Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 57,362 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
(*
  File:   Banach_Steinhaus_Missing.thy
  Author: Dominique Unruh, University of Tartu
  Author: Jose Manuel Rodriguez Caballero, University of Tartu
*)
section \<open>Missing results for the proof of Banach-Steinhaus theorem\<close>

theory Banach_Steinhaus_Missing
  imports
    "HOL-Analysis.Bounded_Linear_Function"
    "HOL-Analysis.Line_Segment"

begin
subsection \<open>Results missing for the proof of Banach-Steinhaus theorem\<close>
text \<open>
  The results proved here are preliminaries for the proof of Banach-Steinhaus theorem using Sokal's 
  approach, but they do not explicitly appear in Sokal's paper ~\cite{sokal2011reall}.
\<close>

text\<open>Notation for the norm\<close>
bundle notation_norm begin
notation norm ("\<parallel>_\<parallel>")
end

bundle no_notation_norm begin
no_notation norm ("\<parallel>_\<parallel>")
end

unbundle notation_norm

text\<open>Notation for apply bilinear function\<close>
bundle notation_blinfun_apply begin
notation blinfun_apply (infixr "*\<^sub>v" 70)
end

bundle no_notation_blinfun_apply begin
no_notation blinfun_apply (infixr "*\<^sub>v" 70)
end

unbundle notation_blinfun_apply

lemma bdd_above_plus:
  fixes f::\<open>'a \<Rightarrow> real\<close>
  assumes \<open>bdd_above (f ` S)\<close> and \<open>bdd_above (g ` S)\<close> 
  shows \<open>bdd_above ((\<lambda> x. f x + g x) ` S)\<close>
  text \<open>
  Explanation: If the images of two real-valued functions \<^term>\<open>f\<close>,\<^term>\<open>g\<close> are bounded above on a 
  set \<^term>\<open>S\<close>, then the image of their sum is bounded on \<^term>\<open>S\<close>.
\<close>
proof-
  obtain M where \<open>\<And> x. x\<in>S \<Longrightarrow> f x \<le> M\<close>
    using \<open>bdd_above (f ` S)\<close> unfolding bdd_above_def by blast
  obtain N where \<open>\<And> x. x\<in>S \<Longrightarrow> g x \<le> N\<close>
    using \<open>bdd_above (g ` S)\<close> unfolding bdd_above_def by blast
  have \<open>\<And> x. x\<in>S \<Longrightarrow> f x + g x \<le> M + N\<close>
    using \<open>\<And>x. x \<in> S \<Longrightarrow> f x \<le> M\<close> \<open>\<And>x. x \<in> S \<Longrightarrow> g x \<le> N\<close> by fastforce
  thus ?thesis unfolding bdd_above_def by blast
qed

text\<open>The maximum of two functions\<close>
definition pointwise_max:: "('a \<Rightarrow> 'b::ord) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" where
  \<open>pointwise_max f g = (\<lambda>x. max (f x) (g x))\<close>

lemma max_Sup_absorb_left:
  fixes f g::\<open>'a \<Rightarrow> real\<close>
  assumes \<open>X \<noteq> {}\<close> and \<open>bdd_above (f ` X)\<close> and \<open>bdd_above (g ` X)\<close> and \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close>
  shows \<open>Sup ((pointwise_max f g) ` X) = Sup (f ` X)\<close>

  text \<open>Explanation: For real-valued functions \<^term>\<open>f\<close> and \<^term>\<open>g\<close>, if the supremum of \<^term>\<open>f\<close> is 
    greater-equal the supremum of \<^term>\<open>g\<close>, then the supremum of \<^term>\<open>max f g\<close> equals the supremum of
    \<^term>\<open>f\<close>. (Under some technical conditions.)\<close>

proof-
  have y_Sup: \<open>y \<in> ((\<lambda> x. max (f x) (g x)) ` X) \<Longrightarrow> y \<le> Sup (f ` X)\<close> for y
  proof-
    assume \<open>y \<in> ((\<lambda> x. max (f x) (g x)) ` X)\<close>
    then obtain x where \<open>y = max (f x) (g x)\<close> and \<open>x \<in> X\<close>
      by blast
    have \<open>f x \<le> Sup (f ` X)\<close>
      by (simp add:  \<open>x \<in> X\<close> \<open>bdd_above (f ` X)\<close> cSUP_upper) 
    moreover have  \<open>g x \<le> Sup (g ` X)\<close>
      by (simp add:  \<open>x \<in> X\<close> \<open>bdd_above (g ` X)\<close> cSUP_upper) 
    ultimately have \<open>max (f x) (g x) \<le> Sup (f ` X)\<close>
      using  \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close> by auto
    thus ?thesis by (simp add: \<open>y = max (f x) (g x)\<close>) 
  qed
  have y_f_X: \<open>y \<in> f ` X \<Longrightarrow> y \<le> Sup ((\<lambda> x. max (f x) (g x)) ` X)\<close> for y
  proof-
    assume \<open>y \<in> f ` X\<close>
    then obtain x where \<open>x \<in> X\<close> and \<open>y = f x\<close>
      by blast
    have  \<open>bdd_above ((\<lambda> \<xi>. max (f \<xi>) (g \<xi>)) ` X)\<close>
      by (metis (no_types) \<open>bdd_above (f ` X)\<close> \<open>bdd_above (g ` X)\<close> bdd_above_image_sup sup_max)
    moreover have \<open>e > 0 \<Longrightarrow> \<exists> k \<in> (\<lambda> \<xi>. max (f \<xi>) (g \<xi>)) ` X. y \<le> k + e\<close>
      for e::real
      using \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close> by (smt \<open>x \<in> X\<close> \<open>y = f x\<close> image_eqI)        
    ultimately show ?thesis
      using \<open>x \<in> X\<close> \<open>y = f x\<close> cSUP_upper by fastforce
  qed
  have \<open>Sup ((\<lambda> x. max (f x) (g x)) ` X) \<le> Sup (f ` X)\<close>
    using y_Sup by (simp add: \<open>X \<noteq> {}\<close> cSup_least) 
  moreover have \<open>Sup ((\<lambda> x. max (f x) (g x)) ` X) \<ge> Sup (f ` X)\<close>
    using y_f_X by (metis (mono_tags) cSup_least calculation empty_is_image)  
  ultimately show ?thesis unfolding pointwise_max_def by simp
qed

lemma max_Sup_absorb_right:
  fixes f g::\<open>'a \<Rightarrow> real\<close>
  assumes \<open>X \<noteq> {}\<close> and \<open>bdd_above (f ` X)\<close> and \<open>bdd_above (g ` X)\<close> and \<open>Sup (f ` X) \<le> Sup (g ` X)\<close>
  shows \<open>Sup ((pointwise_max f g) ` X) = Sup (g ` X)\<close>
  text \<open>
  Explanation: For real-valued functions \<^term>\<open>f\<close> and \<^term>\<open>g\<close> and a nonempty set \<^term>\<open>X\<close>, such that 
  the \<^term>\<open>f\<close> and \<^term>\<open>g\<close> are bounded above on \<^term>\<open>X\<close>, if the supremum of \<^term>\<open>f\<close> on \<^term>\<open>X\<close> is 
  lower-equal the supremum of \<^term>\<open>g\<close> on \<^term>\<open>X\<close>, then the supremum of \<^term>\<open>pointwise_max f g\<close> on \<^term>\<open>X\<close>
  equals the supremum of \<^term>\<open>g\<close>. This is the right analog of @{text max_Sup_absorb_left}.
\<close>
proof-
  have \<open>Sup ((pointwise_max g f) ` X) = Sup (g ` X)\<close>
    using  assms by (simp add: max_Sup_absorb_left)     
  moreover have \<open>pointwise_max g f = pointwise_max f g\<close>
    unfolding pointwise_max_def  by auto
  ultimately show ?thesis by simp
qed

lemma max_Sup:
  fixes f g::\<open>'a \<Rightarrow> real\<close>
  assumes \<open>X \<noteq> {}\<close> and \<open>bdd_above (f ` X)\<close> and \<open>bdd_above (g ` X)\<close>
  shows \<open>Sup ((pointwise_max f g) ` X) = max (Sup (f ` X)) (Sup (g ` X))\<close>
  text \<open>
  Explanation: Let \<^term>\<open>X\<close> be a nonempty set. Two supremum over \<^term>\<open>X\<close> of the maximum of two 
  real-value functions is equal to the maximum of their suprema over \<^term>\<open>X\<close>, provided that the
  functions are bounded above on \<^term>\<open>X\<close>.
\<close>
proof(cases \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close>)
  case True thus ?thesis by (simp add: assms(1) assms(2) assms(3) max_Sup_absorb_left)
next
  case False 
  have f1: "\<not> 0 \<le> Sup (f ` X) + - 1 * Sup (g ` X)"
    using False by linarith
  hence "Sup (Banach_Steinhaus_Missing.pointwise_max f g ` X) = Sup (g ` X)"
    by (simp add: assms(1) assms(2) assms(3) max_Sup_absorb_right)
  thus ?thesis
    using f1 by linarith
qed


lemma identity_telescopic:
  fixes x :: \<open>_ \<Rightarrow> 'a::real_normed_vector\<close>
  assumes \<open>x \<longlonglongrightarrow> l\<close>
  shows \<open>(\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) \<longlonglongrightarrow> l - x n\<close>
  text\<open>
  Expression of a limit as a telescopic series.
  Explanation: If \<^term>\<open>x\<close> converges to \<^term>\<open>l\<close> then the sum \<^term>\<open>sum (\<lambda> k. x (Suc k) - x k) {n..N}\<close>
  converges to \<^term>\<open>l - x n\<close> as \<^term>\<open>N\<close> goes to infinity.
\<close>
proof-
  have \<open>(\<lambda> p. x (p + Suc n)) \<longlonglongrightarrow> l\<close>
    using \<open>x \<longlonglongrightarrow> l\<close> by (rule LIMSEQ_ignore_initial_segment)
  hence \<open>(\<lambda> p. x (Suc n + p)) \<longlonglongrightarrow> l\<close>   
    by (simp add: add.commute)
  hence \<open>(\<lambda> p. x (Suc (n + p))) \<longlonglongrightarrow> l\<close>
    by simp 
  hence \<open>(\<lambda> t. (- (x n)) + (\<lambda> p.  x (Suc (n + p))) t ) \<longlonglongrightarrow> (- (x n))  + l\<close>
    using tendsto_add_const_iff by metis 
  hence f1: \<open>(\<lambda> p. x (Suc (n + p)) - x n)\<longlonglongrightarrow> l - x n\<close>
    by simp
  have \<open>sum (\<lambda> k. x (Suc k) - x k) {n..n+p} = x (Suc (n+p)) - x n\<close> for p
    by (simp add: sum_Suc_diff)
  moreover have \<open>(\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) (n + t) 
               = (\<lambda> p. sum (\<lambda> k. x (Suc k) - x k) {n..n+p}) t\<close> for t
    by blast
  ultimately have  \<open>(\<lambda> p. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) (n + p)) \<longlonglongrightarrow> l - x n\<close>
    using f1 by simp
  hence \<open>(\<lambda> p. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) (p + n)) \<longlonglongrightarrow> l - x n\<close>
    by (simp add: add.commute)
  hence  \<open>(\<lambda> p. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) p) \<longlonglongrightarrow> l - x n\<close>
    using Topological_Spaces.LIMSEQ_offset[where f = "(\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N})" 
        and a = "l - x n" and k = n] by blast
  hence  \<open>(\<lambda> M. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) M) \<longlonglongrightarrow> l - x n\<close>
    by simp
  thus ?thesis by blast
qed

lemma bound_Cauchy_to_lim:
  assumes \<open>y \<longlonglongrightarrow> x\<close> and \<open>\<And>n. \<parallel>y (Suc n) - y n\<parallel> \<le> c^n\<close> and \<open>y 0 = 0\<close> and \<open>c < 1\<close>
  shows \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c / (1 - c)) * c ^ n\<close>
  text\<open>
  Inequality about a sequence of approximations assuming that the sequence of differences is bounded
  by a geometric progression.
  Explanation: Let \<^term>\<open>y\<close> be a sequence converging to \<^term>\<open>x\<close>.
  If \<^term>\<open>y\<close> satisfies the inequality \<open>\<parallel>y (Suc n) - y n\<parallel> \<le> c ^ n\<close> for some \<^term>\<open>c < 1\<close> and 
  assuming \<^term>\<open>y 0 = 0\<close> then the inequality \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c / (1 - c)) * c ^ n\<close> holds.
\<close>
proof-
  have \<open>c \<ge> 0\<close>
    using \<open>\<And> n. \<parallel>y (Suc n) - y n\<parallel> \<le> c^n\<close> by (smt norm_imp_pos_and_ge power_Suc0_right)
  have norm_1: \<open>norm (\<Sum>k = Suc n..N. y (Suc k) - y k) \<le> (c ^ Suc n)/(1 - c)\<close> for N
  proof(cases \<open>N < Suc n\<close>)
    case True
    hence \<open>\<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel> = 0\<close>
      by auto
    thus ?thesis  using  \<open>c \<ge> 0\<close> \<open>c < 1\<close> by auto       
  next
    case False
    hence \<open>N \<ge> Suc n\<close>
      by auto
    have \<open>c^(Suc N) \<ge> 0\<close>
      using \<open>c \<ge> 0\<close> by auto
    have \<open>1 - c > 0\<close>
      by (simp add: \<open>c < 1\<close>)
    hence \<open>(1 - c)/(1 - c) = 1\<close>
      by auto
    have \<open>\<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel> \<le> (sum (\<lambda>k. \<parallel>y (Suc k) - y k\<parallel>) {Suc n .. N})\<close>
      by (simp add: sum_norm_le)
    hence \<open>\<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel> \<le> (sum (power c) {Suc n .. N})\<close>
      by (simp add: assms(2) sum_norm_le)
    hence \<open>(1 - c) * \<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel>
                   \<le> (1 - c) * (sum (power c) {Suc n .. N})\<close>
      using \<open>0 < 1 - c\<close> mult_le_cancel_iff2 by blast      
    also have \<open>\<dots> = c^(Suc n) - c^(Suc N)\<close>
      using Set_Interval.sum_gp_multiplied \<open>Suc n \<le> N\<close> by blast
    also have \<open>\<dots> \<le> c^(Suc n)\<close>
      using \<open>c^(Suc N) \<ge> 0\<close> by auto
    finally have \<open>(1 - c) * \<parallel>\<Sum>k = Suc n..N. y (Suc k) - y k\<parallel> \<le> c ^ Suc n\<close>
      by blast
    hence \<open>((1 - c) * \<parallel>\<Sum>k = Suc n..N. y (Suc k) - y k\<parallel>)/(1 - c)
                   \<le> (c ^ Suc n)/(1 - c)\<close>
      using \<open>0 < 1 - c\<close> by (smt divide_right_mono)      
    thus \<open>\<parallel>\<Sum>k = Suc n..N. y (Suc k) - y k\<parallel> \<le> (c ^ Suc n)/(1 - c)\<close>
      using \<open>0 < 1 - c\<close> by auto 
  qed
  have \<open>(\<lambda> N. (sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N})) \<longlonglongrightarrow> x - y (Suc n)\<close>
    by (metis (no_types) \<open>y \<longlonglongrightarrow> x\<close> identity_telescopic)     
  hence \<open>(\<lambda> N. \<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel>) \<longlonglongrightarrow> \<parallel>x - y (Suc n)\<parallel>\<close>
    using tendsto_norm by blast
  hence \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c ^ Suc n)/(1 - c)\<close>
    using norm_1 Lim_bounded by blast
  hence  \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c ^ Suc n)/(1 - c)\<close>
    by auto
  moreover have \<open>(c ^ Suc n)/(1 - c) = (c / (1 - c)) * (c ^ n)\<close>
    by (simp add: divide_inverse_commute)    
  ultimately show \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c / (1 - c)) * (c ^ n)\<close> by linarith
qed

lemma onorm_open_ball:
  includes notation_norm
  shows \<open>\<parallel>f\<parallel> = Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 }\<close>
  text \<open>
  Explanation: Let \<^term>\<open>f\<close> be a bounded linear operator. The operator norm of \<^term>\<open>f\<close> is the
  supremum of \<^term>\<open>norm (f x)\<close> for \<^term>\<open>x\<close> such that \<^term>\<open>norm x < 1\<close>.
\<close>
proof(cases \<open>(UNIV::'a set) = 0\<close>)
  case True
  hence \<open>x = 0\<close> for x::'a
    by auto
  hence \<open>f *\<^sub>v x = 0\<close> for x
    by (metis (full_types) blinfun.zero_right)
  hence \<open>\<parallel>f\<parallel> = 0\<close>
    by (simp add: blinfun_eqI zero_blinfun.rep_eq)      
  have \<open>{ \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} = {0}\<close>
    by (smt Collect_cong \<open>\<And>x. f *\<^sub>v x = 0\<close> norm_zero singleton_conv)      
  hence \<open>Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} = 0\<close>
    by simp    
  thus ?thesis using \<open>\<parallel>f\<parallel> = 0\<close> by auto      
next
  case False
  hence \<open>(UNIV::'a set) \<noteq> 0\<close>
    by simp
  have nonnegative: \<open>\<parallel>f *\<^sub>v x\<parallel> \<ge> 0\<close> for x
    by simp
  have \<open>\<exists> x::'a. x \<noteq> 0\<close>
    using \<open>UNIV \<noteq> 0\<close> by auto
  then obtain x::'a where \<open>x \<noteq> 0\<close>
    by blast
  hence \<open>\<parallel>x\<parallel> \<noteq> 0\<close>
    by auto
  define y where \<open>y = x /\<^sub>R \<parallel>x\<parallel>\<close>
  have \<open>norm y = \<parallel> x /\<^sub>R \<parallel>x\<parallel> \<parallel>\<close>
    unfolding y_def by auto
  also have \<open>\<dots> = \<parallel>x\<parallel> /\<^sub>R \<parallel>x\<parallel>\<close>
    by auto
  also have \<open>\<dots> = 1\<close>
    using \<open>\<parallel>x\<parallel> \<noteq> 0\<close> by auto
  finally have \<open>\<parallel>y\<parallel> = 1\<close>
    by blast
  hence norm_1_non_empty: \<open>{ \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} \<noteq> {}\<close>
    by blast
  have norm_1_bounded: \<open>bdd_above { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
    unfolding bdd_above_def apply auto
    by (metis norm_blinfun)
  have norm_less_1_non_empty: \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} \<noteq> {}\<close>
    by (metis (mono_tags, lifting) Collect_empty_eq_bot bot_empty_eq empty_iff norm_zero 
        zero_less_one)   
  have norm_less_1_bounded: \<open>bdd_above {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
  proof-
    have \<open>\<exists>r. \<parallel>a r\<parallel> < 1 \<longrightarrow> \<parallel>f *\<^sub>v (a r)\<parallel> \<le> r\<close> for a :: "real \<Rightarrow> 'a"
    proof-
      obtain r :: "('a \<Rightarrow>\<^sub>L 'b) \<Rightarrow> real" where
        "\<And>f x. 0 \<le> r f \<and> (bounded_linear f \<longrightarrow> \<parallel>f *\<^sub>v x\<parallel> \<le> \<parallel>x\<parallel> * r f)"
        using bounded_linear.nonneg_bounded by moura
      have \<open>\<not> \<parallel>f\<parallel> < 0\<close>
        by simp          
      hence "(\<exists>r. \<parallel>f\<parallel> * \<parallel>a r\<parallel> \<le> r) \<or> (\<exists>r. \<parallel>a r\<parallel> < 1 \<longrightarrow> \<parallel>f *\<^sub>v a r\<parallel> \<le> r)"
        by (meson less_eq_real_def mult_le_cancel_left2) 
      thus ?thesis using dual_order.trans norm_blinfun by blast
    qed
    hence \<open>\<exists> M. \<forall> x. \<parallel>x\<parallel> < 1 \<longrightarrow> \<parallel>f *\<^sub>v x\<parallel> \<le> M\<close>
      by metis
    thus ?thesis by auto 
  qed
  have Sup_non_neg: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<ge> 0\<close>
    by (smt Collect_empty_eq cSup_upper mem_Collect_eq nonnegative norm_1_bounded norm_1_non_empty)      
  have \<open>{0::real} \<noteq> {}\<close>
    by simp
  have \<open>bdd_above {0::real}\<close>
    by simp
  show \<open>\<parallel>f\<parallel> = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
  proof(cases \<open>\<forall>x. f *\<^sub>v x = 0\<close>)
    case True
    have \<open>\<parallel>f *\<^sub>v x\<parallel> = 0\<close> for x
      by (simp add: True)
    hence \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } \<subseteq> {0}\<close>
      by blast        
    moreover have \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } \<supseteq> {0}\<close>
      using calculation norm_less_1_non_empty by fastforce                        
    ultimately have \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } = {0}\<close>  
      by blast
    hence Sup1: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } = 0\<close> 
      by simp
    have \<open>\<parallel>f\<parallel> = 0\<close>
      by (simp add: True blinfun_eqI)        
    moreover have \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} = 0\<close>
      using Sup1 by blast
    ultimately show ?thesis by simp
  next
    case False
    have norm_f_eq_leq: \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} \<Longrightarrow> 
                         y \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> for y
    proof-
      assume \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
      hence \<open>\<exists> x. y = \<parallel>f *\<^sub>v x\<parallel> \<and> \<parallel>x\<parallel> = 1\<close>
        by blast
      then obtain x where \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> and \<open>\<parallel>x\<parallel> = 1\<close>
        by auto
      define y' where \<open>y' n = (1 - (inverse (real (Suc n)))) *\<^sub>R y\<close> for n
      have \<open>y' n \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> for n
      proof-
        have \<open>y' n = (1 - (inverse (real (Suc n)))) *\<^sub>R \<parallel>f *\<^sub>v x\<parallel>\<close>
          using y'_def \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> by blast
        also have \<open>... = \<bar>(1 - (inverse (real (Suc n))))\<bar> *\<^sub>R \<parallel>f *\<^sub>v x\<parallel>\<close>
          by (metis (mono_tags, opaque_lifting) \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> abs_1 abs_le_self_iff abs_of_nat 
              abs_of_nonneg add_diff_cancel_left' add_eq_if cancel_comm_monoid_add_class.diff_cancel
              diff_ge_0_iff_ge eq_iff_diff_eq_0 inverse_1 inverse_le_iff_le nat.distinct(1) of_nat_0
              of_nat_Suc of_nat_le_0_iff zero_less_abs_iff zero_neq_one)
        also have \<open>... = \<parallel>f *\<^sub>v ((1 - (inverse (real (Suc n)))) *\<^sub>R  x)\<parallel>\<close>
          by (simp add: blinfun.scaleR_right)            
        finally have y'_1: \<open>y' n = \<parallel>f *\<^sub>v ( (1 - (inverse (real (Suc n)))) *\<^sub>R x)\<parallel>\<close> 
          by blast
        have \<open>\<parallel>(1 - (inverse (Suc n))) *\<^sub>R x\<parallel> = (1 - (inverse (real (Suc n)))) * \<parallel>x\<parallel>\<close>
          by (simp add: linordered_field_class.inverse_le_1_iff)                
        hence \<open>\<parallel>(1 - (inverse (Suc n))) *\<^sub>R x\<parallel> < 1\<close>
          by (simp add: \<open>\<parallel>x\<parallel> = 1\<close>) 
        thus ?thesis using y'_1 by blast 
      qed
      have \<open>(\<lambda>n. (1 - (inverse (real (Suc n)))) ) \<longlonglongrightarrow> 1\<close>
        using Limits.LIMSEQ_inverse_real_of_nat_add_minus by simp
      hence \<open>(\<lambda>n. (1 - (inverse (real (Suc n)))) *\<^sub>R y) \<longlonglongrightarrow> 1 *\<^sub>R y\<close>
        using Limits.tendsto_scaleR by blast
      hence \<open>(\<lambda>n. (1 - (inverse (real (Suc n)))) *\<^sub>R y) \<longlonglongrightarrow> y\<close>
        by simp
      hence \<open>(\<lambda>n. y' n) \<longlonglongrightarrow> y\<close>
        using y'_def by simp
      hence \<open>y' \<longlonglongrightarrow> y\<close> 
        by simp
      have \<open>y' n \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> for n
        using cSup_upper \<open>\<And>n. y' n \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close> norm_less_1_bounded by blast
      hence \<open>y \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
        using \<open>y' \<longlonglongrightarrow> y\<close> Topological_Spaces.Sup_lim by (meson LIMSEQ_le_const2)
      thus ?thesis by blast
    qed
    hence \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
      by (metis (lifting) cSup_least norm_1_non_empty)
    have \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} \<Longrightarrow> y \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close> for y
    proof(cases \<open>y = 0\<close>)
      case True thus ?thesis by (simp add: Sup_non_neg) 
    next
      case False
      hence \<open>y \<noteq> 0\<close> by blast
      assume \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
      hence \<open>\<exists> x. y = \<parallel>f *\<^sub>v x\<parallel> \<and> \<parallel>x\<parallel> < 1\<close>
        by blast
      then obtain x where \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> and \<open>\<parallel>x\<parallel> < 1\<close>
        by blast
      have \<open>(1/\<parallel>x\<parallel>) * y = (1/\<parallel>x\<parallel>) * \<parallel>f x\<parallel>\<close>
        by (simp add: \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close>)
      also have \<open>... = \<bar>1/\<parallel>x\<parallel>\<bar> * \<parallel>f *\<^sub>v x\<parallel>\<close>
        by simp
      also have \<open>... = \<parallel>(1/\<parallel>x\<parallel>) *\<^sub>R (f *\<^sub>v x)\<parallel>\<close>
        by simp
      also have \<open>... = \<parallel>f *\<^sub>v ((1/\<parallel>x\<parallel>) *\<^sub>R x)\<parallel>\<close>
        by (simp add: blinfun.scaleR_right)          
      finally have \<open>(1/\<parallel>x\<parallel>) * y  = \<parallel>f *\<^sub>v ((1/\<parallel>x\<parallel>) *\<^sub>R x)\<parallel>\<close>
        by blast
      have \<open>x \<noteq> 0\<close>
        using  \<open>y \<noteq> 0\<close> \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> blinfun.zero_right by auto 
      have \<open>\<parallel> (1/\<parallel>x\<parallel>) *\<^sub>R x \<parallel> = \<bar> (1/\<parallel>x\<parallel>) \<bar> * \<parallel>x\<parallel>\<close>
        by simp
      also have \<open>... = (1/\<parallel>x\<parallel>) * \<parallel>x\<parallel>\<close>
        by simp
      finally have  \<open>\<parallel>(1/\<parallel>x\<parallel>) *\<^sub>R x\<parallel> = 1\<close>
        using \<open>x \<noteq> 0\<close> by simp
      hence \<open>(1/\<parallel>x\<parallel>) * y \<in> { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
        using \<open>1 / \<parallel>x\<parallel> * y = \<parallel>f *\<^sub>v (1 / \<parallel>x\<parallel>) *\<^sub>R x\<parallel>\<close> by blast
      hence \<open>(1/\<parallel>x\<parallel>) * y \<le> Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
        by (simp add: cSup_upper norm_1_bounded)
      moreover have \<open>y \<le> (1/\<parallel>x\<parallel>) * y\<close>
        by (metis \<open>\<parallel>x\<parallel> < 1\<close> \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> mult_le_cancel_right1 norm_not_less_zero 
            order.strict_implies_order \<open>x \<noteq> 0\<close> less_divide_eq_1_pos zero_less_norm_iff)
      ultimately show ?thesis by linarith 
    qed
    hence \<open>Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} \<le> Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
      by (smt cSup_least norm_less_1_non_empty) 
    hence \<open>Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} = Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close>
      using \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> |x. norm x = 1} \<le> Sup { \<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close> by linarith
    have f1: \<open>(SUP x. \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>) = Sup { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> | x. True}\<close>
      by (simp add: full_SetCompr_eq)
    have \<open>y \<in> { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} \<Longrightarrow> y \<in> { \<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}\<close>
      for y
    proof-
      assume \<open>y \<in> { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True}\<close> show ?thesis
      proof(cases \<open>y = 0\<close>)
        case True  thus ?thesis by simp 
      next
        case False
        have \<open>\<exists> x. y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close>
          using \<open>y \<in> { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True}\<close> by auto
        then obtain x where \<open>y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close>
          by blast
        hence \<open>y = \<bar>(1/\<parallel>x\<parallel>)\<bar> * \<parallel> f *\<^sub>v x \<parallel>\<close>
          by simp
        hence \<open>y = \<parallel>(1/\<parallel>x\<parallel>) *\<^sub>R (f *\<^sub>v x)\<parallel>\<close>
          by simp
        hence \<open>y = \<parallel>f ((1/\<parallel>x\<parallel>) *\<^sub>R x)\<parallel>\<close>
          by (simp add: blinfun.scaleR_right)            
        moreover have \<open>\<parallel> (1/\<parallel>x\<parallel>) *\<^sub>R x \<parallel> = 1\<close>
          using False \<open>y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close> by auto
        ultimately have \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close>
          by blast
        thus ?thesis by blast
      qed
    qed
    moreover have \<open>y \<in> {\<parallel>f x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0} \<Longrightarrow> y \<in> {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True}\<close>
      for y
    proof(cases \<open>y = 0\<close>)
      case True thus ?thesis by auto 
    next
      case False
      hence \<open>y \<notin> {0}\<close>
        by simp
      moreover assume \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}\<close>
      ultimately have \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close>
        by simp
      then obtain x where \<open>\<parallel>x\<parallel> = 1\<close> and \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close>
        by auto
      have \<open>y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close> using  \<open>\<parallel>x\<parallel> = 1\<close>  \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close>
        by simp 
      thus ?thesis by auto 
    qed
    ultimately have \<open>{\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} = {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}\<close>
      by blast
    hence \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} = Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0})\<close>
      by simp
    have "\<And>r s. \<not> (r::real) \<le> s \<or> sup r s = s"
      by (metis (lifting) sup.absorb_iff1 sup_commute)
    hence \<open>Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {(0::real)})
             = max (Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}) (Sup {0::real})\<close>
      using \<open>0 \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close> \<open>bdd_above {0}\<close> \<open>{0} \<noteq> {}\<close> cSup_singleton 
        cSup_union_distrib max.absorb_iff1 sup_commute norm_1_bounded norm_1_non_empty
      by (metis (no_types, lifting) )
    moreover have \<open>Sup {(0::real)} = (0::real)\<close>
      by simp          
    ultimately have \<open>Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}) = Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close>
      using Sup_non_neg by linarith
    moreover have \<open>Sup ( {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}) 
                    = max (Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}) (Sup {0}) \<close>
      using Sup_non_neg  \<open>Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}) 
        = max (Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}) (Sup {0})\<close> 
      by auto           
    ultimately have f2: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> | x. True} = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
      using \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} = Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0})\<close> by linarith
    have \<open>(SUP x. \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>) = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close>
      using f1 f2 by linarith
    hence \<open>(SUP x. \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>) = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 }\<close>
      by (simp add: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} = Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close>)        
    thus ?thesis apply transfer by (simp add: onorm_def) 
  qed      
qed

lemma onorm_r:
  includes notation_norm
  assumes \<open>r > 0\<close>
  shows \<open>\<parallel>f\<parallel> = Sup ((\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 r)) / r\<close>
  text \<open>
  Explanation: The norm of \<^term>\<open>f\<close> is \<^term>\<open>1/r\<close> of the supremum of the norm of \<^term>\<open>f *\<^sub>v x\<close> for
  \<^term>\<open>x\<close> in the ball of radius \<^term>\<open>r\<close> centered at the origin.
\<close>
proof-
  have \<open>\<parallel>f\<parallel> = Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close>
    using onorm_open_ball by blast
  moreover have \<open>{\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1} = (\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 1)\<close>
    unfolding ball_def by auto
  ultimately have onorm_f: \<open>\<parallel>f\<parallel> = Sup ((\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 1))\<close>
    by simp
  have s2: \<open>x \<in> (\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> r * Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close> for x
  proof-
    assume \<open>x \<in> (\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close>
    hence \<open>\<exists> t. x = r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel> \<and> \<parallel>t\<parallel> < 1\<close>
      by auto
    then obtain t where \<open>x = r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>\<close> and \<open>\<parallel>t\<parallel> < 1\<close>
      by blast
    define y where \<open>y = x /\<^sub>R r\<close>
    have \<open>x = r * (inverse r * x)\<close>
      using \<open>x = r *\<^sub>R norm (f t)\<close> by auto
    hence \<open>x - (r * (inverse r * x)) \<le> 0\<close>
      by linarith
    hence \<open>x \<le> r * (x /\<^sub>R r)\<close>
      by auto
    have \<open>y \<in> (\<lambda>k. \<parallel>f *\<^sub>v k\<parallel>) ` ball 0 1\<close>
      unfolding y_def by (smt \<open>x \<in> (\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close> assms image_iff 
          inverse_inverse_eq pos_le_divideR_eq positive_imp_inverse_positive) 
    moreover have \<open>x \<le> r * y\<close>          
      using \<open>x \<le> r * (x /\<^sub>R r)\<close> y_def by blast
    ultimately have y_norm_f: \<open>y \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<and> x \<le> r * y\<close>
      by blast
    have \<open>(\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<noteq> {}\<close>
      by simp        
    moreover have \<open>bdd_above ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close>
      by (simp add: bounded_linear_image blinfun.bounded_linear_right bounded_imp_bdd_above 
          bounded_norm_comp) 
    moreover have \<open>\<exists> y. y \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<and> x \<le> r * y\<close>
      using y_norm_f by blast
    ultimately show ?thesis
      by (smt \<open>0 < r\<close> cSup_upper ordered_comm_semiring_class.comm_mult_left_mono) 
  qed
  have s3: \<open>(\<And>x. x \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y) \<Longrightarrow>
         r * Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1) \<le> y\<close> for y
  proof-
    assume \<open>\<And>x. x \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y\<close> 
    have x_leq: \<open>x \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y / r\<close> for x
    proof-
      assume \<open>x \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close>
      then obtain t where \<open>t \<in> ball (0::'a) 1\<close> and \<open>x = \<parallel>f *\<^sub>v t\<parallel>\<close>
        by auto
      define x' where \<open>x' = r *\<^sub>R x\<close>
      have \<open>x' = r * \<parallel>f *\<^sub>v t\<parallel>\<close>
        by (simp add: \<open>x = \<parallel>f *\<^sub>v t\<parallel>\<close> x'_def)
      hence \<open>x' \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close>
        using \<open>t \<in> ball (0::'a) 1\<close> by auto
      hence \<open>x' \<le> y\<close>
        using \<open>\<And>x. x \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y\<close> by blast        
      thus \<open>x \<le> y / r\<close>
        unfolding x'_def using \<open>r > 0\<close> by (simp add: mult.commute pos_le_divide_eq) 
    qed
    have \<open>(\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<noteq> {}\<close>
      by simp        
    moreover have \<open>bdd_above ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close>
      by (simp add: bounded_linear_image blinfun.bounded_linear_right bounded_imp_bdd_above 
          bounded_norm_comp) 
    ultimately have \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1) \<le> y/r\<close>
      using x_leq by (simp add: \<open>bdd_above ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close> cSup_least) 
    thus ?thesis using \<open>r > 0\<close>
      by (smt divide_strict_right_mono nonzero_mult_div_cancel_left)  
  qed
  have norm_scaleR: \<open>norm \<circ> ((*\<^sub>R) r) = ((*\<^sub>R) \<bar>r\<bar>) \<circ> (norm::'a \<Rightarrow> real)\<close>
    by auto
  have f_x1: \<open>f (r *\<^sub>R x) = r *\<^sub>R f x\<close> for x
    by (simp add: blinfun.scaleR_right)    
  have \<open>ball (0::'a) r = ((*\<^sub>R) r) ` (ball 0 1)\<close>
    by (smt assms ball_scale nonzero_mult_div_cancel_left right_inverse_eq scale_zero_right)
  hence \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 r)) = Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (((*\<^sub>R) r) ` (ball 0 1)))\<close>
    by simp
  also have \<open>\<dots> = Sup (((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) \<circ> ((*\<^sub>R) r)) ` (ball 0 1))\<close>
    using Sup.SUP_image by auto
  also have \<open>\<dots> = Sup ((\<lambda>t. \<parallel>f *\<^sub>v (r *\<^sub>R t)\<parallel>) ` (ball 0 1))\<close>
    using f_x1 by (simp add: comp_assoc) 
  also have \<open>\<dots> = Sup ((\<lambda>t. \<bar>r\<bar> *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 1))\<close>
    using norm_scaleR f_x1 by auto 
  also have \<open>\<dots> = Sup ((\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 1))\<close>
    using \<open>r > 0\<close> by auto
  also have \<open>\<dots> = r * Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 1))\<close>
    apply (rule cSup_eq_non_empty) apply simp using s2 apply auto using s3 by auto
  also have \<open>\<dots> = r * \<parallel>f\<parallel>\<close>
    using onorm_f by auto
  finally have \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 r) = r * \<parallel>f\<parallel>\<close>
    by blast    
  thus \<open>\<parallel>f\<parallel> = Sup ((\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 r)) / r\<close> using \<open>r > 0\<close> by simp
qed

text\<open>Pointwise convergence\<close>
definition pointwise_convergent_to :: 
  \<open>( nat \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) ) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool\<close> 
  (\<open>((_)/ \<midarrow>pointwise\<rightarrow> (_))\<close> [60, 60] 60) where
  \<open>pointwise_convergent_to x l = (\<forall> t::'a. (\<lambda> n. (x n) t) \<longlonglongrightarrow> l t)\<close>

lemma linear_limit_linear:
  fixes f :: \<open>_ \<Rightarrow> ('a::real_vector \<Rightarrow> 'b::real_normed_vector)\<close>
  assumes  \<open>\<And>n. linear (f n)\<close> and \<open>f \<midarrow>pointwise\<rightarrow> F\<close>
  shows \<open>linear F\<close>
  text\<open>
  Explanation: If a family of linear operators converges pointwise, then the limit is also a linear
  operator.
\<close>
proof
  show "F (x + y) = F x + F y" for x y
  proof-
    have "\<forall>a. F a = lim (\<lambda>n. f n a)"
      using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by (metis (full_types) limI)
    moreover have "\<forall>f b c g. (lim (\<lambda>n. g n + f n) = (b::'b) + c \<or> \<not> f \<longlonglongrightarrow> c) \<or> \<not> g \<longlonglongrightarrow> b"
      by (metis (no_types) limI tendsto_add)
    moreover have "\<And>a. (\<lambda>n. f n a) \<longlonglongrightarrow> F a"
      using assms(2) pointwise_convergent_to_def by force
    ultimately have 
      lim_sum: \<open>lim (\<lambda> n. (f n) x + (f n) y) = lim (\<lambda> n. (f n) x) + lim (\<lambda> n. (f n) y)\<close>
      by metis
    have \<open>(f n) (x + y) = (f n) x + (f n) y\<close> for n
      using \<open>\<And> n.  linear (f n)\<close> unfolding linear_def using Real_Vector_Spaces.linear_iff assms(1) 
      by auto
    hence \<open>lim (\<lambda> n. (f n) (x + y)) = lim (\<lambda> n. (f n) x + (f n) y)\<close>
      by simp
    hence \<open>lim (\<lambda> n. (f n) (x + y)) = lim (\<lambda> n. (f n) x) + lim (\<lambda> n. (f n) y)\<close>
      using lim_sum by simp
    moreover have \<open>(\<lambda> n. (f n) (x + y)) \<longlonglongrightarrow> F (x + y)\<close>
      using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast
    moreover have \<open>(\<lambda> n. (f n) x) \<longlonglongrightarrow> F x\<close>
      using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast
    moreover have \<open>(\<lambda> n. (f n) y) \<longlonglongrightarrow> F y\<close>
      using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast
    ultimately show ?thesis
      by (metis limI) 
  qed
  show "F (r *\<^sub>R x) = r *\<^sub>R F x" for r and x
  proof-
    have \<open>(f n) (r *\<^sub>R x) = r *\<^sub>R (f n) x\<close> for n
      using  \<open>\<And> n.  linear (f n)\<close> 
      by (simp add: Real_Vector_Spaces.linear_def real_vector.linear_scale)
    hence \<open>lim (\<lambda> n. (f n) (r *\<^sub>R x)) = lim (\<lambda> n. r *\<^sub>R (f n) x)\<close>
      by simp
    have \<open>convergent (\<lambda> n. (f n) x)\<close>
      by (metis assms(2) convergentI pointwise_convergent_to_def)
    moreover have \<open>isCont (\<lambda> t::'b. r *\<^sub>R t) tt\<close> for tt
      by (simp add: bounded_linear_scaleR_right)
    ultimately have \<open>lim (\<lambda> n. r *\<^sub>R ((f n) x)) =  r *\<^sub>R lim (\<lambda> n. (f n) x)\<close>
      using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def 
      by (metis (mono_tags) isCont_tendsto_compose limI)
    hence \<open>lim (\<lambda> n.  (f n) (r *\<^sub>R x)) = r *\<^sub>R lim (\<lambda> n. (f n) x)\<close> 
      using \<open>lim (\<lambda> n. (f n) (r *\<^sub>R x)) = lim (\<lambda> n. r *\<^sub>R (f n) x)\<close> by simp
    moreover have \<open>(\<lambda> n. (f n) x) \<longlonglongrightarrow> F x\<close>
      using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast
    moreover have \<open>(\<lambda> n.  (f n) (r *\<^sub>R x)) \<longlonglongrightarrow> F (r *\<^sub>R x)\<close>
      using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast
    ultimately show ?thesis
      by (metis limI) 
  qed
qed


lemma non_Cauchy_unbounded:
  fixes a ::\<open>_ \<Rightarrow> real\<close> 
  assumes \<open>\<And>n. a n \<ge> 0\<close> and \<open>e > 0\<close> 
    and \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close>
  shows \<open>(\<lambda>n. (sum a  {0..n})) \<longlonglongrightarrow> \<infinity>\<close>
  text\<open>
  Explanation: If the sequence of partial sums of nonnegative terms is not Cauchy, then it converges
  to infinite.
\<close>
proof-
  define S::"ereal set" where \<open>S = range (\<lambda>n. sum a  {0..n})\<close>
  have \<open>\<exists>s\<in>S.  k*e \<le> s\<close> for k::nat
  proof(induction k)
    case 0
    from \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close>
    obtain m n where \<open>m \<ge> 0\<close> and \<open>n \<ge> 0\<close> and \<open>m > n\<close> and \<open>sum a {Suc n..m} \<ge> e\<close> by blast
    have \<open>n < Suc n\<close>
      by simp
    hence \<open>{0..n} \<union> {Suc n..m} = {0..m}\<close>
      using Set_Interval.ivl_disj_un(7) \<open>n < m\<close> by auto
    moreover have \<open>finite {0..n}\<close>
      by simp
    moreover have \<open>finite {Suc n..m}\<close>
      by simp
    moreover have \<open>{0..n} \<inter> {Suc n..m} = {}\<close>
      by simp
    ultimately have \<open>sum a {0..n} + sum a {Suc n..m} = sum a {0..m}\<close>
      by (metis sum.union_disjoint) 
    moreover have \<open>sum a {Suc n..m} > 0\<close>
      using \<open>e > 0\<close> \<open>sum a {Suc n..m} \<ge> e\<close> by linarith
    moreover have \<open>sum a {0..n} \<ge> 0\<close>
      by (simp add: assms(1) sum_nonneg)
    ultimately have \<open>sum a {0..m} > 0\<close>
      by linarith      
    moreover have \<open>sum a {0..m} \<in> S\<close>
      unfolding S_def by blast
    ultimately have \<open>\<exists>s\<in>S. 0 \<le> s\<close>
      using ereal_less_eq(5) by fastforce    
    thus ?case
      by (simp add: zero_ereal_def)  
  next
    case (Suc k)
    assume \<open>\<exists>s\<in>S. k*e \<le> s\<close>
    then obtain s where \<open>s\<in>S\<close> and \<open>ereal (k * e) \<le> s\<close>
      by blast
    have \<open>\<exists>N. s = sum a {0..N}\<close>
      using \<open>s\<in>S\<close> unfolding S_def by blast
    then obtain N where \<open>s = sum a {0..N}\<close>
      by blast
    from \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close>
    obtain m n where \<open>m \<ge> Suc N\<close> and \<open>n \<ge> Suc N\<close> and \<open>m > n\<close> and \<open>sum a {Suc n..m} \<ge> e\<close>
      by blast
    have \<open>finite {Suc N..n}\<close>
      by simp
    moreover have \<open>finite {Suc n..m}\<close>
      by simp
    moreover have \<open>{Suc N..n} \<union> {Suc n..m} = {Suc N..m}\<close>
      using Set_Interval.ivl_disj_un
      by (smt \<open>Suc N \<le> n\<close> \<open>n < m\<close> atLeastSucAtMost_greaterThanAtMost less_imp_le_nat)
    moreover have \<open>{} = {Suc N..n} \<inter> {Suc n..m}\<close>
      by simp
    ultimately have \<open>sum a {Suc N..m} = sum a {Suc N..n} + sum a {Suc n..m}\<close>
      by (metis sum.union_disjoint)
    moreover have \<open>sum a {Suc N..n} \<ge> 0\<close>
      using  \<open>\<And>n. a n \<ge> 0\<close> by (simp add: sum_nonneg) 
    ultimately have \<open>sum a {Suc N..m} \<ge> e\<close>
      using \<open>e \<le> sum a {Suc n..m}\<close> by linarith
    have \<open>finite {0..N}\<close>
      by simp
    have \<open>finite {Suc N..m}\<close>
      by simp
    moreover have \<open>{0..N} \<union> {Suc N..m} = {0..m}\<close>
      using Set_Interval.ivl_disj_un(7) \<open>Suc N \<le> m\<close> by auto          
    moreover have \<open>{0..N} \<inter> {Suc N..m} = {}\<close>
      by simp
    ultimately have \<open>sum a {0..N} + sum a {Suc N..m} =  sum a {0..m}\<close> 
      by (metis \<open>finite {0..N}\<close> sum.union_disjoint)    
    hence \<open>e + k * e \<le> sum a {0..m}\<close>
      using \<open>ereal (real k * e) \<le> s\<close> \<open>s = ereal (sum a {0..N})\<close> \<open>e \<le> sum a {Suc N..m}\<close> by auto 
    moreover have \<open>e + k * e = (Suc k) * e\<close>
      by (simp add: semiring_normalization_rules(3))
    ultimately have \<open>(Suc k) * e \<le> sum a {0..m}\<close>
      by linarith
    hence \<open>ereal ((Suc k) * e) \<le> sum a {0..m}\<close>
      by auto
    moreover have \<open>sum a {0..m}\<in>S\<close>
      unfolding S_def by blast
    ultimately show ?case by blast
  qed
  hence \<open>\<exists>s\<in>S. (real n) \<le> s\<close> for n
    by (meson assms(2) ereal_le_le ex_less_of_nat_mult less_le_not_le)
  hence  \<open>Sup S = \<infinity>\<close>
    using Sup_le_iff Sup_subset_mono dual_order.strict_trans1 leD less_PInf_Ex_of_nat subsetI 
    by metis
  hence Sup: \<open>Sup ((range (\<lambda> n. (sum a  {0..n})))::ereal set) = \<infinity>\<close> using S_def 
    by blast
  have \<open>incseq (\<lambda>n. (sum a  {..<n}))\<close>
    using \<open>\<And>n. a n \<ge> 0\<close> using Extended_Real.incseq_sumI by auto
  hence \<open>incseq (\<lambda>n. (sum a  {..< Suc n}))\<close>
    by (meson incseq_Suc_iff)
  hence \<open>incseq (\<lambda>n. (sum a  {0..n})::ereal)\<close>
    using incseq_ereal by (simp add: atLeast0AtMost lessThan_Suc_atMost) 
  hence \<open>(\<lambda>n. sum a  {0..n}) \<longlonglongrightarrow> Sup (range (\<lambda>n. (sum a  {0..n})::ereal))\<close>
    using LIMSEQ_SUP by auto
  thus ?thesis using Sup PInfty_neq_ereal by auto 
qed

lemma sum_Cauchy_positive:
  fixes a ::\<open>_ \<Rightarrow> real\<close>
  assumes \<open>\<And>n. a n \<ge> 0\<close> and \<open>\<exists>K. \<forall>n. (sum a  {0..n}) \<le> K\<close>
  shows \<open>Cauchy (\<lambda>n. sum a {0..n})\<close>
  text\<open>
  Explanation: If a series of nonnegative reals is bounded, then the series is 
  Cauchy.
\<close>
proof (unfold Cauchy_altdef2, rule, rule)
  fix e::real
  assume \<open>e>0\<close>       
  have \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close>
  proof(rule classical)
    assume \<open>\<not>(\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e)\<close>
    hence \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> \<not>(sum a {Suc n..m} < e)\<close>
      by blast
    hence \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close>
      by fastforce
    hence \<open>(\<lambda>n. (sum a  {0..n}) ) \<longlonglongrightarrow> \<infinity>\<close>
      using non_Cauchy_unbounded \<open>0 < e\<close> assms(1) by blast
    from  \<open>\<exists>K. \<forall>n. sum a  {0..n} \<le> K\<close>
    obtain K where  \<open>\<forall>n. sum a {0..n} \<le> K\<close>
      by blast
    from  \<open>(\<lambda>n. sum a {0..n})  \<longlonglongrightarrow> \<infinity>\<close>
    have \<open>\<forall>B. \<exists>N. \<forall>n\<ge>N. (\<lambda> n. (sum a  {0..n}) ) n \<ge> B\<close>
      using Lim_PInfty by simp
    hence  \<open>\<exists>n. (sum a {0..n}) \<ge> K+1\<close>
      using ereal_less_eq(3) by blast        
    thus ?thesis using  \<open>\<forall>n. (sum a  {0..n}) \<le> K\<close> by smt       
  qed
  have \<open>sum a {Suc n..m} = sum a {0..m} - sum a {0..n}\<close>
    if "m > n" for m n
    apply (simp add: that atLeast0AtMost) using sum_up_index_split 
    by (smt less_imp_add_positive that)
  hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {0..m} - sum a {0..n} < e\<close>
    using \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close> by smt     
  from \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {0..m} - sum a {0..n} < e\<close>
  obtain M where \<open>\<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {0..m} - sum a {0..n} < e\<close>
    by blast
  moreover have \<open>m > n \<Longrightarrow> sum a {0..m} \<ge> sum a {0..n}\<close> for m n
    using \<open>\<And> n. a n \<ge> 0\<close> by (simp add: sum_mono2)
  ultimately have \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> \<bar>sum a {0..m} - sum a {0..n}\<bar> < e\<close>
    by auto
  hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m \<ge> n \<longrightarrow> \<bar>sum a {0..m} - sum a {0..n}\<bar> < e\<close>
    by (metis \<open>0 < e\<close> abs_zero cancel_comm_monoid_add_class.diff_cancel diff_is_0_eq' 
        less_irrefl_nat linorder_neqE_nat zero_less_diff)      
  hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. \<bar>sum a {0..m} - sum a {0..n}\<bar> < e\<close>
    by (metis abs_minus_commute nat_le_linear)
  hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close>
    by (simp add: dist_real_def)      
  hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close> by blast
  thus \<open>\<exists>N. \<forall>n\<ge>N. dist (sum a {0..n}) (sum a {0..N}) < e\<close> by auto
qed

lemma convergent_series_Cauchy:
  fixes a::\<open>nat \<Rightarrow> real\<close> and \<phi>::\<open>nat \<Rightarrow> 'a::metric_space\<close>
  assumes \<open>\<exists>M. \<forall>n. sum a {0..n} \<le> M\<close> and \<open>\<And>n. dist (\<phi> (Suc n)) (\<phi> n) \<le> a n\<close>
  shows \<open>Cauchy \<phi>\<close>
  text\<open>
  Explanation: Let \<^term>\<open>a\<close> be a real-valued sequence and let \<^term>\<open>\<phi>\<close> be sequence in a metric space.
  If the partial sums of \<^term>\<open>a\<close> are uniformly bounded and the distance between consecutive terms of \<^term>\<open>\<phi>\<close>
  are bounded by the sequence \<^term>\<open>a\<close>, then \<^term>\<open>\<phi>\<close> is Cauchy.\<close>
proof (unfold Cauchy_altdef2, rule, rule)
  fix e::real
  assume \<open>e > 0\<close>
  have \<open>\<And>k. a k \<ge> 0\<close>
    using \<open>\<And>n. dist (\<phi> (Suc n)) (\<phi> n) \<le> a n\<close> dual_order.trans zero_le_dist by blast
  hence \<open>Cauchy (\<lambda>k. sum a {0..k})\<close>
    using  \<open>\<exists>M. \<forall>n. sum a {0..n} \<le> M\<close> sum_Cauchy_positive by blast
  hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close>
    unfolding Cauchy_def using \<open>e > 0\<close> by blast
  hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> dist (sum a {0..m}) (sum a {0..n}) < e\<close>
    by blast
  have \<open>dist (sum a {0..m}) (sum a {0..n}) = sum a {Suc n..m}\<close> if \<open>n<m\<close> for m n
  proof -
    have \<open>n < Suc n\<close>
      by simp
    have \<open>finite {0..n}\<close>
      by simp
    moreover have \<open>finite {Suc n..m}\<close>
      by simp
    moreover have \<open>{0..n} \<union> {Suc n..m} = {0..m}\<close>
      using \<open>n < Suc n\<close> \<open>n < m\<close> by auto
    moreover have  \<open>{0..n} \<inter> {Suc n..m} = {}\<close>
      by simp
    ultimately have sum_plus: \<open>(sum a {0..n}) + sum a {Suc n..m} = (sum a {0..m})\<close>
      by (metis sum.union_disjoint)
    have \<open>dist (sum a {0..m}) (sum a {0..n}) = \<bar>(sum a {0..m}) - (sum a {0..n})\<bar>\<close>
      using dist_real_def by blast
    moreover have \<open>(sum a {0..m}) - (sum a {0..n}) = sum a {Suc n..m}\<close>
      using sum_plus by linarith 
    ultimately show ?thesis
      by (simp add: \<open>\<And>k. 0 \<le> a k\<close> sum_nonneg)
  qed
  hence sum_a: \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close>
    by (metis \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close>) 
  obtain M where \<open>\<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close>
    using sum_a \<open>e > 0\<close> by blast
  hence  \<open>\<forall>m. \<forall>n. Suc m \<ge> Suc M \<and> Suc n \<ge> Suc M \<and> Suc m > Suc n \<longrightarrow> sum a {Suc n..Suc m - 1} < e\<close>
    by simp
  hence  \<open>\<forall>m\<ge>1. \<forall>n\<ge>1. m \<ge> Suc M \<and> n \<ge> Suc M \<and> m > n \<longrightarrow> sum a {n..m - 1} < e\<close>
    by (metis Suc_le_D)
  hence sum_a2: \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {n..m-1} < e\<close>
    by (meson add_leE)
  have \<open>dist (\<phi> (n+p+1)) (\<phi> n) \<le> sum a {n..n+p}\<close> for p n :: nat
  proof(induction p)
    case 0 thus ?case  by (simp add: assms(2))
  next
    case (Suc p) thus ?case
      by (smt Suc_eq_plus1 add_Suc_right add_less_same_cancel1 assms(2) dist_self dist_triangle2 
          gr_implies_not0 sum.cl_ivl_Suc)  
  qed
  hence \<open>m > n \<Longrightarrow> dist (\<phi> m) (\<phi> n) \<le> sum a {n..m-1}\<close> for m n :: nat
    by (metis Suc_eq_plus1 Suc_le_D diff_Suc_1  gr0_implies_Suc less_eq_Suc_le less_imp_Suc_add 
        zero_less_Suc)
  hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> dist (\<phi> m) (\<phi> n) < e\<close> 
    using sum_a2 \<open>e > 0\<close> by smt
  thus "\<exists>N. \<forall>n\<ge>N. dist (\<phi> n) (\<phi> N) < e"
    using \<open>0 < e\<close> by fastforce
qed

unbundle notation_blinfun_apply

unbundle no_notation_norm

end