inE morphimEdom => /imsetP[s sG ->]/=.
apply/forallP => i/=; rewrite morphmE/= ffunE/=.
rewrite -(@normalField_img _ _ E)// ?galois_normalW//.
- by rewrite (galois_subW (galK _))//= /E (bigD1 i)//= field_subvMr.
- by move=> ? ?/=; rewrite mem_morphim//.
- by rewrite /E/= -big_prodv_eq_aspace galois_big_prodv//= card_ord.
Qed.

End Prodv.
Hint Resolve normalField_refl : core.

Section map_hom.
Variables (F0 : fieldType) (L L' : splittingFieldType F0).
Variable (iota : 'Hom(L, L')).

Definition map_hom (f : 'End(L)) := (iota \o f \o iota^-1)%VF.
Definition inv_map_hom (f : 'End(L')) := (iota^-1 \o f \o iota)%VF.

Lemma map_hom_is_linear : linear map_hom.
Proof.
move=> /= k a b; apply/lfunP => x; rewrite /map_hom.
by rewrite !(comp_lfunE, add_lfunE, scale_lfunE) linearP.
Qed.
Canonical map_hom_linear := Linear map_hom_is_linear.

Lemma inv_map_hom_is_linear : linear inv_map_hom.
Proof.
move=> /= k a b; apply/lfunP => x; rewrite /map_hom.
by rewrite !(comp_lfunE, add_lfunE, scale_lfunE) linearP.
Qed.
Canonical inv_map_hom_linear := Linear inv_map_hom_is_linear.

Lemma lker0_map_homC (f : 'End(L)) : lker iota == 0%VS ->
  (map_hom f \o iota = iota \o f)%VF.
Proof. by move=> kiota0; apply/lfunP => x; rewrite !comp_lfunE lker0_lfunK. Qed.

Lemma lker0_map_homE (f : 'End(L)) (x : L) : lker iota == 0%VS ->
  map_hom f (iota x) = iota (f x).
Proof. by rewrite !comp_lfunE => /lker0_lfunK->. Qed.

Lemma inv_map_homC (f : 'End(L')) : (f @: limg iota <= limg iota)%VS ->
  (iota \o inv_map_hom f = f \o iota)%VF.
Proof.
move=> fiota; apply/lfunP => x. rewrite !comp_lfunE limg_lfunVK//.
by rewrite memvE (subv_trans _ fiota)// -memvE !memv_img ?memvf.
Qed.

Lemma inv_map_homE (f : 'End(L')) (x : L) :
  f (iota x) \in (limg iota)%VS ->
  iota (inv_map_hom f x) = f (iota x).
Proof. by move=> fiotax; rewrite !comp_lfunE limg_lfunVK. Qed.

End map_hom.

Section map_ahom.
Variables (F0 : fieldType) (L L' : splittingFieldType F0).
Variable (iota : 'AHom(L, L')).

Lemma map_hom_algE (f : 'End(L)) (x : L) :
  map_hom iota f (iota x) = iota (f x).
Proof. by rewrite lker0_map_homE// AHom_lker0. Qed.

Lemma map_hom_algC (f : 'End(L)) : (map_hom iota f \o iota = iota \o f)%VF.
Proof. by rewrite lker0_map_homC// AHom_lker0. Qed.

Lemma map_ahom_in (f : 'End(L)) (E : {vspace L}) :
  ahom_in (iota @: E) (map_hom iota f) = ahom_in E f.
Proof.
apply/ahom_inP/ahom_inP => -[mfM mf1]; last first.
  split; last by rewrite -(rmorph1 [rmorphism of iota]) map_hom_algE mf1.
  move=> _ _ /memv_imgP[u uE ->] /memv_imgP[v vE ->].
  by rewrite !(map_hom_algE, =^~rmorphM)/= mfM.
split=> [x y xE yE|]; last first.
  have : map_hom iota f (iota 1) = iota 1 by rewrite rmorph1.
  by rewrite map_hom_algE => /fmorph_inj.
have := mfM _ _ (memv_img iota xE) (memv_img iota yE).
by rewrite !(map_hom_algE, =^~rmorphM)/= => /fmorph_inj.
Qed.

Lemma map_ahom_subproof (f : 'AEnd(L)) :
   {g : 'AEnd(L') | (g \o iota)%VF = (iota \o f)%VF }.
Proof.
have : kHom 1%VS (iota @: {: L})%VS (map_hom iota f).
  by rewrite k1HomE map_ahom_in ahomWin.
move=> /kHom_to_AEnd[g gP]; exists g.
apply/lfunP => x; rewrite !comp_lfunE/=.
by rewrite -map_hom_algE gP ?memv_img// memvf.
Qed.

Lemma inv_map_hom_kHom (E F : {subfield L}) (f : 'End(L')) :
  (E <= F)%VS -> ((f @: (iota @: F)) <= (limg iota))%VS ->
  kHom E F (inv_map_hom iota f) = kHom (iota @: E) (iota @: F) f.
Proof.
move=> EF fiotaF; have fiotaf u : u \in F -> f (iota u) \in limg iota.
  by move=> uF; apply: subv_trans fiotaF; do !apply: memv_img.
apply/kHomP/kHomP => -[/= fM s_id].
   split=> [_ _/memv_imgP[x xF ->]|_] /memv_imgP[y yF ->].
     rewrite -!rmorphM/= -3?inv_map_homE ?memv_img ?memvf ?fiotaf ?rpredM//.
     by rewrite fM// rmorphM.
  by rewrite -inv_map_homE ?s_id// fiotaf//; apply: subv_trans EF.
split=> [x y xF yF|x xF]; apply: (fmorph_inj [rmorphism of iota]) => /=.
  by rewrite rmorphM/= !inv_map_homE ?fiotaf ?rpredM// rmorphM fM ?memv_img.
by rewrite inv_map_homE s_id ?memv_img ?memvf.
Qed.

Lemma limg_inv_map_ahom  (E : {subfield L}) (f : 'End(L')) :
  ((f @: (iota @: E)) <= (iota @: E))%VS ->
  (iota @: (inv_map_hom iota f @: E))%VS = (f @: (iota @: E))%VS.
Proof.
move=> fiotaE; rewrite -!limg_comp; apply/vspaceP => x.
have fiota u : u \in E -> f (iota u) \in limg iota.
  move=> uE; rewrite memvE (@subv_trans _ _ (f @: (iota @: E))%VS) //.
    by rewrite -memvE !(memv_img, limgS).
  by rewrite (subv_trans fiotaE) ?limgS ?subvf.
by apply/memv_imgP/memv_imgP => -[u uE ->]; exists u => //;
   rewrite [LHS]comp_lfunE [RHS]comp_lfunE inv_map_homE// ?fiota.
Qed.

Lemma inv_map_hom_kAut (E F : {subfield L}) (f : 'End(L')) :
  (E <= F)%VS -> ((f @: (iota @: F)) <= (iota @: F))%VS ->
  kAut E F (inv_map_hom iota f) = kAut (iota @: E) (iota @: F) f.
Proof.
move=> EF fiotaF; rewrite !kAutE -limg_inv_map_ahom// limg_ker0 ?AHom_lker0//.
by rewrite inv_map_hom_kHom// (subv_trans fiotaF) ?limgS ?subvf.
Qed.

Lemma inv_map_ahom_in (f : 'End(L')) (E : {subfield L}) :
    (f @: (iota @: E) <= limg iota)%VS ->
  ahom_in E (inv_map_hom iota f) = ahom_in (iota @: E) f.
Proof.
by move=> fiotaE; rewrite -!k1HomE inv_map_hom_kHom ?sub1v// aimg1.
Qed.

Lemma inv_map_is_ahom (E : {subfield L}) (f : gal_of (iota @: E)) :
  ahom_in E (inv_map_hom iota f).
Proof.
rewrite inv_map_ahom_in ?limg_gal ?limgS ?subvf//.
by rewrite -k1HomE -gal_kHom ?sub1v ?gal1.
Qed.
Canonical inv_map_ahom (f : gal_of (limg iota)) := AHom (inv_map_is_ahom f).

Import AEnd_FinGroup.

Definition map_ahom (f : 'AEnd(L)) := projT1 (map_ahom_subproof f).

Lemma map_ahomC (f : 'AEnd(L)) :
   (map_ahom f \o iota)%VF = (iota \o f)%VF.
Proof. by rewrite /map_ahom; case: map_ahom_subproof. Qed.

Lemma map_ahomE (f : 'AEnd(L)) x : map_ahom f (iota x) = iota (f x).
Proof. by rewrite -!comp_lfunE map_ahomC. Qed.

Lemma limg_map_ahom (f : 'AEnd(L))  (E : {vspace L}) :
  (map_ahom f @: (iota @: E))%VS = (iota @: (f @: E))%VS.
Proof. by rewrite -!limg_comp map_ahomC. Qed.

Lemma map_ahom_kAut s (E F : {subfield L}) :
  kAut (iota @: E)%VS (iota @: F)%VS (map_ahom s) = kAut E F s.
Proof.
rewrite !kAutE limg_map_ahom limg_ker0 ?AHom_lker0// [LHS]andbC [RHS]andbC.
have [sF_sub_F|]//= := boolP (s @: F <= F)%VS.
apply/kAHomP/kAHomP => [s_id x xE|s_id _/memv_imgP[x xE ->]]; last first.
  by rewrite map_ahomE s_id.
apply: (fmorph_inj [rmorphism of iota]).
by rewrite /= -map_ahomE s_id// memv_img.
Qed.

Lemma map_ahom_kAEnd s (E F : {subfield L}) :
  (map_ahom s \in kAEnd (iota @: E)%VS (iota @: F)%VS) = (s \in kAEnd E F).
Proof. by rewrite !inE map_ahom_kAut. Qed.

Lemma map_ahom_kEnd_img s : map_ahom s \in kAEnd 1 (iota @: {: L})%AS.
Proof.
rewrite inE -(aimg1 iota) map_ahom_kAut// kAutfE.
exact/kHom_lrmorphism/ahom_is_lrmorphism.
Qed.

End map_ahom.

Section gal_kAEnd.

Variables (F0 : fieldType) (L : splittingFieldType F0).
Import AEnd_FinGroup.

Lemma kAEndSl (k K F : {subfield L}) : (k <= K)%VS -> (kAEnd K F \subset kAEnd k F).
Proof. by move=> EK; apply/subsetP => x; rewrite !inE; apply: kAutS. Qed.

Lemma ker_gal (E : {subfield L}) : ('ker (gal E))%g = kAEndf E.
Proof.
apply/setP => g; rewrite !inE kAut1E/= !kAutE subvf andbT subfield_closed.
apply/andP/idP => [[gE /gal_eqP galg1]|/kAHomP g_id].
  by apply/kAHomP => x xE; have := galg1 _ xE; rewrite gal_id galK// => ->.
have gE : (g @: E <= E)%VS by apply/subvP => _/memv_imgP[x ? ->]; rewrite g_id.
by split=> //; apply/gal_eqP => x xE; rewrite gal_id galK// g_id.
Qed.

Lemma kAEnd_split (K E : {subfield L}) : kAEnd K E = kAEnd 1 E :&: kAEndf K.
Proof.
apply/setP => f; rewrite !inE kAut1E !kAutE subvf andbT andbC.
by case fE : (f @: E <= E)%VS => //=; apply/kAHomP/kAHomP.
Qed.

Lemma gal_kAEndf (K E : {subfield L}) : (K <= E)%VS ->
   (gal E @* kAEndf K)%g = (gal E @* kAEnd K E)%g :> {set _}.
Proof.
move=> KE; rewrite kAEnd_split morphimIG ?ker_gal ?kAEndSl// (setIidPr _)//=.
by rewrite (subset_trans (morphim_sub _ _))//= morphimS// subfield_closed.
Qed.

End gal_kAEnd.

Section map_gal.
Variables (F0 : fieldType) (L L' : splittingFieldType F0).
Variable (iota : 'AHom(L, L')).
Variables (E : {subfield L}).
Let iota_ker0 := AHom_lker0 iota.

Definition map_gal (g : gal_of E) : gal_of (iota @: E) :=
  gal (iota @: E) (map_ahom iota g).

Lemma map_galE (g : gal_of E) :
  {in E, forall x, map_gal g (iota x) = iota (g x)}.
Proof.
move=> x xE /=; rewrite galK ?memv_img ?memvf//=.
  by rewrite -!comp_lfunE map_ahomC.
by rewrite limg_map_ahom limg_gal.
Qed.

Definition map_gal_is_morphism : {in setT &,
   {morph map_gal : x y / (x * y)%g >-> (x * y)%g}}.
Proof.
move=> /= f g _ _; apply/eqP/gal_eqP => _/memv_imgP[x xE ->].
rewrite galM ?memv_img// 3?map_galE// ?galM//.
by rewrite -[in X in _ \in X](limg_gal f) memv_img.
Qed.
Canonical map_gal_morphism := Morphism map_gal_is_morphism.

Import AEnd_FinGroup.
Lemma map_galK :
  {in kAEnd 1 E, map_gal \o gal E =1 gal (iota @: E) \o map_ahom iota }.
Proof.
move=> s; rewrite inE kAut1E => sE.
apply/eqP/gal_eqP => _/memv_imgP[x xE ->]/=.
rewrite map_galE// !galK ?memv_img ?map_ahomE//.
by rewrite -limg_comp map_ahomC limg_comp limgS.
Qed.

Lemma map_gal_inj : ('injm map_gal)%g.
Proof.
apply/injmP => /= f g _ _ eq_fg; apply/eqP/gal_eqP => x xE.
have /eqP/gal_eqP/(_ _ (memv_img iota xE)) := eq_fg.
by rewrite !map_galE// => /fmorph_inj.
Qed.

Lemma img_map_gal (K : {subfield L}) :
   (map_gal @* 'Gal(E / K))%g = 'Gal(iota @: E / iota @: K)%g.
Proof.
wlog subKE : K / (K <= E)%VS => [hwlog|].
  by rewrite gal_cap hwlog ?capvSr// aimg_cap -gal_cap.
rewrite /'Gal(_ / _)%g -aimg_cap !genGid/= (capv_idPl _)//.
rewrite -!gal_kAEndf ?limgS// -morphim_comp/=.
apply/setP => u; apply/imsetP/imsetP => /= [[f faut ->]|[f' f'aut ->]] {u}.
  have := faut; rewrite !inE !kAut1E !kAutE/= !subfield_closed !subvf !andbT.
  move=> /andP[fE /kAHomP fK].
  exists (map_ahom iota f).
    rewrite !inE !kAut1E !kAutE/= !subvf !andbT limg_map_ahom limgS//=.
    by apply/kAHomP => _/memv_imgP[x xK ->]; rewrite map_ahomE ?fK.
  apply/eqP/gal_eqP => _/memv_imgP[x xK ->].
  by rewrite map_galE// !galK ?memv_img ?limg_map_ahom ?map_ahomE// limg_ker0//.
have := f'aut; rewrite !inE !kAut1E !kAutE/= !subvf !andbT.
have -> : agenv (iota @: E) = (iota @: E)%VS by rewrite subfield_closed.
move=> /andP[f'E /kAHomP f'K].
have /kHom_to_AEnd[f eqf] : kHom K E (inv_map_hom iota f').
  by rewrite inv_map_hom_kHom ?(subv_trans f'E) ?limgS ?subvf//; apply/kAHomP.
have fE : (f @: E <= E)%VS.
  rewrite -(eq_in_limg eqf) -(limg_ker0 _ _ (AHom_lker0 iota)).
  by rewrite limg_inv_map_ahom//.
exists f; rewrite ?inE ?kAut1E ?kAutE/= ?subfield_closed ?subvf ?andbT ?fE.
  apply/kAHomP => x xK; rewrite -eqf ?(subvP subKE)// !comp_lfunE.
  by rewrite f'K ?memv_img// lker0_lfunK.
apply/eqP/gal_eqP => _/memv_imgP[x xE ->]; rewrite map_galE//.
rewrite !galK ?memv_img// -eqf//= inv_map_homE//.
apply: subv_trans (limgS _ (subvf E)); apply: subv_trans f'E.
by do !apply: memv_img.
Qed.

Lemma reflexiveW T (r : rel T) : reflexive r -> forall x y, x = y -> r x y.
Proof. by move=> ? ? ? ->. Qed.

Lemma normalField_aimg (K : {subfield L}) : (K <= E)%VS ->
   normalField (iota @: K) (iota @: E) = normalField K E.
Proof.
move=> KE; have iotaKS : (iota @: K <= iota @: E)%VS by rewrite limgS.
apply/splitting_normalField/splitting_normalField => //= -[p pK [rs peq Krs]].
  have /polyOver_aimg [q qK pE] := pK.
  have /subset_limgP [rs' _ rsE] : {subset rs <= (iota @: E)%VS}.
    by rewrite -Krs; apply/seqv_sub_adjoin.
  exists q => //; exists rs'.
    by have := peq; rewrite pE rsE -map_prod_XsubC/= eqp_map.
  by do [rewrite rsE -aimg_adjoin_seq => /eqP;
         rewrite eq_limg_ker0// => /eqP] in Krs.
exists (map_poly iota p) => //; first by rewrite mapf_polyOver.
by apply/splittingFieldFor_aimg; exists rs.
Qed.

Lemma galois_aimg (K : {subfield L}) :
   galois (iota @: K) (iota @: E) = galois K E.
Proof.
rewrite /galois limg_ker0 ?AHom_lker0// separable_aimg.
by case: (boolP (K <= E)%VS) => // /normalField_aimg->.
Qed.

End map_gal.

Import AEnd_FinGroup.

Section normalClosure.
Variable (F0 : fieldType) (L : splittingFieldType F0).
Implicit Types (K E F : {subfield L}).

Lemma separable_aimgr E F s : s \in kAEndf E ->
   separable E (s @: F) = separable E F.
Proof.
rewrite inE => /kHom_kAut_sub/kAHomP s_id; rewrite -(separable_aimg _ _ s).
suff /eq_in_limg->: {in E, s =1 \1%VF} by rewrite lim1g.
by move=> x xE; rewrite lfunE/= s_id.
Qed.

Definition normalClosure (U V : {vspace L}) :=
  (\big[@prodv _ _/1]_(s in kAEndf U) (s @: (U * V)))%VS.

Definition normalClosure_is_aspace E F : is_aspace (normalClosure E F).
Proof.
by rewrite /normalClosure big_prodv_eq_aspace; case: (\big[_/_]_(_ in _) _).
Qed.
Canonical normalClosure_aspace E F := ASpace (normalClosure_is_aspace E F).

Lemma prodv_sub_normalClosure E F : (E * F <= normalClosure E F)%VS.
Proof.
rewrite /normalClosure (bigD1 \1%AF) ?group1//= lim1g.
by rewrite big_prodv_eq_aspace field_subvMr.
Qed.

Lemma normalClosureSl E F : (E <= normalClosure E F)%VS.
Proof.
by rewrite (subv_trans (field_subvMr _ _) (prodv_sub_normalClosure _ _)).
Qed.
Hint Resolve normalClosureSl : core.

Lemma normalClosureSr E F : (F <= normalClosure E F)%VS.
Proof. exact: subv_trans (field_subvMl _ _) (prodv_sub_normalClosure _ _). Qed.
Hint Resolve normalClosureSr : core.

Lemma normalClosure_normal E F : normalField E (normalClosure E F).
Proof.
apply/'forall_implyP => s s_end; apply/eqP.
rewrite /normalClosure (big_morph _ (aimgM _) (aimg1 _)).
under eq_bigr => s' do rewrite -limg_comp.
under eq_bigr => s' do have -> : (s \o s')%VF = 'R%act s' s by [].
have /(reindex_astabs 'R _) : s \in ('N(kAEndf E | 'R))%g by rewrite astabsR/=.
by move/(_ _ _ _ (fun i => i @: (E * F))%AS); rewrite !big_prodv_eq_aspace => <-.
Qed.
Hint Resolve normalClosure_normal : core.

Lemma normalClosure_separable E F : separable E F ->
   separable E (normalClosure E F).
Proof.
move=> sepEF; rewrite separable_big_prodv big_andE; apply/forall_inP => g ggal.
by rewrite separable_aimgr// separable_prodv separable_refl.
Qed.

Lemma normalClosure_galois E F : separable E F -> galois E (normalClosure E F).
Proof.
move=> sepEF; rewrite /galois.
by rewrite normalClosureSl normalClosure_separable// normalClosure_normal.
Qed.
Hint Resolve normalClosure_galois : core.

Lemma normalClosureP E F K' : (E <= K')%VS -> (F <= K')%VS ->
  normalField E K' -> (normalClosure E F <= K')%VS.
Proof.
move=> EK' FK' /'forall_implyP/(_ _ _)/eqP/= sK'.
apply/big_prod_subfieldP => /= u uEF; rewrite rpred_prod// => s s_end.
by apply/subvP: (uEF s s_end); rewrite -(sK' _ s_end) limgS// prodv_sub.
Qed.

Lemma galoisClosureP E F K' : (F <= K')%VS ->
  galois E K' -> (normalClosure E F <= K')%VS.
Proof. by move=> EK' /and3P[FK' _ ] /normalClosureP; apply. Qed.

Lemma normalClosure_id E F : (E <= F)%VS -> normalField E F ->
   normalClosure E F = F.
Proof.
by move=> EF nEF; apply/eqP; rewrite eqEsubv/= normalClosureSr normalClosureP.
Qed.

Lemma galoisClosure_id E F : galois E F -> normalClosure E F = F.
Proof. by move=> /and3P[EF _ /normalClosure_id->]. Qed.

Definition solvable_ext (E F : {vspace L}) :=
  separable E F && solvable 'Gal(normalClosure E F / E).

Lemma char0_solvable_extE E F : has_char0 L ->
  solvable_ext E F = solvable 'Gal(normalClosure E F / E).
Proof. by rewrite /solvable_ext => /char0_separable->. Qed.

Lemma solvable_extP (E F : {subfield L}) :
  reflect (exists K : {subfield L},
            [&& (F <= K)%VS, galois E K & solvable 'Gal(K / E)])
          (solvable_ext E F).
Proof.
apply: (iffP idP) => [/andP[sepEF solEF]|[K /and3P[FK galEK solEK]]].
  exists [aspace of normalClosure E F].
  by rewrite normalClosure_galois ?normalClosureSr.
have MsubK := galoisClosureP FK galEK; rewrite /solvable_ext.
have sepEF : separable E F by case/and3P: galEK => [_ /separableSr->].
have /and3P [EsubM _ EnormM] := (normalClosure_galois sepEF).
by rewrite -(isog_sol (normalField_isog galEK _ _)) ?EsubM ?quotient_sol ?andbT.
Qed.

Lemma solvable_ext_refl E : solvable_ext E E.
Proof.
by apply/solvable_extP; exists E; rewrite subvv galois_refl/= galvv solvable1.
Qed.
Hint Resolve solvable_ext_refl : core.

Lemma sub_solvable_ext F K E :
  (E <= F)%VS -> solvable_ext K F -> solvable_ext K E.
Proof.
move=> EF /solvable_extP[M /and3P[Msuper galKM solKM]].
by apply/solvable_extP; exists M; rewrite (subv_trans EF) ?galKM.
Qed.

Lemma solvable_prodv (k E F : {subfield L}) :
  (k <= F)%VS -> solvable_ext k E -> solvable_ext F (E * F)%AS.
Proof.
move=> kF /andP[sepkE solkE]; apply/solvable_extP => //.
exists ([aspace of normalClosure k E] * F)%AS.
rewrite (@galois_prodvr _ _ k) ?normalClosure_galois//.
rewrite ?prodvSl ?sub_normalClosure//=.
rewrite (isog_sol (galois_isog (normalClosure_galois _) _))//.
rewrite (solvableS _ solkE)// galS// subv_cap kF.
by rewrite galois_subW ?normalClosure_galois.
Qed.

Import AEnd_FinGroup.

Lemma solvable_ext_trans (F k E : {subfield L}) : (k <= F <= E)%VS ->
  solvable_ext k F -> solvable_ext F E -> solvable_ext k E.
Proof.
move=> /andP[kF FE] solkF solFE.
move: (solkF) (solFE) => /andP[sepkF solmkF] /andP[sepFE solmFE].
have sepkE := separable_trans sepFE.
have /solvable_extP [/= l /and3P[EKl galKl subl]] :=
  solvable_prodv (normalClosureSr k F) solFE.
apply/solvable_extP; exists [aspace of normalClosure k l] => /=.
have galkK := normalClosure_galois sepkF.
set K := normalClosure k F in galkK galKl subl EKl *.
have /and3P [kK sepkK normkK] := galkK.
have /and3P [Kl sepKl normKl] := galKl.
have sepkl := separable_trans sepkK sepKl.
have kl := subv_trans kK Kl.
rewrite normalClosure_galois ?(subv_trans _ (normalClosureSr _ _))//=; last first.
  by rewrite (subv_trans _ EKl)//= field_subvMr.
have KM : (K <= normalClosure k l)%VS := subv_trans Kl (normalClosureSr _ _).
have kKM : (k <= K <= normalClosure k l)%VS by rewrite kK KM.
rewrite (series_sol (normalField_normal _ normkK))//= -/K.
rewrite (isog_sol (normalField_isog _ _ _)) ?normalClosure_galois//=.
rewrite [X in _ && X]solmkF andbT /normalClosure.
under eq_bigr do rewrite /= (prodv_idPr _)//.
rewrite big_prodv_eq_aspace big_enum_val/=.
have /'forall_implyP/(_ _ _)/eqP/= sK := galois_normalW galkK.
have gKl (i : 'I_#|kAEndf k|) : galois K (enum_val i @: l)%AS.
  move: (enum_val _) (enum_valP i) => s s_end.
  have /splitting_galoisField[/= p [pK p_sep [rs p_eq <-]]] := galKl.
  apply/splitting_galoisField; exists (map_poly s p); split => //=.
  - by rewrite -(sK _ s_end) mapf_polyOver.
  - by rewrite separable_map.
  - rewrite aimg_adjoin_seq -{1}(sK _ s_end); exists (map s rs) => //.
    by rewrite -map_prod_XsubC eqp_map.
rewrite -(injm_sol (gal_big_prodv_cast_inj gKl))//.
rewrite (solvableS (img_gal_big_prodv_cast_sub _)) ?sol_setXn// => i /=.
move: (enum_val _) (enum_valP i) => s s_end; rewrite -(sK _ s_end).
by rewrite -img_map_gal/= morphim_sol.
Qed.

End normalClosure.

Hint Resolve normalClosureSl : core.
Hint Resolve normalClosureSr : core.
Hint Resolve normalClosure_normal : core.
Hint Resolve solvable_ext_refl : core.

Lemma aimg_normalClosure (F0 : fieldType) (L L' : splittingFieldType F0)
  (iota : 'AHom(L, L')) (K E : {subfield L}) :
  (iota @: normalClosure K E)%VS = normalClosure (iota @: K) (iota @: E).
Proof.
set M' := normalClosure (iota @: _) _; have iK0 := AHom_lker0 iota.
have M'sub : (M' <= iota @: normalClosure K E)%VS.
  by rewrite normalClosureP ?limgS//= normalField_aimg/=.
apply/eqP; rewrite eqEsubv M'sub /M'.
have /sub_aimgP[/= M ME] : (M' <= iota @: fullv)%VS.
  by apply: subv_trans M'sub _; rewrite limgS ?subvf.
have KM : (K <= M)%VS by rewrite -(limg_ker0 _ _ iK0) ME/= normalClosureSl.
rewrite -ME limgS// normalClosureP//.
  by rewrite -(limg_ker0 _ _ iK0) ME/= normalClosureSr.
by rewrite -(normalField_aimg iota)// ME// normalClosure_normal.
Qed.

Lemma solvable_ext_aimg (F0 : fieldType) (L L' : splittingFieldType F0)
  (iota : 'AHom(L, L')) (E F : {subfield L}) :
  solvable_ext (iota @: E) (iota @: F) = solvable_ext E F.
Proof.
rewrite /solvable_ext separable_aimg; have [sepEF|]//= := boolP (separable _ _).
by rewrite -aimg_normalClosure// -img_map_gal injm_sol ?map_gal_inj ?subsetT.
Qed.