Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 57,362 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
(*
File: Banach_Steinhaus_Missing.thy
Author: Dominique Unruh, University of Tartu
Author: Jose Manuel Rodriguez Caballero, University of Tartu
*)
section \<open>Missing results for the proof of Banach-Steinhaus theorem\<close>
theory Banach_Steinhaus_Missing
imports
"HOL-Analysis.Bounded_Linear_Function"
"HOL-Analysis.Line_Segment"
begin
subsection \<open>Results missing for the proof of Banach-Steinhaus theorem\<close>
text \<open>
The results proved here are preliminaries for the proof of Banach-Steinhaus theorem using Sokal's
approach, but they do not explicitly appear in Sokal's paper ~\cite{sokal2011reall}.
\<close>
text\<open>Notation for the norm\<close>
bundle notation_norm begin
notation norm ("\<parallel>_\<parallel>")
end
bundle no_notation_norm begin
no_notation norm ("\<parallel>_\<parallel>")
end
unbundle notation_norm
text\<open>Notation for apply bilinear function\<close>
bundle notation_blinfun_apply begin
notation blinfun_apply (infixr "*\<^sub>v" 70)
end
bundle no_notation_blinfun_apply begin
no_notation blinfun_apply (infixr "*\<^sub>v" 70)
end
unbundle notation_blinfun_apply
lemma bdd_above_plus:
fixes f::\<open>'a \<Rightarrow> real\<close>
assumes \<open>bdd_above (f ` S)\<close> and \<open>bdd_above (g ` S)\<close>
shows \<open>bdd_above ((\<lambda> x. f x + g x) ` S)\<close>
text \<open>
Explanation: If the images of two real-valued functions \<^term>\<open>f\<close>,\<^term>\<open>g\<close> are bounded above on a
set \<^term>\<open>S\<close>, then the image of their sum is bounded on \<^term>\<open>S\<close>.
\<close>
proof-
obtain M where \<open>\<And> x. x\<in>S \<Longrightarrow> f x \<le> M\<close>
using \<open>bdd_above (f ` S)\<close> unfolding bdd_above_def by blast
obtain N where \<open>\<And> x. x\<in>S \<Longrightarrow> g x \<le> N\<close>
using \<open>bdd_above (g ` S)\<close> unfolding bdd_above_def by blast
have \<open>\<And> x. x\<in>S \<Longrightarrow> f x + g x \<le> M + N\<close>
using \<open>\<And>x. x \<in> S \<Longrightarrow> f x \<le> M\<close> \<open>\<And>x. x \<in> S \<Longrightarrow> g x \<le> N\<close> by fastforce
thus ?thesis unfolding bdd_above_def by blast
qed
text\<open>The maximum of two functions\<close>
definition pointwise_max:: "('a \<Rightarrow> 'b::ord) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" where
\<open>pointwise_max f g = (\<lambda>x. max (f x) (g x))\<close>
lemma max_Sup_absorb_left:
fixes f g::\<open>'a \<Rightarrow> real\<close>
assumes \<open>X \<noteq> {}\<close> and \<open>bdd_above (f ` X)\<close> and \<open>bdd_above (g ` X)\<close> and \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close>
shows \<open>Sup ((pointwise_max f g) ` X) = Sup (f ` X)\<close>
text \<open>Explanation: For real-valued functions \<^term>\<open>f\<close> and \<^term>\<open>g\<close>, if the supremum of \<^term>\<open>f\<close> is
greater-equal the supremum of \<^term>\<open>g\<close>, then the supremum of \<^term>\<open>max f g\<close> equals the supremum of
\<^term>\<open>f\<close>. (Under some technical conditions.)\<close>
proof-
have y_Sup: \<open>y \<in> ((\<lambda> x. max (f x) (g x)) ` X) \<Longrightarrow> y \<le> Sup (f ` X)\<close> for y
proof-
assume \<open>y \<in> ((\<lambda> x. max (f x) (g x)) ` X)\<close>
then obtain x where \<open>y = max (f x) (g x)\<close> and \<open>x \<in> X\<close>
by blast
have \<open>f x \<le> Sup (f ` X)\<close>
by (simp add: \<open>x \<in> X\<close> \<open>bdd_above (f ` X)\<close> cSUP_upper)
moreover have \<open>g x \<le> Sup (g ` X)\<close>
by (simp add: \<open>x \<in> X\<close> \<open>bdd_above (g ` X)\<close> cSUP_upper)
ultimately have \<open>max (f x) (g x) \<le> Sup (f ` X)\<close>
using \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close> by auto
thus ?thesis by (simp add: \<open>y = max (f x) (g x)\<close>)
qed
have y_f_X: \<open>y \<in> f ` X \<Longrightarrow> y \<le> Sup ((\<lambda> x. max (f x) (g x)) ` X)\<close> for y
proof-
assume \<open>y \<in> f ` X\<close>
then obtain x where \<open>x \<in> X\<close> and \<open>y = f x\<close>
by blast
have \<open>bdd_above ((\<lambda> \<xi>. max (f \<xi>) (g \<xi>)) ` X)\<close>
by (metis (no_types) \<open>bdd_above (f ` X)\<close> \<open>bdd_above (g ` X)\<close> bdd_above_image_sup sup_max)
moreover have \<open>e > 0 \<Longrightarrow> \<exists> k \<in> (\<lambda> \<xi>. max (f \<xi>) (g \<xi>)) ` X. y \<le> k + e\<close>
for e::real
using \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close> by (smt \<open>x \<in> X\<close> \<open>y = f x\<close> image_eqI)
ultimately show ?thesis
using \<open>x \<in> X\<close> \<open>y = f x\<close> cSUP_upper by fastforce
qed
have \<open>Sup ((\<lambda> x. max (f x) (g x)) ` X) \<le> Sup (f ` X)\<close>
using y_Sup by (simp add: \<open>X \<noteq> {}\<close> cSup_least)
moreover have \<open>Sup ((\<lambda> x. max (f x) (g x)) ` X) \<ge> Sup (f ` X)\<close>
using y_f_X by (metis (mono_tags) cSup_least calculation empty_is_image)
ultimately show ?thesis unfolding pointwise_max_def by simp
qed
lemma max_Sup_absorb_right:
fixes f g::\<open>'a \<Rightarrow> real\<close>
assumes \<open>X \<noteq> {}\<close> and \<open>bdd_above (f ` X)\<close> and \<open>bdd_above (g ` X)\<close> and \<open>Sup (f ` X) \<le> Sup (g ` X)\<close>
shows \<open>Sup ((pointwise_max f g) ` X) = Sup (g ` X)\<close>
text \<open>
Explanation: For real-valued functions \<^term>\<open>f\<close> and \<^term>\<open>g\<close> and a nonempty set \<^term>\<open>X\<close>, such that
the \<^term>\<open>f\<close> and \<^term>\<open>g\<close> are bounded above on \<^term>\<open>X\<close>, if the supremum of \<^term>\<open>f\<close> on \<^term>\<open>X\<close> is
lower-equal the supremum of \<^term>\<open>g\<close> on \<^term>\<open>X\<close>, then the supremum of \<^term>\<open>pointwise_max f g\<close> on \<^term>\<open>X\<close>
equals the supremum of \<^term>\<open>g\<close>. This is the right analog of @{text max_Sup_absorb_left}.
\<close>
proof-
have \<open>Sup ((pointwise_max g f) ` X) = Sup (g ` X)\<close>
using assms by (simp add: max_Sup_absorb_left)
moreover have \<open>pointwise_max g f = pointwise_max f g\<close>
unfolding pointwise_max_def by auto
ultimately show ?thesis by simp
qed
lemma max_Sup:
fixes f g::\<open>'a \<Rightarrow> real\<close>
assumes \<open>X \<noteq> {}\<close> and \<open>bdd_above (f ` X)\<close> and \<open>bdd_above (g ` X)\<close>
shows \<open>Sup ((pointwise_max f g) ` X) = max (Sup (f ` X)) (Sup (g ` X))\<close>
text \<open>
Explanation: Let \<^term>\<open>X\<close> be a nonempty set. Two supremum over \<^term>\<open>X\<close> of the maximum of two
real-value functions is equal to the maximum of their suprema over \<^term>\<open>X\<close>, provided that the
functions are bounded above on \<^term>\<open>X\<close>.
\<close>
proof(cases \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close>)
case True thus ?thesis by (simp add: assms(1) assms(2) assms(3) max_Sup_absorb_left)
next
case False
have f1: "\<not> 0 \<le> Sup (f ` X) + - 1 * Sup (g ` X)"
using False by linarith
hence "Sup (Banach_Steinhaus_Missing.pointwise_max f g ` X) = Sup (g ` X)"
by (simp add: assms(1) assms(2) assms(3) max_Sup_absorb_right)
thus ?thesis
using f1 by linarith
qed
lemma identity_telescopic:
fixes x :: \<open>_ \<Rightarrow> 'a::real_normed_vector\<close>
assumes \<open>x \<longlonglongrightarrow> l\<close>
shows \<open>(\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) \<longlonglongrightarrow> l - x n\<close>
text\<open>
Expression of a limit as a telescopic series.
Explanation: If \<^term>\<open>x\<close> converges to \<^term>\<open>l\<close> then the sum \<^term>\<open>sum (\<lambda> k. x (Suc k) - x k) {n..N}\<close>
converges to \<^term>\<open>l - x n\<close> as \<^term>\<open>N\<close> goes to infinity.
\<close>
proof-
have \<open>(\<lambda> p. x (p + Suc n)) \<longlonglongrightarrow> l\<close>
using \<open>x \<longlonglongrightarrow> l\<close> by (rule LIMSEQ_ignore_initial_segment)
hence \<open>(\<lambda> p. x (Suc n + p)) \<longlonglongrightarrow> l\<close>
by (simp add: add.commute)
hence \<open>(\<lambda> p. x (Suc (n + p))) \<longlonglongrightarrow> l\<close>
by simp
hence \<open>(\<lambda> t. (- (x n)) + (\<lambda> p. x (Suc (n + p))) t ) \<longlonglongrightarrow> (- (x n)) + l\<close>
using tendsto_add_const_iff by metis
hence f1: \<open>(\<lambda> p. x (Suc (n + p)) - x n)\<longlonglongrightarrow> l - x n\<close>
by simp
have \<open>sum (\<lambda> k. x (Suc k) - x k) {n..n+p} = x (Suc (n+p)) - x n\<close> for p
by (simp add: sum_Suc_diff)
moreover have \<open>(\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) (n + t)
= (\<lambda> p. sum (\<lambda> k. x (Suc k) - x k) {n..n+p}) t\<close> for t
by blast
ultimately have \<open>(\<lambda> p. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) (n + p)) \<longlonglongrightarrow> l - x n\<close>
using f1 by simp
hence \<open>(\<lambda> p. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) (p + n)) \<longlonglongrightarrow> l - x n\<close>
by (simp add: add.commute)
hence \<open>(\<lambda> p. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) p) \<longlonglongrightarrow> l - x n\<close>
using Topological_Spaces.LIMSEQ_offset[where f = "(\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N})"
and a = "l - x n" and k = n] by blast
hence \<open>(\<lambda> M. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) M) \<longlonglongrightarrow> l - x n\<close>
by simp
thus ?thesis by blast
qed
lemma bound_Cauchy_to_lim:
assumes \<open>y \<longlonglongrightarrow> x\<close> and \<open>\<And>n. \<parallel>y (Suc n) - y n\<parallel> \<le> c^n\<close> and \<open>y 0 = 0\<close> and \<open>c < 1\<close>
shows \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c / (1 - c)) * c ^ n\<close>
text\<open>
Inequality about a sequence of approximations assuming that the sequence of differences is bounded
by a geometric progression.
Explanation: Let \<^term>\<open>y\<close> be a sequence converging to \<^term>\<open>x\<close>.
If \<^term>\<open>y\<close> satisfies the inequality \<open>\<parallel>y (Suc n) - y n\<parallel> \<le> c ^ n\<close> for some \<^term>\<open>c < 1\<close> and
assuming \<^term>\<open>y 0 = 0\<close> then the inequality \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c / (1 - c)) * c ^ n\<close> holds.
\<close>
proof-
have \<open>c \<ge> 0\<close>
using \<open>\<And> n. \<parallel>y (Suc n) - y n\<parallel> \<le> c^n\<close> by (smt norm_imp_pos_and_ge power_Suc0_right)
have norm_1: \<open>norm (\<Sum>k = Suc n..N. y (Suc k) - y k) \<le> (c ^ Suc n)/(1 - c)\<close> for N
proof(cases \<open>N < Suc n\<close>)
case True
hence \<open>\<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel> = 0\<close>
by auto
thus ?thesis using \<open>c \<ge> 0\<close> \<open>c < 1\<close> by auto
next
case False
hence \<open>N \<ge> Suc n\<close>
by auto
have \<open>c^(Suc N) \<ge> 0\<close>
using \<open>c \<ge> 0\<close> by auto
have \<open>1 - c > 0\<close>
by (simp add: \<open>c < 1\<close>)
hence \<open>(1 - c)/(1 - c) = 1\<close>
by auto
have \<open>\<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel> \<le> (sum (\<lambda>k. \<parallel>y (Suc k) - y k\<parallel>) {Suc n .. N})\<close>
by (simp add: sum_norm_le)
hence \<open>\<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel> \<le> (sum (power c) {Suc n .. N})\<close>
by (simp add: assms(2) sum_norm_le)
hence \<open>(1 - c) * \<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel>
\<le> (1 - c) * (sum (power c) {Suc n .. N})\<close>
using \<open>0 < 1 - c\<close> mult_le_cancel_iff2 by blast
also have \<open>\<dots> = c^(Suc n) - c^(Suc N)\<close>
using Set_Interval.sum_gp_multiplied \<open>Suc n \<le> N\<close> by blast
also have \<open>\<dots> \<le> c^(Suc n)\<close>
using \<open>c^(Suc N) \<ge> 0\<close> by auto
finally have \<open>(1 - c) * \<parallel>\<Sum>k = Suc n..N. y (Suc k) - y k\<parallel> \<le> c ^ Suc n\<close>
by blast
hence \<open>((1 - c) * \<parallel>\<Sum>k = Suc n..N. y (Suc k) - y k\<parallel>)/(1 - c)
\<le> (c ^ Suc n)/(1 - c)\<close>
using \<open>0 < 1 - c\<close> by (smt divide_right_mono)
thus \<open>\<parallel>\<Sum>k = Suc n..N. y (Suc k) - y k\<parallel> \<le> (c ^ Suc n)/(1 - c)\<close>
using \<open>0 < 1 - c\<close> by auto
qed
have \<open>(\<lambda> N. (sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N})) \<longlonglongrightarrow> x - y (Suc n)\<close>
by (metis (no_types) \<open>y \<longlonglongrightarrow> x\<close> identity_telescopic)
hence \<open>(\<lambda> N. \<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel>) \<longlonglongrightarrow> \<parallel>x - y (Suc n)\<parallel>\<close>
using tendsto_norm by blast
hence \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c ^ Suc n)/(1 - c)\<close>
using norm_1 Lim_bounded by blast
hence \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c ^ Suc n)/(1 - c)\<close>
by auto
moreover have \<open>(c ^ Suc n)/(1 - c) = (c / (1 - c)) * (c ^ n)\<close>
by (simp add: divide_inverse_commute)
ultimately show \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c / (1 - c)) * (c ^ n)\<close> by linarith
qed
lemma onorm_open_ball:
includes notation_norm
shows \<open>\<parallel>f\<parallel> = Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 }\<close>
text \<open>
Explanation: Let \<^term>\<open>f\<close> be a bounded linear operator. The operator norm of \<^term>\<open>f\<close> is the
supremum of \<^term>\<open>norm (f x)\<close> for \<^term>\<open>x\<close> such that \<^term>\<open>norm x < 1\<close>.
\<close>
proof(cases \<open>(UNIV::'a set) = 0\<close>)
case True
hence \<open>x = 0\<close> for x::'a
by auto
hence \<open>f *\<^sub>v x = 0\<close> for x
by (metis (full_types) blinfun.zero_right)
hence \<open>\<parallel>f\<parallel> = 0\<close>
by (simp add: blinfun_eqI zero_blinfun.rep_eq)
have \<open>{ \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} = {0}\<close>
by (smt Collect_cong \<open>\<And>x. f *\<^sub>v x = 0\<close> norm_zero singleton_conv)
hence \<open>Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} = 0\<close>
by simp
thus ?thesis using \<open>\<parallel>f\<parallel> = 0\<close> by auto
next
case False
hence \<open>(UNIV::'a set) \<noteq> 0\<close>
by simp
have nonnegative: \<open>\<parallel>f *\<^sub>v x\<parallel> \<ge> 0\<close> for x
by simp
have \<open>\<exists> x::'a. x \<noteq> 0\<close>
using \<open>UNIV \<noteq> 0\<close> by auto
then obtain x::'a where \<open>x \<noteq> 0\<close>
by blast
hence \<open>\<parallel>x\<parallel> \<noteq> 0\<close>
by auto
define y where \<open>y = x /\<^sub>R \<parallel>x\<parallel>\<close>
have \<open>norm y = \<parallel> x /\<^sub>R \<parallel>x\<parallel> \<parallel>\<close>
unfolding y_def by auto
also have \<open>\<dots> = \<parallel>x\<parallel> /\<^sub>R \<parallel>x\<parallel>\<close>
by auto
also have \<open>\<dots> = 1\<close>
using \<open>\<parallel>x\<parallel> \<noteq> 0\<close> by auto
finally have \<open>\<parallel>y\<parallel> = 1\<close>
by blast
hence norm_1_non_empty: \<open>{ \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} \<noteq> {}\<close>
by blast
have norm_1_bounded: \<open>bdd_above { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
unfolding bdd_above_def apply auto
by (metis norm_blinfun)
have norm_less_1_non_empty: \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} \<noteq> {}\<close>
by (metis (mono_tags, lifting) Collect_empty_eq_bot bot_empty_eq empty_iff norm_zero
zero_less_one)
have norm_less_1_bounded: \<open>bdd_above {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
proof-
have \<open>\<exists>r. \<parallel>a r\<parallel> < 1 \<longrightarrow> \<parallel>f *\<^sub>v (a r)\<parallel> \<le> r\<close> for a :: "real \<Rightarrow> 'a"
proof-
obtain r :: "('a \<Rightarrow>\<^sub>L 'b) \<Rightarrow> real" where
"\<And>f x. 0 \<le> r f \<and> (bounded_linear f \<longrightarrow> \<parallel>f *\<^sub>v x\<parallel> \<le> \<parallel>x\<parallel> * r f)"
using bounded_linear.nonneg_bounded by moura
have \<open>\<not> \<parallel>f\<parallel> < 0\<close>
by simp
hence "(\<exists>r. \<parallel>f\<parallel> * \<parallel>a r\<parallel> \<le> r) \<or> (\<exists>r. \<parallel>a r\<parallel> < 1 \<longrightarrow> \<parallel>f *\<^sub>v a r\<parallel> \<le> r)"
by (meson less_eq_real_def mult_le_cancel_left2)
thus ?thesis using dual_order.trans norm_blinfun by blast
qed
hence \<open>\<exists> M. \<forall> x. \<parallel>x\<parallel> < 1 \<longrightarrow> \<parallel>f *\<^sub>v x\<parallel> \<le> M\<close>
by metis
thus ?thesis by auto
qed
have Sup_non_neg: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<ge> 0\<close>
by (smt Collect_empty_eq cSup_upper mem_Collect_eq nonnegative norm_1_bounded norm_1_non_empty)
have \<open>{0::real} \<noteq> {}\<close>
by simp
have \<open>bdd_above {0::real}\<close>
by simp
show \<open>\<parallel>f\<parallel> = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
proof(cases \<open>\<forall>x. f *\<^sub>v x = 0\<close>)
case True
have \<open>\<parallel>f *\<^sub>v x\<parallel> = 0\<close> for x
by (simp add: True)
hence \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } \<subseteq> {0}\<close>
by blast
moreover have \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } \<supseteq> {0}\<close>
using calculation norm_less_1_non_empty by fastforce
ultimately have \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } = {0}\<close>
by blast
hence Sup1: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } = 0\<close>
by simp
have \<open>\<parallel>f\<parallel> = 0\<close>
by (simp add: True blinfun_eqI)
moreover have \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} = 0\<close>
using Sup1 by blast
ultimately show ?thesis by simp
next
case False
have norm_f_eq_leq: \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} \<Longrightarrow>
y \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> for y
proof-
assume \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
hence \<open>\<exists> x. y = \<parallel>f *\<^sub>v x\<parallel> \<and> \<parallel>x\<parallel> = 1\<close>
by blast
then obtain x where \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> and \<open>\<parallel>x\<parallel> = 1\<close>
by auto
define y' where \<open>y' n = (1 - (inverse (real (Suc n)))) *\<^sub>R y\<close> for n
have \<open>y' n \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> for n
proof-
have \<open>y' n = (1 - (inverse (real (Suc n)))) *\<^sub>R \<parallel>f *\<^sub>v x\<parallel>\<close>
using y'_def \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> by blast
also have \<open>... = \<bar>(1 - (inverse (real (Suc n))))\<bar> *\<^sub>R \<parallel>f *\<^sub>v x\<parallel>\<close>
by (metis (mono_tags, opaque_lifting) \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> abs_1 abs_le_self_iff abs_of_nat
abs_of_nonneg add_diff_cancel_left' add_eq_if cancel_comm_monoid_add_class.diff_cancel
diff_ge_0_iff_ge eq_iff_diff_eq_0 inverse_1 inverse_le_iff_le nat.distinct(1) of_nat_0
of_nat_Suc of_nat_le_0_iff zero_less_abs_iff zero_neq_one)
also have \<open>... = \<parallel>f *\<^sub>v ((1 - (inverse (real (Suc n)))) *\<^sub>R x)\<parallel>\<close>
by (simp add: blinfun.scaleR_right)
finally have y'_1: \<open>y' n = \<parallel>f *\<^sub>v ( (1 - (inverse (real (Suc n)))) *\<^sub>R x)\<parallel>\<close>
by blast
have \<open>\<parallel>(1 - (inverse (Suc n))) *\<^sub>R x\<parallel> = (1 - (inverse (real (Suc n)))) * \<parallel>x\<parallel>\<close>
by (simp add: linordered_field_class.inverse_le_1_iff)
hence \<open>\<parallel>(1 - (inverse (Suc n))) *\<^sub>R x\<parallel> < 1\<close>
by (simp add: \<open>\<parallel>x\<parallel> = 1\<close>)
thus ?thesis using y'_1 by blast
qed
have \<open>(\<lambda>n. (1 - (inverse (real (Suc n)))) ) \<longlonglongrightarrow> 1\<close>
using Limits.LIMSEQ_inverse_real_of_nat_add_minus by simp
hence \<open>(\<lambda>n. (1 - (inverse (real (Suc n)))) *\<^sub>R y) \<longlonglongrightarrow> 1 *\<^sub>R y\<close>
using Limits.tendsto_scaleR by blast
hence \<open>(\<lambda>n. (1 - (inverse (real (Suc n)))) *\<^sub>R y) \<longlonglongrightarrow> y\<close>
by simp
hence \<open>(\<lambda>n. y' n) \<longlonglongrightarrow> y\<close>
using y'_def by simp
hence \<open>y' \<longlonglongrightarrow> y\<close>
by simp
have \<open>y' n \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> for n
using cSup_upper \<open>\<And>n. y' n \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close> norm_less_1_bounded by blast
hence \<open>y \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
using \<open>y' \<longlonglongrightarrow> y\<close> Topological_Spaces.Sup_lim by (meson LIMSEQ_le_const2)
thus ?thesis by blast
qed
hence \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
by (metis (lifting) cSup_least norm_1_non_empty)
have \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} \<Longrightarrow> y \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close> for y
proof(cases \<open>y = 0\<close>)
case True thus ?thesis by (simp add: Sup_non_neg)
next
case False
hence \<open>y \<noteq> 0\<close> by blast
assume \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
hence \<open>\<exists> x. y = \<parallel>f *\<^sub>v x\<parallel> \<and> \<parallel>x\<parallel> < 1\<close>
by blast
then obtain x where \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> and \<open>\<parallel>x\<parallel> < 1\<close>
by blast
have \<open>(1/\<parallel>x\<parallel>) * y = (1/\<parallel>x\<parallel>) * \<parallel>f x\<parallel>\<close>
by (simp add: \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close>)
also have \<open>... = \<bar>1/\<parallel>x\<parallel>\<bar> * \<parallel>f *\<^sub>v x\<parallel>\<close>
by simp
also have \<open>... = \<parallel>(1/\<parallel>x\<parallel>) *\<^sub>R (f *\<^sub>v x)\<parallel>\<close>
by simp
also have \<open>... = \<parallel>f *\<^sub>v ((1/\<parallel>x\<parallel>) *\<^sub>R x)\<parallel>\<close>
by (simp add: blinfun.scaleR_right)
finally have \<open>(1/\<parallel>x\<parallel>) * y = \<parallel>f *\<^sub>v ((1/\<parallel>x\<parallel>) *\<^sub>R x)\<parallel>\<close>
by blast
have \<open>x \<noteq> 0\<close>
using \<open>y \<noteq> 0\<close> \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> blinfun.zero_right by auto
have \<open>\<parallel> (1/\<parallel>x\<parallel>) *\<^sub>R x \<parallel> = \<bar> (1/\<parallel>x\<parallel>) \<bar> * \<parallel>x\<parallel>\<close>
by simp
also have \<open>... = (1/\<parallel>x\<parallel>) * \<parallel>x\<parallel>\<close>
by simp
finally have \<open>\<parallel>(1/\<parallel>x\<parallel>) *\<^sub>R x\<parallel> = 1\<close>
using \<open>x \<noteq> 0\<close> by simp
hence \<open>(1/\<parallel>x\<parallel>) * y \<in> { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
using \<open>1 / \<parallel>x\<parallel> * y = \<parallel>f *\<^sub>v (1 / \<parallel>x\<parallel>) *\<^sub>R x\<parallel>\<close> by blast
hence \<open>(1/\<parallel>x\<parallel>) * y \<le> Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
by (simp add: cSup_upper norm_1_bounded)
moreover have \<open>y \<le> (1/\<parallel>x\<parallel>) * y\<close>
by (metis \<open>\<parallel>x\<parallel> < 1\<close> \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> mult_le_cancel_right1 norm_not_less_zero
order.strict_implies_order \<open>x \<noteq> 0\<close> less_divide_eq_1_pos zero_less_norm_iff)
ultimately show ?thesis by linarith
qed
hence \<open>Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} \<le> Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
by (smt cSup_least norm_less_1_non_empty)
hence \<open>Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} = Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
using \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> |x. norm x = 1} \<le> Sup { \<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close> by linarith
have f1: \<open>(SUP x. \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>) = Sup { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> | x. True}\<close>
by (simp add: full_SetCompr_eq)
have \<open>y \<in> { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} \<Longrightarrow> y \<in> { \<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}\<close>
for y
proof-
assume \<open>y \<in> { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True}\<close> show ?thesis
proof(cases \<open>y = 0\<close>)
case True thus ?thesis by simp
next
case False
have \<open>\<exists> x. y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close>
using \<open>y \<in> { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True}\<close> by auto
then obtain x where \<open>y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close>
by blast
hence \<open>y = \<bar>(1/\<parallel>x\<parallel>)\<bar> * \<parallel> f *\<^sub>v x \<parallel>\<close>
by simp
hence \<open>y = \<parallel>(1/\<parallel>x\<parallel>) *\<^sub>R (f *\<^sub>v x)\<parallel>\<close>
by simp
hence \<open>y = \<parallel>f ((1/\<parallel>x\<parallel>) *\<^sub>R x)\<parallel>\<close>
by (simp add: blinfun.scaleR_right)
moreover have \<open>\<parallel> (1/\<parallel>x\<parallel>) *\<^sub>R x \<parallel> = 1\<close>
using False \<open>y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close> by auto
ultimately have \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close>
by blast
thus ?thesis by blast
qed
qed
moreover have \<open>y \<in> {\<parallel>f x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0} \<Longrightarrow> y \<in> {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True}\<close>
for y
proof(cases \<open>y = 0\<close>)
case True thus ?thesis by auto
next
case False
hence \<open>y \<notin> {0}\<close>
by simp
moreover assume \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}\<close>
ultimately have \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close>
by simp
then obtain x where \<open>\<parallel>x\<parallel> = 1\<close> and \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close>
by auto
have \<open>y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close> using \<open>\<parallel>x\<parallel> = 1\<close> \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close>
by simp
thus ?thesis by auto
qed
ultimately have \<open>{\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} = {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}\<close>
by blast
hence \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} = Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0})\<close>
by simp
have "\<And>r s. \<not> (r::real) \<le> s \<or> sup r s = s"
by (metis (lifting) sup.absorb_iff1 sup_commute)
hence \<open>Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {(0::real)})
= max (Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}) (Sup {0::real})\<close>
using \<open>0 \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close> \<open>bdd_above {0}\<close> \<open>{0} \<noteq> {}\<close> cSup_singleton
cSup_union_distrib max.absorb_iff1 sup_commute norm_1_bounded norm_1_non_empty
by (metis (no_types, lifting) )
moreover have \<open>Sup {(0::real)} = (0::real)\<close>
by simp
ultimately have \<open>Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}) = Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close>
using Sup_non_neg by linarith
moreover have \<open>Sup ( {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0})
= max (Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}) (Sup {0}) \<close>
using Sup_non_neg \<open>Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0})
= max (Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}) (Sup {0})\<close>
by auto
ultimately have f2: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> | x. True} = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
using \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} = Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0})\<close> by linarith
have \<open>(SUP x. \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>) = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
using f1 f2 by linarith
hence \<open>(SUP x. \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>) = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 }\<close>
by (simp add: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} = Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close>)
thus ?thesis apply transfer by (simp add: onorm_def)
qed
qed
lemma onorm_r:
includes notation_norm
assumes \<open>r > 0\<close>
shows \<open>\<parallel>f\<parallel> = Sup ((\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 r)) / r\<close>
text \<open>
Explanation: The norm of \<^term>\<open>f\<close> is \<^term>\<open>1/r\<close> of the supremum of the norm of \<^term>\<open>f *\<^sub>v x\<close> for
\<^term>\<open>x\<close> in the ball of radius \<^term>\<open>r\<close> centered at the origin.
\<close>
proof-
have \<open>\<parallel>f\<parallel> = Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close>
using onorm_open_ball by blast
moreover have \<open>{\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1} = (\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 1)\<close>
unfolding ball_def by auto
ultimately have onorm_f: \<open>\<parallel>f\<parallel> = Sup ((\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 1))\<close>
by simp
have s2: \<open>x \<in> (\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> r * Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close> for x
proof-
assume \<open>x \<in> (\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close>
hence \<open>\<exists> t. x = r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel> \<and> \<parallel>t\<parallel> < 1\<close>
by auto
then obtain t where \<open>x = r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>\<close> and \<open>\<parallel>t\<parallel> < 1\<close>
by blast
define y where \<open>y = x /\<^sub>R r\<close>
have \<open>x = r * (inverse r * x)\<close>
using \<open>x = r *\<^sub>R norm (f t)\<close> by auto
hence \<open>x - (r * (inverse r * x)) \<le> 0\<close>
by linarith
hence \<open>x \<le> r * (x /\<^sub>R r)\<close>
by auto
have \<open>y \<in> (\<lambda>k. \<parallel>f *\<^sub>v k\<parallel>) ` ball 0 1\<close>
unfolding y_def by (smt \<open>x \<in> (\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close> assms image_iff
inverse_inverse_eq pos_le_divideR_eq positive_imp_inverse_positive)
moreover have \<open>x \<le> r * y\<close>
using \<open>x \<le> r * (x /\<^sub>R r)\<close> y_def by blast
ultimately have y_norm_f: \<open>y \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<and> x \<le> r * y\<close>
by blast
have \<open>(\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<noteq> {}\<close>
by simp
moreover have \<open>bdd_above ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close>
by (simp add: bounded_linear_image blinfun.bounded_linear_right bounded_imp_bdd_above
bounded_norm_comp)
moreover have \<open>\<exists> y. y \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<and> x \<le> r * y\<close>
using y_norm_f by blast
ultimately show ?thesis
by (smt \<open>0 < r\<close> cSup_upper ordered_comm_semiring_class.comm_mult_left_mono)
qed
have s3: \<open>(\<And>x. x \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y) \<Longrightarrow>
r * Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1) \<le> y\<close> for y
proof-
assume \<open>\<And>x. x \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y\<close>
have x_leq: \<open>x \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y / r\<close> for x
proof-
assume \<open>x \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close>
then obtain t where \<open>t \<in> ball (0::'a) 1\<close> and \<open>x = \<parallel>f *\<^sub>v t\<parallel>\<close>
by auto
define x' where \<open>x' = r *\<^sub>R x\<close>
have \<open>x' = r * \<parallel>f *\<^sub>v t\<parallel>\<close>
by (simp add: \<open>x = \<parallel>f *\<^sub>v t\<parallel>\<close> x'_def)
hence \<open>x' \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close>
using \<open>t \<in> ball (0::'a) 1\<close> by auto
hence \<open>x' \<le> y\<close>
using \<open>\<And>x. x \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y\<close> by blast
thus \<open>x \<le> y / r\<close>
unfolding x'_def using \<open>r > 0\<close> by (simp add: mult.commute pos_le_divide_eq)
qed
have \<open>(\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<noteq> {}\<close>
by simp
moreover have \<open>bdd_above ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close>
by (simp add: bounded_linear_image blinfun.bounded_linear_right bounded_imp_bdd_above
bounded_norm_comp)
ultimately have \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1) \<le> y/r\<close>
using x_leq by (simp add: \<open>bdd_above ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close> cSup_least)
thus ?thesis using \<open>r > 0\<close>
by (smt divide_strict_right_mono nonzero_mult_div_cancel_left)
qed
have norm_scaleR: \<open>norm \<circ> ((*\<^sub>R) r) = ((*\<^sub>R) \<bar>r\<bar>) \<circ> (norm::'a \<Rightarrow> real)\<close>
by auto
have f_x1: \<open>f (r *\<^sub>R x) = r *\<^sub>R f x\<close> for x
by (simp add: blinfun.scaleR_right)
have \<open>ball (0::'a) r = ((*\<^sub>R) r) ` (ball 0 1)\<close>
by (smt assms ball_scale nonzero_mult_div_cancel_left right_inverse_eq scale_zero_right)
hence \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 r)) = Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (((*\<^sub>R) r) ` (ball 0 1)))\<close>
by simp
also have \<open>\<dots> = Sup (((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) \<circ> ((*\<^sub>R) r)) ` (ball 0 1))\<close>
using Sup.SUP_image by auto
also have \<open>\<dots> = Sup ((\<lambda>t. \<parallel>f *\<^sub>v (r *\<^sub>R t)\<parallel>) ` (ball 0 1))\<close>
using f_x1 by (simp add: comp_assoc)
also have \<open>\<dots> = Sup ((\<lambda>t. \<bar>r\<bar> *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 1))\<close>
using norm_scaleR f_x1 by auto
also have \<open>\<dots> = Sup ((\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 1))\<close>
using \<open>r > 0\<close> by auto
also have \<open>\<dots> = r * Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 1))\<close>
apply (rule cSup_eq_non_empty) apply simp using s2 apply auto using s3 by auto
also have \<open>\<dots> = r * \<parallel>f\<parallel>\<close>
using onorm_f by auto
finally have \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 r) = r * \<parallel>f\<parallel>\<close>
by blast
thus \<open>\<parallel>f\<parallel> = Sup ((\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 r)) / r\<close> using \<open>r > 0\<close> by simp
qed
text\<open>Pointwise convergence\<close>
definition pointwise_convergent_to ::
\<open>( nat \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) ) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool\<close>
(\<open>((_)/ \<midarrow>pointwise\<rightarrow> (_))\<close> [60, 60] 60) where
\<open>pointwise_convergent_to x l = (\<forall> t::'a. (\<lambda> n. (x n) t) \<longlonglongrightarrow> l t)\<close>
lemma linear_limit_linear:
fixes f :: \<open>_ \<Rightarrow> ('a::real_vector \<Rightarrow> 'b::real_normed_vector)\<close>
assumes \<open>\<And>n. linear (f n)\<close> and \<open>f \<midarrow>pointwise\<rightarrow> F\<close>
shows \<open>linear F\<close>
text\<open>
Explanation: If a family of linear operators converges pointwise, then the limit is also a linear
operator.
\<close>
proof
show "F (x + y) = F x + F y" for x y
proof-
have "\<forall>a. F a = lim (\<lambda>n. f n a)"
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by (metis (full_types) limI)
moreover have "\<forall>f b c g. (lim (\<lambda>n. g n + f n) = (b::'b) + c \<or> \<not> f \<longlonglongrightarrow> c) \<or> \<not> g \<longlonglongrightarrow> b"
by (metis (no_types) limI tendsto_add)
moreover have "\<And>a. (\<lambda>n. f n a) \<longlonglongrightarrow> F a"
using assms(2) pointwise_convergent_to_def by force
ultimately have
lim_sum: \<open>lim (\<lambda> n. (f n) x + (f n) y) = lim (\<lambda> n. (f n) x) + lim (\<lambda> n. (f n) y)\<close>
by metis
have \<open>(f n) (x + y) = (f n) x + (f n) y\<close> for n
using \<open>\<And> n. linear (f n)\<close> unfolding linear_def using Real_Vector_Spaces.linear_iff assms(1)
by auto
hence \<open>lim (\<lambda> n. (f n) (x + y)) = lim (\<lambda> n. (f n) x + (f n) y)\<close>
by simp
hence \<open>lim (\<lambda> n. (f n) (x + y)) = lim (\<lambda> n. (f n) x) + lim (\<lambda> n. (f n) y)\<close>
using lim_sum by simp
moreover have \<open>(\<lambda> n. (f n) (x + y)) \<longlonglongrightarrow> F (x + y)\<close>
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast
moreover have \<open>(\<lambda> n. (f n) x) \<longlonglongrightarrow> F x\<close>
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast
moreover have \<open>(\<lambda> n. (f n) y) \<longlonglongrightarrow> F y\<close>
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast
ultimately show ?thesis
by (metis limI)
qed
show "F (r *\<^sub>R x) = r *\<^sub>R F x" for r and x
proof-
have \<open>(f n) (r *\<^sub>R x) = r *\<^sub>R (f n) x\<close> for n
using \<open>\<And> n. linear (f n)\<close>
by (simp add: Real_Vector_Spaces.linear_def real_vector.linear_scale)
hence \<open>lim (\<lambda> n. (f n) (r *\<^sub>R x)) = lim (\<lambda> n. r *\<^sub>R (f n) x)\<close>
by simp
have \<open>convergent (\<lambda> n. (f n) x)\<close>
by (metis assms(2) convergentI pointwise_convergent_to_def)
moreover have \<open>isCont (\<lambda> t::'b. r *\<^sub>R t) tt\<close> for tt
by (simp add: bounded_linear_scaleR_right)
ultimately have \<open>lim (\<lambda> n. r *\<^sub>R ((f n) x)) = r *\<^sub>R lim (\<lambda> n. (f n) x)\<close>
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def
by (metis (mono_tags) isCont_tendsto_compose limI)
hence \<open>lim (\<lambda> n. (f n) (r *\<^sub>R x)) = r *\<^sub>R lim (\<lambda> n. (f n) x)\<close>
using \<open>lim (\<lambda> n. (f n) (r *\<^sub>R x)) = lim (\<lambda> n. r *\<^sub>R (f n) x)\<close> by simp
moreover have \<open>(\<lambda> n. (f n) x) \<longlonglongrightarrow> F x\<close>
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast
moreover have \<open>(\<lambda> n. (f n) (r *\<^sub>R x)) \<longlonglongrightarrow> F (r *\<^sub>R x)\<close>
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast
ultimately show ?thesis
by (metis limI)
qed
qed
lemma non_Cauchy_unbounded:
fixes a ::\<open>_ \<Rightarrow> real\<close>
assumes \<open>\<And>n. a n \<ge> 0\<close> and \<open>e > 0\<close>
and \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close>
shows \<open>(\<lambda>n. (sum a {0..n})) \<longlonglongrightarrow> \<infinity>\<close>
text\<open>
Explanation: If the sequence of partial sums of nonnegative terms is not Cauchy, then it converges
to infinite.
\<close>
proof-
define S::"ereal set" where \<open>S = range (\<lambda>n. sum a {0..n})\<close>
have \<open>\<exists>s\<in>S. k*e \<le> s\<close> for k::nat
proof(induction k)
case 0
from \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close>
obtain m n where \<open>m \<ge> 0\<close> and \<open>n \<ge> 0\<close> and \<open>m > n\<close> and \<open>sum a {Suc n..m} \<ge> e\<close> by blast
have \<open>n < Suc n\<close>
by simp
hence \<open>{0..n} \<union> {Suc n..m} = {0..m}\<close>
using Set_Interval.ivl_disj_un(7) \<open>n < m\<close> by auto
moreover have \<open>finite {0..n}\<close>
by simp
moreover have \<open>finite {Suc n..m}\<close>
by simp
moreover have \<open>{0..n} \<inter> {Suc n..m} = {}\<close>
by simp
ultimately have \<open>sum a {0..n} + sum a {Suc n..m} = sum a {0..m}\<close>
by (metis sum.union_disjoint)
moreover have \<open>sum a {Suc n..m} > 0\<close>
using \<open>e > 0\<close> \<open>sum a {Suc n..m} \<ge> e\<close> by linarith
moreover have \<open>sum a {0..n} \<ge> 0\<close>
by (simp add: assms(1) sum_nonneg)
ultimately have \<open>sum a {0..m} > 0\<close>
by linarith
moreover have \<open>sum a {0..m} \<in> S\<close>
unfolding S_def by blast
ultimately have \<open>\<exists>s\<in>S. 0 \<le> s\<close>
using ereal_less_eq(5) by fastforce
thus ?case
by (simp add: zero_ereal_def)
next
case (Suc k)
assume \<open>\<exists>s\<in>S. k*e \<le> s\<close>
then obtain s where \<open>s\<in>S\<close> and \<open>ereal (k * e) \<le> s\<close>
by blast
have \<open>\<exists>N. s = sum a {0..N}\<close>
using \<open>s\<in>S\<close> unfolding S_def by blast
then obtain N where \<open>s = sum a {0..N}\<close>
by blast
from \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close>
obtain m n where \<open>m \<ge> Suc N\<close> and \<open>n \<ge> Suc N\<close> and \<open>m > n\<close> and \<open>sum a {Suc n..m} \<ge> e\<close>
by blast
have \<open>finite {Suc N..n}\<close>
by simp
moreover have \<open>finite {Suc n..m}\<close>
by simp
moreover have \<open>{Suc N..n} \<union> {Suc n..m} = {Suc N..m}\<close>
using Set_Interval.ivl_disj_un
by (smt \<open>Suc N \<le> n\<close> \<open>n < m\<close> atLeastSucAtMost_greaterThanAtMost less_imp_le_nat)
moreover have \<open>{} = {Suc N..n} \<inter> {Suc n..m}\<close>
by simp
ultimately have \<open>sum a {Suc N..m} = sum a {Suc N..n} + sum a {Suc n..m}\<close>
by (metis sum.union_disjoint)
moreover have \<open>sum a {Suc N..n} \<ge> 0\<close>
using \<open>\<And>n. a n \<ge> 0\<close> by (simp add: sum_nonneg)
ultimately have \<open>sum a {Suc N..m} \<ge> e\<close>
using \<open>e \<le> sum a {Suc n..m}\<close> by linarith
have \<open>finite {0..N}\<close>
by simp
have \<open>finite {Suc N..m}\<close>
by simp
moreover have \<open>{0..N} \<union> {Suc N..m} = {0..m}\<close>
using Set_Interval.ivl_disj_un(7) \<open>Suc N \<le> m\<close> by auto
moreover have \<open>{0..N} \<inter> {Suc N..m} = {}\<close>
by simp
ultimately have \<open>sum a {0..N} + sum a {Suc N..m} = sum a {0..m}\<close>
by (metis \<open>finite {0..N}\<close> sum.union_disjoint)
hence \<open>e + k * e \<le> sum a {0..m}\<close>
using \<open>ereal (real k * e) \<le> s\<close> \<open>s = ereal (sum a {0..N})\<close> \<open>e \<le> sum a {Suc N..m}\<close> by auto
moreover have \<open>e + k * e = (Suc k) * e\<close>
by (simp add: semiring_normalization_rules(3))
ultimately have \<open>(Suc k) * e \<le> sum a {0..m}\<close>
by linarith
hence \<open>ereal ((Suc k) * e) \<le> sum a {0..m}\<close>
by auto
moreover have \<open>sum a {0..m}\<in>S\<close>
unfolding S_def by blast
ultimately show ?case by blast
qed
hence \<open>\<exists>s\<in>S. (real n) \<le> s\<close> for n
by (meson assms(2) ereal_le_le ex_less_of_nat_mult less_le_not_le)
hence \<open>Sup S = \<infinity>\<close>
using Sup_le_iff Sup_subset_mono dual_order.strict_trans1 leD less_PInf_Ex_of_nat subsetI
by metis
hence Sup: \<open>Sup ((range (\<lambda> n. (sum a {0..n})))::ereal set) = \<infinity>\<close> using S_def
by blast
have \<open>incseq (\<lambda>n. (sum a {..<n}))\<close>
using \<open>\<And>n. a n \<ge> 0\<close> using Extended_Real.incseq_sumI by auto
hence \<open>incseq (\<lambda>n. (sum a {..< Suc n}))\<close>
by (meson incseq_Suc_iff)
hence \<open>incseq (\<lambda>n. (sum a {0..n})::ereal)\<close>
using incseq_ereal by (simp add: atLeast0AtMost lessThan_Suc_atMost)
hence \<open>(\<lambda>n. sum a {0..n}) \<longlonglongrightarrow> Sup (range (\<lambda>n. (sum a {0..n})::ereal))\<close>
using LIMSEQ_SUP by auto
thus ?thesis using Sup PInfty_neq_ereal by auto
qed
lemma sum_Cauchy_positive:
fixes a ::\<open>_ \<Rightarrow> real\<close>
assumes \<open>\<And>n. a n \<ge> 0\<close> and \<open>\<exists>K. \<forall>n. (sum a {0..n}) \<le> K\<close>
shows \<open>Cauchy (\<lambda>n. sum a {0..n})\<close>
text\<open>
Explanation: If a series of nonnegative reals is bounded, then the series is
Cauchy.
\<close>
proof (unfold Cauchy_altdef2, rule, rule)
fix e::real
assume \<open>e>0\<close>
have \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close>
proof(rule classical)
assume \<open>\<not>(\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e)\<close>
hence \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> \<not>(sum a {Suc n..m} < e)\<close>
by blast
hence \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close>
by fastforce
hence \<open>(\<lambda>n. (sum a {0..n}) ) \<longlonglongrightarrow> \<infinity>\<close>
using non_Cauchy_unbounded \<open>0 < e\<close> assms(1) by blast
from \<open>\<exists>K. \<forall>n. sum a {0..n} \<le> K\<close>
obtain K where \<open>\<forall>n. sum a {0..n} \<le> K\<close>
by blast
from \<open>(\<lambda>n. sum a {0..n}) \<longlonglongrightarrow> \<infinity>\<close>
have \<open>\<forall>B. \<exists>N. \<forall>n\<ge>N. (\<lambda> n. (sum a {0..n}) ) n \<ge> B\<close>
using Lim_PInfty by simp
hence \<open>\<exists>n. (sum a {0..n}) \<ge> K+1\<close>
using ereal_less_eq(3) by blast
thus ?thesis using \<open>\<forall>n. (sum a {0..n}) \<le> K\<close> by smt
qed
have \<open>sum a {Suc n..m} = sum a {0..m} - sum a {0..n}\<close>
if "m > n" for m n
apply (simp add: that atLeast0AtMost) using sum_up_index_split
by (smt less_imp_add_positive that)
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {0..m} - sum a {0..n} < e\<close>
using \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close> by smt
from \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {0..m} - sum a {0..n} < e\<close>
obtain M where \<open>\<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {0..m} - sum a {0..n} < e\<close>
by blast
moreover have \<open>m > n \<Longrightarrow> sum a {0..m} \<ge> sum a {0..n}\<close> for m n
using \<open>\<And> n. a n \<ge> 0\<close> by (simp add: sum_mono2)
ultimately have \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> \<bar>sum a {0..m} - sum a {0..n}\<bar> < e\<close>
by auto
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m \<ge> n \<longrightarrow> \<bar>sum a {0..m} - sum a {0..n}\<bar> < e\<close>
by (metis \<open>0 < e\<close> abs_zero cancel_comm_monoid_add_class.diff_cancel diff_is_0_eq'
less_irrefl_nat linorder_neqE_nat zero_less_diff)
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. \<bar>sum a {0..m} - sum a {0..n}\<bar> < e\<close>
by (metis abs_minus_commute nat_le_linear)
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close>
by (simp add: dist_real_def)
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close> by blast
thus \<open>\<exists>N. \<forall>n\<ge>N. dist (sum a {0..n}) (sum a {0..N}) < e\<close> by auto
qed
lemma convergent_series_Cauchy:
fixes a::\<open>nat \<Rightarrow> real\<close> and \<phi>::\<open>nat \<Rightarrow> 'a::metric_space\<close>
assumes \<open>\<exists>M. \<forall>n. sum a {0..n} \<le> M\<close> and \<open>\<And>n. dist (\<phi> (Suc n)) (\<phi> n) \<le> a n\<close>
shows \<open>Cauchy \<phi>\<close>
text\<open>
Explanation: Let \<^term>\<open>a\<close> be a real-valued sequence and let \<^term>\<open>\<phi>\<close> be sequence in a metric space.
If the partial sums of \<^term>\<open>a\<close> are uniformly bounded and the distance between consecutive terms of \<^term>\<open>\<phi>\<close>
are bounded by the sequence \<^term>\<open>a\<close>, then \<^term>\<open>\<phi>\<close> is Cauchy.\<close>
proof (unfold Cauchy_altdef2, rule, rule)
fix e::real
assume \<open>e > 0\<close>
have \<open>\<And>k. a k \<ge> 0\<close>
using \<open>\<And>n. dist (\<phi> (Suc n)) (\<phi> n) \<le> a n\<close> dual_order.trans zero_le_dist by blast
hence \<open>Cauchy (\<lambda>k. sum a {0..k})\<close>
using \<open>\<exists>M. \<forall>n. sum a {0..n} \<le> M\<close> sum_Cauchy_positive by blast
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close>
unfolding Cauchy_def using \<open>e > 0\<close> by blast
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> dist (sum a {0..m}) (sum a {0..n}) < e\<close>
by blast
have \<open>dist (sum a {0..m}) (sum a {0..n}) = sum a {Suc n..m}\<close> if \<open>n<m\<close> for m n
proof -
have \<open>n < Suc n\<close>
by simp
have \<open>finite {0..n}\<close>
by simp
moreover have \<open>finite {Suc n..m}\<close>
by simp
moreover have \<open>{0..n} \<union> {Suc n..m} = {0..m}\<close>
using \<open>n < Suc n\<close> \<open>n < m\<close> by auto
moreover have \<open>{0..n} \<inter> {Suc n..m} = {}\<close>
by simp
ultimately have sum_plus: \<open>(sum a {0..n}) + sum a {Suc n..m} = (sum a {0..m})\<close>
by (metis sum.union_disjoint)
have \<open>dist (sum a {0..m}) (sum a {0..n}) = \<bar>(sum a {0..m}) - (sum a {0..n})\<bar>\<close>
using dist_real_def by blast
moreover have \<open>(sum a {0..m}) - (sum a {0..n}) = sum a {Suc n..m}\<close>
using sum_plus by linarith
ultimately show ?thesis
by (simp add: \<open>\<And>k. 0 \<le> a k\<close> sum_nonneg)
qed
hence sum_a: \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close>
by (metis \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close>)
obtain M where \<open>\<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close>
using sum_a \<open>e > 0\<close> by blast
hence \<open>\<forall>m. \<forall>n. Suc m \<ge> Suc M \<and> Suc n \<ge> Suc M \<and> Suc m > Suc n \<longrightarrow> sum a {Suc n..Suc m - 1} < e\<close>
by simp
hence \<open>\<forall>m\<ge>1. \<forall>n\<ge>1. m \<ge> Suc M \<and> n \<ge> Suc M \<and> m > n \<longrightarrow> sum a {n..m - 1} < e\<close>
by (metis Suc_le_D)
hence sum_a2: \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {n..m-1} < e\<close>
by (meson add_leE)
have \<open>dist (\<phi> (n+p+1)) (\<phi> n) \<le> sum a {n..n+p}\<close> for p n :: nat
proof(induction p)
case 0 thus ?case by (simp add: assms(2))
next
case (Suc p) thus ?case
by (smt Suc_eq_plus1 add_Suc_right add_less_same_cancel1 assms(2) dist_self dist_triangle2
gr_implies_not0 sum.cl_ivl_Suc)
qed
hence \<open>m > n \<Longrightarrow> dist (\<phi> m) (\<phi> n) \<le> sum a {n..m-1}\<close> for m n :: nat
by (metis Suc_eq_plus1 Suc_le_D diff_Suc_1 gr0_implies_Suc less_eq_Suc_le less_imp_Suc_add
zero_less_Suc)
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> dist (\<phi> m) (\<phi> n) < e\<close>
using sum_a2 \<open>e > 0\<close> by smt
thus "\<exists>N. \<forall>n\<ge>N. dist (\<phi> n) (\<phi> N) < e"
using \<open>0 < e\<close> by fastforce
qed
unbundle notation_blinfun_apply
unbundle no_notation_norm
end
|