Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 80,906 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 |
(* Title: Subbicategory
Author: Eugene W. Stark <stark@cs.stonybrook.edu>, 2019
Maintainer: Eugene W. Stark <stark@cs.stonybrook.edu>
*)
section "Sub-Bicategories"
text \<open>
In this section we give a construction of a sub-bicategory in terms of a predicate
on the arrows of an ambient bicategory that has certain closure properties with respect
to that bicategory. While the construction given here is likely to be of general use,
it is not the most general sub-bicategory construction that one could imagine,
because it requires that the sub-bicategory actually contain the unit and associativity
isomorphisms of the ambient bicategory. Our main motivation for including this construction
here is to apply it to exploit the fact that the sub-bicategory of endo-arrows of a fixed
object is a monoidal category, which will enable us to transfer to bicategories a result
about unit isomorphisms in monoidal categories.
\<close>
theory Subbicategory
imports Bicategory
begin
subsection "Construction"
locale subbicategory =
B: bicategory V H \<a>\<^sub>B \<i> src\<^sub>B trg\<^sub>B +
subcategory V Arr
for V :: "'a comp" (infixr "\<cdot>\<^sub>B" 55)
and H :: "'a comp" (infixr "\<star>\<^sub>B" 55)
and \<a>\<^sub>B :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>\<^sub>B[_, _, _]")
and \<i> :: "'a \<Rightarrow> 'a" ("\<i>[_]")
and src\<^sub>B :: "'a \<Rightarrow> 'a"
and trg\<^sub>B :: "'a \<Rightarrow> 'a"
and Arr :: "'a \<Rightarrow> bool" +
assumes src_closed: "Arr f \<Longrightarrow> Arr (src\<^sub>B f)"
and trg_closed: "Arr f \<Longrightarrow> Arr (trg\<^sub>B f)"
and hcomp_closed: "\<lbrakk> Arr f; Arr g; trg\<^sub>B f = src\<^sub>B g \<rbrakk> \<Longrightarrow> Arr (g \<star>\<^sub>B f)"
and assoc_closed: "\<lbrakk> Arr f \<and> B.ide f; Arr g \<and> B.ide g; Arr h \<and> B.ide h;
src\<^sub>B f = trg\<^sub>B g; src\<^sub>B g = trg\<^sub>B h \<rbrakk> \<Longrightarrow> Arr (\<a>\<^sub>B f g h)"
and assoc'_closed: "\<lbrakk> Arr f \<and> B.ide f; Arr g \<and> B.ide g; Arr h \<and> B.ide h;
src\<^sub>B f = trg\<^sub>B g; src\<^sub>B g = trg\<^sub>B h \<rbrakk> \<Longrightarrow> Arr (B.inv (\<a>\<^sub>B f g h))"
and lunit_closed: "\<lbrakk> Arr f; B.ide f \<rbrakk> \<Longrightarrow> Arr (B.\<ll> f)"
and lunit'_closed: "\<lbrakk> Arr f; B.ide f \<rbrakk> \<Longrightarrow> Arr (B.inv (B.\<ll> f))"
and runit_closed: "\<lbrakk> Arr f; B.ide f \<rbrakk> \<Longrightarrow> Arr (B.\<rr> f)"
and runit'_closed: "\<lbrakk> Arr f; B.ide f \<rbrakk> \<Longrightarrow> Arr (B.inv (B.\<rr> f))"
begin
notation B.in_hom ("\<guillemotleft>_ : _ \<Rightarrow>\<^sub>B _\<guillemotright>")
notation comp (infixr "\<cdot>" 55)
definition hcomp (infixr "\<star>" 53)
where "g \<star> f = (if arr f \<and> arr g \<and> trg\<^sub>B f = src\<^sub>B g then g \<star>\<^sub>B f else null)"
definition src
where "src \<mu> = (if arr \<mu> then src\<^sub>B \<mu> else null)"
definition trg
where "trg \<mu> = (if arr \<mu> then trg\<^sub>B \<mu> else null)"
interpretation src: endofunctor \<open>(\<cdot>)\<close> src
using src_def null_char inclusion arr_char src_closed trg_closed dom_closed cod_closed
dom_simp cod_simp
apply unfold_locales
apply auto[4]
by (metis B.src.as_nat_trans.preserves_comp_2 comp_char seq_char)
interpretation trg: endofunctor \<open>(\<cdot>)\<close> trg
using trg_def null_char inclusion arr_char src_closed trg_closed dom_closed cod_closed
dom_simp cod_simp
apply unfold_locales
apply auto[4]
by (metis B.trg.as_nat_trans.preserves_comp_2 comp_char seq_char)
interpretation horizontal_homs \<open>(\<cdot>)\<close> src trg
using src_def trg_def src.preserves_arr trg.preserves_arr null_char ide_char arr_char
inclusion
by (unfold_locales, simp_all)
interpretation "functor" VV.comp \<open>(\<cdot>)\<close> \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close>
using hcomp_def VV.arr_char src_def trg_def arr_char hcomp_closed dom_char cod_char
VV.dom_char VV.cod_char
apply unfold_locales
apply auto[2]
proof -
fix f
assume f: "VV.arr f"
show "dom (fst f \<star> snd f) = fst (VV.dom f) \<star> snd (VV.dom f)"
proof -
have "dom (fst f \<star> snd f) = B.dom (fst f) \<star>\<^sub>B B.dom (snd f)"
proof -
have "dom (fst f \<star> snd f) = B.dom (fst f \<star> snd f)"
using f dom_char
by (simp add: arr_char hcomp_closed hcomp_def)
also have "... = B.dom (fst f) \<star>\<^sub>B B.dom (snd f)"
using f
by (metis (no_types, lifting) B.hcomp_simps(3) B.hseqI' VV.arrE arrE hcomp_def
inclusion src_def trg_def)
finally show ?thesis by blast
qed
also have "... = fst (VV.dom f) \<star> snd (VV.dom f)"
using f VV.arr_char VV.dom_char arr_char hcomp_def B.seq_if_composable dom_closed
apply simp
by (metis (no_types, lifting) dom_char)
finally show ?thesis by simp
qed
show "cod (fst f \<star> snd f) = fst (VV.cod f) \<star> snd (VV.cod f)"
proof -
have "cod (fst f \<star> snd f) = B.cod (fst f) \<star>\<^sub>B B.cod (snd f)"
using f VV.arr_char arr_char cod_char hcomp_def src_def trg_def
src_closed trg_closed hcomp_closed inclusion B.hseq_char arrE
by auto
also have "... = fst (VV.cod f) \<star> snd (VV.cod f)"
using f VV.arr_char VV.cod_char arr_char hcomp_def B.seq_if_composable cod_closed
apply simp
by (metis (no_types, lifting) cod_char)
finally show ?thesis by simp
qed
next
fix f g
assume fg: "VV.seq g f"
show "fst (VV.comp g f) \<star> snd (VV.comp g f) = (fst g \<star> snd g) \<cdot> (fst f \<star> snd f)"
proof -
have "fst (VV.comp g f) \<star> snd (VV.comp g f) = fst g \<cdot> fst f \<star> snd g \<cdot> snd f"
using fg VV.seq_char VV.comp_char VxV.comp_char VxV.not_Arr_Null
by (metis (no_types, lifting) VxV.seqE prod.sel(1) prod.sel(2))
also have "... = (fst g \<cdot>\<^sub>B fst f) \<star>\<^sub>B (snd g \<cdot>\<^sub>B snd f)"
using fg comp_char hcomp_def VV.seq_char inclusion arr_char seq_char B.hseq_char
by (metis (no_types, lifting) B.hseq_char' VxV.seq_char null_char)
also have 1: "... = (fst g \<star>\<^sub>B snd g) \<cdot>\<^sub>B (fst f \<star>\<^sub>B snd f)"
proof -
have "src\<^sub>B (fst g) = trg\<^sub>B (snd g)"
by (metis (no_types, lifting) VV.arrE VV.seq_char fg src_def trg_def)
thus ?thesis
using fg VV.seq_char VV.arr_char arr_char seq_char inclusion B.interchange
by (meson VxV.seqE)
qed
also have "... = (fst g \<star> snd g) \<cdot> (fst f \<star> snd f)"
using fg comp_char hcomp_def VV.seq_char VV.arr_char arr_char seq_char inclusion
B.hseq_char' hcomp_closed src_def trg_def
by (metis (no_types, lifting) 1)
finally show ?thesis by auto
qed
qed
interpretation horizontal_composition \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> src trg
using arr_char src_def trg_def src_closed trg_closed
apply (unfold_locales)
using hcomp_def inclusion not_arr_null by auto
abbreviation \<a>
where "\<a> \<mu> \<nu> \<tau> \<equiv> if VVV.arr (\<mu>, \<nu>, \<tau>) then \<a>\<^sub>B \<mu> \<nu> \<tau> else null"
abbreviation (input) \<alpha>\<^sub>S\<^sub>B
where "\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau> \<equiv> \<a> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))"
lemma assoc_closed':
assumes "VVV.arr \<mu>\<nu>\<tau>"
shows "Arr (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>)"
proof -
have 1: "B.VVV.arr \<mu>\<nu>\<tau>"
using assms VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char arr_char
src_def trg_def inclusion
by auto
show "Arr (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>)"
proof -
have "Arr (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>) =
Arr ((fst \<mu>\<nu>\<tau> \<star>\<^sub>B fst (snd \<mu>\<nu>\<tau>) \<star>\<^sub>B snd (snd \<mu>\<nu>\<tau>)) \<cdot>\<^sub>B \<alpha>\<^sub>S\<^sub>B (B.VVV.dom \<mu>\<nu>\<tau>))"
using assms 1 B.\<alpha>_def B.assoc_is_natural_1 [of "fst \<mu>\<nu>\<tau>" "fst (snd \<mu>\<nu>\<tau>)" "snd (snd \<mu>\<nu>\<tau>)"]
VV.arr_char VVV.arr_char B.VVV.arr_char B.VV.arr_char B.VVV.dom_char B.VV.dom_char
apply simp
by (metis (no_types, lifting) arr_char dom_char dom_closed src.preserves_dom
trg.preserves_dom)
also have "..."
proof (intro comp_closed)
show "Arr (fst \<mu>\<nu>\<tau> \<star>\<^sub>B fst (snd \<mu>\<nu>\<tau>) \<star>\<^sub>B snd (snd \<mu>\<nu>\<tau>))"
using assms 1 B.VVV.arr_char B.VV.arr_char hcomp_closed
by (metis (no_types, lifting) B.H.preserves_reflects_arr B.trg_hcomp
VV.arr_char VVV.arrE arr_char)
show "B.cod (\<a> (fst (B.VVV.dom \<mu>\<nu>\<tau>)) (fst (snd (B.VVV.dom \<mu>\<nu>\<tau>)))
(snd (snd (B.VVV.dom \<mu>\<nu>\<tau>)))) =
B.dom (fst \<mu>\<nu>\<tau> \<star>\<^sub>B fst (snd \<mu>\<nu>\<tau>) \<star>\<^sub>B snd (snd \<mu>\<nu>\<tau>))"
using assms 1 VVV.arr_char VV.arr_char B.VxVxV.dom_char
B.VVV.dom_simp B.VVV.cod_simp
apply simp
by (metis (no_types, lifting) B.VV.arr_char B.VVV.arrE B.\<alpha>.preserves_reflects_arr
B.assoc_is_natural_1 B.seqE arr_dom dom_char src_dom trg_dom)
show "Arr (\<a> (fst (B.VVV.dom \<mu>\<nu>\<tau>)) (fst (snd (B.VVV.dom \<mu>\<nu>\<tau>)))
(snd (snd (B.VVV.dom \<mu>\<nu>\<tau>))))"
proof -
have "VVV.arr (B.VVV.dom \<mu>\<nu>\<tau>)"
using 1 B.VVV.dom_char B.VVV.arr_char B.VV.arr_char VVV.arr_char VV.arr_char
apply simp
by (metis (no_types, lifting) VVV.arrE arr_dom assms dom_simp src_dom trg_dom)
moreover have "Arr (\<a>\<^sub>B (B.dom (fst \<mu>\<nu>\<tau>)) (B.dom (fst (snd \<mu>\<nu>\<tau>)))
(B.dom (snd (snd \<mu>\<nu>\<tau>))))"
proof -
have "B.VVV.ide (B.VVV.dom \<mu>\<nu>\<tau>)"
using 1 B.VVV.ide_dom by blast
thus ?thesis
using assms B.\<alpha>_def B.VVV.arr_char B.VV.arr_char B.VVV.ide_char B.VV.ide_char
dom_closed assoc_closed
by (metis (no_types, lifting) "1" B.ide_dom B.src_dom B.trg_dom VV.arr_char
VVV.arrE arr_char)
qed
ultimately show ?thesis
using 1 B.VVV.ide_dom assoc_closed B.VVV.dom_char
apply simp
by (metis (no_types, lifting) B.VV.arr_char B.VVV.arrE B.VVV.inclusion
B.VxV.dom_char B.VxVxV.arrE B.VxVxV.dom_char prod.sel(1) prod.sel(2))
qed
qed
finally show ?thesis by blast
qed
qed
lemma lunit_closed':
assumes "Arr f"
shows "Arr (B.\<ll> f)"
proof -
have 1: "arr f \<and> arr (B.\<ll> (B.dom f))"
using assms arr_char lunit_closed dom_closed B.ide_dom inclusion by simp
moreover have "B.dom f = B.cod (B.\<ll> (B.dom f))"
using 1 arr_char B.\<ll>.preserves_cod inclusion by simp
moreover have "B.\<ll> f = f \<cdot> B.\<ll> (B.dom f)"
using assms 1 B.\<ll>.is_natural_1 inclusion comp_char arr_char by simp
ultimately show ?thesis
using arr_char comp_closed cod_char seqI dom_simp by auto
qed
lemma runit_closed':
assumes "Arr f"
shows "Arr (B.\<rr> f)"
proof -
have 1: "arr f \<and> arr (B.\<rr> (B.dom f))"
using assms arr_char runit_closed dom_closed B.ide_dom inclusion
by simp
moreover have "B.dom f = B.cod (B.\<rr> (B.dom f))"
using 1 arr_char B.\<ll>.preserves_cod inclusion by simp
moreover have "B.\<rr> f = f \<cdot> B.\<rr> (B.dom f)"
using assms 1 B.\<rr>.is_natural_1 inclusion comp_char arr_char by simp
ultimately show ?thesis
using arr_char comp_closed cod_char seqI dom_simp by auto
qed
interpretation natural_isomorphism VVV.comp \<open>(\<cdot>)\<close> HoHV HoVH \<alpha>\<^sub>S\<^sub>B
proof
fix \<mu>\<nu>\<tau>
show "\<not> VVV.arr \<mu>\<nu>\<tau> \<Longrightarrow> \<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau> = null"
by simp
assume \<mu>\<nu>\<tau>: "VVV.arr \<mu>\<nu>\<tau>"
have 1: "B.VVV.arr \<mu>\<nu>\<tau>"
using \<mu>\<nu>\<tau> VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char arr_char
src_def trg_def inclusion
by auto
show "dom (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>) = HoHV (VVV.dom \<mu>\<nu>\<tau>)"
proof -
have "dom (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>) = B.HoHV (B.VVV.dom \<mu>\<nu>\<tau>)"
using \<mu>\<nu>\<tau> 1 arr_char VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char
B.\<alpha>_def assoc_closed' dom_simp
by simp
also have "... = HoHV (VVV.dom \<mu>\<nu>\<tau>)"
proof -
have "HoHV (VVV.dom \<mu>\<nu>\<tau>) = HoHV (VxVxV.dom \<mu>\<nu>\<tau>)"
using \<mu>\<nu>\<tau> VVV.dom_char VV.arr_char src_def trg_def VVV.arr_char by auto
also have "... = B.HoHV (B.VVV.dom \<mu>\<nu>\<tau>)"
using \<mu>\<nu>\<tau> VVV.dom_char VVV.arr_char VV.arr_char src_def trg_def
HoHV_def B.HoHV_def arr_char B.VVV.arr_char B.VVV.dom_char B.VV.arr_char
dom_closed hcomp_closed hcomp_def inclusion dom_simp
by auto
finally show ?thesis by simp
qed
finally show ?thesis by simp
qed
show "cod (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>) = HoVH (VVV.cod \<mu>\<nu>\<tau>)"
proof -
have "cod (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>) = B.HoVH (B.VVV.cod \<mu>\<nu>\<tau>)"
using \<mu>\<nu>\<tau> 1 arr_char VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char
B.\<alpha>_def assoc_closed' cod_simp
by simp
also have "... = HoVH (VVV.cod \<mu>\<nu>\<tau>)"
proof -
have "HoVH (VVV.cod \<mu>\<nu>\<tau>) = HoVH (VxVxV.cod \<mu>\<nu>\<tau>)"
using \<mu>\<nu>\<tau> VVV.cod_char VV.arr_char src_def trg_def VVV.arr_char by auto
also have "... = B.HoVH (B.VVV.cod \<mu>\<nu>\<tau>)"
using \<mu>\<nu>\<tau> VVV.cod_char VV.arr_char src_def trg_def VVV.arr_char
HoVH_def B.HoVH_def arr_char B.VVV.arr_char B.VVV.cod_char B.VV.arr_char
cod_closed hcomp_closed hcomp_def inclusion cod_simp
by simp
finally show ?thesis by simp
qed
finally show ?thesis by simp
qed
have 3: "Arr (fst \<mu>\<nu>\<tau>) \<and> Arr (fst (snd \<mu>\<nu>\<tau>)) \<and> Arr (snd (snd \<mu>\<nu>\<tau>)) \<and>
src\<^sub>B (fst \<mu>\<nu>\<tau>) = trg\<^sub>B (fst (snd \<mu>\<nu>\<tau>)) \<and>
src\<^sub>B (fst (snd \<mu>\<nu>\<tau>)) = trg\<^sub>B (snd (snd \<mu>\<nu>\<tau>))"
using \<mu>\<nu>\<tau> VVV.arr_char VV.arr_char src_def trg_def arr_char by auto
show "HoVH \<mu>\<nu>\<tau> \<cdot> \<alpha>\<^sub>S\<^sub>B (VVV.dom \<mu>\<nu>\<tau>) = \<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>"
proof -
have "\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau> = (fst \<mu>\<nu>\<tau> \<star>\<^sub>B fst (snd \<mu>\<nu>\<tau>) \<star>\<^sub>B snd (snd \<mu>\<nu>\<tau>)) \<cdot>\<^sub>B
\<a>\<^sub>B (B.dom (fst \<mu>\<nu>\<tau>)) (B.dom (fst (snd \<mu>\<nu>\<tau>))) (B.dom (snd (snd \<mu>\<nu>\<tau>)))"
using 3 inclusion B.assoc_is_natural_1 [of "fst \<mu>\<nu>\<tau>" "fst (snd \<mu>\<nu>\<tau>)" "snd (snd \<mu>\<nu>\<tau>)"]
by (simp add: \<mu>\<nu>\<tau>)
also have "... = (fst \<mu>\<nu>\<tau> \<star> fst (snd \<mu>\<nu>\<tau>) \<star> snd (snd \<mu>\<nu>\<tau>)) \<cdot>
\<a>\<^sub>B (dom (fst \<mu>\<nu>\<tau>)) (dom (fst (snd \<mu>\<nu>\<tau>))) (dom (snd (snd \<mu>\<nu>\<tau>)))"
using 1 3 \<mu>\<nu>\<tau> hcomp_closed assoc_closed dom_closed hcomp_def comp_def inclusion
comp_char dom_char VVV.arr_char VV.arr_char
apply simp
using B.hcomp_simps(2-3) arr_char by presburger
also have "... = HoVH \<mu>\<nu>\<tau> \<cdot> \<alpha>\<^sub>S\<^sub>B (VVV.dom \<mu>\<nu>\<tau>)"
using \<mu>\<nu>\<tau> B.\<alpha>_def HoVH_def VVV.dom_char VV.dom_char VxVxV.dom_char
apply simp
by (metis (no_types, lifting) VV.arr_char VVV.arrE VVV.arr_dom VxV.dom_char
dom_simp)
finally show ?thesis by argo
qed
show "\<alpha>\<^sub>S\<^sub>B (VVV.cod \<mu>\<nu>\<tau>) \<cdot> HoHV \<mu>\<nu>\<tau> = \<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>"
proof -
have "\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau> =
\<a>\<^sub>B (B.cod (fst \<mu>\<nu>\<tau>)) (B.cod (fst (snd \<mu>\<nu>\<tau>))) (B.cod (snd (snd \<mu>\<nu>\<tau>))) \<cdot>\<^sub>B
(fst \<mu>\<nu>\<tau> \<star>\<^sub>B fst (snd \<mu>\<nu>\<tau>)) \<star>\<^sub>B snd (snd \<mu>\<nu>\<tau>)"
using 3 inclusion B.assoc_is_natural_2 [of "fst \<mu>\<nu>\<tau>" "fst (snd \<mu>\<nu>\<tau>)" "snd (snd \<mu>\<nu>\<tau>)"]
by (simp add: \<mu>\<nu>\<tau>)
also have "... = \<a>\<^sub>B (cod (fst \<mu>\<nu>\<tau>)) (cod (fst (snd \<mu>\<nu>\<tau>))) (cod (snd (snd \<mu>\<nu>\<tau>))) \<cdot>
((fst \<mu>\<nu>\<tau> \<star> fst (snd \<mu>\<nu>\<tau>)) \<star> snd (snd \<mu>\<nu>\<tau>))"
using 1 3 \<mu>\<nu>\<tau> hcomp_closed assoc_closed cod_closed hcomp_def comp_def inclusion
comp_char cod_char VVV.arr_char VV.arr_char
by auto
also have "... = \<alpha>\<^sub>S\<^sub>B (VVV.cod \<mu>\<nu>\<tau>) \<cdot> HoHV \<mu>\<nu>\<tau>"
using \<mu>\<nu>\<tau> B.\<alpha>_def HoHV_def VVV.cod_char VV.cod_char VxVxV.cod_char
VVV.arr_char VV.arr_char arr_cod src_cod trg_cod
by simp
finally show ?thesis by argo
qed
next
fix fgh
assume fgh: "VVV.ide fgh"
show "iso (\<alpha>\<^sub>S\<^sub>B fgh)"
proof -
have 1: "B.arr (fst (snd fgh)) \<and> B.arr (snd (snd fgh)) \<and>
src\<^sub>B (fst (snd fgh)) = trg\<^sub>B (snd (snd fgh)) \<and>
src\<^sub>B (fst fgh) = trg\<^sub>B (fst (snd fgh))"
using fgh VVV.ide_char VVV.arr_char VV.arr_char src_def trg_def
arr_char inclusion
by auto
have 2: "B.ide (fst fgh) \<and> B.ide (fst (snd fgh)) \<and> B.ide (snd (snd fgh))"
using fgh VVV.ide_char ide_char by blast
have "\<alpha>\<^sub>S\<^sub>B fgh = \<a>\<^sub>B (fst fgh) (fst (snd fgh)) (snd (snd fgh))"
using fgh B.\<alpha>_def by simp
moreover have "B.VVV.ide fgh"
using fgh 1 2 VVV.ide_char B.VVV.ide_char VVV.arr_char B.VVV.arr_char
src_def trg_def inclusion arr_char B.VV.arr_char
by simp
moreover have "Arr (\<a>\<^sub>B (fst fgh) (fst (snd fgh)) (snd (snd fgh)))"
using fgh 1 VVV.ide_char VVV.arr_char VV.arr_char src_def trg_def
arr_char assoc_closed' B.\<alpha>_def
by simp
moreover have "Arr (B.inv (\<a>\<^sub>B (fst fgh) (fst (snd fgh)) (snd (snd fgh))))"
using fgh 1 VVV.ide_char VVV.arr_char VV.arr_char src_def trg_def
arr_char assoc'_closed
by (simp add: VVV.arr_char "2" B.VVV.ide_char calculation(2))
ultimately show ?thesis
using fgh iso_char B.\<alpha>.components_are_iso by auto
qed
qed
interpretation L: endofunctor \<open>(\<cdot>)\<close> L
using endofunctor_L by auto
interpretation R: endofunctor \<open>(\<cdot>)\<close> R
using endofunctor_R by auto
interpretation L: faithful_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> L
proof
fix f f'
assume par: "par f f'"
assume eq: "L f = L f'"
have "B.par f f'"
using par inclusion arr_char dom_simp cod_simp by fastforce
moreover have "B.L f = B.L f'"
proof -
have "\<forall>a. Arr a \<longrightarrow> B.arr a"
by (simp add: inclusion)
moreover have 1: "\<forall>a. arr a \<longrightarrow> (if arr a then hseq (trg a) a else arr null)"
using L.preserves_arr by presburger
moreover have "Arr f \<and> Arr (trg f) \<and> trg\<^sub>B f = src\<^sub>B (trg f)"
by (simp add: \<open>B.par f f'\<close> arrE par trg_closed trg_def)
ultimately show ?thesis
by (metis \<open>B.par f f'\<close> eq hcomp_def hseq_char' par trg_def)
qed
ultimately show "f = f'"
using B.L.is_faithful by blast
qed
interpretation L: full_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> L
proof
fix f f' \<nu>
assume f: "ide f" and f': "ide f'" and \<nu>: "\<guillemotleft>\<nu> : L f \<Rightarrow> L f'\<guillemotright>"
have 1: "L f = trg\<^sub>B f \<star>\<^sub>B f \<and> L f' = trg\<^sub>B f' \<star>\<^sub>B f'"
using f f' hcomp_def trg_def arr_char ide_char trg_closed by simp
have 2: "\<guillemotleft>\<nu> : trg\<^sub>B f \<star>\<^sub>B f \<Rightarrow>\<^sub>B trg\<^sub>B f' \<star>\<^sub>B f'\<guillemotright>"
using 1 f f' \<nu> hcomp_def trg_def src_def inclusion
dom_char cod_char hseq_char' arr_char ide_char trg_closed null_char
by (simp add: arr_char in_hom_char)
show "\<exists>\<mu>. \<guillemotleft>\<mu> : f \<Rightarrow> f'\<guillemotright> \<and> L \<mu> = \<nu>"
proof -
let ?\<mu> = "B.\<ll> f' \<cdot>\<^sub>B \<nu> \<cdot>\<^sub>B B.inv (B.\<ll> f)"
have \<mu>: "\<guillemotleft>?\<mu> : f \<Rightarrow> f'\<guillemotright> \<and> \<guillemotleft>?\<mu> : f \<Rightarrow>\<^sub>B f'\<guillemotright>"
proof -
have "\<guillemotleft>?\<mu> : f \<Rightarrow>\<^sub>B f'\<guillemotright>"
using f f' \<nu> 2 B.\<ll>_ide_simp lunit'_closed lunit_closed' ide_char by auto
thus ?thesis
using f f' \<nu> in_hom_char arr_char comp_closed ide_char
lunit'_closed lunit_closed
by (metis (no_types, lifting) B.arrI B.seqE in_homE)
qed
have \<mu>_eq: "?\<mu> = B.\<ll> f' \<cdot> \<nu> \<cdot> B.inv (B.\<ll> f)"
proof -
have "?\<mu> = B.\<ll> f' \<cdot> \<nu> \<cdot>\<^sub>B B.inv (B.\<ll> f)"
using f f' \<nu> \<mu> arr_char inclusion comp_char comp_closed ide_char
lunit'_closed lunit_closed
by (metis (no_types, lifting) B.seqE in_homE)
also have "... = B.\<ll> f' \<cdot> \<nu> \<cdot> B.inv (B.\<ll> f)"
using f f' \<nu> \<mu> arr_char inclusion comp_char comp_closed ide_char
lunit'_closed lunit_closed
by (metis (no_types, lifting) B.seqE in_homE)
finally show ?thesis by simp
qed
have "L ?\<mu> = \<nu>"
proof -
have "L ?\<mu> = trg\<^sub>B ?\<mu> \<star>\<^sub>B ?\<mu>"
using \<mu> \<mu>_eq hcomp_def trg_def inclusion arr_char trg_closed by auto
also have "... = (trg\<^sub>B ?\<mu> \<star>\<^sub>B ?\<mu>) \<cdot>\<^sub>B (B.inv (B.\<ll> f) \<cdot>\<^sub>B B.\<ll> f)"
proof -
have "B.inv (B.\<ll> f) \<cdot>\<^sub>B B.\<ll> f = trg\<^sub>B f \<star>\<^sub>B f"
using f ide_char B.comp_inv_arr B.inv_is_inverse by auto
moreover have "B.dom (trg\<^sub>B ?\<mu> \<star>\<^sub>B ?\<mu>) = trg\<^sub>B f \<star>\<^sub>B f"
proof -
have "B.dom (trg\<^sub>B ?\<mu>) = trg\<^sub>B f"
using f \<mu> B.vconn_implies_hpar(2) by force
moreover have "B.dom ?\<mu> = f"
using \<mu> by blast
ultimately show ?thesis
using B.hcomp_simps [of "trg\<^sub>B ?\<mu>" ?\<mu>]
by (metis (no_types, lifting) B.hseqI' B.ideD(1) B.src_trg
B.trg.preserves_reflects_arr B.trg_dom f ide_char)
qed
ultimately show ?thesis
using \<mu> \<mu>_eq B.comp_arr_dom in_hom_char by auto
qed
also have "... = ((trg\<^sub>B ?\<mu> \<star>\<^sub>B ?\<mu>) \<cdot>\<^sub>B B.inv (B.\<ll> f)) \<cdot>\<^sub>B B.\<ll> f"
using B.comp_assoc by simp
also have "... = (B.inv (B.\<ll> f') \<cdot>\<^sub>B ?\<mu>) \<cdot>\<^sub>B B.\<ll> f"
using \<mu> \<mu>_eq B.\<ll>'.naturality [of ?\<mu>] by auto
also have "... = (B.inv (B.\<ll> f') \<cdot>\<^sub>B B.\<ll> f') \<cdot>\<^sub>B \<nu> \<cdot>\<^sub>B (B.inv (B.\<ll> f) \<cdot>\<^sub>B B.\<ll> f)"
using \<mu> \<mu>_eq arr_char arrI comp_simp B.comp_assoc by metis
also have "... = \<nu>"
using f f' \<nu> 2 B.comp_arr_dom B.comp_cod_arr ide_char
B.\<ll>.components_are_iso B.\<ll>_ide_simp B.comp_inv_arr'
by auto
finally show ?thesis by blast
qed
thus ?thesis
using \<mu> by auto
qed
qed
interpretation R: faithful_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> R
proof
fix f f'
assume par: "par f f'"
assume eq: "R f = R f'"
have "B.par f f'"
using par inclusion arr_char dom_simp cod_simp by fastforce
moreover have "B.R f = B.R f'"
proof -
have "\<forall>a. Arr a \<longrightarrow> B.arr a"
by (simp add: inclusion)
moreover have 1: "\<forall>a. arr a \<longrightarrow> (if arr a then hseq a (src a) else arr null)"
using R.preserves_arr by presburger
moreover have "arr f \<and> arr (src f) \<and> trg\<^sub>B (src f) = src\<^sub>B f"
by (meson 1 hcomp_def hseq_char' par)
ultimately show ?thesis
by (metis \<open>B.par f f'\<close> eq hcomp_def hseq_char' src_def)
qed
ultimately show "f = f'"
using B.R.is_faithful by blast
qed
interpretation R: full_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> R
proof
fix f f' \<nu>
assume f: "ide f" and f': "ide f'" and \<nu>: "\<guillemotleft>\<nu> : R f \<Rightarrow> R f'\<guillemotright>"
have 1: "R f = f \<star>\<^sub>B src\<^sub>B f \<and> R f' = f' \<star>\<^sub>B src\<^sub>B f'"
using f f' hcomp_def src_def arr_char ide_char src_closed by simp
have 2: "\<guillemotleft>\<nu> : f \<star>\<^sub>B src\<^sub>B f \<Rightarrow>\<^sub>B f' \<star>\<^sub>B src\<^sub>B f'\<guillemotright>"
using 1 f f' \<nu> hcomp_def trg_def src_def inclusion
dom_char cod_char hseq_char' arr_char ide_char trg_closed null_char
by (simp add: arr_char in_hom_char)
show "\<exists>\<mu>. \<guillemotleft>\<mu> : f \<Rightarrow> f'\<guillemotright> \<and> R \<mu> = \<nu>"
proof -
let ?\<mu> = "B.\<rr> f' \<cdot>\<^sub>B \<nu> \<cdot>\<^sub>B B.inv (B.\<rr> f)"
have \<mu>: "\<guillemotleft>?\<mu> : f \<Rightarrow> f'\<guillemotright> \<and> \<guillemotleft>?\<mu> : f \<Rightarrow>\<^sub>B f'\<guillemotright>"
proof -
have "\<guillemotleft>?\<mu> : f \<Rightarrow>\<^sub>B f'\<guillemotright>"
using f f' \<nu> 2 B.\<rr>_ide_simp runit'_closed runit_closed' ide_char by auto
thus ?thesis
by (metis (no_types, lifting) B.arrI B.seqE \<nu> arrE arrI comp_closed f f'
ide_char in_hom_char runit'_closed runit_closed')
qed
have \<mu>_eq: "?\<mu> = B.\<rr> f' \<cdot> \<nu> \<cdot> B.inv (B.\<rr> f)"
proof -
have "?\<mu> = B.\<rr> f' \<cdot> \<nu> \<cdot>\<^sub>B B.inv (B.\<rr> f)"
using f f' \<nu> \<mu> arr_char inclusion comp_char comp_closed ide_char
runit'_closed runit_closed
by (metis (no_types, lifting) B.seqE in_homE)
also have "... = B.\<rr> f' \<cdot> \<nu> \<cdot> B.inv (B.\<rr> f)"
using f f' \<nu> \<mu> arr_char inclusion comp_char comp_closed ide_char
runit'_closed runit_closed
by (metis (no_types, lifting) B.arrI B.comp_in_homE in_hom_char)
finally show ?thesis by simp
qed
have "R ?\<mu> = \<nu>"
proof -
have "R ?\<mu> = ?\<mu> \<star>\<^sub>B src\<^sub>B ?\<mu>"
using \<mu> \<mu>_eq hcomp_def src_def inclusion arr_char src_closed by auto
also have "... = (?\<mu> \<star>\<^sub>B src\<^sub>B ?\<mu>) \<cdot>\<^sub>B (B.inv (B.\<rr> f) \<cdot>\<^sub>B B.\<rr> f)"
proof -
have "B.inv (B.\<rr> f) \<cdot>\<^sub>B B.\<rr> f = f \<star>\<^sub>B src\<^sub>B f"
using f ide_char B.comp_inv_arr B.inv_is_inverse by auto
moreover have "B.dom (?\<mu> \<star>\<^sub>B src\<^sub>B ?\<mu>) = f \<star>\<^sub>B src\<^sub>B f"
using f \<mu> \<mu>_eq ide_char arr_char B.src_dom [of ?\<mu>]
by (metis (no_types, lifting) B.R.as_nat_trans.preserves_comp_2 B.R.preserves_seq
B.dom_src B.hcomp_simps(3) B.in_homE)
ultimately show ?thesis
using \<mu> \<mu>_eq B.comp_arr_dom in_hom_char by auto
qed
also have "... = ((?\<mu> \<star>\<^sub>B src\<^sub>B ?\<mu>) \<cdot>\<^sub>B B.inv (B.\<rr> f)) \<cdot>\<^sub>B B.\<rr> f"
using B.comp_assoc by simp
also have "... = (B.inv (B.\<rr> f') \<cdot>\<^sub>B ?\<mu>) \<cdot>\<^sub>B B.\<rr> f"
using \<mu> \<mu>_eq B.\<rr>'.naturality [of ?\<mu>] by auto
also have "... = (B.inv (B.\<rr> f') \<cdot>\<^sub>B B.\<rr> f') \<cdot>\<^sub>B \<nu> \<cdot>\<^sub>B (B.inv (B.\<rr> f) \<cdot>\<^sub>B B.\<rr> f)"
using \<mu> \<mu>_eq arr_char arrI comp_simp B.comp_assoc by metis
also have "... = \<nu>"
using f f' \<nu> 2 B.comp_arr_dom B.comp_cod_arr ide_char
B.\<ll>.components_are_iso B.\<ll>_ide_simp B.comp_inv_arr'
by auto
finally show ?thesis by blast
qed
thus ?thesis
using \<mu> by blast
qed
qed
interpretation bicategory \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> \<a> \<i> src trg
proof
show "\<And>a. obj a \<Longrightarrow> \<guillemotleft>\<i>[a] : a \<star> a \<Rightarrow> a\<guillemotright>"
proof (intro in_homI)
fix a
assume a: "obj a"
have 1: "Arr (\<i> a)"
using a obj_def src_def trg_def in_hom_char B.unit_in_hom
arr_char hcomp_def B.obj_def ide_char objE hcomp_closed
by (metis (no_types, lifting) B.\<ll>_ide_simp B.unitor_coincidence(1) inclusion lunit_closed)
show 2: "arr \<i>[a]"
using 1 arr_char by simp
show "dom \<i>[a] = a \<star> a"
using a 2 dom_char
by (metis (full_types) B.objI_trg B.unit_simps(4) R.preserves_reflects_arr
hcomp_def hseq_char' inclusion objE obj_simps(1)
subcategory.arrE subcategory_axioms trg_def)
show "cod \<i>[a] = a"
using a 2 cod_char
by (metis B.obj_def' B.unit_simps(5) inclusion objE obj_simps(1)
subcategory.arrE subcategory_axioms trg_def)
qed
show "\<And>a. obj a \<Longrightarrow> iso (\<i> a)"
proof -
fix a
assume a: "obj a"
have 1: "trg\<^sub>B a = src\<^sub>B a"
using a obj_def src_def trg_def B.obj_def arr_char
by (metis horizontal_homs.objE horizontal_homs_axioms)
have 2: "Arr (\<i> a)"
using a 1 obj_def src_def trg_def in_hom_char B.unit_in_hom
arr_char hcomp_def B.obj_def ide_char objE hcomp_closed
by (metis (no_types, lifting) B.\<ll>_ide_simp B.unitor_coincidence(1) inclusion lunit_closed)
have "iso (B.\<ll> a)"
using a 2 obj_def B.iso_unit iso_char arr_char lunit_closed lunit'_closed B.iso_lunit
apply simp
by (metis (no_types, lifting) B.\<ll>.components_are_iso B.ide_src inclusion src_def)
thus "iso (\<i> a)"
using a 2 obj_def B.iso_unit iso_char arr_char B.unitor_coincidence
apply simp
by (metis (no_types, lifting) B.\<ll>_ide_simp B.ide_src B.obj_src inclusion src_def)
qed
show "\<And>f g h k. \<lbrakk> ide f; ide g; ide h; ide k;
src f = trg g; src g = trg h; src h = trg k \<rbrakk> \<Longrightarrow>
(f \<star> \<a> g h k) \<cdot> \<a> f (g \<star> h) k \<cdot> (\<a> f g h \<star> k) =
\<a> f g (h \<star> k) \<cdot> \<a> (f \<star> g) h k"
using B.pentagon VVV.arr_char VV.arr_char hcomp_def assoc_closed arr_char comp_char
hcomp_closed comp_closed ide_char inclusion src_def trg_def
by simp
qed
proposition is_bicategory:
shows "bicategory (\<cdot>) (\<star>) \<a> \<i> src trg"
..
lemma obj_char:
shows "obj a \<longleftrightarrow> arr a \<and> B.obj a"
proof
assume a: "obj a"
show "arr a \<and> B.obj a"
using a obj_def B.obj_def src_def arr_char inclusion by metis
next
assume a: "arr a \<and> B.obj a"
have "src a = a"
using a src_def by auto
thus "obj a"
using a obj_def by simp
qed
lemma hcomp_char:
shows "hcomp = (\<lambda>f g. if arr f \<and> arr g \<and> src f = trg g then f \<star>\<^sub>B g else null)"
using hcomp_def src_def trg_def by metis
lemma assoc_simp:
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h"
shows "\<a> f g h = \<a>\<^sub>B f g h"
using assms VVV.arr_char VV.arr_char by auto
lemma assoc'_simp:
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h"
shows "\<a>' f g h = B.\<a>' f g h"
proof -
have "\<a>' f g h = B.inv (\<a>\<^sub>B f g h)"
using assms inv_char by fastforce
also have "... = B.\<a>' f g h"
using assms ide_char src_def trg_def
B.VVV.ide_char B.VVV.arr_char B.VV.arr_char
by force
finally show ?thesis by blast
qed
lemma lunit_simp:
assumes "ide f"
shows "lunit f = B.lunit f"
proof -
have "B.lunit f = lunit f"
proof (intro lunit_eqI)
show "ide f" by fact
show 1: "\<guillemotleft>B.lunit f : trg f \<star> f \<Rightarrow> f\<guillemotright>"
proof
show 2: "arr (B.lunit f)"
using assms arr_char lunit_closed
by (simp add: arr_char B.\<ll>_ide_simp ide_char)
show "dom (B.lunit f) = trg f \<star> f"
using assms 2 dom_char hcomp_char ide_char src_trg trg.preserves_arr trg_def
by auto
show "cod (B.lunit f) = f"
using assms 2 in_hom_char
by (simp add: cod_simp ide_char)
qed
show "trg f \<star> B.lunit f = (\<i>[trg f] \<star> f) \<cdot> \<a>' (trg f) (trg f) f"
proof -
have "trg f \<star> B.lunit f = trg\<^sub>B f \<star>\<^sub>B B.lunit f"
using assms 1 arr_char hcomp_char
by (metis (no_types, lifting) ideD(1) src_trg trg.preserves_reflects_arr
trg_def vconn_implies_hpar(2,4))
also have "... = (\<i>[trg f] \<star>\<^sub>B f) \<cdot>\<^sub>B B.\<a>' (trg f) (trg f) f"
using assms ide_char B.lunit_char(2) trg_def by simp
also have "... = (\<i>[trg f] \<star>\<^sub>B f) \<cdot>\<^sub>B \<a>' (trg f) (trg f) f"
using assms assoc'_simp [of "trg f" "trg f" f] by simp
also have "... = (\<i>[trg f] \<star> f) \<cdot>\<^sub>B \<a>' (trg f) (trg f) f"
using assms hcomp_char by simp
also have "... = (\<i>[trg f] \<star> f) \<cdot> \<a>' (trg f) (trg f) f"
using assms seq_char [of "\<i>[trg f] \<star> f" "\<a>' (trg f) (trg f) f"]
comp_char [of "\<i>[trg f] \<star> f" "\<a>' (trg f) (trg f) f"]
by simp
finally show ?thesis by blast
qed
qed
thus ?thesis by simp
qed
lemma lunit'_simp:
assumes "ide f"
shows "lunit' f = B.lunit' f"
using assms inv_char [of "lunit f"] lunit_simp by fastforce
lemma runit_simp:
assumes "ide f"
shows "runit f = B.runit f"
proof -
have "B.runit f = runit f"
proof (intro runit_eqI)
show "ide f" by fact
show 1: "\<guillemotleft>B.runit f : f \<star> src f \<Rightarrow> f\<guillemotright>"
proof
show 2: "arr (B.runit f)"
using assms arr_char runit_closed
by (simp add: arr_char B.\<rr>_ide_simp ide_char)
show "dom (B.runit f) = f \<star> src f"
using assms 2 dom_char hcomp_char
by (metis (no_types, lifting) B.runit_simps(4) ide_char src.preserves_reflects_arr
src_def trg_src)
show "cod (B.runit f) = f"
using assms 2 in_hom_char
by (simp add: cod_simp ide_char)
qed
show "B.runit f \<star> src f = (f \<star> \<i>[src f]) \<cdot> \<a> f (src f) (src f)"
proof -
have "B.runit f \<star> src f = B.runit f \<star>\<^sub>B src\<^sub>B f"
using assms 1 arr_char hcomp_char
by (metis (no_types, lifting) ideD(1) src.preserves_reflects_arr src_def
trg_src vconn_implies_hpar(1,3))
also have "... = (f \<star>\<^sub>B \<i>[src f]) \<cdot>\<^sub>B \<a>\<^sub>B f (src f) (src f)"
using assms ide_char B.runit_char(2) src_def by simp
also have "... = (f \<star>\<^sub>B \<i>[src f]) \<cdot>\<^sub>B \<a> f (src f) (src f)"
using assms assoc_simp by simp
also have "... = (f \<star> \<i>[src f]) \<cdot>\<^sub>B \<a> f (src f) (src f)"
using assms 1 hcomp_char by simp
also have "... = (f \<star> \<i>[src f]) \<cdot> \<a> f (src f) (src f)"
proof -
have "B.seq (f \<star> \<i>[src f]) (\<a> f (src f) (src f))"
using assms seq_char [of "f \<star> \<i>[src f]" "\<a> f (src f) (src f)"] by simp
thus ?thesis
using assms comp_char [of "f \<star> \<i>[src f]" "\<a> f (src f) (src f)"] by simp
qed
finally show ?thesis by blast
qed
qed
thus ?thesis by simp
qed
lemma runit'_simp:
assumes "ide f"
shows "runit' f = B.runit' f"
using assms inv_char [of "runit f"] runit_simp by fastforce
lemma comp_eqI [intro]:
assumes "seq f g" and "f = f'" and "g = g'"
shows "f \<cdot> g = f' \<cdot>\<^sub>B g'"
using assms comp_char ext ext not_arr_null by auto
lemma comp_eqI' [intro]:
assumes "seq f g" and "f = f'" and "g = g'"
shows "f \<cdot>\<^sub>B g = f' \<cdot> g'"
using assms comp_char ext ext not_arr_null by auto
lemma hcomp_eqI [intro]:
assumes "hseq f g" and "f = f'" and "g = g'"
shows "f \<star> g = f' \<star>\<^sub>B g'"
using assms hcomp_char not_arr_null by auto
lemma hcomp_eqI' [intro]:
assumes "hseq f g" and "f = f'" and "g = g'"
shows "f \<star>\<^sub>B g = f' \<star> g'"
using assms hcomp_char not_arr_null by auto
lemma arr_compI:
assumes "seq f g"
shows "arr (f \<cdot>\<^sub>B g)"
using assms seq_char dom_char cod_char
by (metis (no_types, lifting) comp_simp)
lemma arr_hcompI:
assumes "hseq f g"
shows "arr (f \<star>\<^sub>B g)"
using assms hseq_char src_def trg_def hcomp_eqI' by auto
end
sublocale subbicategory \<subseteq> bicategory \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> \<a> \<i> src trg
using is_bicategory by auto
subsection "The Sub-bicategory of Endo-arrows of an Object"
text \<open>
We now consider the sub-bicategory consisting of all arrows having the same
object \<open>a\<close> both as their source and their target and we show that the resulting structure
is a monoidal category. We actually prove a slightly more general result,
in which the unit of the monoidal category is taken to be an arbitrary isomorphism
\<open>\<guillemotleft>\<omega> : w \<star>\<^sub>B w \<Rightarrow> w\<guillemotright>\<close> with \<open>w\<close> isomorphic to \<open>a\<close>, rather than the particular choice
\<open>\<guillemotleft>\<i>[a] : a \<star>\<^sub>B a \<Rightarrow> a\<guillemotright>\<close> made by the ambient bicategory.
\<close>
locale subbicategory_at_object =
B: bicategory V H \<a>\<^sub>B \<i> src\<^sub>B trg\<^sub>B +
subbicategory V H \<a>\<^sub>B \<i> src\<^sub>B trg\<^sub>B \<open>\<lambda>\<mu>. B.arr \<mu> \<and> src\<^sub>B \<mu> = a \<and> trg\<^sub>B \<mu> = a\<close>
for V :: "'a comp" (infixr "\<cdot>\<^sub>B" 55)
and H :: "'a comp" (infixr "\<star>\<^sub>B" 55)
and \<a>\<^sub>B :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>\<^sub>B[_, _, _]")
and \<i> :: "'a \<Rightarrow> 'a" ("\<i>[_]")
and src\<^sub>B :: "'a \<Rightarrow> 'a"
and trg\<^sub>B :: "'a \<Rightarrow> 'a"
and a :: "'a"
and w :: "'a"
and \<omega> :: "'a" +
assumes obj_a: "B.obj a"
and isomorphic_a_w: "B.isomorphic a w"
and \<omega>_in_vhom: "\<guillemotleft>\<omega> : w \<star>\<^sub>B w \<Rightarrow> w\<guillemotright>"
and \<omega>_is_iso: "B.iso \<omega>"
begin
notation hcomp (infixr "\<star>" 53)
lemma arr_simps:
assumes "arr \<mu>"
shows "src \<mu> = a" and "trg \<mu> = a"
apply (metis (no_types, lifting) arrE assms src_def)
by (metis (no_types, lifting) arrE assms trg_def)
lemma \<omega>_simps [simp]:
shows "arr \<omega>"
and "src \<omega> = a" and "trg \<omega> = a"
and "dom \<omega> = w \<star>\<^sub>B w" and "cod \<omega> = w"
using isomorphic_a_w \<omega>_in_vhom in_hom_char arr_simps by auto
lemma ide_w:
shows "B.ide w"
using isomorphic_a_w B.isomorphic_def by auto
lemma w_simps [simp]:
shows "ide w" and "B.ide w"
and "src w = a" and "trg w = a" and "src\<^sub>B w = a" and "trg\<^sub>B w = a"
and "dom w = w" and "cod w = w"
proof -
show w: "ide w"
using \<omega>_in_vhom ide_cod by blast
show "B.ide w"
using w ide_char by simp
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : a \<Rightarrow>\<^sub>B w\<guillemotright> \<and> B.iso \<phi>"
using isomorphic_a_w B.isomorphic_def by auto
show "src\<^sub>B w = a"
using obj_a w \<phi> B.src_cod by force
show "trg\<^sub>B w = a"
using obj_a w \<phi> B.src_cod by force
show "src w = a"
using \<open>src\<^sub>B w = a\<close> w ide_w src_def by simp
show "trg w = a"
using \<open>src\<^sub>B w = a\<close> w ide_w trg_def
by (simp add: \<open>trg\<^sub>B w = a\<close>)
show "dom w = w"
using w by simp
show "cod w = w"
using w by simp
qed
lemma VxV_arr_eq_VV_arr:
shows "VxV.arr f \<longleftrightarrow> VV.arr f"
using inclusion VxV.arr_char VV.arr_char arr_char src_def trg_def
by auto
lemma VxV_comp_eq_VV_comp:
shows "VxV.comp = VV.comp"
proof -
have "\<And>f g. VxV.comp f g = VV.comp f g"
proof -
fix f g
show "VxV.comp f g = VV.comp f g"
unfolding VV.comp_def
using VxV.comp_char arr_simps(1) arr_simps(2)
apply (cases "seq (fst f) (fst g)", cases "seq (snd f) (snd g)")
by (elim seqE) auto
qed
thus ?thesis by blast
qed
lemma VxVxV_arr_eq_VVV_arr:
shows "VxVxV.arr f \<longleftrightarrow> VVV.arr f"
using VVV.arr_char VV.arr_char src_def trg_def inclusion arr_char
by auto
lemma VxVxV_comp_eq_VVV_comp:
shows "VxVxV.comp = VVV.comp"
proof -
have "\<And>f g. VxVxV.comp f g = VVV.comp f g"
proof -
fix f g
show "VxVxV.comp f g = VVV.comp f g"
proof (cases "VxVxV.seq f g")
assume 1: "\<not> VxVxV.seq f g"
have "VxVxV.comp f g = VxVxV.null"
using 1 VxVxV.ext by blast
also have "... = (null, null, null)"
using VxVxV.null_char VxV.null_char by simp
also have "... = VVV.null"
using VVV.null_char VV.null_char by simp
also have "... = VVV.comp f g"
proof -
have "\<not> VVV.seq f g"
using 1 VVV.seq_char by blast
thus ?thesis
by (metis (no_types, lifting) VVV.ext)
qed
finally show ?thesis by simp
next
assume 1: "VxVxV.seq f g"
have 2: "B.arr (fst f) \<and> B.arr (fst (snd f)) \<and> B.arr (snd (snd f)) \<and>
src\<^sub>B (fst f) = a \<and> src\<^sub>B (fst (snd f)) = a \<and> src\<^sub>B (snd (snd f)) = a \<and>
trg\<^sub>B (fst f) = a \<and> trg\<^sub>B (fst (snd f)) = a \<and> trg\<^sub>B (snd (snd f)) = a"
using 1 VxVxV.seq_char VxV.seq_char arr_char by blast
have 3: "B.arr (fst g) \<and> B.arr (fst (snd g)) \<and> B.arr (snd (snd g)) \<and>
src\<^sub>B (fst g) = a \<and> src\<^sub>B (fst (snd g)) = a \<and> src\<^sub>B (snd (snd g)) = a \<and>
trg\<^sub>B (fst g) = a \<and> trg\<^sub>B (fst (snd g)) = a \<and> trg\<^sub>B (snd (snd g)) = a"
using 1 VxVxV.seq_char VxV.seq_char arr_char by blast
have 4: "B.seq (fst f) (fst g) \<and> B.seq (fst (snd f)) (fst (snd g)) \<and>
B.seq (snd (snd f)) (snd (snd g))"
using 1 VxVxV.seq_char VxV.seq_char seq_char by blast
have 5: "VxVxV.comp f g =
(fst f \<cdot> fst g, fst (snd f) \<cdot> fst (snd g), snd (snd f) \<cdot> snd (snd g))"
using 1 2 3 4 VxVxV.seqE VxVxV.comp_char VxV.comp_char seq_char arr_char
by (metis (no_types, lifting))
also have "... = VVV.comp f g"
using 1 VVV.comp_char VVV.arr_char VV.arr_char
apply simp
using 2 3 5 arrI arr_simps(1) arr_simps(2) by presburger
finally show ?thesis by blast
qed
qed
thus ?thesis by blast
qed
interpretation H: "functor" VxV.comp \<open>(\<cdot>)\<close> \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close>
using H.functor_axioms hcomp_def VxV_comp_eq_VV_comp by simp
interpretation H: binary_endofunctor \<open>(\<cdot>)\<close> \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close> ..
lemma HoHV_eq_ToTC:
shows "HoHV = H.ToTC"
using HoHV_def H.ToTC_def VVV.arr_char VV.arr_char src_def trg_def inclusion arr_char
by auto
lemma HoVH_eq_ToCT:
shows "HoVH = H.ToCT"
using HoVH_def H.ToCT_def VVV.arr_char VV.arr_char src_def trg_def inclusion arr_char
by auto
interpretation ToTC: "functor" VxVxV.comp \<open>(\<cdot>)\<close> H.ToTC
using HoHV_eq_ToTC VxVxV_comp_eq_VVV_comp HoHV.functor_axioms by simp
interpretation ToCT: "functor" VxVxV.comp \<open>(\<cdot>)\<close> H.ToCT
using HoVH_eq_ToCT VxVxV_comp_eq_VVV_comp HoVH.functor_axioms by simp
interpretation \<alpha>: natural_isomorphism VxVxV.comp \<open>(\<cdot>)\<close> H.ToTC H.ToCT \<alpha>
unfolding \<alpha>_def
using \<alpha>.natural_isomorphism_axioms HoHV_eq_ToTC HoVH_eq_ToCT \<alpha>_def
VxVxV_comp_eq_VVV_comp
by simp
interpretation L: endofunctor \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (w, f) \<star> snd (w, f)\<close>
proof
fix f
show "\<not> arr f \<Longrightarrow> fst (w, f) \<star> snd (w, f) = null"
using arr_char hcomp_def by auto
assume f: "arr f"
show "hseq (fst (w, f)) (snd (w, f))"
using f hseq_char arr_char src_def trg_def \<omega>_in_vhom cod_char by simp
show "dom (fst (w, f) \<star> snd (w, f)) = fst (w, dom f) \<star> snd (w, dom f)"
using f arr_char hcomp_def dom_simp by simp
show "cod (fst (w, f) \<star> snd (w, f)) = fst (w, cod f) \<star> snd (w, cod f)"
using f arr_char hcomp_def cod_simp by simp
next
fix f g
assume fg: "seq g f"
show "fst (w, g \<cdot> f) \<star> snd (w, g \<cdot> f) = (fst (w, g) \<star> snd (w, g)) \<cdot> (fst (w, f) \<star> snd (w, f))"
by (simp add: fg whisker_left)
qed
interpretation L': equivalence_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (w, f) \<star> snd (w, f)\<close>
proof -
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : w \<Rightarrow>\<^sub>B a\<guillemotright> \<and> B.iso \<phi>"
using isomorphic_a_w B.isomorphic_symmetric by force
have "\<guillemotleft>\<phi> : w \<Rightarrow> a\<guillemotright>"
using \<phi> in_hom_char
by (metis (no_types, lifting) B.in_homE B.src_cod B.src_src B.trg_cod B.trg_trg
\<omega>_in_vhom arr_char arr_cod cod_simp)
hence \<phi>: "\<guillemotleft>\<phi> : w \<Rightarrow>\<^sub>B a\<guillemotright> \<and> B.iso \<phi> \<and> \<guillemotleft>\<phi> : w \<Rightarrow> a\<guillemotright> \<and> iso \<phi>"
using \<phi> iso_char arr_char by auto
interpret \<l>: natural_isomorphism \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close>
\<open>\<lambda>f. fst (w, f) \<star> snd (w, f)\<close> map \<open>\<lambda>f. \<ll> f \<cdot> (\<phi> \<star> dom f)\<close>
proof
fix \<mu>
show "\<not> arr \<mu> \<Longrightarrow> \<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>) = null"
using \<phi> arr_char dom_char ext
apply simp
using comp_null(2) hcomp_def by fastforce
assume \<mu>: "arr \<mu>"
have 0: "in_hhom (dom \<mu>) a a"
using \<mu> arr_char src_dom trg_dom src_def trg_def dom_simp by simp
have 1: "in_hhom \<phi> a a"
using \<phi> arr_char src_dom trg_dom src_def trg_def by auto
have 2: "hseq \<phi> (B.dom \<mu>)"
using \<mu> 0 1 dom_simp by (intro hseqI) auto
have 3: "seq (\<ll> \<mu>) (\<phi> \<star> dom \<mu>)"
proof (intro seqI')
show "\<guillemotleft>\<phi> \<star> dom \<mu> : w \<star> dom \<mu> \<Rightarrow> a \<star> dom \<mu>\<guillemotright>"
by (metis (no_types, lifting) 0 \<mu> \<phi> hcomp_in_vhom ide_dom ide_in_hom(2)
in_hhom_def w_simps(3))
show "\<guillemotleft>\<ll> \<mu> : a \<star> dom \<mu> \<Rightarrow> cod \<mu>\<guillemotright>"
using \<mu> 2 \<ll>.preserves_hom [of \<mu> "dom \<mu>" "cod \<mu>"] arr_simps(2) arr_cod by fastforce
qed
show "dom (\<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)) = fst (w, dom \<mu>) \<star> snd (w, dom \<mu>)"
proof -
have "dom (\<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)) = dom \<phi> \<star> dom \<mu>"
using \<mu> 3 hcomp_simps(3) dom_comp dom_dom
apply (elim seqE) by auto
also have "... = fst (w, dom \<mu>) \<star> snd (w, dom \<mu>)"
using \<omega>_in_vhom \<phi>
by (metis (no_types, lifting) in_homE prod.sel(1) prod.sel(2))
finally show ?thesis by simp
qed
show "cod (\<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)) = map (cod \<mu>)"
proof -
have "seq (\<ll> \<mu>) (\<phi> \<star> dom \<mu>)"
using 3 by simp
hence "cod (\<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)) = cod (\<ll> \<mu>)"
using cod_comp by blast
also have "... = map (cod \<mu>)"
using \<mu> by blast
finally show ?thesis by blast
qed
show "map \<mu> \<cdot> \<ll> (dom \<mu>) \<cdot> (\<phi> \<star> dom (dom \<mu>)) = \<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)"
proof -
have "map \<mu> \<cdot> \<ll> (dom \<mu>) \<cdot> (\<phi> \<star> dom (dom \<mu>)) = (map \<mu> \<cdot> \<ll> (dom \<mu>)) \<cdot> (\<phi> \<star> dom \<mu>)"
using \<mu> comp_assoc by simp
also have "... = \<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)"
using \<mu> \<phi> \<ll>.is_natural_1 by auto
finally show ?thesis by blast
qed
show "(\<ll> (cod \<mu>) \<cdot> (\<phi> \<star> dom (cod \<mu>))) \<cdot> (fst (w, \<mu>) \<star> snd (w, \<mu>)) = \<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)"
proof -
have "(\<ll> (cod \<mu>) \<cdot> (\<phi> \<star> dom (cod \<mu>))) \<cdot> (fst (w, \<mu>) \<star> snd (w, \<mu>)) =
(\<ll> (cod \<mu>) \<cdot> (\<phi> \<star> B.cod \<mu>)) \<cdot> (w \<star> \<mu>)"
using \<mu> \<phi> dom_char arr_char \<omega>_in_vhom cod_simp by simp
also have "... = \<ll> (cod \<mu>) \<cdot> (\<phi> \<cdot> w \<star> B.cod \<mu> \<cdot> \<mu>)"
proof -
have "seq \<phi> w"
using \<phi> \<omega>_in_vhom w_simps(1) by blast
moreover have 2: "seq (B.cod \<mu>) \<mu>"
using \<mu> seq_char cod_simp by (simp add: comp_cod_arr)
moreover have "src \<phi> = trg (B.cod \<mu>)"
using \<mu> \<phi> 2
by (metis (no_types, lifting) arr_simps(2) seqE vconn_implies_hpar(1) w_simps(3))
ultimately show ?thesis
using interchange comp_assoc by simp
qed
also have "... = \<ll> (cod \<mu>) \<cdot> (\<phi> \<star> \<mu>)"
using \<mu> \<phi> \<omega>_in_vhom comp_arr_dom comp_cod_arr cod_simp
apply (elim conjE in_homE) by auto
also have "... = (\<ll> (cod \<mu>) \<cdot> (cod \<phi> \<star> \<mu>)) \<cdot> (\<phi> \<star> dom \<mu>)"
proof -
have 1: "seq (cod \<phi>) \<phi>"
using \<phi> arr_cod_iff_arr dom_cod iso_is_arr seqI by presburger
moreover have 2: "seq \<mu> (dom \<mu>)"
using \<mu> by (simp add: comp_arr_dom)
moreover have "src (cod \<phi>) = trg \<mu>"
using \<mu> \<phi> arr_cod arr_simps(1-2) iso_is_arr by auto
ultimately show ?thesis
using 1 2 interchange [of "cod \<phi>" \<phi> \<mu> "dom \<mu>"] comp_arr_dom comp_cod_arr
comp_assoc by fastforce
qed
also have "... = \<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)"
proof -
have "L \<mu> = cod \<phi> \<star> \<mu>"
using \<mu> \<phi> arr_simps(2) in_homE by auto
hence "\<ll> (cod \<mu>) \<cdot> (cod \<phi> \<star> \<mu>) = \<ll> \<mu>"
using \<mu> \<ll>.is_natural_2 [of \<mu>] by simp
thus ?thesis by simp
qed
finally show ?thesis by simp
qed
next
show "\<And>f. ide f \<Longrightarrow> iso (\<ll> f \<cdot> (\<phi> \<star> dom f))"
proof -
fix f
assume f: "ide f"
have "iso (\<ll> f)"
using f iso_lunit by simp
moreover have "iso (\<phi> \<star> dom f)"
using \<phi> f src_def trg_def ide_char arr_char
apply (intro iso_hcomp, simp_all)
by (metis (no_types, lifting) in_homE)
moreover have "seq (\<ll> f) (\<phi> \<star> dom f)"
proof (intro seqI')
show " \<guillemotleft>\<ll> f : a \<star> f \<Rightarrow> f\<guillemotright>"
using f lunit_in_hom(2) \<ll>_ide_simp ide_char arr_char trg_def by simp
show "\<guillemotleft>\<phi> \<star> dom f : w \<star> f \<Rightarrow> a \<star> f\<guillemotright>"
using \<phi> f ide_char arr_char hcomp_def src_def trg_def obj_a ide_in_hom
in_hom_char
by (intro hcomp_in_vhom, auto)
qed
ultimately show "iso (\<ll> f \<cdot> (\<phi> \<star> dom f))"
using isos_compose by simp
qed
qed
show "equivalence_functor (\<cdot>) (\<cdot>) (\<lambda>f. fst (w, f) \<star> snd (w, f))"
using \<l>.natural_isomorphism_axioms L.isomorphic_to_identity_is_equivalence by simp
qed
interpretation L: equivalence_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (cod \<omega>, f) \<star> snd (cod \<omega>, f)\<close>
proof -
have "(\<lambda>f. fst (cod \<omega>, f) \<star> snd (cod \<omega>, f)) = (\<lambda>f. fst (w, f) \<star> snd (w, f))"
using \<omega>_in_vhom by simp
thus "equivalence_functor (\<cdot>) (\<cdot>) (\<lambda>f. fst (cod \<omega>, f) \<star> snd (cod \<omega>, f))"
using L'.equivalence_functor_axioms by simp
qed
interpretation R: endofunctor \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (f, w) \<star> snd (f, w)\<close>
proof
fix f
show "\<not> arr f \<Longrightarrow> fst (f, w) \<star> snd (f, w) = null"
using arr_char hcomp_def by auto
assume f: "arr f"
show "hseq (fst (f, w)) (snd (f, w))"
using f hseq_char arr_char src_def trg_def \<omega>_in_vhom cod_char isomorphic_a_w
B.isomorphic_def in_hom_char
by simp
show "dom (fst (f, w) \<star> snd (f, w)) = fst (dom f, w) \<star> snd (dom f, w)"
using f arr_char dom_char cod_char hcomp_def \<omega>_in_vhom by simp
show "cod (fst (f, w) \<star> snd (f, w)) = fst (cod f, w) \<star> snd (cod f, w)"
using f arr_char dom_char cod_char hcomp_def \<omega>_in_vhom by simp
next
fix f g
assume fg: "seq g f"
have 1: "a \<cdot>\<^sub>B a = a"
using obj_a by auto
show "fst (g \<cdot> f, w) \<star> snd (g \<cdot> f, w) = (fst (g, w) \<star> snd (g, w)) \<cdot> (fst (f, w) \<star> snd (f, w))"
by (simp add: fg whisker_right)
qed
interpretation R': equivalence_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (f, w) \<star> snd (f, w)\<close>
proof -
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : w \<Rightarrow>\<^sub>B a\<guillemotright> \<and> B.iso \<phi>"
using isomorphic_a_w B.isomorphic_symmetric by force
have "\<guillemotleft>\<phi> : w \<Rightarrow> a\<guillemotright>"
using \<phi> in_hom_char
by (metis (no_types, lifting) B.in_homE B.src_cod B.src_src B.trg_cod B.trg_trg
\<omega>_in_vhom arr_char arr_cod cod_simp)
hence \<phi>: "\<guillemotleft>\<phi> : w \<Rightarrow>\<^sub>B a\<guillemotright> \<and> B.iso \<phi> \<and> \<guillemotleft>\<phi> : w \<Rightarrow> a\<guillemotright> \<and> iso \<phi>"
using \<phi> iso_char arr_char by auto
interpret \<r>: natural_isomorphism comp comp
\<open>\<lambda>f. fst (f, w) \<star> snd (f, w)\<close> map \<open>\<lambda>f. \<rr> f \<cdot> (dom f \<star> \<phi>)\<close>
proof
fix \<mu>
show "\<not> arr \<mu> \<Longrightarrow> \<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>) = null"
using \<phi> arr_char dom_char ext
apply simp
using comp_null(2) hcomp_def by fastforce
assume \<mu>: "arr \<mu>"
have 0: "in_hhom (dom \<mu>) a a"
using \<mu> arr_char src_dom trg_dom src_def trg_def dom_simp by simp
have 1: "in_hhom \<phi> a a"
using \<phi> arr_char src_dom trg_dom src_def trg_def by auto
have 2: "hseq (B.dom \<mu>) \<phi>"
using \<mu> 0 1 dom_simp hseqI by auto
have 3: "seq (\<rr> \<mu>) (dom \<mu> \<star> \<phi>)"
proof (intro seqI')
show "\<guillemotleft>dom \<mu> \<star> \<phi> : dom \<mu> \<star> w \<Rightarrow> dom \<mu> \<star> a\<guillemotright>"
by (metis (no_types, lifting) "0" "1" \<mu> \<phi> hcomp_in_vhom hseqI hseq_char
ide_dom ide_in_hom(2) vconn_implies_hpar(2))
show "\<guillemotleft>\<rr> \<mu> : dom \<mu> \<star> a \<Rightarrow> cod \<mu>\<guillemotright>"
using \<mu> 2 \<rr>.preserves_hom [of \<mu> "dom \<mu>" "cod \<mu>"] arr_simps(2) arr_cod
dom_simp cod_simp
by fastforce
qed
show "dom (\<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)) = fst (dom \<mu>, w) \<star> snd (dom \<mu>, w)"
proof -
have "dom (\<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)) = dom \<mu> \<star> dom \<phi>"
using \<mu> 3 hcomp_simps(3) dom_comp dom_dom
apply (elim seqE) by auto
also have "... = fst (dom \<mu>, w) \<star> snd (dom \<mu>, w)"
using \<omega>_in_vhom \<phi>
by (metis (no_types, lifting) in_homE prod.sel(1) prod.sel(2))
finally show ?thesis by simp
qed
show "cod (\<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)) = map (cod \<mu>)"
proof -
have "seq (\<rr> \<mu>) (dom \<mu> \<star> \<phi>)"
using 3 by simp
hence "cod (\<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)) = cod (\<rr> \<mu>)"
using cod_comp by blast
also have "... = map (cod \<mu>)"
using \<mu> by blast
finally show ?thesis by blast
qed
show "map \<mu> \<cdot> \<rr> (dom \<mu>) \<cdot> (dom (dom \<mu>) \<star> \<phi>) = \<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)"
proof -
have "map \<mu> \<cdot> \<rr> (dom \<mu>) \<cdot> (dom (dom \<mu>) \<star> \<phi>) =
(map \<mu> \<cdot> \<rr> (dom \<mu>)) \<cdot> (dom (dom \<mu>) \<star> \<phi>)"
using comp_assoc by simp
also have "... = (map \<mu> \<cdot> \<rr> (dom \<mu>)) \<cdot> (dom \<mu> \<star> \<phi>)"
using \<mu> dom_dom by simp
also have "... = \<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)"
using \<mu> \<phi> \<rr>.is_natural_1 by auto
finally show ?thesis by blast
qed
show "(\<rr> (cod \<mu>) \<cdot> (dom (cod \<mu>) \<star> \<phi>)) \<cdot> (fst (\<mu>, w) \<star> snd (\<mu>, w)) = \<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)"
proof -
have "(\<rr> (cod \<mu>) \<cdot> (dom (cod \<mu>) \<star> \<phi>)) \<cdot> (fst (\<mu>, w) \<star> snd (\<mu>, w)) =
(\<rr> (cod \<mu>) \<cdot> (B.cod \<mu> \<star> \<phi>)) \<cdot> (\<mu> \<star> w)"
using \<mu> \<phi> dom_char arr_char \<omega>_in_vhom cod_simp by simp
also have "... = \<rr> (cod \<mu>) \<cdot> (B.cod \<mu> \<cdot> \<mu> \<star> \<phi> \<cdot> w)"
proof -
have 2: "seq \<phi> w"
using \<phi> \<omega>_in_vhom w_simps(1) by blast
moreover have "seq (B.cod \<mu>) \<mu>"
using \<mu> seq_char cod_simp by (simp add: comp_cod_arr)
moreover have "src (B.cod \<mu>) = trg \<phi>"
using \<mu> \<phi> 2
using arr_simps(1) calculation(2) seq_char vconn_implies_hpar(2) by force
ultimately show ?thesis
using interchange comp_assoc by simp
qed
also have "... = \<rr> (cod \<mu>) \<cdot> (\<mu> \<star> \<phi>)"
using \<mu> \<phi> \<omega>_in_vhom comp_arr_dom comp_cod_arr cod_simp
apply (elim conjE in_homE) by auto
also have "... = (\<rr> (cod \<mu>) \<cdot> (\<mu> \<star> cod \<phi>)) \<cdot> (dom \<mu> \<star> \<phi>)"
proof -
have "(\<mu> \<star> cod \<phi>) \<cdot> (dom \<mu> \<star> \<phi>) = \<mu> \<star> \<phi>"
proof -
have "seq \<mu> (dom \<mu>)"
using \<mu> by (simp add: comp_arr_dom)
moreover have "seq (cod \<phi>) \<phi>"
using \<phi> iso_is_arr arr_cod dom_cod by auto
moreover have "src \<mu> = trg (cod \<phi>)"
using \<mu> \<phi> 2
by (metis (no_types, lifting) arr_simps(1) arr_simps(2) calculation(2) seqE)
ultimately show ?thesis
using \<mu> \<phi> iso_is_arr comp_arr_dom comp_cod_arr
interchange [of \<mu> "dom \<mu>" "cod \<phi>" \<phi>]
by simp
qed
thus ?thesis
using comp_assoc by simp
qed
also have "... = \<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)"
proof -
have "\<mu> \<star> cod \<phi> = R \<mu>"
using \<mu> \<phi> arr_simps(1) in_homE by auto
hence "\<rr> (cod \<mu>) \<cdot> (\<mu> \<star> cod \<phi>) = \<rr> \<mu>"
using \<mu> \<phi> \<rr>.is_natural_2 by simp
thus ?thesis by simp
qed
finally show ?thesis by simp
qed
next
show "\<And>f. ide f \<Longrightarrow> iso (\<rr> f \<cdot> (dom f \<star> \<phi>))"
proof -
fix f
assume f: "ide f"
have 1: "iso (\<rr> f)"
using f iso_lunit by simp
moreover have 2: "iso (dom f \<star> \<phi>)"
using \<phi> f src_def trg_def ide_char arr_char
apply (intro iso_hcomp, simp_all)
by (metis (no_types, lifting) in_homE)
moreover have "seq (\<rr> f) (dom f \<star> \<phi>)"
proof (intro seqI')
show "\<guillemotleft>\<rr> f : f \<star> a \<Rightarrow> f\<guillemotright>"
using f runit_in_hom(2) \<rr>_ide_simp ide_char arr_char src_def by simp
show "\<guillemotleft>dom f \<star> \<phi> : f \<star> w \<Rightarrow> f \<star> a\<guillemotright>"
using \<phi> f ide_char arr_char hcomp_def src_def trg_def obj_a ide_in_hom
in_hom_char
by (intro hcomp_in_vhom, auto)
qed
ultimately show "iso (\<rr> f \<cdot> (dom f \<star> \<phi>))"
using isos_compose by simp
qed
qed
show "equivalence_functor (\<cdot>) (\<cdot>) (\<lambda>f. fst (f, w) \<star> snd (f, w))"
using \<r>.natural_isomorphism_axioms R.isomorphic_to_identity_is_equivalence by simp
qed
interpretation R: equivalence_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (f, cod \<omega>) \<star> snd (f, cod \<omega>)\<close>
proof -
have "(\<lambda>f. fst (f, cod \<omega>) \<star> snd (f, cod \<omega>)) = (\<lambda>f. fst (f, w) \<star> snd (f, w))"
using \<omega>_in_vhom by simp
thus "equivalence_functor (\<cdot>) (\<cdot>) (\<lambda>f. fst (f, cod \<omega>) \<star> snd (f, cod \<omega>))"
using R'.equivalence_functor_axioms by simp
qed
interpretation M: monoidal_category \<open>(\<cdot>)\<close> \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close> \<alpha> \<omega>
proof
show "\<guillemotleft>\<omega> : fst (cod \<omega>, cod \<omega>) \<star> snd (cod \<omega>, cod \<omega>) \<Rightarrow> cod \<omega>\<guillemotright>"
using \<omega>_in_vhom hcomp_def arr_char by auto
show "iso \<omega>"
using \<omega>_is_iso iso_char arr_char inv_char \<omega>_in_vhom by auto
show "\<And>f g h k. \<lbrakk> ide f; ide g; ide h; ide k \<rbrakk> \<Longrightarrow>
(fst (f, \<alpha> (g, h, k)) \<star> snd (f, \<alpha> (g, h, k))) \<cdot>
\<alpha> (f, hcomp (fst (g, h)) (snd (g, h)), k) \<cdot>
(fst (\<alpha> (f, g, h), k) \<star> snd (\<alpha> (f, g, h), k)) =
\<alpha> (f, g, fst (h, k) \<star> snd (h, k)) \<cdot> \<alpha> (fst (f, g) \<star> snd (f, g), h, k)"
proof -
fix f g h k
assume f: "ide f" and g: "ide g" and h: "ide h" and k: "ide k"
have 1: "VVV.arr (f, g, h) \<and> VVV.arr (g, h, k)"
using f g h k VVV.arr_char VV.arr_char src_def trg_def ide_char arr_char
by simp
have 2: "VVV.arr (f, g \<star> h, k)"
using f g h k 1 HoHV_def VVV.arr_char VV.arr_char src_def trg_def ide_char arr_char
VxV.arrI VxVxV.arrI VxVxV_comp_eq_VVV_comp hseqI'
by auto
have 3: "VVV.arr (f, g, h \<star> k)"
using f g h k 1 VVV.arr_char VV.arr_char src_def trg_def ide_char arr_char
VxV.arrI VxVxV.arrI VxVxV_comp_eq_VVV_comp H.preserves_reflects_arr hseqI'
by auto
have 4: "VVV.arr (f \<star> g, h, k)"
using f g h k VVV.arr_char VV.arr_char src_def trg_def ide_char arr_char hseq_char
VxV.arrI VxVxV.arrI VxVxV_comp_eq_VVV_comp
by force
have "(fst (f, \<alpha> (g, h, k)) \<star> snd (f, \<alpha> (g, h, k))) \<cdot>
\<alpha> (f, fst (g, h) \<star> snd (g, h), k) \<cdot>
(fst (\<alpha> (f, g, h), k) \<star> snd (\<alpha> (f, g, h), k)) =
(f \<star> \<a>\<^sub>B[g, h, k]) \<cdot> \<a>\<^sub>B[f, g \<star> h, k] \<cdot> (\<a>\<^sub>B[f, g, h] \<star> k)"
unfolding \<alpha>_def by (simp add: 1 2)
also have "... = (f \<star>\<^sub>B \<a>\<^sub>B g h k) \<cdot> \<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot> (\<a>\<^sub>B f g h \<star>\<^sub>B k)"
unfolding hcomp_def
using f g h k src_def trg_def arr_char
using assoc_closed ide_char by auto
also have "... = (f \<star>\<^sub>B \<a>\<^sub>B g h k) \<cdot>\<^sub>B \<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot>\<^sub>B (\<a>\<^sub>B f g h \<star>\<^sub>B k)"
proof -
have "arr (f \<star>\<^sub>B \<a>\<^sub>B g h k)"
using ide_char arr_char assoc_closed f g h hcomp_closed k by simp
moreover have "arr (\<a>\<^sub>B f (g \<star>\<^sub>B h) k)"
using ide_char arr_char assoc_closed f g h hcomp_closed k by simp
moreover have "arr (\<a>\<^sub>B f g h \<star>\<^sub>B k)"
using ide_char arr_char assoc_closed f g h hcomp_closed k by simp
moreover have "arr (\<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot>\<^sub>B (\<a>\<^sub>B f g h \<star>\<^sub>B k))"
unfolding arr_char
apply (intro conjI)
using ide_char arr_char assoc_closed f g h hcomp_closed k B.HoHV_def B.HoVH_def
apply (intro B.seqI)
apply simp_all
proof -
have 1: "B.arr (\<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot>\<^sub>B \<a>\<^sub>B f g h \<star>\<^sub>B k)"
using f g h k ide_char arr_char B.HoHV_def B.HoVH_def
apply (intro B.seqI)
by auto
show "src\<^sub>B (\<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot>\<^sub>B \<a>\<^sub>B f g h \<star>\<^sub>B k) = a"
using 1 f g h k arr_char B.src_vcomp B.vseq_implies_hpar(1) by fastforce
show "trg\<^sub>B (\<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot>\<^sub>B \<a>\<^sub>B f g h \<star>\<^sub>B k) = a"
using "1" arr_char calculation(2-3) by auto
qed
ultimately show ?thesis
using B.ext comp_char by (metis (no_types, lifting))
qed
also have "... = \<a>\<^sub>B f g (h \<star>\<^sub>B k) \<cdot>\<^sub>B \<a>\<^sub>B (f \<star>\<^sub>B g) h k"
using f g h k src_def trg_def arr_char ide_char B.pentagon
using "4" \<alpha>_def hcomp_def by auto
also have "... = \<a>\<^sub>B f g (h \<star>\<^sub>B k) \<cdot> \<a>\<^sub>B (f \<star>\<^sub>B g) h k"
proof -
have "arr (\<a>\<^sub>B (f \<star>\<^sub>B g) h k)"
using ide_char arr_char assoc_closed f g h hcomp_closed k by simp
moreover have "arr (\<a>\<^sub>B f g (h \<star>\<^sub>B k))"
using ide_char arr_char assoc_closed f g h hcomp_closed k by fastforce
ultimately show ?thesis
using B.ext comp_char by auto
qed
also have "... = \<a>\<^sub>B[f, g, fst (h, k) \<star> snd (h, k)] \<cdot> \<a>\<^sub>B[fst (f, g) \<star> snd (f, g), h, k]"
unfolding hcomp_def
using f g h k src_def trg_def arr_char ide_char by simp
also have "... = \<alpha> (f, g, fst (h, k) \<star> snd (h, k)) \<cdot> \<alpha> (fst (f, g) \<star> snd (f, g), h, k)"
unfolding \<alpha>_def using 1 2 3 4 by simp
finally show "(fst (f, \<alpha> (g, h, k)) \<star> snd (f, \<alpha> (g, h, k))) \<cdot>
\<alpha> (f, fst (g, h) \<star> snd (g, h), k) \<cdot>
(fst (\<alpha> (f, g, h), k) \<star> snd (\<alpha> (f, g, h), k)) =
\<alpha> (f, g, fst (h, k) \<star> snd (h, k)) \<cdot> \<alpha> (fst (f, g) \<star> snd (f, g), h, k)"
by simp
qed
qed
proposition is_monoidal_category:
shows "monoidal_category (\<cdot>) (\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>) \<alpha> \<omega>"
..
end
text \<open>
In a bicategory, the ``objects'' are essentially arbitrarily chosen representatives
of their isomorphism classes. Choosing any other representatives results in an
equivalent structure. Each object \<open>a\<close> is additionally equipped with an arbitrarily chosen
unit isomorphism \<open>\<guillemotleft>\<iota> : a \<star> a \<Rightarrow> a\<guillemotright>\<close>. For any \<open>(a, \<iota>)\<close> and \<open>(a', \<iota>')\<close>,
where \<open>a\<close> and \<open>a'\<close> are isomorphic to the same object, there exists a unique isomorphism
\<open>\<guillemotleft>\<psi>: a \<Rightarrow> a'\<guillemotright>\<close> that is compatible with the chosen unit isomorphisms \<open>\<iota>\<close> and \<open>\<iota>'\<close>.
We have already proved this property for monoidal categories, which are bicategories
with just one ``object''. Here we use that already-proven property to establish its
generalization to arbitary bicategories, by exploiting the fact that if \<open>a\<close> is an object
in a bicategory, then the sub-bicategory consisting of all \<open>\<mu>\<close> such that
\<open>src \<mu> = a = trg \<mu>\<close>, is a monoidal category.
At some point it would potentially be nicer to transfer the proof for monoidal
categories to obtain a direct, ``native'' proof of this fact for bicategories.
\<close>
lemma (in bicategory) unit_unique_upto_unique_iso:
assumes "obj a"
and "isomorphic a w"
and "\<guillemotleft>\<omega> : w \<star> w \<Rightarrow> w\<guillemotright>"
and "iso \<omega>"
shows "\<exists>!\<psi>. \<guillemotleft>\<psi> : a \<Rightarrow> w\<guillemotright> \<and> iso \<psi> \<and> \<psi> \<cdot> \<i>[a] = \<omega> \<cdot> (\<psi> \<star> \<psi>)"
proof -
have \<omega>_in_hhom: "\<guillemotleft>\<omega> : a \<rightarrow> a\<guillemotright>"
using assms
apply (intro in_hhomI)
apply auto
apply (metis src_cod in_homE isomorphic_implies_hpar(3) objE)
by (metis trg_cod in_homE isomorphic_implies_hpar(4) objE)
interpret S: subbicategory V H \<a> \<i> src trg \<open>\<lambda>\<mu>. arr \<mu> \<and> src \<mu> = a \<and> trg \<mu> = a\<close>
using assms iso_unit in_homE isoE isomorphicE VVV.arr_char VV.arr_char
apply unfold_locales
apply auto[7]
proof
fix f g h
assume f: "(arr f \<and> src f = a \<and> trg f = a) \<and> ide f"
and g: "(arr g \<and> src g = a \<and> trg g = a) \<and> ide g"
and h: "(arr h \<and> src h = a \<and> trg h = a) \<and> ide h"
and fg: "src f = trg g" and gh: "src g = trg h"
show "arr (\<a>[f, g, h])"
using assms f g h fg gh by auto
show "src (\<a>[f, g, h]) = a \<and> trg (\<a>[f, g, h]) = a"
using assms f g h fg gh by auto
show "arr (inv (\<a>[f, g, h])) \<and> src (inv (\<a>[f, g, h])) = a \<and> trg (inv (\<a>[f, g, h])) = a"
using assms f g h fg gh \<alpha>.preserves_hom src_dom trg_dom by simp
next
fix f
assume f: "arr f \<and> src f = a \<and> trg f = a"
assume ide_left: "ide f"
show "arr (\<ll> f) \<and> src (\<ll> f) = a \<and> trg (\<ll> f) = a"
using f assms(1) \<ll>.preserves_hom src_cod [of "\<ll> f"] trg_cod [of "\<ll> f"] by simp
show "arr (inv (\<ll> f)) \<and> src (inv (\<ll> f)) = a \<and> trg (inv (\<ll> f)) = a"
using f ide_left assms(1) \<ll>'.preserves_hom src_dom [of "\<ll>'.map f"] trg_dom [of "\<ll>'.map f"]
by simp
show "arr (\<rr> f) \<and> src (\<rr> f) = a \<and> trg (\<rr> f) = a"
using f assms(1) \<rr>.preserves_hom src_cod [of "\<rr> f"] trg_cod [of "\<rr> f"] by simp
show "arr (inv (\<rr> f)) \<and> src (inv (\<rr> f)) = a \<and> trg (inv (\<rr> f)) = a"
using f ide_left assms(1) \<rr>'.preserves_hom src_dom [of "\<rr>'.map f"] trg_dom [of "\<rr>'.map f"]
by simp
qed
interpret S: subbicategory_at_object V H \<a> \<i> src trg a a \<open>\<i>[a]\<close>
proof
show "obj a" by fact
show "isomorphic a a"
using assms(1) isomorphic_reflexive by blast
show "S.in_hom \<i>[a] (a \<star> a) a"
using S.arr_char S.in_hom_char assms(1) by fastforce
show "iso \<i>[a]"
using assms iso_unit by simp
qed
interpret S\<^sub>\<omega>: subbicategory_at_object V H \<a> \<i> src trg a w \<omega>
proof
show "obj a" by fact
show "iso \<omega>" by fact
show "isomorphic a w"
using assms by simp
show "S.in_hom \<omega> (w \<star> w) w"
using assms S.arr_char S.dom_char S.cod_char \<omega>_in_hhom
by (intro S.in_homI, auto)
qed
interpret M: monoidal_category S.comp \<open>\<lambda>\<mu>\<nu>. S.hcomp (fst \<mu>\<nu>) (snd \<mu>\<nu>)\<close> S.\<alpha> \<open>\<i>[a]\<close>
using S.is_monoidal_category by simp
interpret M\<^sub>\<omega>: monoidal_category S.comp \<open>\<lambda>\<mu>\<nu>. S.hcomp (fst \<mu>\<nu>) (snd \<mu>\<nu>)\<close> S.\<alpha> \<omega>
using S\<^sub>\<omega>.is_monoidal_category by simp
interpret M: monoidal_category_with_alternate_unit
S.comp \<open>\<lambda>\<mu>\<nu>. S.hcomp (fst \<mu>\<nu>) (snd \<mu>\<nu>)\<close> S.\<alpha> \<open>\<i>[a]\<close> \<omega> ..
have 1: "M\<^sub>\<omega>.unity = w"
using assms M\<^sub>\<omega>.unity_def S.cod_char S.arr_char
by (metis (no_types, lifting) S.in_homE S\<^sub>\<omega>.\<omega>_in_vhom)
have 2: "M.unity = a"
using assms M.unity_def S.cod_char S.arr_char by simp
have "\<exists>!\<psi>. S.in_hom \<psi> a w \<and> S.iso \<psi> \<and> S.comp \<psi> \<i>[a] = S.comp \<omega> (M.tensor \<psi> \<psi>)"
using assms 1 2 M.unit_unique_upto_unique_iso M.unity_def M\<^sub>\<omega>.unity_def S.cod_char
by simp
show "\<exists>!\<psi>. \<guillemotleft>\<psi> : a \<Rightarrow> w\<guillemotright> \<and> iso \<psi> \<and> \<psi> \<cdot> \<i>[a] = \<omega> \<cdot> (\<psi> \<star> \<psi>)"
proof -
have 1: "\<And>\<psi>. S.in_hom \<psi> a w \<longleftrightarrow> \<guillemotleft>\<psi> : a \<Rightarrow> w\<guillemotright>"
using assms S.in_hom_char S.arr_char
by (metis (no_types, lifting) S.ideD(1) S.w_simps(1) S\<^sub>\<omega>.w_simps(1) in_homE
src_dom trg_dom)
moreover have "\<And>\<psi>. S.in_hom \<psi> a w \<Longrightarrow> S.iso \<psi> \<longleftrightarrow> iso \<psi>"
using assms S.in_hom_char S.arr_char S.iso_char by auto
moreover have "\<And>\<psi>. S.in_hom \<psi> a w \<Longrightarrow> M.tensor \<psi> \<psi> = \<psi> \<star> \<psi>"
using assms S.in_hom_char S.arr_char S.hcomp_def by simp
moreover have "\<And>\<psi>. S.in_hom \<psi> a w \<Longrightarrow> S.comp \<psi> \<i>[a] = \<psi> \<cdot> \<i>[a]"
using assms S.in_hom_char S.comp_char by auto
moreover have "\<And>\<psi>. S.in_hom \<psi> a w \<Longrightarrow> S.comp \<omega> (M.tensor \<psi> \<psi>) = \<omega> \<cdot> (\<psi> \<star> \<psi>)"
using assms S.in_hom_char S.arr_char S.hcomp_def S.comp_char S.dom_char S.cod_char
by (metis (no_types, lifting) M\<^sub>\<omega>.arr_tensor S\<^sub>\<omega>.\<omega>_simps(1) calculation(3) ext)
ultimately show ?thesis
by (metis (no_types, lifting) M.unit_unique_upto_unique_iso M.unity_def M\<^sub>\<omega>.unity_def
S.\<omega>_in_vhom S.in_homE S\<^sub>\<omega>.\<omega>_in_vhom)
qed
qed
end
|