Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 12,916 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
theory Partially_Filled_Array
  imports
    "Refine_Imperative_HOL.IICF_Array_List"
    Array_SBlit
begin

section "Partially Filled Arrays"

text \<open>An array that is only partially filled.
The number of actual elements contained is kept in a second element.
This represents a weakened version of the array\_list from IICF.\<close>

type_synonym 'a pfarray = "'a array_list"


subsection "Operations on Partly Filled Arrays"


definition is_pfa where
  "is_pfa c l \<equiv> \<lambda>(a,n). \<exists>\<^sub>A l'. a \<mapsto>\<^sub>a l' *  \<up>(c = length l' \<and> n \<le> c \<and> l = (take n l'))"


lemma is_pfa_prec[safe_constraint_rules]: "precise (is_pfa c)"
  unfolding is_pfa_def[abs_def]
  apply(rule preciseI)
  apply(simp split: prod.splits)
  using preciseD snga_prec by fastforce

definition pfa_init where
  "pfa_init cap v n \<equiv> do {
  a \<leftarrow> Array.new cap v;
  return (a,n)
}"

lemma pfa_init_rule[sep_heap_rules]: "n \<le> N \<Longrightarrow> < emp > pfa_init N x n <is_pfa N (replicate n x)>"
  by (sep_auto simp: pfa_init_def is_pfa_def)

definition pfa_empty where
  "pfa_empty cap \<equiv> pfa_init cap default 0"



lemma pfa_empty_rule[sep_heap_rules]: "< emp > pfa_empty N <is_pfa N []>"
  by (sep_auto simp: pfa_empty_def is_pfa_def)


definition "pfa_length \<equiv> arl_length"

lemma pfa_length_rule[sep_heap_rules]: "
  <is_pfa c l a>
    pfa_length a
  <\<lambda>r. is_pfa c l a * \<up>(r=length l)>"
  by (sep_auto simp: pfa_length_def arl_length_def is_pfa_def)


definition "pfa_capacity \<equiv> \<lambda>(a,n). Array.len a
"


lemma pfa_capacity_rule[sep_heap_rules]: "
  <is_pfa c l a>
    pfa_capacity a
  <\<lambda>r. is_pfa c l a * \<up>(c=r)>"
  by (sep_auto simp: pfa_capacity_def arl_length_def is_pfa_def)



definition "pfa_is_empty \<equiv> arl_is_empty"

lemma pfa_is_empty_rule[sep_heap_rules]: "
  <is_pfa c l a>
    pfa_is_empty a
  <\<lambda>r. is_pfa c l a * \<up>(r\<longleftrightarrow>(l=[]))>"
  by (sep_auto simp: pfa_is_empty_def arl_is_empty_def is_pfa_def)



definition "pfa_append \<equiv> \<lambda>(a,n) x. do {
  Array.upd n x a;
  return (a,n+1)
}"

lemma pfa_append_rule[sep_heap_rules]: "
   n < c  \<Longrightarrow>
    < is_pfa c l (a,n) >
      pfa_append (a,n) x
    <\<lambda>(a',n'). is_pfa c (l@[x]) (a',n') * \<up>(a' = a \<and> n' = n+1) >"
  by (sep_auto
      simp: pfa_append_def arl_append_def is_pfa_def take_update_last neq_Nil_conv
      split: prod.splits nat.split)


definition "pfa_last \<equiv> arl_last"


lemma pfa_last_rule[sep_heap_rules]: "
  l\<noteq>[] \<Longrightarrow>
  <is_pfa c l a>
    pfa_last a
  <\<lambda>r. is_pfa c l a * \<up>(r=last l)>"
  by (sep_auto simp: pfa_last_def arl_last_def is_pfa_def last_take_nth_conv)


definition pfa_butlast :: "'a::heap pfarray \<Rightarrow> 'a pfarray Heap" where
  "pfa_butlast \<equiv> \<lambda>(a,n).
    return (a,n-1)
  "


lemma pfa_butlast_rule[sep_heap_rules]: "
  <is_pfa c l (a,n)>
    pfa_butlast (a,n)
  <\<lambda>(a',n'). is_pfa c (butlast l) (a',n') * \<up>(a' = a)>"
  by (sep_auto
      split: prod.splits
      simp: pfa_butlast_def is_pfa_def butlast_take)


definition "pfa_get \<equiv> arl_get"

lemma pfa_get_rule[sep_heap_rules]: "
  i < length l \<Longrightarrow>
  < is_pfa c l a>
    pfa_get a i
  <\<lambda>r. is_pfa c l a * \<up>((l!i) = r)>"
  by (sep_auto simp: is_pfa_def pfa_get_def arl_get_def  split: prod.split)


definition "pfa_set \<equiv> arl_set"

lemma pfa_set_rule[sep_heap_rules]: "
    i<length l \<Longrightarrow>
    <is_pfa c l a>
      pfa_set a i x
    <\<lambda>a'. is_pfa c (l[i:=x]) a' * \<up>(a' = a)>"
  by (sep_auto simp: pfa_set_def arl_set_def is_pfa_def split: prod.split)





definition pfa_shrink :: "nat \<Rightarrow> 'a::heap pfarray \<Rightarrow> 'a pfarray Heap" where
  "pfa_shrink k \<equiv> \<lambda>(a,n).
  return (a,k)
"


lemma pfa_shrink_rule[sep_heap_rules]: "
   k \<le> length xs \<Longrightarrow>
    < is_pfa c xs (a,n) >
      pfa_shrink k (a,n)
    <\<lambda>(a',n'). is_pfa c (take k xs) (a',n') * \<up>(n' = k \<and> a'=a) >"
  by (sep_auto
      simp: pfa_shrink_def is_pfa_def min.absorb1
      split: prod.splits nat.split)


definition pfa_shrink_cap :: "nat \<Rightarrow> 'a::heap pfarray \<Rightarrow> 'a pfarray Heap" where
  "pfa_shrink_cap k \<equiv> \<lambda>(a,n). do {
  a' \<leftarrow> array_shrink a k;
  return (a',min k n)
}
"

lemma pfa_shrink_cap_rule_preserve[sep_heap_rules]: "
   \<lbrakk>n \<le> k; k \<le> c\<rbrakk> \<Longrightarrow>
    < is_pfa c l (a,n) >
      pfa_shrink_cap k (a,n)
    <\<lambda>a'. is_pfa k l a' >\<^sub>t"
  by (sep_auto
      simp: pfa_shrink_cap_def is_pfa_def min.absorb1 min.absorb2
      split: prod.splits nat.split)



lemma pfa_shrink_cap_rule: "
   \<lbrakk>k \<le> c\<rbrakk> \<Longrightarrow>
    < is_pfa c l a >
      pfa_shrink_cap k a
    <\<lambda>a'. is_pfa k (take k l) a' >\<^sub>t"
  by (sep_auto
      simp: pfa_shrink_cap_def is_pfa_def min.absorb1 min.absorb2
      split: prod.splits nat.split dest: mod_starD)


definition "array_ensure a s x \<equiv> do {
    l\<leftarrow>Array.len a;
    if l\<ge>s then
      return a
    else do {
      a'\<leftarrow>Array.new s x;
      blit a 0 a' 0 l;
      return a'
    }
  }"

lemma array_ensure_rule[sep_heap_rules]:
  shows "
      < a\<mapsto>\<^sub>ala >
        array_ensure a s x
      <\<lambda>a'. a'\<mapsto>\<^sub>a (la @ replicate (s-length la) x)>\<^sub>t"
  unfolding array_ensure_def
  by sep_auto

(* Ensure a certain capacity *)
definition pfa_ensure :: "'a::{heap,default} pfarray \<Rightarrow> nat \<Rightarrow> 'a pfarray Heap" where
  "pfa_ensure \<equiv> \<lambda>(a,n) k. do {
  a' \<leftarrow> array_ensure a k default;
  return (a',n)
}
"

lemma pfa_ensure_rule[sep_heap_rules]: "
    < is_pfa c l (a,n) >
      pfa_ensure (a,n) k
    <\<lambda>(a',n'). is_pfa (max c k) l (a',n') * \<up>(n' = n \<and> c \<ge> n)>\<^sub>t"
  by (sep_auto
      simp: pfa_ensure_def is_pfa_def)


definition "pfa_copy \<equiv> arl_copy"


lemma pfa_copy_rule[sep_heap_rules]:
  "< is_pfa c l a >
   pfa_copy a
   <\<lambda>r. is_pfa c l a * is_pfa c l r>\<^sub>t"
  by (sep_auto simp: pfa_copy_def arl_copy_def is_pfa_def)

definition pfa_blit :: "'a::heap pfarray \<Rightarrow> nat \<Rightarrow> 'a::heap pfarray \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> unit Heap" where
  "pfa_blit \<equiv> \<lambda>(src,sn) si (dst,dn) di l. blit src si dst di l"


lemma min_nat: "min a (a+b) = (a::nat)"
  by auto


lemma pfa_blit_rule[sep_heap_rules]:
  assumes LEN: "si+len \<le> sn" "di \<le> dn" "di+len \<le> dc"
  shows
    "< is_pfa sc src (srci,sn)
      * is_pfa dc dst (dsti,dn) >
    pfa_blit (srci,sn) si (dsti,dn) di len
    <\<lambda>_. is_pfa sc src (srci,sn)
      * is_pfa dc (take di dst @ take len (drop si src) @ drop (di+len) dst) (dsti,max (di+len) dn)
    >"
  using LEN apply(sep_auto simp add: min_nat is_pfa_def pfa_blit_def min.commute min.absorb1 heap: blit_rule)
   apply (simp add: min.absorb1 take_drop)
  apply (simp add: drop_take max_def)
  done

definition pfa_drop :: "('a::heap) pfarray \<Rightarrow> nat \<Rightarrow> 'a pfarray \<Rightarrow> 'a pfarray Heap" where
  "pfa_drop \<equiv> \<lambda>(src,sn) si (dst,dn). do {
   blit src si dst 0 (sn-si);
   return (dst,(sn-si))
}
"


lemma pfa_drop_rule[sep_heap_rules]:
  assumes LEN: "k \<le> sn" "(sn-k) \<le> dc"
  shows
    "< is_pfa sc src (srci,sn)
      * is_pfa dc dst (dsti,dn) >
    pfa_drop (srci,sn) k (dsti,dn)
    <\<lambda>(dsti',dn'). is_pfa sc src (srci,sn)
      * is_pfa dc (drop k src) (dsti',dn')
      * \<up>(dsti' = dsti)
    >"
  using LEN apply (sep_auto simp add: drop_take is_pfa_def pfa_drop_def dest!: mod_starD heap: pfa_blit_rule)
  done


definition "pfa_append_grow \<equiv> \<lambda>(a,n) x. do {
  l \<leftarrow> pfa_capacity (a,n);
  a' \<leftarrow> if l = n
  then array_grow a (l+1) x
  else Array.upd n x a;
  return (a',n+1)
}"



lemma pfa_append_grow_full_rule[sep_heap_rules]: "n = c \<Longrightarrow>
     <is_pfa c l (a,n)>
  array_grow a (c+1) x
      <\<lambda>a'. is_pfa (c+1) (l@[x]) (a',n+1)>\<^sub>t"
  apply(sep_auto simp add: is_pfa_def
      heap del: array_grow_rule)
  apply(vcg heap del: array_grow_rule heap add: array_grow_rule[of l "(Suc (length l))" a x])
   apply simp
  apply(rule ent_ex_postI[where ?x="l@[x]"])
  apply sep_auto
  done


lemma pfa_append_grow_less_rule: "n < c \<Longrightarrow>
 <is_pfa c l (a,n)>
    Array.upd n x a
<\<lambda>a'. is_pfa c (l@[x]) (a',n+1)>\<^sub>t"
  apply(sep_auto simp add: is_pfa_def take_update_last)
  done

lemma pfa_append_grow_rule[sep_heap_rules]: "
  <is_pfa c l (a,n)>
  pfa_append_grow (a,n) x
  <\<lambda>(a',n'). is_pfa (if c = n then c+1 else c) (l@[x]) (a',n') * \<up>(n'=n+1 \<and> c \<ge> n)>\<^sub>t"
  apply(subst pfa_append_grow_def)
  apply(rule hoare_triple_preI)
  apply (sep_auto
      heap add: pfa_append_grow_full_rule pfa_append_grow_less_rule)
   apply(sep_auto simp add: is_pfa_def)
  apply(sep_auto simp add: is_pfa_def)
  done

(* This definition has only one access to the array length *)
definition "pfa_append_grow' \<equiv> \<lambda>(a,n) x. do {
  a' \<leftarrow> pfa_ensure (a,n) (n+1);
  a'' \<leftarrow> pfa_append a' x;
  return a''
}"

lemma pfa_append_grow'_rule[sep_heap_rules]: "
  <is_pfa c l (a,n)>
  pfa_append_grow' (a,n) x
  <\<lambda>(a',n'). is_pfa (max (n+1) c) (l@[x]) (a',n') * \<up>(n'=n+1 \<and> c \<ge> n)>\<^sub>t"
  unfolding pfa_append_grow'_def
  by (sep_auto simp add: max_def)


definition "pfa_insert \<equiv> \<lambda>(a,n) i x. do {
  a' \<leftarrow> array_shr a i 1;
  a'' \<leftarrow> Array.upd i x a;
  return (a'',n+1)
}"


lemma list_update_last: "length ls = Suc i \<Longrightarrow> ls[i:=x] = (take i ls)@[x]"
  by (metis append_eq_conv_conj length_Suc_rev_conv list_update_length)

lemma pfa_insert_rule[sep_heap_rules]:
  "\<lbrakk>i \<le> n; n < c\<rbrakk> \<Longrightarrow>
  <is_pfa c l (a,n)>
  pfa_insert (a,n) i x
  <\<lambda>(a',n'). is_pfa c (take i l@x#drop i l) (a',n') * \<up>(n' = n+1 \<and> a=a')>"
  unfolding pfa_insert_def is_pfa_def
  by (sep_auto simp add: list_update_append1 list_update_last
      Suc_diff_le drop_take min_def)

definition pfa_insert_grow ::  "'a::{heap,default} pfarray \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a pfarray Heap"
  where "pfa_insert_grow \<equiv> \<lambda>(a,n) i x. do {
  a' \<leftarrow> pfa_ensure (a,n) (n+1);
  a'' \<leftarrow> pfa_insert a' i x;
  return a''
}"

lemma pfa_insert_grow_rule[sep_heap_rules]:
  "i \<le> n \<Longrightarrow>
  <is_pfa c l (a,n)>
  pfa_insert_grow (a,n) i x
  <\<lambda>(a',n'). is_pfa (max c (n+1)) (take i l@x#drop i l) (a',n') * \<up>(n'=n+1 \<and> c \<ge> n)>\<^sub>t"
  unfolding pfa_insert_grow_def
  by (sep_auto heap add: pfa_insert_rule[of i n "max c (Suc n)"])


definition pfa_extend where
  "pfa_extend \<equiv> \<lambda> (a,n) (b,m). do{
  blit b 0 a n m;
  return (a,n+m)
}"

lemma pfa_extend_rule[sep_heap_rules]:
  "n+m \<le> c \<Longrightarrow>
  <is_pfa c l1 (a,n) * is_pfa d l2 (b,m)>
  pfa_extend (a,n) (b,m)
  <\<lambda>(a',n'). is_pfa c (l1@l2) (a',n') * \<up>(a' = a \<and> n'=n+m) * is_pfa d l2 (b,m)>\<^sub>t"
  unfolding pfa_extend_def
  by (sep_auto simp add: is_pfa_def min.absorb1 min.absorb2 heap add: blit_rule)


definition pfa_extend_grow where
  "pfa_extend_grow \<equiv> \<lambda> (a,n) (b,m). do{
  a' \<leftarrow> array_ensure a (n+m) default;
  blit b 0 a' n m;
  return (a',n+m)
}"

lemma pfa_extend_grow_rule[sep_heap_rules]:
  "<is_pfa c l1 (a,n) * is_pfa d l2 (b,m)>
  pfa_extend_grow (a,n) (b,m)
  <\<lambda>(a',n'). is_pfa (max c (n+m)) (l1@l2) (a',n') * \<up>(n'=n+m \<and> c \<ge> n) * is_pfa d l2 (b,m)>\<^sub>t"
  unfolding pfa_extend_grow_def
  by (sep_auto simp add: is_pfa_def min.absorb1 min.absorb2 heap add: blit_rule)

definition pfa_append_extend_grow where
  "pfa_append_extend_grow \<equiv> \<lambda> (a,n) x (b,m). do{
  a' \<leftarrow> array_ensure a (n+m+1) default;
  a'' \<leftarrow> Array.upd n x a';
  blit b 0 a'' (n+1) m;
  return (a'',n+m+1)
}"

lemma pfa_append_extend_grow_rule[sep_heap_rules]:
  "<is_pfa c l1 (a,n) * is_pfa d l2 (b,m)>
  pfa_append_extend_grow (a,n) x (b,m)
  <\<lambda>(a',n'). is_pfa (max c (n+m+1)) (l1@x#l2) (a',n') * \<up>(n'=n+m+1 \<and> c \<ge> n) * is_pfa d l2 (b,m)>\<^sub>t"
  unfolding pfa_append_extend_grow_def
  by (sep_auto simp add: list_update_last is_pfa_def min.absorb1 min.absorb2 heap add: blit_rule)


definition "pfa_delete \<equiv> \<lambda>(a,n) i. do {
  array_shl a (i+1) 1;
  return (a,n-1)
}"

lemma pfa_delete_rule[sep_heap_rules]:
  "i < n \<Longrightarrow>
  <is_pfa c l (a,n)>
  pfa_delete (a,n) i
  <\<lambda>(a',n'). is_pfa c (take i l@drop (i+1) l) (a',n') * \<up>(n' = n-1 \<and> a=a')>"
  unfolding pfa_delete_def is_pfa_def
  apply (sep_auto simp add: drop_take min_def)
  by (metis Suc_diff_Suc diff_zero dual_order.strict_trans2 le_less_Suc_eq zero_le)



end