Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 63,902 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
(*  
  File:       Bernoulli_FPS.thy
  Author:     Manuel Eberl <manuel@pruvisto.org> 

  Connection of Bernoulli numbers to formal power series; proof B_n = 0 for odd n > 1;
  Akiyama-Tanigawa algorithm.
*)
section \<open>Connection of Bernoulli numbers to formal power series\<close>

theory Bernoulli_FPS
  imports 
    Bernoulli 
    "HOL-Computational_Algebra.Computational_Algebra"
    "HOL-Combinatorics.Stirling"
    "HOL-Number_Theory.Number_Theory"
begin

subsection \<open>Preliminaries\<close>

context factorial_semiring
begin

lemma multiplicity_prime_prime:
  "prime p \<Longrightarrow> prime q \<Longrightarrow> multiplicity p q = (if p = q then 1 else 0)"
  by (simp add: prime_multiplicity_other)

lemma prime_prod_dvdI:
  fixes f :: "'b \<Rightarrow> 'a"
  assumes "finite A"
  assumes "\<And>x. x \<in> A \<Longrightarrow> prime (f x)"
  assumes "\<And>x. x \<in> A \<Longrightarrow> f x dvd y"
  assumes "inj_on f A"
  shows   "prod f A dvd y"
proof (cases "y = 0")
  case False
  have nz: "f x \<noteq> 0" if "x \<in> A" for x
    using assms(2)[of x] that by auto
  have "prod f A \<noteq> 0"
    using assms nz by (subst prod_zero_iff) auto
  thus ?thesis
  proof (rule multiplicity_le_imp_dvd)
    fix p :: 'a assume "prime p"
    show "multiplicity p (prod f A) \<le> multiplicity p y"
    proof (cases "p dvd prod f A")
      case True
      then obtain x where x: "x \<in> A" and "p dvd f x"
        using \<open>prime p\<close> assms by (subst (asm) prime_dvd_prod_iff) auto
      have "multiplicity p (prod f A) = (\<Sum>x\<in>A. multiplicity p (f x))"
        using assms \<open>prime p\<close> nz by (intro prime_elem_multiplicity_prod_distrib) auto
      also have "\<dots> = (\<Sum>x\<in>{x}. 1 :: nat)"
        using assms \<open>prime p\<close> \<open>p dvd f x\<close> primes_dvd_imp_eq x 
        by (intro Groups_Big.sum.mono_neutral_cong_right)
           (auto simp: multiplicity_prime_prime inj_on_def)
      finally have "multiplicity p (prod f A) = 1" by simp
      also have "1 \<le> multiplicity p y"
        using assms nz \<open>prime p\<close> \<open>y \<noteq> 0\<close> x \<open>p dvd f x\<close>
        by (intro multiplicity_geI) force+
      finally show ?thesis .
    qed (auto simp: not_dvd_imp_multiplicity_0)
  qed
qed auto

end


(* TODO: Move? *)
context semiring_gcd
begin

lemma gcd_add_dvd_right1: "a dvd b \<Longrightarrow> gcd a (b + c) = gcd a c"
  by (elim dvdE) (simp add: gcd_add_mult mult.commute[of a])

lemma gcd_add_dvd_right2: "a dvd c \<Longrightarrow> gcd a (b + c) = gcd a b"
  using gcd_add_dvd_right1[of a c b] by (simp add: add_ac)

lemma gcd_add_dvd_left1: "a dvd b \<Longrightarrow> gcd (b + c) a = gcd c a"
  using gcd_add_dvd_right1[of a b c] by (simp add: gcd.commute)

lemma gcd_add_dvd_left2: "a dvd c \<Longrightarrow> gcd (b + c) a = gcd b a"
  using gcd_add_dvd_right2[of a c b] by (simp add: gcd.commute)

end

context ring_gcd
begin

lemma gcd_diff_dvd_right1: "a dvd b \<Longrightarrow> gcd a (b - c) = gcd a c"
  using gcd_add_dvd_right1[of a b "-c"] by simp

lemma gcd_diff_dvd_right2: "a dvd c \<Longrightarrow> gcd a (b - c) = gcd a b"
  using gcd_add_dvd_right2[of a "-c" b] by simp

lemma gcd_diff_dvd_left1: "a dvd b \<Longrightarrow> gcd (b - c) a = gcd c a"
  using gcd_add_dvd_left1[of a b "-c"] by simp

lemma gcd_diff_dvd_left2: "a dvd c \<Longrightarrow> gcd (b - c) a = gcd b a"
  using gcd_add_dvd_left2[of a "-c" b] by simp

end

lemma cong_int: "[a = b] (mod m) \<Longrightarrow> [int a = int b] (mod m)"
  by (simp add: cong_int_iff)

lemma Rats_int_div_natE:
  assumes "(x :: 'a :: field_char_0) \<in> \<rat>"
  obtains m :: int and n :: nat where "n > 0" and "x = of_int m / of_nat n" and "coprime m n"
proof -
  from assms obtain r where [simp]: "x = of_rat r"
    by (auto simp: Rats_def)
  obtain a b where [simp]: "r = Rat.Fract a b" and ab: "b > 0" "coprime a b"
    by (cases r)
  from ab show ?thesis
    by (intro that[of "nat b" a]) (auto simp: of_rat_rat)
qed

lemma sum_in_Ints: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<int>) \<Longrightarrow> sum f A \<in> \<int>"
  by (induction A rule: infinite_finite_induct) auto

lemma Ints_real_of_nat_divide: "b dvd a \<Longrightarrow> real a / real b \<in> \<int>"
  by auto


lemma product_dvd_fact:
  assumes "a > 1" "b > 1" "a = b \<longrightarrow> a > 2"
  shows   "(a * b) dvd fact (a * b - 1)"
proof (cases "a = b")
  case False
  have "a * 1 < a * b" and "1 * b < a * b"
    using assms by (intro mult_strict_left_mono mult_strict_right_mono; simp)+
  hence ineqs: "a \<le> a * b - 1" "b \<le> a * b - 1"
    by linarith+
  from False have "a * b = \<Prod>{a,b}" by simp
  also have "\<dots> dvd \<Prod>{1..a * b - 1}"
    using assms ineqs by (intro prod_dvd_prod_subset) auto
  finally show ?thesis by (simp add: fact_prod)
next
  case [simp]: True
  from assms have "a > 2" by auto
  hence "a * 2 < a * b" using assms by (intro mult_strict_left_mono; simp)
  hence *: "2 * a \<le> a * b - 1" by linarith
  have "a * a dvd (2 * a) * a" by simp
  also have "\<dots> = \<Prod>{2*a, a}" using assms by auto
  also have "\<dots> dvd \<Prod>{1..a * b - 1}"
    using assms * by (intro prod_dvd_prod_subset) auto
  finally show ?thesis by (simp add: fact_prod)
qed

lemma composite_imp_factors_nat:
  assumes "m > 1" "\<not>prime (m::nat)"
  shows   "\<exists>n k. m = n * k \<and> 1 < n \<and> n < m \<and> 1 < k \<and> k < m"
proof -
  from assms have "\<not>irreducible m"
    by (simp flip: prime_elem_iff_irreducible )
  then obtain a where a: "a dvd m" "\<not>m dvd a" "a \<noteq> 1"
    using assms by (auto simp: irreducible_altdef)
  then obtain b where [simp]: "m = a * b"
    by auto
  from a assms have "a \<noteq> 0" "b \<noteq> 0" "b \<noteq> 1"
    by (auto intro!: Nat.gr0I)
  with a have "a > 1" "b > 1" by linarith+
  moreover from this and a have "a < m" "b < m"
    by auto
  ultimately show ?thesis using \<open>m = a * b\<close>
    by blast
qed

text \<open>
  This lemma describes what the numerator and denominator of a finite subseries of the
  harmonic series are when it is written as a single fraction.
\<close>
lemma sum_inverses_conv_fraction:
  fixes f :: "'a \<Rightarrow> 'b :: field"
  assumes "\<And>x. x \<in> A \<Longrightarrow> f x \<noteq> 0" "finite A"
  shows "(\<Sum>x\<in>A. 1 / f x) = (\<Sum>x\<in>A. \<Prod>y\<in>A-{x}. f y) / (\<Prod>x\<in>A. f x)"
proof -
  have "(\<Sum>x\<in>A. (\<Prod>y\<in>A. f y) / f x) = (\<Sum>x\<in>A. \<Prod>y\<in>A-{x}. f y)"
    using prod.remove[of A _ f] assms by (intro sum.cong refl) (auto simp: field_simps)
  thus ?thesis
    using assms by (simp add: field_simps sum_distrib_right sum_distrib_left)
qed  

text \<open>
  If all terms in the subseries are primes, this fraction is automatically on lowest terms.
\<close>
lemma sum_prime_inverses_fraction_coprime:
  fixes f :: "'a \<Rightarrow> nat"
  assumes "finite A" and primes: "\<And>x. x \<in> A \<Longrightarrow> prime (f x)" and inj: "inj_on f A"
  defines "a \<equiv> (\<Sum>x\<in>A. \<Prod>y\<in>A-{x}. f y)"
  shows   "coprime a (\<Prod>x\<in>A. f x)"
proof (intro prod_coprime_right)
  fix x assume x: "x \<in> A"
  have "a = (\<Prod>y\<in>A-{x}. f y) + (\<Sum>y\<in>A-{x}. \<Prod>z\<in>A-{y}. f z)"
    unfolding a_def using \<open>finite A\<close> and x by (rule sum.remove)
  also have "gcd \<dots> (f x) = gcd (\<Prod>y\<in>A-{x}. f y) (f x)"
    using \<open>finite A\<close> and x by (intro gcd_add_dvd_left2 dvd_sum dvd_prodI) auto
  also from x primes inj have "coprime (\<Prod>y\<in>A-{x}. f y) (f x)"
    by (intro prod_coprime_left) (auto intro!: primes_coprime simp: inj_on_def)
  hence "gcd (\<Prod>y\<in>A-{x}. f y) (f x) = 1"
    by simp
  finally show "coprime a (f x)"
    by (simp only: coprime_iff_gcd_eq_1)
qed
(* END TODO *)

  
text \<open>
  In the following, we will prove the correctness of the 
  Akiyama--Tanigawa algorithm~\cite{kaneko2000}, which is a simple algorithm for computing 
  Bernoulli numbers that was discovered by Akiyama and Tanigawa~\cite{aki_tani1999} essentially 
  as a by-product of their studies of the Euler--Zagier multiple zeta function. The algorithm 
  is based on a number triangle (similar to Pascal's triangle) in which the Bernoulli numbers 
  are the leftmost diagonal.

  While the algorithm itself is quite simple, proving it correct is not entirely trivial.
  We will use generating functions and Stirling numbers, mostly following the presentation by
  Kaneko~\cite{kaneko2000}.
\<close>


text \<open>
  The following operator is a variant of the @{term fps_XD} operator where the multiplication
  is not with @{term fps_X}, but with an arbitrary formal power series. It is not quite clear 
  if this operator has a less ad-hoc meaning than the fashion in which we use it; it is, 
  however, very useful for proving the relationship between Stirling numbers and Bernoulli
  numbers.
\<close>

context
  includes fps_notation
begin

definition fps_XD' where "fps_XD' a = (\<lambda>b. a * fps_deriv b)"    

lemma fps_XD'_0 [simp]: "fps_XD' a 0 = 0" by (simp add: fps_XD'_def)
lemma fps_XD'_1 [simp]: "fps_XD' a 1 = 0" by (simp add: fps_XD'_def)
lemma fps_XD'_fps_const [simp]: "fps_XD' a (fps_const b) = 0" by (simp add: fps_XD'_def)
lemma fps_XD'_fps_of_nat [simp]: "fps_XD' a (of_nat b) = 0" by (simp add: fps_XD'_def)
lemma fps_XD'_fps_of_int [simp]: "fps_XD' a (of_int b) = 0" by (simp add: fps_XD'_def)
lemma fps_XD'_fps_numeral [simp]: "fps_XD' a (numeral b) = 0" by (simp add: fps_XD'_def)
  
lemma fps_XD'_add [simp]: "fps_XD' a (b + c :: 'a :: comm_ring_1 fps) = fps_XD' a b + fps_XD' a c"
  by (simp add: fps_XD'_def algebra_simps)
    
lemma fps_XD'_minus [simp]: "fps_XD' a (b - c :: 'a :: comm_ring_1 fps) = fps_XD' a b - fps_XD' a c"
  by (simp add: fps_XD'_def algebra_simps)
    
lemma fps_XD'_prod: "fps_XD' a (b * c :: 'a :: comm_ring_1 fps) = fps_XD' a b * c + b * fps_XD' a c"
  by (simp add: fps_XD'_def algebra_simps)
    
lemma fps_XD'_power: "fps_XD' a (b ^ n :: 'a :: idom fps) = of_nat n * b ^ (n - 1) * fps_XD' a b"
proof (cases "n = 0")
  case False
  have "b * fps_XD' a (b ^ n) = of_nat n * b ^ n * fps_XD' a b"
    by (induction n) (simp_all add: fps_XD'_prod algebra_simps)
  also have "\<dots> = b * (of_nat n * b ^ (n - 1) * fps_XD' a b)" 
    by (cases n) (simp_all add: algebra_simps)
  finally show ?thesis using False 
    by (subst (asm) mult_cancel_left) (auto simp: power_0_left)
qed simp_all
  
lemma fps_XD'_power_Suc: "fps_XD' a (b ^ Suc n :: 'a :: idom fps) = of_nat (Suc n) * b ^ n * fps_XD' a b"
  by (subst fps_XD'_power) simp_all
  
lemma fps_XD'_sum: "fps_XD' a (sum f A) = sum (\<lambda>x. fps_XD' (a :: 'a :: comm_ring_1 fps) (f x)) A"
  by (induction A rule: infinite_finite_induct) simp_all

lemma fps_XD'_funpow_affine:
  fixes G H :: "real fps"
  assumes [simp]: "fps_deriv G = 1"
  defines "S \<equiv> \<lambda>n i. fps_const (real (Stirling n i))"
  shows "(fps_XD' G ^^ n) H = 
           (\<Sum>m\<le>n. S n m * G ^ m * (fps_deriv ^^ m) H)"
proof (induction n arbitrary: H)
  case 0
  thus ?case by (simp add: S_def)
next
  case (Suc n H)
  have "(\<Sum>m\<le>Suc n. S (Suc n) m * G ^ m * (fps_deriv ^^ m) H) = 
        (\<Sum>i\<le>n. of_nat (Suc i) * S n (Suc i) *  G ^ Suc i * (fps_deriv ^^ Suc i) H) +
        (\<Sum>i\<le>n. S n i * G ^ Suc i * (fps_deriv ^^ Suc i) H)" 
    (is "_ = sum (\<lambda>i. ?f (Suc i)) \<dots> + ?S2")
    by (subst sum.atMost_Suc_shift) (simp_all add: sum.distrib algebra_simps fps_of_nat S_def
          fps_const_add [symmetric] fps_const_mult [symmetric] del: fps_const_add fps_const_mult)
  also have "sum (\<lambda>i. ?f (Suc i)) {..n} = sum (\<lambda>i. ?f (Suc i)) {..<n}"
    by (intro sum.mono_neutral_right) (auto simp: S_def)
  also have "\<dots> = ?f 0 + \<dots>" by simp
  also have "\<dots> = sum ?f {..n}" by (subst sum.atMost_shift [symmetric]) simp_all
  also have "\<dots> + ?S2 = (\<Sum>x\<le>n. fps_XD' G (S n x * G ^ x * (fps_deriv ^^ x) H))"
    unfolding sum.distrib [symmetric]
  proof (rule sum.cong, goal_cases)
    case (2 i)
    thus ?case unfolding fps_XD'_prod fps_XD'_power
      by (cases i) (auto simp: fps_XD'_prod fps_XD'_power_Suc algebra_simps of_nat_diff S_def fps_XD'_def)
  qed simp_all
  also have "\<dots> = (fps_XD' G ^^ Suc n) H" by (simp add: Suc.IH fps_XD'_sum)
  finally show ?case ..
qed


subsection \<open>Generating function of Stirling numbers\<close>

lemma Stirling_n_0: "Stirling n 0 = (if n = 0 then 1 else 0)"
  by (cases n) simp_all

text \<open>
  The generating function of Stirling numbers w.\,r.\,t.\ their first argument:
    \[\sum_{n=0}^\infty \genfrac{\{}{\}}{0pt}{}{n}{m} \frac{x^n}{n!} = \frac{(e^x - 1)^m}{m!}\]
\<close>
definition Stirling_fps :: "nat \<Rightarrow> real fps" where
  "Stirling_fps m = fps_const (1 / fact m) * (fps_exp 1 - 1) ^ m"
  
theorem sum_Stirling_binomial:
  "Stirling (Suc n) (Suc m) = (\<Sum>i = 0..n. Stirling i m * (n choose i))"
proof -
  have "real (Stirling (Suc n) (Suc m)) = real (\<Sum>i = 0..n. Stirling i m * (n choose i))"
  proof (induction n arbitrary: m)
    case (Suc n m)
    have "real (\<Sum>i = 0..Suc n. Stirling i m * (Suc n choose i)) = 
            real (\<Sum>i = 0..n. Stirling (Suc i) m * (Suc n choose Suc i)) + real (Stirling 0 m)"
      by (subst sum.atLeast0_atMost_Suc_shift) simp_all
    also have "real (\<Sum>i = 0..n. Stirling (Suc i) m * (Suc n choose Suc i)) = 
                 real (\<Sum>i = 0..n. (n choose i) * Stirling (Suc i) m) +
                 real (\<Sum>i = 0..n. (n choose Suc i) * Stirling (Suc i) m)"
      by (simp add: algebra_simps sum.distrib)
    also have "(\<Sum>i = 0..n. (n choose Suc i) * Stirling (Suc i) m) =
                 (\<Sum>i = Suc 0..Suc n. (n choose i) * Stirling i m)"
      by (subst sum.shift_bounds_cl_Suc_ivl) simp_all
    also have "\<dots> = (\<Sum>i = Suc 0..n. (n choose i) * Stirling i m)"
      by (intro sum.mono_neutral_right) auto
    also have "\<dots> = real (\<Sum>i = 0..n.  Stirling i m * (n choose i)) - real (Stirling 0 m)"
      by (simp add: sum.atLeast_Suc_atMost mult_ac)
    also have "real (\<Sum>i = 0..n. Stirling i m * (n choose i)) = real (Stirling (Suc n) (Suc m))"
      by (rule Suc.IH [symmetric])
    also have "real (\<Sum>i = 0..n. (n choose i) * Stirling (Suc i) m) = 
                 real m * real (Stirling (Suc n) (Suc m)) + real (Stirling (Suc n) m)"
      by (cases m; (simp only: Suc.IH, simp add: algebra_simps sum.distrib 
                      sum_distrib_left sum_distrib_right))
    also have "\<dots> + (real (Stirling (Suc n) (Suc m)) - real (Stirling 0 m)) + real (Stirling 0 m) =
                 real (Suc m * Stirling (Suc n) (Suc m) + Stirling (Suc n) m)"
      by (simp add: algebra_simps del: Stirling.simps)
    also have "Suc m * Stirling (Suc n) (Suc m) + Stirling (Suc n) m = 
                 Stirling (Suc (Suc n)) (Suc m)"
      by (rule Stirling.simps(4) [symmetric])
    finally show ?case ..
  qed simp_all
  thus ?thesis by (subst (asm) of_nat_eq_iff)
qed

lemma Stirling_fps_aux: "(fps_exp 1 - 1) ^ m $ n * fact n = fact m * real (Stirling n m)"
proof (induction m arbitrary: n)
  case 0
  thus ?case by (simp add: Stirling_n_0)
next
  case (Suc m n)
  show ?case
  proof (cases n)
    case 0
    thus ?thesis by simp
  next
    case (Suc n')
    hence "(fps_exp 1 - 1 :: real fps) ^ Suc m $ n * fact n = 
              fps_deriv ((fps_exp 1 - 1) ^ Suc m) $ n' * fact n'"
      by (simp_all add: algebra_simps del: power_Suc)
    also have "fps_deriv ((fps_exp 1 - 1 :: real fps) ^ Suc m) = 
                 fps_const (real (Suc m)) * ((fps_exp 1 - 1) ^ m * fps_exp 1)"
      by (subst fps_deriv_power) simp_all
    also have "\<dots> $ n' * fact n' = 
      real (Suc m) * ((\<Sum>i = 0..n'. (fps_exp 1 - 1) ^ m $ i / fact (n' - i)) * fact n')"
      unfolding fps_mult_left_const_nth
      by (simp add: fps_mult_nth Suc.IH sum_distrib_right del: of_nat_Suc)
    also have "(\<Sum>i = 0..n'. (fps_exp 1 - 1 :: real fps) ^ m $ i / fact (n' - i)) * fact n' = 
                 (\<Sum>i = 0..n'. (fps_exp 1 - 1) ^ m $ i * fact n' / fact (n' - i))"
      by (subst sum_distrib_right, rule sum.cong) (simp_all add: divide_simps)
    also have "\<dots> = (\<Sum>i = 0..n'. (fps_exp 1 - 1) ^ m $ i * fact i * (n' choose i))"
      by (intro sum.cong refl) (simp_all add: binomial_fact)
    also have "\<dots> = (\<Sum>i = 0..n'. fact m * real (Stirling i m) * real (n' choose i))" 
      by (simp only: Suc.IH)
    also have "real (Suc m) * \<dots> = fact (Suc m) * 
                 (\<Sum>i = 0..n'. real (Stirling i m) * real (n' choose i))" (is "_ = _ * ?S")
      by (simp add: sum_distrib_left sum_distrib_right mult_ac del: of_nat_Suc)
    also have "?S = Stirling (Suc n') (Suc m)"
      by (subst sum_Stirling_binomial) simp
    also have "Suc n' = n" by (simp add: Suc)
    finally show ?thesis .
  qed
qed

lemma Stirling_fps_nth: "Stirling_fps m $ n = Stirling n m / fact n"
  unfolding Stirling_fps_def using Stirling_fps_aux[of m n] by (simp add: field_simps)
    
theorem Stirling_fps_altdef: "Stirling_fps m = Abs_fps (\<lambda>n. Stirling n m / fact n)"
  by (simp add: fps_eq_iff Stirling_fps_nth)

theorem Stirling_closed_form:
  "real (Stirling n k) = (\<Sum>j\<le>k. (-1)^(k - j) * real (k choose j) * real j ^ n) / fact k"
proof -
  have "(fps_exp 1 - 1 :: real fps) = (fps_exp 1 + (-1))" by simp
  also have "\<dots> ^ k = (\<Sum>j\<le>k. of_nat (k choose j) * fps_exp 1 ^ j * (- 1) ^ (k - j))" 
    unfolding binomial_ring ..
  also have "\<dots> = (\<Sum>j\<le>k. fps_const ((-1) ^ (k - j) * real (k choose j)) * fps_exp (real j))"
    by (simp add: fps_const_mult [symmetric] fps_const_power [symmetric] 
                  fps_const_neg [symmetric] mult_ac fps_of_nat fps_exp_power_mult
             del: fps_const_mult fps_const_power fps_const_neg)
  also have "\<dots> $ n = (\<Sum>j\<le>k. (- 1) ^ (k - j) * real (k choose j) * real j ^ n) / fact n" 
    by (simp add: fps_sum_nth sum_divide_distrib)
  also have "\<dots> * fact n = (\<Sum>j\<le>k. (- 1) ^ (k - j) * real (k choose j) * real j ^ n)"
    by simp
  also note Stirling_fps_aux[of k n]
  finally show ?thesis by (simp add: atLeast0AtMost field_simps)
qed


subsection \<open>Generating function of Bernoulli numbers\<close>

text \<open>
  We will show that the negative and positive Bernoulli numbers are the coefficients of the
  exponential generating function $\frac{x}{e^x - 1}$ (resp. $\frac{x}{1-e^{-x}}$), i.\,e.
    \[\sum_{n=0}^\infty B_n^{-} \frac{x^n}{n!} = \frac{x}{e^x - 1}\]
    \[\sum_{n=0}^\infty B_n^{+} \frac{x^n}{n!} = \frac{x}{1 - e^{-1}}\]
\<close> 
definition bernoulli_fps :: "'a :: real_normed_field fps" 
  where "bernoulli_fps = fps_X / (fps_exp 1 - 1)"
definition bernoulli'_fps :: "'a :: real_normed_field fps" 
  where "bernoulli'_fps = fps_X / (1 - (fps_exp (-1)))"

lemma bernoulli_fps_altdef: "bernoulli_fps = Abs_fps (\<lambda>n. of_real (bernoulli n) / fact n :: 'a)"
  and bernoulli_fps_aux:    "bernoulli_fps * (fps_exp 1 - 1 :: 'a :: real_normed_field fps) = fps_X"
proof -
  have *: "Abs_fps (\<lambda>n. of_real (bernoulli n) / fact n :: 'a) * (fps_exp 1 - 1) = fps_X"  
  proof (rule fps_ext)
    fix n
    have "(Abs_fps (\<lambda>n. of_real (bernoulli n) / fact n :: 'a) * (fps_exp 1 - 1)) $ n = 
            (\<Sum>i = 0..n. of_real (bernoulli i) * (1 / fact (n - i) - (if n = i then 1 else 0)) / fact i)"
      by (auto simp: fps_mult_nth divide_simps split: if_splits intro!: sum.cong)
    also have "\<dots> = (\<Sum>i = 0..n. of_real (bernoulli i) / (fact i * fact (n - i)) -
                                    (if n = i then of_real (bernoulli i) / fact i else 0))"
      by (intro sum.cong) (simp_all add: field_simps)
    also have "\<dots> = (\<Sum>i = 0..n. of_real (bernoulli i) / (fact i * fact (n - i))) - 
                      of_real (bernoulli n) / fact n" 
      unfolding sum_subtractf by (subst sum.delta') simp_all
    also have "\<dots> = (\<Sum>i<n. of_real (bernoulli i) / (fact i * fact (n - i)))"
      by (cases n) (simp_all add: atLeast0AtMost lessThan_Suc_atMost [symmetric])
    also have "\<dots> = (\<Sum>i<n. fact n * (of_real (bernoulli i) / (fact i * fact (n - i)))) / fact n"
      by (subst sum_distrib_left [symmetric]) simp_all
    also have "(\<Sum>i<n. fact n * (of_real (bernoulli i) / (fact i * fact (n - i)))) =
                 (\<Sum>i<n. of_nat (n choose i) * of_real (bernoulli i) :: 'a)"
      by (intro sum.cong) (simp_all add: binomial_fact)
    also have "\<dots> = of_real (\<Sum>i<n. (n choose i) * bernoulli i)"
      by simp
    also have "\<dots> / fact n = fps_X $ n" by (subst sum_binomial_times_bernoulli') simp_all
    finally show "(Abs_fps (\<lambda>n. of_real (bernoulli n) / fact n :: 'a) * (fps_exp 1 - 1)) $ n = 
                     fps_X $ n" .
  qed
  moreover show "bernoulli_fps = Abs_fps (\<lambda>n. of_real (bernoulli n) / fact n :: 'a)"
    unfolding bernoulli_fps_def by (subst * [symmetric]) simp_all
  ultimately show "bernoulli_fps * (fps_exp 1 - 1 :: 'a fps) = fps_X" by simp
qed
  
theorem fps_nth_bernoulli_fps [simp]: 
  "fps_nth bernoulli_fps n = of_real (bernoulli n) / fact n"
  by (simp add: bernoulli_fps_altdef)

lemma bernoulli'_fps_aux:  
    "(fps_exp 1 - 1) * Abs_fps (\<lambda>n. of_real (bernoulli' n) / fact n :: 'a) = fps_exp 1 * fps_X"
  and bernoulli'_fps_aux': 
    "(1 - fps_exp (-1)) * Abs_fps (\<lambda>n. of_real (bernoulli' n) / fact n :: 'a) = fps_X"
  and bernoulli'_fps_altdef: 
    "bernoulli'_fps = Abs_fps (\<lambda>n. of_real (bernoulli' n) / fact n :: 'a :: real_normed_field)"
proof -
  have "Abs_fps (\<lambda>n. of_real (bernoulli' n) / fact n :: 'a) = bernoulli_fps + fps_X"
    by (simp add: fps_eq_iff bernoulli'_def)
  also have "(fps_exp 1 - 1) * \<dots> = fps_exp 1 * fps_X"
    using bernoulli_fps_aux by (simp add: algebra_simps)
  finally show "(fps_exp 1 - 1) * Abs_fps (\<lambda>n. of_real (bernoulli' n) / fact n :: 'a) = 
                  fps_exp 1 * fps_X" .
  also have "(fps_exp 1 - 1) = fps_exp 1 * (1 - fps_exp (-1 :: 'a))" 
    by (simp add: algebra_simps fps_exp_add_mult [symmetric])
  also note mult.assoc
  finally show *: "(1 - fps_exp (-1)) * Abs_fps (\<lambda>n. of_real (bernoulli' n) / fact n :: 'a) = fps_X"
    by (subst (asm) mult_left_cancel) simp_all
  show "bernoulli'_fps = Abs_fps (\<lambda>n. of_real (bernoulli' n) / fact n :: 'a)"
    unfolding bernoulli'_fps_def by (subst * [symmetric]) simp_all
qed

theorem fps_nth_bernoulli'_fps [simp]: 
  "fps_nth bernoulli'_fps n = of_real (bernoulli' n) / fact n"
  by (simp add: bernoulli'_fps_altdef)
  
lemma bernoulli_fps_conv_bernoulli'_fps: "bernoulli_fps = bernoulli'_fps - fps_X"
  by (simp add: fps_eq_iff bernoulli'_def)
    
lemma bernoulli'_fps_conv_bernoulli_fps: "bernoulli'_fps = bernoulli_fps + fps_X"
  by (simp add: fps_eq_iff bernoulli'_def)

 
theorem bernoulli_odd_eq_0:
  assumes "n \<noteq> 1" and "odd n"
  shows   "bernoulli n = 0"
proof -
  from bernoulli_fps_aux have "2 * bernoulli_fps * (fps_exp 1 - 1) = 2 * fps_X" by simp
  hence "(2 * bernoulli_fps + fps_X) * (fps_exp 1 - 1) = fps_X * (fps_exp 1 + 1)" 
    by (simp add: algebra_simps)
  also have "fps_exp 1 - 1 = fps_exp (1/2) * (fps_exp (1/2) - fps_exp (-1/2 :: real))" 
    by (simp add: algebra_simps fps_exp_add_mult [symmetric])
  also have "fps_exp 1 + 1 = fps_exp (1/2) * (fps_exp (1/2) + fps_exp (-1/2 :: real))" 
    by (simp add: algebra_simps fps_exp_add_mult [symmetric])
  finally have "fps_exp (1/2) * ((2 * bernoulli_fps + fps_X) * (fps_exp (1/2) - fps_exp (- 1/2))) =
                   fps_exp (1/2) * (fps_X * (fps_exp (1/2) + fps_exp (-1/2 :: real)))" 
    by (simp add: algebra_simps)
  hence *: "(2 * bernoulli_fps + fps_X) * (fps_exp (1/2) - fps_exp (- 1/2)) = 
              fps_X * (fps_exp (1/2) + fps_exp (-1/2 :: real))" 
    (is "?lhs = ?rhs") by (subst (asm) mult_cancel_left) simp_all
  have "fps_compose ?lhs (-fps_X) = fps_compose ?rhs (-fps_X)" by (simp only: *)
  also have "fps_compose ?lhs (-fps_X) = 
               (-2 * (bernoulli_fps oo - fps_X) + fps_X) * (fps_exp ((1/2)) - fps_exp (-1/2))" 
    by (simp add: fps_compose_mult_distrib fps_compose_add_distrib
                   fps_compose_sub_distrib algebra_simps)
  also have "fps_compose ?rhs (-fps_X) = -?rhs"
    by (simp add: fps_compose_mult_distrib fps_compose_add_distrib fps_compose_sub_distrib)
  also note * [symmetric]
  also have "- ((2 * bernoulli_fps + fps_X) * (fps_exp (1/2) - fps_exp (-1/2))) = 
               ((-2 * bernoulli_fps - fps_X) * (fps_exp (1/2) - fps_exp (-1/2)))" by (simp add: algebra_simps)
  finally have "2 * (bernoulli_fps oo - fps_X) = 2 * (bernoulli_fps + fps_X :: real fps)"
    by (subst (asm) mult_cancel_right) (simp add: algebra_simps)
  hence **: "bernoulli_fps oo -fps_X = (bernoulli_fps + fps_X :: real fps)"
    by (subst (asm) mult_cancel_left) simp
  
  from assms have "(bernoulli_fps oo -fps_X) $ n = bernoulli n / fact n"
    by (subst **) simp
  also have "-fps_X = fps_const (-1 :: real) * fps_X" 
    by (simp only: fps_const_neg [symmetric] fps_const_1_eq_1) simp
  also from assms have "(bernoulli_fps oo \<dots>) $ n = - bernoulli n / fact n"
    by (subst fps_compose_linear) simp
  finally show ?thesis by simp
qed
  
lemma bernoulli'_odd_eq_0: "n \<noteq> 1 \<Longrightarrow> odd n \<Longrightarrow> bernoulli' n = 0"
  by (simp add: bernoulli'_def bernoulli_odd_eq_0)
  
text \<open>
  The following simplification rule takes care of rewriting @{term "bernoulli n"} to $0$ for
  any odd numeric constant greater than $1$:
\<close>
lemma bernoulli_odd_numeral_eq_0 [simp]: "bernoulli (numeral (Num.Bit1 n)) = 0"
  by (rule bernoulli_odd_eq_0[OF _ odd_numeral]) auto
    
lemma bernoulli'_odd_numeral_eq_0 [simp]: "bernoulli' (numeral (Num.Bit1 n)) = 0"
  by (simp add: bernoulli'_def)


text \<open>
  The following explicit formula for Bernoulli numbers can also derived reasonably easily
  using the generating functions of Stirling numbers and Bernoulli numbers. The proof follows 
  an answer by Marko Riedel on the Mathematics StackExchange~\cite{riedel_mathse_2014}.
\<close>
theorem bernoulli_altdef: 
  "bernoulli n = (\<Sum>m\<le>n. \<Sum>k\<le>m. (-1)^k * real (m choose k) * real k^n / real (Suc m))"
proof -
  have "(\<Sum>m\<le>n. \<Sum>k\<le>m. (-1)^k * real (m choose k) * real k^n / real (Suc m)) =
          (\<Sum>m\<le>n. (\<Sum>k\<le>m. (-1)^k * real (m choose k) * real k^n) / real (Suc m))"
    by (subst sum_divide_distrib) simp_all
  also have "\<dots> = fact n * (\<Sum>m\<le>n. (- 1) ^ m  / real (Suc m) * (fps_exp 1 - 1) ^ m $ n)"
  proof (subst sum_distrib_left, intro sum.cong refl)
    fix m assume m: "m \<in> {..n}"
    have "(\<Sum>k\<le>m. (-1)^k * real (m choose k) * real k^n) = 
            (-1)^m * (\<Sum>k\<le>m. (-1)^(m - k) * real (m choose k) * real k^n)"
      by (subst sum_distrib_left, intro sum.cong refl) (auto simp: minus_one_power_iff)
    also have "\<dots> = (-1) ^ m * (real (Stirling n m) * fact m)" 
      by (subst Stirling_closed_form) simp_all
    also have "real (Stirling n m) = Stirling_fps m $ n * fact n"
      by (subst Stirling_fps_nth) simp_all
    also have "\<dots> * fact m = (fps_exp 1 - 1) ^ m $ n * fact n" by (simp add: Stirling_fps_def)
    finally show "(\<Sum>k\<le>m. (-1)^k * real (m choose k) * real k^n) / real (Suc m) = 
                     fact n * ((- 1) ^ m / real (Suc m) * (fps_exp 1 - 1) ^ m $ n)" by simp
  qed
  also have "(\<Sum>m\<le>n. (- 1) ^ m / real (Suc m) * (fps_exp 1 - 1) ^ m $ n) =
                fps_compose (Abs_fps (\<lambda>m. (-1) ^ m / real (Suc m))) (fps_exp 1 - 1) $ n"
    by (simp add: fps_compose_def atLeast0AtMost fps_sum_nth)
  also have "fps_ln 1 = fps_X * Abs_fps (\<lambda>m. (-1) ^ m / real (Suc m))"
    unfolding fps_ln_def by (auto simp: fps_eq_iff)
  hence "Abs_fps (\<lambda>m. (-1) ^ m / real (Suc m)) = fps_ln 1 / fps_X"
    by (metis fps_X_neq_zero nonzero_mult_div_cancel_left)
  also have "fps_compose \<dots> (fps_exp 1 - 1) =
               fps_compose (fps_ln 1) (fps_exp 1 - 1) / (fps_exp 1 - 1)"
    by (subst fps_compose_divide_distrib) auto
  also have "fps_compose (fps_ln 1) (fps_exp 1 - 1 :: real fps) = fps_X"
    by (simp add: fps_ln_fps_exp_inv fps_inv_fps_exp_compose)
  also have "(fps_X / (fps_exp 1 - 1)) = bernoulli_fps" by (simp add: bernoulli_fps_def)
  also have "fact n * \<dots> $ n = bernoulli n" by simp
  finally show ?thesis ..
qed

corollary%important bernoulli_conv_Stirling:
  "bernoulli n = (\<Sum>k\<le>n. (-1) ^ k * fact k / real (k + 1) * Stirling n k)"
proof -
  have "(\<Sum>k\<le>n. (-1) ^ k * fact k / (k + 1) * Stirling n k) =
          (\<Sum>k\<le>n. \<Sum>i\<le>k. (-1) ^ i * (k choose i) * i ^ n / real (k + 1))"
  proof (intro sum.cong, goal_cases)
    case (2 k)
    have "(-1) ^ k * fact k / (k + 1) * Stirling n k =
            (\<Sum>j\<le>k. (-1) ^ k * (-1) ^ (k - j) *  (k choose j) * j ^ n / (k + 1))"
      by (simp add: Stirling_closed_form sum_distrib_left sum_divide_distrib mult_ac)
    also have "\<dots> = (\<Sum>j\<le>k. (-1) ^ j *  (k choose j) * j ^ n / (k + 1))"
      by (intro sum.cong) (auto simp: uminus_power_if split: if_splits)
    finally show ?case .
  qed auto
  also have "\<dots> = bernoulli n"
    by (simp add: bernoulli_altdef)
  finally show ?thesis ..
qed


subsection \<open>Von Staudt--Clausen Theorem\<close>

lemma vonStaudt_Clausen_lemma:
  assumes "n > 0" and "prime p"
  shows   "[(\<Sum>m<p. (-1) ^ m * ((p - 1) choose m) * m ^ (2*n)) =
              (if (p - 1) dvd (2 * n) then -1 else 0)] (mod p)"
proof (cases "(p - 1) dvd (2 * n)")
  case True
  have cong_power_2n: "[m ^ (2 * n) = 1] (mod p)" if "m > 0" "m < p" for m
  proof -
    from True obtain q where "2 * n = (p - 1) * q"
      by blast
    hence "[m ^ (2 * n) = (m ^ (p - 1)) ^ q] (mod p)"
      by (simp add: power_mult)
    also have "[(m ^ (p - 1)) ^ q = 1 ^ q] (mod p)"
      using assms \<open>m > 0\<close> \<open>m < p\<close> by (intro cong_pow fermat_theorem) auto
    finally show ?thesis by simp
  qed

  have "(\<Sum>m<p. (-1)^m * ((p - 1) choose m) * m ^ (2*n)) =
          (\<Sum>m\<in>{0<..<p}. (-1)^m * ((p - 1) choose m) * m ^ (2*n))"
    using \<open>n > 0\<close> by (intro sum.mono_neutral_right) auto
  also have "[\<dots> = (\<Sum>m\<in>{0<..<p}. (-1)^m * ((p - 1) choose m) * int 1)] (mod p)"
    by (intro cong_sum cong_mult cong_power_2n cong_int) auto
  also have "(\<Sum>m\<in>{0<..<p}. (-1)^m * ((p - 1) choose m) * int 1) =
               (\<Sum>m\<in>insert 0 {0<..<p}. (-1)^m * ((p - 1) choose m)) - 1"
    by (subst sum.insert) auto
  also have "insert 0 {0<..<p} = {..p-1}"
    using assms prime_gt_0_nat[of p] by auto
  also have "(\<Sum>m\<le>p-1. (-1)^m * ((p - 1) choose m)) = 0"
    using prime_gt_1_nat[of p] assms by (subst choose_alternating_sum) auto
  finally show ?thesis using True by simp
next
  case False
  define n' where "n' = (2 * n) mod (p - 1)"
  from assms False have "n' > 0"
    by (auto simp: n'_def dvd_eq_mod_eq_0)
  from False have "p \<noteq> 2" by auto
  with assms have "odd p"
    using prime_prime_factor two_is_prime_nat by blast
    
  have cong_pow_2n: "[m ^ (2*n) = m ^ n'] (mod p)" if "m > 0" "m < p" for m
  proof -
    from assms and that have "coprime p m"
      by (intro prime_imp_coprime) auto
    have "[2 * n = n'] (mod (p - 1))"
      by (simp add: n'_def)
    moreover have "ord p m dvd (p - 1)"
      using order_divides_totient[of p m] \<open>coprime p m\<close> assms by (auto simp: totient_prime)
    ultimately have "[2 * n = n'] (mod ord p m)"
      by (rule cong_dvd_modulus_nat)
    thus ?thesis
      using \<open>coprime p m\<close> by (subst order_divides_expdiff) auto
  qed

  have "(\<Sum>m<p. (-1)^m * ((p - 1) choose m) * m ^ (2*n)) =
          (\<Sum>m\<in>{0<..<p}. (-1)^m * ((p - 1) choose m) * m ^ (2*n))"
    using \<open>n > 0\<close> by (intro sum.mono_neutral_right) auto
  also have "[\<dots> = (\<Sum>m\<in>{0<..<p}. (-1)^m * ((p - 1) choose m) * m ^ n')] (mod p)"
    by (intro cong_sum cong_mult cong_pow_2n cong_int) auto
  also have "(\<Sum>m\<in>{0<..<p}. (-1)^m * ((p - 1) choose m) * m ^ n') =
               (\<Sum>m\<le>p-1. (-1)^m * ((p - 1) choose m) * m ^ n')"
    using \<open>n' > 0\<close> by (intro sum.mono_neutral_left) auto
  also have "\<dots> = (\<Sum>m\<le>p-1. (-1)^(p - Suc m) * ((p - 1) choose m) * m ^ n')"
    using \<open>n' > 0\<close> assms \<open>odd p\<close> by (intro sum.cong) (auto simp: uminus_power_if)
  also have "\<dots> = 0"
  proof -
    have "of_int (\<Sum>m\<le>p-1. (-1)^(p - Suc m) * ((p - 1) choose m) * m ^ n') =
            real (Stirling n' (p - 1)) * fact (p - 1)"
      by (simp add: Stirling_closed_form)
    also have "n' < p - 1"
      using assms prime_gt_1_nat[of p] by (auto simp: n'_def)
    hence "Stirling n' (p - 1) = 0"
      by simp
    finally show ?thesis by linarith
  qed
  finally show ?thesis using False by simp
qed
 
text \<open>
  The Von Staudt--Clausen theorem states that for \<open>n > 0\<close>,
    \[B_{2n} + \sum\limits_{p - 1\mid 2n} \frac{1}{p}\]
  is an integer.
\<close>
theorem vonStaudt_Clausen:
  assumes "n > 0"
  shows   "bernoulli (2 * n) + (\<Sum>p | prime p \<and> (p - 1) dvd (2 * n). 1 / real p) \<in> \<int>"
    (is "_ + ?P \<in> \<int>")
proof -
  define P :: "nat \<Rightarrow> real"
    where "P = (\<lambda>m. if prime (m + 1) \<and> m dvd (2 * n) then 1 / (m + 1) else 0)"  
  define P' :: "nat \<Rightarrow> int"
    where "P' = (\<lambda>m. if prime (m + 1) \<and> m dvd (2 * n) then 1 else 0)"

  have "?P = (\<Sum>p | prime (p + 1) \<and> p dvd (2 * n). 1 / real (p + 1))"
    by (rule sum.reindex_bij_witness[of _ "\<lambda>p. p + 1" "\<lambda>p. p - 1"])
       (use prime_gt_0_nat in auto)
  also have "\<dots> = (\<Sum>m\<le>2*n. P m)"
    using \<open>n > 0\<close> by (intro sum.mono_neutral_cong_left) (auto simp: P_def dest!: dvd_imp_le)
  finally have "bernoulli (2 * n) + ?P =
                  (\<Sum>m\<le>2*n. (-1)^m * (of_int (fact m * Stirling (2*n) m) / (m + 1)) + P m)"
    by (simp add: sum.distrib bernoulli_conv_Stirling sum_divide_distrib algebra_simps)
  also have "\<dots> = (\<Sum>m\<le>2*n. of_int ((-1)^m * fact m * Stirling (2*n) m + P' m) / (m + 1))"
    by (intro sum.cong) (auto simp: P'_def P_def field_simps)
  also have "\<dots> \<in> \<int>"
  proof (rule sum_in_Ints, goal_cases)
    case (1 m)
    have "m = 0 \<or> m = 3 \<or> prime (m + 1) \<or> (\<not>prime (m + 1) \<and> m > 3)"
      by (cases "m = 1"; cases "m = 2") (auto simp flip: numeral_2_eq_2)
    then consider "m = 0" | "m = 3" | "prime (m + 1)" | "\<not>prime (m + 1)" "m > 3"
      by blast
    thus ?case
    proof cases
      assume "m = 0"
      thus ?case by auto
    next
      assume [simp]: "m = 3"
      have "real_of_int (fact m * Stirling (2 * n) m) =
              real_of_int (9 ^ n + 3 - 3 * 4 ^ n)"
        using \<open>n > 0\<close> by (auto simp: P'_def fact_numeral Stirling_closed_form power_mult
                                     atMost_nat_numeral binomial_fact zero_power)
      hence "int (fact m * Stirling (2 * n) m) = 9 ^ n + 3 - 3 * 4 ^ n"
        by linarith
      also have "[\<dots> = 1 ^ n + (-1) - 3 * 0 ^ n] (mod 4)"
        by (intro cong_add cong_diff cong_mult cong_pow) (auto simp: cong_def)
      finally have dvd: "4 dvd int (fact m * Stirling (2 * n) m)"
        using \<open>n > 0\<close> by (simp add: cong_0_iff zero_power)

      have "real_of_int ((- 1) ^ m * fact m * Stirling (2 * n) m + P' m) / (m + 1) =
              -(real_of_int (int (fact m * Stirling (2 * n) m)) / real_of_int 4)"
        using \<open>n > 0\<close> by (auto simp: P'_def)
      also have "\<dots> \<in> \<int>"
        by (intro Ints_minus of_int_divide_in_Ints dvd)
      finally show ?case . 
    next
      assume composite: "\<not>prime (m + 1)" and "m > 3"
      obtain a b where ab: "a * b = m + 1" "a > 1" "b > 1"
        using \<open>m > 3\<close> composite composite_imp_factors_nat[of "m + 1"] by auto
      have "a = b \<longrightarrow> a > 2"
      proof
        assume "a = b"
        hence "a ^ 2 > 2 ^ 2"
          using \<open>m > 3\<close> and ab by (auto simp: power2_eq_square)
        thus "a > 2" 
          using power_less_imp_less_base by blast
      qed
      hence dvd: "(m + 1) dvd fact m"
        using product_dvd_fact[of a b] ab by auto

      have "real_of_int ((- 1) ^ m * fact m * Stirling (2 * n) m + P' m) / real (m + 1) =
              real_of_int ((- 1) ^ m * Stirling (2 * n) m) * (real (fact m) / (m + 1))"
        using composite by (auto simp: P'_def)
      also have "\<dots> \<in> \<int>"
        by (intro Ints_mult Ints_real_of_nat_divide dvd) auto
      finally show ?case .
    next
      assume prime: "prime (m + 1)"
      have "real_of_int ((-1) ^ m * fact m * int (Stirling (2 * n) m)) =
              (\<Sum>j\<le>m. (-1) ^ m * (-1) ^ (m - j) * (m choose j) * real_of_int j ^ (2 * n))"
        by (simp add: Stirling_closed_form sum_divide_distrib sum_distrib_left mult_ac)
      also have "\<dots> = real_of_int (\<Sum>j\<le>m. (-1) ^ j * (m choose j) * j ^ (2 * n))"
        unfolding of_int_sum by (intro sum.cong) (auto simp: uminus_power_if)
      finally have "(-1) ^ m * fact m * int (Stirling (2 * n) m) =
                      (\<Sum>j\<le>m. (-1) ^ j * (m choose j) * j ^ (2 * n))" by linarith
      also have "\<dots> = (\<Sum>j<m+1. (-1) ^ j * (m choose j) * j ^ (2 * n))"
        by (intro sum.cong) auto
      also have "[\<dots> = (if m dvd 2 * n then - 1 else 0)] (mod (m + 1))"
        using vonStaudt_Clausen_lemma[of n "m + 1"] prime \<open>n > 0\<close> by simp
      also have "(if m dvd 2 * n then - 1 else 0) = - P' m"
        using prime by (simp add: P'_def)
      finally have "int (m + 1) dvd ((- 1) ^ m * fact m * int (Stirling (2 * n) m) + P' m)"
        by (simp add: cong_iff_dvd_diff)
      hence "real_of_int ((-1)^m * fact m * int (Stirling (2*n) m) + P' m) / of_int (int (m+1)) \<in> \<int>"
        by (intro of_int_divide_in_Ints)
      thus ?case by simp
    qed
  qed
  finally show ?thesis .
qed


subsection \<open>Denominators of Bernoulli numbers\<close>

text \<open>
  A consequence of the Von Staudt--Clausen theorem is that the denominator of $B_{2n}$ for $n > 0$
  is precisely the product of all prime numbers \<open>p\<close> such that \<open>p - 1\<close> divides $2n$.
  Since the denominator is obvious in all other cases, this fully characterises the denominator
  of Bernoulli numbers.
\<close>
definition bernoulli_denom :: "nat \<Rightarrow> nat" where
  "bernoulli_denom n =
     (if n = 1 then 2 else if n = 0 \<or> odd n then 1 else \<Prod>{p. prime p \<and> (p - 1) dvd n})"

definition bernoulli_num :: "nat \<Rightarrow> int" where
  "bernoulli_num n = \<lfloor>bernoulli n * bernoulli_denom n\<rfloor>"

lemma finite_bernoulli_denom_set: "n > (0 :: nat) \<Longrightarrow> finite {p. prime p \<and> (p - 1) dvd n}"
  by (rule finite_subset[of _ "{..2*n+1}"]) (auto dest!: dvd_imp_le)

lemma bernoulli_denom_0 [simp]:   "bernoulli_denom 0 = 1"
  and bernoulli_denom_1 [simp]:   "bernoulli_denom 1 = 2"
  and bernoulli_denom_Suc_0 [simp]:   "bernoulli_denom (Suc 0) = 2"
  and bernoulli_denom_odd [simp]: "n \<noteq> 1 \<Longrightarrow> odd n \<Longrightarrow> bernoulli_denom n = 1"
  and bernoulli_denom_even:
    "n > 0 \<Longrightarrow> even n \<Longrightarrow> bernoulli_denom n = \<Prod>{p. prime p \<and> (p - 1) dvd n}"
  by (auto simp: bernoulli_denom_def)

lemma bernoulli_denom_pos: "bernoulli_denom n > 0"
  by (auto simp: bernoulli_denom_def intro!: prod_pos)

lemma bernoulli_denom_nonzero [simp]: "bernoulli_denom n \<noteq> 0"
  using bernoulli_denom_pos[of n] by simp

lemma bernoulli_denom_code [code]:
  "bernoulli_denom n =
     (if n = 1 then 2 else if n = 0 \<or> odd n then 1
        else prod_list (filter (\<lambda>p. (p - 1) dvd n) (primes_upto (n + 1))))" (is "_ = ?rhs")
proof (cases "even n \<and> n > 0")
  case True
  hence "?rhs = prod_list (filter (\<lambda>p. (p - 1) dvd n) (primes_upto (n + 1)))"
    by auto
  also have "\<dots> = \<Prod>(set (filter (\<lambda>p. (p - 1) dvd n) (primes_upto (n + 1))))"
    by (subst prod.distinct_set_conv_list) auto
  also have "(set (filter (\<lambda>p. (p - 1) dvd n) (primes_upto (n + 1)))) =
               {p\<in>{..n+1}. prime p \<and> (p - 1) dvd n}"
    by (auto simp: set_primes_upto)
  also have "\<dots> = {p. prime p \<and> (p - 1) dvd n}"
    using True by (auto dest: dvd_imp_le)
  also have "\<Prod>\<dots> = bernoulli_denom n"
    using True by (simp add: bernoulli_denom_even)
  finally show ?thesis ..
qed auto

corollary%important bernoulli_denom_correct:
  obtains a :: int
    where "coprime a (bernoulli_denom m)"
          "bernoulli m = of_int a / of_nat (bernoulli_denom m)"
proof -
  consider "m = 0" | "m = 1" | "odd m" "m \<noteq> 1" | "even m" "m > 0"
    by auto
  thus ?thesis
  proof cases
    assume "m = 0"
    thus ?thesis by (intro that[of 1]) (auto simp: bernoulli_denom_def)
  next
    assume "m = 1"
    thus ?thesis by (intro that[of "-1"]) (auto simp: bernoulli_denom_def)
  next
    assume "odd m" "m \<noteq> 1"
    thus ?thesis by (intro that[of 0]) (auto simp: bernoulli_denom_def bernoulli_odd_eq_0)
  next
    assume "even m" "m > 0"
    define n where "n = m div 2"
    have [simp]: "m = 2 * n" and n: "n > 0"
      using \<open>even m\<close> \<open>m > 0\<close> by (auto simp: n_def intro!: Nat.gr0I)
  
    obtain a b where ab: "bernoulli (2 * n) = a / b" "coprime a (int b)" "b > 0"
      using Rats_int_div_natE[OF bernoulli_in_Rats] by metis
    define P where "P = {p. prime p \<and> (p - 1) dvd (2 * n)}"
    have "finite P" unfolding P_def
      using n by (intro finite_bernoulli_denom_set) auto
    from vonStaudt_Clausen[of n] obtain k where k: "bernoulli (2 * n) + (\<Sum>p\<in>P. 1/p) = of_int k"
      using \<open>n > 0\<close> by (auto simp: P_def Ints_def)
  
    define c where "c = (\<Sum>p\<in>P. \<Prod>(P-{p}))"
    from \<open>finite P\<close> have "(\<Sum>p\<in>P. 1 / p) = c / \<Prod>P"
      by (subst sum_inverses_conv_fraction) (auto simp: P_def prime_gt_0_nat c_def)
    moreover have P_nz: "prod real P > 0"
      using prime_gt_0_nat by (auto simp: P_def intro!: prod_pos)
    ultimately have eq: "bernoulli (2 * n) = (k * \<Prod>P - c) / \<Prod>P"
      using ab P_nz by (simp add: field_simps k [symmetric])
  
    have "gcd (k * \<Prod>P - int c) (\<Prod>P) = gcd (int c) (\<Prod>P)"
      by (simp add: gcd_diff_dvd_left1)
    also have "\<dots> = int (gcd c (\<Prod>P))"
      by (simp flip: gcd_int_int_eq)
    also have "coprime c (\<Prod>P)"
      unfolding c_def using \<open>finite P\<close>
      by (intro sum_prime_inverses_fraction_coprime) (auto simp: P_def)
    hence "gcd c (\<Prod>P) = 1"
      by simp
    finally have coprime: "coprime (k * \<Prod>P - int c) (\<Prod>P)"
      by (simp only: coprime_iff_gcd_eq_1)
  
    have eq': "\<Prod>P = bernoulli_denom (2 * n)"
      using n by (simp add: bernoulli_denom_def P_def)
    show ?thesis
      by (rule that[of "k * \<Prod>P - int c"]) (use eq eq' coprime in simp_all)
  qed
qed

lemma bernoulli_conv_num_denom: "bernoulli n = bernoulli_num n / bernoulli_denom n" (is ?th1)
  and coprime_bernoulli_num_denom: "coprime (bernoulli_num n) (bernoulli_denom n)" (is ?th2)
proof -
  obtain a :: int where a: "coprime a (bernoulli_denom n)" "bernoulli n = a / bernoulli_denom n"
    using bernoulli_denom_correct[of n] by blast
  thus ?th1 by (simp add: bernoulli_num_def)
  with a show ?th2 by auto
qed

text \<open>
  Two obvious consequences from this are that the denominators of all odd Bernoulli numbers
  except for the first one are squarefree and multiples of 6:
\<close>
lemma six_divides_bernoulli_denom:
  assumes "even n" "n > 0"
  shows   "6 dvd bernoulli_denom n"
proof -
  from assms have "\<Prod>{2, 3} dvd \<Prod>{p. prime p \<and> (p - 1) dvd n}"
    by (intro prod_dvd_prod_subset finite_bernoulli_denom_set) auto
  with assms show ?thesis by (simp add: bernoulli_denom_even)
qed

lemma squarefree_bernoulli_denom: "squarefree (bernoulli_denom n)"
  by (auto intro!: squarefree_prod_coprime primes_coprime
           simp: bernoulli_denom_def squarefree_prime)

text \<open>
  Furthermore, the denominator of $B_n$ divides $2(2^n - 1)$. This also gives us an
  upper bound on the denominators.
\<close>
lemma bernoulli_denom_dvd: "bernoulli_denom n dvd (2 * (2 ^ n - 1))"
proof (cases "even n \<and> n > 0")
  case True
  hence "bernoulli_denom n = \<Prod>{p. prime p \<and> (p - 1) dvd n}"
    by (auto simp: bernoulli_denom_def)
  also have "\<dots> dvd (2 * (2 ^ n - 1))"
  proof (rule prime_prod_dvdI; clarify?)
    from True show "finite {p. prime p \<and> (p - 1) dvd n}"
      by (intro finite_bernoulli_denom_set) auto
  next
    fix p assume p: "prime p" "(p - 1) dvd n"
    show "p dvd (2 * (2 ^ n - 1))"
    proof (cases "p = 2")
      case False
      with p have "p > 2"
        using prime_gt_1_nat[of p] by force
      have "[2 ^ n - 1 = 1 - 1] (mod p)"
        using p \<open>p > 2\<close> prime_odd_nat
        by (intro cong_diff_nat Carmichael_divides) (auto simp: Carmichael_prime)
      hence "p dvd (2 ^ n - 1)"
        by (simp add: cong_0_iff)
      thus ?thesis by simp
    qed auto
  qed auto
  finally show ?thesis .
qed (auto simp: bernoulli_denom_def)

corollary bernoulli_bound:
  assumes "n > 0"
  shows   "bernoulli_denom n \<le> 2 * (2 ^ n - 1)"
proof -
  from assms have "2 ^ n > (1 :: nat)"
    by (intro one_less_power) auto
  thus ?thesis
    by (intro dvd_imp_le[OF bernoulli_denom_dvd]) auto
qed

text \<open>
  It can also be shown fairly easily from the von Staudt--Clausen theorem that if \<open>p\<close> is prime
  and \<open>2p + 1\<close> is not, then $B_{2p} \equiv \frac{1}{6}\ (\text{mod}\ 1)$ or, equivalently,
  the denominator of $B_{2p}$ is 6 and the numerator is of the form $6k+1$.

  This is the case e.\,g.\ for any primes of the form $3k+1$ or $5k+2$.
\<close>
lemma bernoulli_denom_prime_nonprime:
  assumes "prime p" "\<not>prime (2 * p + 1)"
  shows   "bernoulli (2 * p) - 1 / 6 \<in> \<int>"
          "[bernoulli_num (2 * p) = 1] (mod 6)"
          "bernoulli_denom (2 * p) = 6"
proof -
  from assms have "p > 0"
    using prime_gt_0_nat by auto
  define P where "P = {q. prime q \<and> (q - 1) dvd (2 * p)}"
  have P_eq: "P = {2, 3}"
  proof (intro equalityI subsetI)
    fix q assume "q \<in> P"
    hence q: "prime q" "(q - 1) dvd (2 * p)"
      by (simp_all add: P_def)
    have "q - 1 \<in> {1, 2, p, 2 * p}"
    proof -
      obtain b c where bc: "b dvd 2" "c dvd p" "q - 1 = b * c"
        using division_decomp[OF q(2)] by auto
      from bc have "b \<in> {1, 2}" and "c \<in> {1, p}"
        using prime_nat_iff two_is_prime_nat \<open>prime p\<close> by blast+
      with bc show ?thesis by auto
    qed
    hence "q \<in> {2, 3, p + 1, 2 * p + 1}"
      using prime_gt_0_nat[OF \<open>prime q\<close>] by force
    moreover have "q \<noteq> p + 1"
    proof
      assume [simp]: "q = p + 1"
      have "even q \<or> even p" by auto
      with \<open>prime q\<close> and \<open>prime p\<close> have "p = 2"
        using prime_odd_nat[of p] prime_odd_nat[of q] prime_gt_1_nat[of p] prime_gt_1_nat[of q]
        by force
      with assms show False by (simp add: cong_def)
    qed
    ultimately show "q \<in> {2, 3}"
      using assms \<open>prime q\<close> by auto
  qed (auto simp: P_def)

  show [simp]: "bernoulli_denom (2 * p) = 6"
    using \<open>p > 0\<close> P_eq by (subst bernoulli_denom_even) (auto simp: P_def)
  have "bernoulli (2 * p) + 5 / 6 \<in> \<int>"
    using \<open>p > 0\<close> P_eq vonStaudt_Clausen[of p] by (auto simp: P_def)
  hence "bernoulli (2 * p) + 5 / 6 - 1 \<in> \<int>"
    by (intro Ints_diff) auto
  thus "bernoulli (2 * p) - 1 / 6 \<in> \<int>" by simp
  then obtain a where "of_int a = bernoulli (2 * p) - 1 / 6"
    by (elim Ints_cases) auto
  hence "real_of_int a = real_of_int (bernoulli_num (2 * p) - 1) / 6"
    by (auto simp: bernoulli_conv_num_denom)
  hence "bernoulli_num (2 * p) - 1 = 6 * a"
    by simp
  thus "[bernoulli_num (2 * p) = 1] (mod 6)"
    by (auto simp: cong_iff_dvd_diff)
qed


subsection \<open>Akiyama--Tanigawa algorithm\<close>
  
text \<open>
  First, we define the Akiyama--Tanigawa number triangle as shown by Kaneko~\cite{kaneko2000}.
  We define this generically, parametrised by the first row. This makes the proofs a 
  little bit more modular.
\<close>

fun gen_akiyama_tanigawa :: "(nat \<Rightarrow> real) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> real" where
  "gen_akiyama_tanigawa f 0 m = f m"
| "gen_akiyama_tanigawa f (Suc n) m = 
     real (Suc m) * (gen_akiyama_tanigawa f n m - gen_akiyama_tanigawa f n (Suc m))"
  
lemma gen_akiyama_tanigawa_0 [simp]: "gen_akiyama_tanigawa f 0 = f"
  by (simp add: fun_eq_iff)

text \<open>
  The ``regular'' Akiyama--Tanigawa triangle is the one that is used for reading off
  Bernoulli numbers:
\<close>

definition akiyama_tanigawa where
  "akiyama_tanigawa = gen_akiyama_tanigawa (\<lambda>n. 1 / real (Suc n))"

context
begin

private definition AT_fps :: "(nat \<Rightarrow> real) \<Rightarrow> nat \<Rightarrow> real fps" where
  "AT_fps f n = (fps_X - 1) * Abs_fps (gen_akiyama_tanigawa f n)"

private lemma AT_fps_Suc: "AT_fps f (Suc n) = (fps_X - 1) * fps_deriv (AT_fps f n)"
proof (rule fps_ext)
  fix m :: nat
  show "AT_fps f (Suc n) $ m = ((fps_X - 1) * fps_deriv (AT_fps f n)) $ m"
    by (cases m) (simp_all add: AT_fps_def fps_deriv_def algebra_simps)
qed
  
private lemma AT_fps_altdef:
  "AT_fps f n = 
     (\<Sum>m\<le>n. fps_const (real (Stirling n m)) * (fps_X - 1)^m * (fps_deriv ^^ m) (AT_fps f 0))"
proof -
  have "AT_fps f n = (fps_XD' (fps_X - 1) ^^ n) (AT_fps f 0)"
    by (induction n) (simp_all add: AT_fps_Suc fps_XD'_def)
  also have "\<dots> = (\<Sum>m\<le>n. fps_const (real (Stirling n m)) * (fps_X - 1) ^ m * 
                             (fps_deriv ^^ m) (AT_fps f 0))"
    by (rule fps_XD'_funpow_affine) simp_all
  finally show ?thesis .
qed

private lemma AT_fps_0_nth: "AT_fps f 0 $ n = (if n = 0 then -f 0 else f (n - 1) - f n)"
  by (simp add: AT_fps_def algebra_simps)


text \<open>
  The following fact corresponds to Proposition 1 in Kaneko's proof:
\<close>
lemma gen_akiyama_tanigawa_n_0: 
  "gen_akiyama_tanigawa f n 0 = 
     (\<Sum>k\<le>n. (- 1) ^ k * fact k * real (Stirling (Suc n) (Suc k)) * f k)"
proof (cases "n = 0")
  case False
  note [simp del] = gen_akiyama_tanigawa.simps
  have "gen_akiyama_tanigawa f n 0 = -(AT_fps f n $ 0)" by (simp add: AT_fps_def)
  also have "AT_fps f n $ 0 = (\<Sum>k\<le>n. real (Stirling n k) * (- 1) ^ k * (fact k * AT_fps f 0 $ k))"
    by (subst AT_fps_altdef) (simp add: fps_sum_nth fps_nth_power_0 fps_0th_higher_deriv)
  also have "\<dots> = (\<Sum>k\<le>n. real (Stirling n k) * (- 1) ^ k * (fact k * (f (k - 1) - f k)))"
    using False by (intro sum.cong refl) (auto simp: Stirling_n_0 AT_fps_0_nth)
  also have "\<dots> = (\<Sum>k\<le>n. fact k * (real (Stirling n k) * (- 1) ^ k) * f (k - 1)) -
                    (\<Sum>k\<le>n. fact k * (real (Stirling n k) * (- 1) ^ k) * f k)"
     (is "_ = sum ?f _ - ?S2") by (simp add: sum_subtractf algebra_simps)
  also from False have "sum ?f {..n} = sum ?f {0<..n}"
    by (intro sum.mono_neutral_right) (auto simp: Stirling_n_0)
  also have "\<dots> = sum ?f {0<..Suc n}"
    by (intro sum.mono_neutral_left) auto
  also have "{0<..Suc n} = {Suc 0..Suc n}" by auto
  also have "sum ?f \<dots> = sum (\<lambda>n. ?f (Suc n)) {0..n}"
    by (subst sum.atLeast_Suc_atMost_Suc_shift) simp_all
  also have "{0..n} = {..n}" by auto
  also have "sum (\<lambda>n. ?f (Suc n)) \<dots> - ?S2 = 
               (\<Sum>k\<le>n. -((-1)^k * fact k * real (Stirling (Suc n) (Suc k)) * f k))"
    by (subst sum_subtractf [symmetric], intro sum.cong) (simp_all add: algebra_simps)
  also have "-\<dots> = (\<Sum>k\<le>n. ((-1)^k * fact k * real (Stirling (Suc n) (Suc k)) * f k))"
    by (simp add: sum_negf)
  finally show ?thesis .
qed simp_all

  
text \<open>
  The following lemma states that for $A(x) := \sum_{k=0}^\infty a_{0,k} x^k$, we have
    \[\sum_{n=0}^\infty a_{n,0}\frac{x^n}{n!} = e^x A(1 - e^x)\]
  which correspond's to Kaneko's remark at the end of Section 2. This seems to be easier 
  to formalise than his actual proof of his Theorem 1, since his proof contains 
  an infinite sum of formal power series, and it was unclear to us how to capture this
  formally.
\<close>
lemma gen_akiyama_tanigawa_fps: 
  "Abs_fps (\<lambda>n. gen_akiyama_tanigawa f n 0 / fact n) = fps_exp 1 * fps_compose (Abs_fps f) (1 - fps_exp 1)"
proof (rule fps_ext)
  fix n :: nat     
  have "(fps_const (fact n) * 
          (fps_compose (Abs_fps (\<lambda>n. gen_akiyama_tanigawa f 0 n)) (1 - fps_exp 1) * fps_exp 1)) $ n = 
          (\<Sum>m\<le>n. \<Sum>k\<le>m. (1 - fps_exp 1) ^ k $ m * fact n / fact (n - m) * f k)"
    unfolding fps_mult_left_const_nth
    by (simp add: fps_times_def fps_compose_def gen_akiyama_tanigawa_n_0 sum_Stirling_binomial
                  field_simps sum_distrib_left sum_distrib_right atLeast0AtMost
             del: Stirling.simps of_nat_Suc) 
  also have "\<dots> = (\<Sum>m\<le>n. \<Sum>k\<le>m. (-1)^k * fact k * real (Stirling m k) * real (n choose m) * f k)"
  proof (intro sum.cong refl, goal_cases)
    case (1 m k)
    have "(1 - fps_exp 1 :: real fps) ^ k = (-fps_exp 1 + 1 :: real fps) ^ k" by simp
    also have "\<dots> = (\<Sum>i\<le>k. of_nat (k choose i) * (-1) ^ i * fps_exp (real i))" 
      by (subst binomial_ring) (simp add: atLeast0AtMost power_minus' fps_exp_power_mult mult.assoc)
    also have "\<dots> = (\<Sum>i\<le>k. fps_const (real (k choose i) * (-1) ^ i) * fps_exp (real i))"
      by (simp add: fps_const_mult [symmetric] fps_of_nat fps_const_power [symmetric] 
                    fps_const_neg [symmetric] del: fps_const_mult fps_const_power fps_const_neg)
    also have "\<dots> $ m = (\<Sum>i\<le>k. real (k choose i) * (- 1) ^ i * real i ^ m) / fact m" 
      (is "_ = ?S / _") by (simp add: fps_sum_nth sum_divide_distrib [symmetric])
    also have "?S = (-1) ^ k * (\<Sum>i\<le>k. (-1) ^ (k - i) * real (k choose i) * real i ^ m)"
      by (subst sum_distrib_left, intro sum.cong refl) (auto simp: minus_one_power_iff)
    also have "(\<Sum>i\<le>k. (-1) ^ (k - i) * real (k choose i) * real i ^ m) = 
                 real (Stirling m k) * fact k"
      by (subst Stirling_closed_form) (simp_all add: field_simps)
    finally have *: "(1 - fps_exp 1 :: real fps) ^ k $ m * fact n / fact (n - m) = 
                       (- 1) ^ k * fact k * real (Stirling m k) * real (n choose m)"
      using 1 by (simp add: binomial_fact del: of_nat_Suc)
    show ?case using 1 by (subst *) simp
  qed
  also have "\<dots> = (\<Sum>m\<le>n. \<Sum>k\<le>n. (- 1) ^ k * fact k * 
                      real (Stirling m k) * real (n choose m) * f k)"
    by (rule sum.cong[OF refl], rule sum.mono_neutral_left) auto
  also have "\<dots> = (\<Sum>k\<le>n. \<Sum>m\<le>n. (- 1) ^ k * fact k * 
                      real (Stirling m k) * real (n choose m) * f k)"
    by (rule sum.swap)
  also have "\<dots> = gen_akiyama_tanigawa f n 0"
    by (simp add: gen_akiyama_tanigawa_n_0 sum_Stirling_binomial sum_distrib_left sum_distrib_right
          mult.assoc atLeast0AtMost del: Stirling.simps)
  finally show "Abs_fps (\<lambda>n. gen_akiyama_tanigawa f n 0 / fact n) $ n =
                  (fps_exp 1 * (Abs_fps f oo 1 - fps_exp 1)) $ n"
    by (subst (asm) fps_mult_left_const_nth) (simp add: field_simps del: of_nat_Suc)
qed

text \<open>
  As Kaneko notes in his afore-mentioned remark, if we let $a_{0,k} = \frac{1}{k+1}$, we obtain
    \[A(z) = \sum_{k=0}^\infty \frac{x^k}{k+1} = -\frac{\ln (1 - x)}{x}\]
  and therefore
    \[\sum_{n=0}^\infty a_{n,0} \frac{x^n}{n!} = \frac{x e^x}{e^x - 1} = \frac{x}{1 - e^{-x}},\]
  which immediately gives us the connection to the positive Bernoulli numbers.
\<close>
theorem bernoulli'_conv_akiyama_tanigawa: "bernoulli' n = akiyama_tanigawa n 0"
proof -  
  define f where "f = (\<lambda>n. 1 / real (Suc n))"
  note gen_akiyama_tanigawa_fps[of f]
  also {
    have "fps_ln 1 = fps_X * Abs_fps (\<lambda>n. (-1)^n / real (Suc n))"
      by (intro fps_ext) (simp del: of_nat_Suc add: fps_ln_def)
    hence "fps_ln 1 / fps_X = Abs_fps (\<lambda>n. (-1)^n / real (Suc n))" 
      by (metis fps_X_neq_zero nonzero_mult_div_cancel_left)
    also have "fps_compose \<dots> (-fps_X) = Abs_fps f"
      by (simp add: fps_compose_uminus' fps_eq_iff f_def)
    finally have "Abs_fps f = fps_compose (fps_ln 1 / fps_X) (-fps_X)" ..
    also have "fps_ln 1 / fps_X oo - fps_X oo 1 - fps_exp (1::real) = fps_ln 1 / fps_X oo fps_exp 1 - 1"
      by (subst fps_compose_assoc [symmetric])
         (simp_all add: fps_compose_uminus)
    also have "\<dots> = (fps_ln 1 oo fps_exp 1 - 1) / (fps_exp 1 - 1)"
      by (subst fps_compose_divide_distrib) auto
    also have "\<dots> = fps_X / (fps_exp 1 - 1)" by (simp add: fps_ln_fps_exp_inv fps_inv_fps_exp_compose)
    finally have "Abs_fps f oo 1 - fps_exp 1 = fps_X / (fps_exp 1 - 1)" .
  }
  also have "fps_exp (1::real) - 1 = (1 - fps_exp (-1)) * fps_exp 1"
    by (simp add: algebra_simps fps_exp_add_mult [symmetric])
  also have "fps_exp 1 * (fps_X / \<dots>) = bernoulli'_fps" unfolding bernoulli'_fps_def
    by (subst dvd_div_mult2_eq) (auto simp: fps_dvd_iff intro!: subdegree_leI)
  finally have "Abs_fps (\<lambda>n. gen_akiyama_tanigawa f n 0 / fact n) = bernoulli'_fps" .
  thus ?thesis by (simp add: fps_eq_iff akiyama_tanigawa_def f_def)
qed
  
theorem bernoulli_conv_akiyama_tanigawa: 
  "bernoulli n = akiyama_tanigawa n 0 - (if n = 1 then 1 else 0)"
  using bernoulli'_conv_akiyama_tanigawa[of n] by (auto simp: bernoulli_conv_bernoulli')

end

end

  
subsection \<open>Efficient code\<close>
  
text \<open>
  We can now compute parts of the Akiyama--Tanigawa (and thereby Bernoulli numbers) 
  with reasonable efficiency but iterating the recurrence row by row. We essentially 
  start with some finite prefix of the zeroth row, say of length $n$, and then apply 
  the recurrence one to get a prefix of the first row of length $n - 1$ etc.
\<close>

fun akiyama_tanigawa_step_aux :: "nat \<Rightarrow> real list \<Rightarrow> real list" where
  "akiyama_tanigawa_step_aux m (x # y # xs) = 
     real m * (x - y) # akiyama_tanigawa_step_aux (Suc m) (y # xs)"
| "akiyama_tanigawa_step_aux m xs = []"

lemma length_akiyama_tanigawa_step_aux [simp]: 
  "length (akiyama_tanigawa_step_aux m xs) = length xs - 1"
  by (induction m xs rule: akiyama_tanigawa_step_aux.induct) simp_all
    
lemma akiyama_tanigawa_step_aux_eq_Nil_iff [simp]:
  "akiyama_tanigawa_step_aux m xs = [] \<longleftrightarrow> length xs < 2"
  by (subst length_0_conv [symmetric]) auto

lemma nth_akiyama_tanigawa_step_aux: 
  "n < length xs - 1 \<Longrightarrow> 
     akiyama_tanigawa_step_aux m xs ! n = real (m + n) * (xs ! n - xs ! Suc n)"
proof (induction m xs arbitrary: n rule: akiyama_tanigawa_step_aux.induct)
  case (1 m x y xs n)
  thus ?case by (cases n) auto
qed auto

definition gen_akiyama_tanigawa_row where
  "gen_akiyama_tanigawa_row f n l u = map (gen_akiyama_tanigawa f n) [l..<u]"

lemma length_gen_akiyama_tanigawa_row [simp]: "length (gen_akiyama_tanigawa_row f n l u) = u - l"
  by (simp add: gen_akiyama_tanigawa_row_def)

lemma gen_akiyama_tanigawa_row_eq_Nil_iff [simp]:
  "gen_akiyama_tanigawa_row f n l u = [] \<longleftrightarrow> l \<ge> u"
  by (auto simp add: gen_akiyama_tanigawa_row_def)
    
lemma nth_gen_akiyama_tanigawa_row: 
  "i < u - l \<Longrightarrow> gen_akiyama_tanigawa_row f n l u ! i = gen_akiyama_tanigawa f n (i + l)"
  by (simp add: gen_akiyama_tanigawa_row_def add_ac)
    
lemma gen_akiyama_tanigawa_row_0 [code]:
  "gen_akiyama_tanigawa_row f 0 l u = map f [l..<u]"
  by (simp add: gen_akiyama_tanigawa_row_def)
    
lemma gen_akiyama_tanigawa_row_Suc [code]:
  "gen_akiyama_tanigawa_row f (Suc n) l u = 
     akiyama_tanigawa_step_aux (Suc l) (gen_akiyama_tanigawa_row f n l (Suc u))"
  by (rule nth_equalityI) (auto simp: nth_gen_akiyama_tanigawa_row nth_akiyama_tanigawa_step_aux)

lemma gen_akiyama_tanigawa_row_numeral:
  "gen_akiyama_tanigawa_row f (numeral n) l u = 
     akiyama_tanigawa_step_aux (Suc l) (gen_akiyama_tanigawa_row f (pred_numeral n) l (Suc u))"
  by (simp only: numeral_eq_Suc gen_akiyama_tanigawa_row_Suc)

lemma gen_akiyama_tanigawa_code [code]:
  "gen_akiyama_tanigawa f n k = hd (gen_akiyama_tanigawa_row f n k (Suc k))"
  by (subst hd_conv_nth) (auto simp: nth_gen_akiyama_tanigawa_row length_0_conv [symmetric])   
    

definition akiyama_tanigawa_row where
  "akiyama_tanigawa_row n l u = map (akiyama_tanigawa n) [l..<u]"

lemma length_akiyama_tanigawa_row [simp]: "length (akiyama_tanigawa_row n l u) = u - l"
  by (simp add: akiyama_tanigawa_row_def)

lemma akiyama_tanigawa_row_eq_Nil_iff [simp]:
  "akiyama_tanigawa_row n l u = [] \<longleftrightarrow> l \<ge> u"
  by (auto simp add: akiyama_tanigawa_row_def)
    
lemma nth_akiyama_tanigawa_row: 
  "i < u - l \<Longrightarrow> akiyama_tanigawa_row n l u ! i = akiyama_tanigawa n (i + l)"
  by (simp add: akiyama_tanigawa_row_def add_ac)
    
lemma akiyama_tanigawa_row_0 [code]:
  "akiyama_tanigawa_row 0 l u = map (\<lambda>n. inverse (real (Suc n))) [l..<u]"
  by (simp add: akiyama_tanigawa_row_def akiyama_tanigawa_def divide_simps)
    
lemma akiyama_tanigawa_row_Suc [code]:
  "akiyama_tanigawa_row (Suc n) l u = 
     akiyama_tanigawa_step_aux (Suc l) (akiyama_tanigawa_row n l (Suc u))"
  by (rule nth_equalityI) (auto simp: nth_akiyama_tanigawa_row 
                             nth_akiyama_tanigawa_step_aux akiyama_tanigawa_def)

lemma akiyama_tanigawa_row_numeral:
  "akiyama_tanigawa_row (numeral n) l u = 
     akiyama_tanigawa_step_aux (Suc l) (akiyama_tanigawa_row (pred_numeral n) l (Suc u))"
  by (simp only: numeral_eq_Suc akiyama_tanigawa_row_Suc)

lemma akiyama_tanigawa_code [code]:
  "akiyama_tanigawa n k = hd (akiyama_tanigawa_row n k (Suc k))"
  by (subst hd_conv_nth) (auto simp: nth_akiyama_tanigawa_row length_0_conv [symmetric])    


lemma bernoulli_code [code]:
  "bernoulli n = 
     (if n = 0 then 1 else if n = 1 then -1/2 else if odd n then 0 else akiyama_tanigawa n 0)"
proof (cases "n = 0 \<or> n = 1 \<or> odd n")
  case False
  thus ?thesis by (auto simp add: bernoulli_conv_akiyama_tanigawa)
qed (auto simp: bernoulli_odd_eq_0)
  
lemma bernoulli'_code [code]:
  "bernoulli' n =
     (if n = 0 then 1 else if n = 1 then 1/2 else if odd n then 0 else akiyama_tanigawa n 0)"
  by (simp add: bernoulli'_def bernoulli_code)

  
text \<open>
  Evaluation with the simplifier is much slower than by reflection, but can still be done 
  with much better efficiency than before:
\<close>
lemmas eval_bernoulli =
  akiyama_tanigawa_code akiyama_tanigawa_row_numeral
  numeral_2_eq_2 [symmetric] akiyama_tanigawa_row_Suc upt_conv_Cons
  akiyama_tanigawa_row_0 bernoulli_code[of "numeral n" for n]

lemmas eval_bernoulli' = eval_bernoulli bernoulli'_code[of "numeral n" for n]

lemmas eval_bernpoly = 
  bernpoly_def atMost_nat_numeral power_eq_if binomial_fact fact_numeral eval_bernoulli

(* This should only take a few seconds *)
lemma bernoulli_upto_20 [simp]:
  "bernoulli 2 = 1 / 6" 
  "bernoulli 4 = -(1 / 30)" 
  "bernoulli 6 = 1 / 42" 
  "bernoulli 8 = - (1 / 30)"
  "bernoulli 10 = 5 / 66" 
  "bernoulli 12 = - (691 / 2730)" 
  "bernoulli 14 = 7 / 6"
  "bernoulli 16 = -(3617 / 510)" 
  "bernoulli 18 = 43867 / 798" 
  "bernoulli 20 = -(174611 / 330)"
  by (simp_all add: eval_bernoulli)
    
lemma bernoulli'_upto_20 [simp]:
  "bernoulli' 2 = 1 / 6" 
  "bernoulli' 4 = -(1 / 30)" 
  "bernoulli' 6 = 1 / 42" 
  "bernoulli' 8 = - (1 / 30)"
  "bernoulli' 10 = 5 / 66" 
  "bernoulli' 12 = - (691 / 2730)" 
  "bernoulli' 14 = 7 / 6"
  "bernoulli' 16 = -(3617 / 510)" 
  "bernoulli' 18 = 43867 / 798" 
  "bernoulli' 20 = -(174611 / 330)"
  by (simp_all add: bernoulli'_def)

end