Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 69,401 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 |
theory BTree_ImpSet
imports
BTree_Imp
BTree_Set
begin
section "Imperative Set operations"
subsection "Auxiliary operations"
definition "split_relation xs \<equiv>
\<lambda>(as,bs) i. i \<le> length xs \<and> as = take i xs \<and> bs = drop i xs"
lemma split_relation_alt:
"split_relation as (ls,rs) i = (as = ls@rs \<and> i = length ls)"
by (auto simp add: split_relation_def)
lemma split_relation_length: "split_relation xs (ls,rs) (length xs) = (ls = xs \<and> rs = [])"
by (simp add: split_relation_def)
(* auxiliary lemmas on assns *)
(* simp? not sure if it always makes things more easy *)
lemma list_assn_prod_map: "list_assn (A \<times>\<^sub>a B) xs ys = list_assn B (map snd xs) (map snd ys) * list_assn A (map fst xs) (map fst ys)"
apply(induct "(A \<times>\<^sub>a B)" xs ys rule: list_assn.induct)
apply(auto simp add: ab_semigroup_mult_class.mult.left_commute ent_star_mono star_aci(2) star_assoc)
done
(* concrete *)
lemma id_assn_list: "h \<Turnstile> list_assn id_assn (xs::'a list) ys \<Longrightarrow> xs = ys"
apply(induction "id_assn::('a \<Rightarrow> 'a \<Rightarrow> assn)" xs ys rule: list_assn.induct)
apply(auto simp add: less_Suc_eq_0_disj pure_def)
done
lemma snd_map_help:
"x \<le> length tsi \<Longrightarrow>
(\<forall>j<x. snd (tsi ! j) = ((map snd tsi)!j))"
"x < length tsi \<Longrightarrow> snd (tsi!x) = ((map snd tsi)!x)"
by auto
lemma split_ismeq: "((a::nat) \<le> b \<and> X) = ((a < b \<and> X) \<or> (a = b \<and> X))"
by auto
lemma split_relation_map: "split_relation as (ls,rs) i \<Longrightarrow> split_relation (map f as) (map f ls, map f rs) i"
apply(induction as arbitrary: ls rs i)
apply(auto simp add: split_relation_def take_map drop_Cons')
apply(metis list.simps(9) take_map)
done
lemma split_relation_access: "\<lbrakk>split_relation as (ls,rs) i; rs = r#rrs\<rbrakk> \<Longrightarrow> as!i = r"
by (simp add: split_relation_alt)
lemma index_to_elem_all: "(\<forall>j<length xs. P (xs!j)) = (\<forall>x \<in> set xs. P x)"
by (simp add: all_set_conv_nth)
lemma index_to_elem: "n < length xs \<Longrightarrow> (\<forall>j<n. P (xs!j)) = (\<forall>x \<in> set (take n xs). P x)"
by (simp add: all_set_conv_nth)
(* ----------------- *)
definition split_half :: "('a::heap \<times> 'b::{heap}) pfarray \<Rightarrow> nat Heap"
where
"split_half a \<equiv> do {
l \<leftarrow> pfa_length a;
return (l div 2)
}"
lemma split_half_rule[sep_heap_rules]: "<
is_pfa c tsi a
* list_assn R ts tsi>
split_half a
<\<lambda>i.
is_pfa c tsi a
* list_assn R ts tsi
* \<up>(i = length ts div 2 \<and> split_relation ts (BTree_Set.split_half ts) i)>"
unfolding split_half_def split_relation_def
apply(rule hoare_triple_preI)
apply(sep_auto dest!: list_assn_len mod_starD)
done
subsection "The imperative split locale"
text "This locale extends the abstract split locale,
assuming that we are provided with an imperative program
that refines the abstract split function."
locale imp_split = abs_split: BTree_Set.split split
for split::
"('a btree \<times> 'a::{heap,default,linorder}) list \<Rightarrow> 'a
\<Rightarrow> ('a btree \<times> 'a) list \<times> ('a btree \<times> 'a) list" +
fixes imp_split:: "('a btnode ref option \<times> 'a::{heap,default,linorder}) pfarray \<Rightarrow> 'a \<Rightarrow> nat Heap"
assumes imp_split_rule [sep_heap_rules]:"sorted_less (separators ts) \<Longrightarrow>
<is_pfa c tsi (a,n)
* blist_assn k ts tsi>
imp_split (a,n) p
<\<lambda>i.
is_pfa c tsi (a,n)
* blist_assn k ts tsi
* \<up>(split_relation ts (split ts p) i)>\<^sub>t"
begin
subsection "Membership"
partial_function (heap) isin :: "'a btnode ref option \<Rightarrow> 'a \<Rightarrow> bool Heap"
where
"isin p x =
(case p of
None \<Rightarrow> return False |
(Some a) \<Rightarrow> do {
node \<leftarrow> !a;
i \<leftarrow> imp_split (kvs node) x;
tsl \<leftarrow> pfa_length (kvs node);
if i < tsl then do {
s \<leftarrow> pfa_get (kvs node) i;
let (sub,sep) = s in
if x = sep then
return True
else
isin sub x
} else
isin (last node) x
}
)"
subsection "Insertion"
datatype 'b btupi =
T\<^sub>i "'b btnode ref option" |
Up\<^sub>i "'b btnode ref option" "'b" "'b btnode ref option"
fun btupi_assn where
"btupi_assn k (abs_split.T\<^sub>i l) (T\<^sub>i li) =
btree_assn k l li" |
"btupi_assn k (abs_split.Up\<^sub>i l a r) (Up\<^sub>i li ai ri) =
btree_assn k l li * id_assn a ai * btree_assn k r ri" |
"btupi_assn _ _ _ = false"
definition node\<^sub>i :: "nat \<Rightarrow> ('a btnode ref option \<times> 'a) pfarray \<Rightarrow> 'a btnode ref option \<Rightarrow> 'a btupi Heap" where
"node\<^sub>i k a ti \<equiv> do {
n \<leftarrow> pfa_length a;
if n \<le> 2*k then do {
a' \<leftarrow> pfa_shrink_cap (2*k) a;
l \<leftarrow> ref (Btnode a' ti);
return (T\<^sub>i (Some l))
}
else do {
b \<leftarrow> (pfa_empty (2*k) :: ('a btnode ref option \<times> 'a) pfarray Heap);
i \<leftarrow> split_half a;
m \<leftarrow> pfa_get a i;
b' \<leftarrow> pfa_drop a (i+1) b;
a' \<leftarrow> pfa_shrink i a;
a'' \<leftarrow> pfa_shrink_cap (2*k) a';
let (sub,sep) = m in do {
l \<leftarrow> ref (Btnode a'' sub);
r \<leftarrow> ref (Btnode b' ti);
return (Up\<^sub>i (Some l) sep (Some r))
}
}
}"
partial_function (heap) ins :: "nat \<Rightarrow> 'a \<Rightarrow> 'a btnode ref option \<Rightarrow> 'a btupi Heap"
where
"ins k x apo = (case apo of
None \<Rightarrow>
return (Up\<^sub>i None x None) |
(Some ap) \<Rightarrow> do {
a \<leftarrow> !ap;
i \<leftarrow> imp_split (kvs a) x;
tsl \<leftarrow> pfa_length (kvs a);
if i < tsl then do {
s \<leftarrow> pfa_get (kvs a) i;
let (sub,sep) = s in
if sep = x then
return (T\<^sub>i apo)
else do {
r \<leftarrow> ins k x sub;
case r of
(T\<^sub>i lp) \<Rightarrow> do {
pfa_set (kvs a) i (lp,sep);
return (T\<^sub>i apo)
} |
(Up\<^sub>i lp x' rp) \<Rightarrow> do {
pfa_set (kvs a) i (rp,sep);
if tsl < 2*k then do {
kvs' \<leftarrow> pfa_insert (kvs a) i (lp,x');
ap := (Btnode kvs' (last a));
return (T\<^sub>i apo)
} else do {
kvs' \<leftarrow> pfa_insert_grow (kvs a) i (lp,x');
node\<^sub>i k kvs' (last a)
}
}
}
}
else do {
r \<leftarrow> ins k x (last a);
case r of
(T\<^sub>i lp) \<Rightarrow> do {
ap := (Btnode (kvs a) lp);
return (T\<^sub>i apo)
} |
(Up\<^sub>i lp x' rp) \<Rightarrow>
if tsl < 2*k then do {
kvs' \<leftarrow> pfa_append (kvs a) (lp,x');
ap := (Btnode kvs' rp);
return (T\<^sub>i apo)
} else do {
kvs' \<leftarrow> pfa_append_grow' (kvs a) (lp,x');
node\<^sub>i k kvs' rp
}
}
}
)"
(*fun tree\<^sub>i::"'a up\<^sub>i \<Rightarrow> 'a btree" where
"tree\<^sub>i (T\<^sub>i sub) = sub" |
"tree\<^sub>i (Up\<^sub>i l a r) = (Node [(l,a)] r)"
fun insert::"nat \<Rightarrow> 'a \<Rightarrow> 'a btree \<Rightarrow> 'a btree" where
"insert k x t = tree\<^sub>i (ins k x t)"
*)
definition insert :: "nat \<Rightarrow> ('a::{heap,default,linorder}) \<Rightarrow> 'a btnode ref option \<Rightarrow> 'a btnode ref option Heap" where
"insert \<equiv> \<lambda>k x ti. do {
ti' \<leftarrow> ins k x ti;
case ti' of
T\<^sub>i sub \<Rightarrow> return sub |
Up\<^sub>i l a r \<Rightarrow> do {
kvs \<leftarrow> pfa_init (2*k) (l,a) 1;
t' \<leftarrow> ref (Btnode kvs r);
return (Some t')
}
}"
subsection "Deletion"
(* rebalance middle tree gets a list of trees, an index pointing to
the position of sub/sep and a last tree *)
definition rebalance_middle_tree:: "nat \<Rightarrow> (('a::{default,heap,linorder}) btnode ref option \<times> 'a) pfarray \<Rightarrow> nat \<Rightarrow> 'a btnode ref option \<Rightarrow> 'a btnode Heap"
where
"rebalance_middle_tree \<equiv> \<lambda> k tsi i r_ti. (
case r_ti of
None \<Rightarrow> do {
(r_sub,sep) \<leftarrow> pfa_get tsi i;
case r_sub of None \<Rightarrow> return (Btnode tsi r_ti)
} |
Some p_t \<Rightarrow> do {
(r_sub,sep) \<leftarrow> pfa_get tsi i;
case r_sub of (Some p_sub) \<Rightarrow> do {
ti \<leftarrow> !p_t;
sub \<leftarrow> !p_sub;
l_sub \<leftarrow> pfa_length (kvs sub);
l_tts \<leftarrow> pfa_length (kvs ti);
if l_sub \<ge> k \<and> l_tts \<ge> k then do {
return (Btnode tsi r_ti)
} else do {
l_tsi \<leftarrow> pfa_length tsi;
if i+1 = l_tsi then do {
mts' \<leftarrow> pfa_append_extend_grow (kvs sub) (last sub,sep) (kvs ti);
res_node\<^sub>i \<leftarrow> node\<^sub>i k mts' (last ti);
case res_node\<^sub>i of
T\<^sub>i u \<Rightarrow> do {
tsi' \<leftarrow> pfa_shrink i tsi;
return (Btnode tsi' u)
} |
Up\<^sub>i l a r \<Rightarrow> do {
tsi' \<leftarrow> pfa_set tsi i (l,a);
return (Btnode tsi' r)
}
} else do {
(r_rsub,rsep) \<leftarrow> pfa_get tsi (i+1);
case r_rsub of Some p_rsub \<Rightarrow> do {
rsub \<leftarrow> !p_rsub;
mts' \<leftarrow> pfa_append_extend_grow (kvs sub) (last sub,sep) (kvs rsub);
res_node\<^sub>i \<leftarrow> node\<^sub>i k mts' (last rsub);
case res_node\<^sub>i of
T\<^sub>i u \<Rightarrow> do {
tsi' \<leftarrow> pfa_set tsi i (u,rsep);
tsi'' \<leftarrow> pfa_delete tsi' (i+1);
return (Btnode tsi'' r_ti)
} |
Up\<^sub>i l a r \<Rightarrow> do {
tsi' \<leftarrow> pfa_set tsi i (l,a);
tsi'' \<leftarrow> pfa_set tsi' (i+1) (r,rsep);
return (Btnode tsi'' r_ti)
}
}
}
}
}
})
"
definition rebalance_last_tree:: "nat \<Rightarrow> (('a::{default,heap,linorder}) btnode ref option \<times> 'a) pfarray \<Rightarrow> 'a btnode ref option \<Rightarrow> 'a btnode Heap"
where
"rebalance_last_tree \<equiv> \<lambda>k tsi ti. do {
l_tsi \<leftarrow> pfa_length tsi;
rebalance_middle_tree k tsi (l_tsi-1) ti
}"
subsection "Refinement of the abstract B-tree operations"
definition empty ::"('a::{default,heap,linorder}) btnode ref option Heap"
where "empty = return None"
lemma P_imp_Q_implies_P: "P \<Longrightarrow> (Q \<longrightarrow> P)"
by simp
lemma "sorted_less (inorder t) \<Longrightarrow>
<btree_assn k t ti>
isin ti x
<\<lambda>r. btree_assn k t ti * \<up>(abs_split.isin t x = r)>\<^sub>t"
proof(induction t x arbitrary: ti rule: abs_split.isin.induct)
case (1 x)
then show ?case
apply(subst isin.simps)
apply (cases ti)
apply (auto simp add: return_cons_rule)
done
next
case (2 ts t x)
then obtain ls rs where list_split[simp]: "split ts x = (ls,rs)"
by (cases "split ts x")
then show ?case
proof (cases rs)
(* NOTE: induction condition trivial here *)
case [simp]: Nil
show ?thesis
apply(subst isin.simps)
apply(sep_auto)
using "2.prems" sorted_inorder_separators apply blast
apply(auto simp add: split_relation_def dest!: sym[of "[]"] mod_starD list_assn_len)[]
apply(rule hoare_triple_preI)
apply(auto simp add: split_relation_def dest!: sym[of "[]"] mod_starD list_assn_len)[]
using 2(3) apply(sep_auto heap: "2.IH"(1)[of ls "[]"] simp add: sorted_wrt_append)
done
next
case [simp]: (Cons h rrs)
obtain sub sep where h_split[simp]: "h = (sub,sep)"
by (cases h)
show ?thesis
proof (cases "sep = x")
(* NOTE: no induction required here, only vacuous counter cases generated *)
case [simp]: True
then show ?thesis
apply(simp split: list.splits prod.splits)
apply(subst isin.simps)
using "2.prems" sorted_inorder_separators apply(sep_auto)
apply(rule hoare_triple_preI)
apply(auto simp add: split_relation_alt list_assn_append_Cons_left dest!: mod_starD list_assn_len)[]
apply(rule hoare_triple_preI)
apply(auto simp add: split_relation_def dest!: sym[of "[]"] mod_starD list_assn_len)[]
done
next
case [simp]: False
show ?thesis
apply(simp split: list.splits prod.splits)
apply safe
using False apply simp
apply(subst isin.simps)
using "2.prems" sorted_inorder_separators
apply(sep_auto)
(*eliminate vacuous case*)
apply(auto simp add: split_relation_alt list_assn_append_Cons_left dest!: mod_starD list_assn_len)[]
(* simplify towards induction step *)
apply(auto simp add: split_relation_alt list_assn_append_Cons_left dest!: mod_starD list_assn_len)[]
(* NOTE show that z = (suba, sepa) *)
apply(rule norm_pre_ex_rule)+
apply(rule hoare_triple_preI)
subgoal for p tsi n ti xsi suba sepa zs1 z zs2 _
apply(subgoal_tac "z = (suba, sepa)", simp)
using 2(3) apply(sep_auto
heap:"2.IH"(2)[of ls rs h rrs sub sep]
simp add: sorted_wrt_append)
using list_split Cons h_split apply simp_all
(* proof that previous assumptions hold later *)
apply(rule P_imp_Q_implies_P)
apply(rule ent_ex_postI[where x="(tsi,n)"])
apply(rule ent_ex_postI[where x="ti"])
apply(rule ent_ex_postI[where x="(zs1 @ (suba, sepa) # zs2)"])
apply(rule ent_ex_postI[where x="zs1"])
apply(rule ent_ex_postI[where x="z"])
apply(rule ent_ex_postI[where x="zs2"])
apply sep_auto
(* prove subgoal_tac assumption *)
apply (metis (no_types, lifting) list_assn_aux_ineq_len list_assn_len nth_append_length star_false_left star_false_right)
done
(* eliminate last vacuous case *)
apply(rule hoare_triple_preI)
apply(auto simp add: split_relation_def dest!: mod_starD list_assn_len)[]
done
qed
qed
qed
declare abs_split.node\<^sub>i.simps [simp add]
lemma node\<^sub>i_rule: assumes c_cap: "2*k \<le> c" "c \<le> 4*k+1"
shows "<is_pfa c tsi (a,n) * list_assn ((btree_assn k) \<times>\<^sub>a id_assn) ts tsi * btree_assn k t ti>
node\<^sub>i k (a,n) ti
<\<lambda>r. btupi_assn k (abs_split.node\<^sub>i k ts t) r >\<^sub>t"
proof (cases "length ts \<le> 2 * k")
case [simp]: True
then show ?thesis
apply(subst node\<^sub>i_def)
apply(rule hoare_triple_preI)
apply(sep_auto dest!: mod_starD list_assn_len)
apply(sep_auto simp add: is_pfa_def)[]
using c_cap apply(sep_auto simp add: is_pfa_def)[]
apply(sep_auto dest!: mod_starD list_assn_len)[]
using True apply(sep_auto dest!: mod_starD list_assn_len)
done
next
note max.absorb1 [simp del] max.absorb2 [simp del] max.absorb3 [simp del] max.absorb4 [simp del]
note min.absorb1 [simp del] min.absorb2 [simp del] min.absorb3 [simp del] min.absorb4 [simp del]
case [simp]: False
then obtain ls sub sep rs where
split_half_eq: "BTree_Set.split_half ts = (ls,(sub,sep)#rs)"
using abs_split.node\<^sub>i_cases by blast
then show ?thesis
apply(subst node\<^sub>i_def)
apply(rule hoare_triple_preI)
apply(sep_auto dest!: mod_starD list_assn_len)
apply(sep_auto simp add: split_relation_alt split_relation_length is_pfa_def dest!: mod_starD list_assn_len)
using False apply(sep_auto simp add: split_relation_alt )
using False apply(sep_auto simp add: is_pfa_def)[]
apply(sep_auto)[]
apply(sep_auto simp add: is_pfa_def split_relation_alt)[]
using c_cap apply(sep_auto simp add: is_pfa_def)[]
apply(sep_auto)[]
using c_cap apply(sep_auto simp add: is_pfa_def)[]
using c_cap apply(simp)
apply(vcg)
apply(simp)
apply(rule impI)
subgoal for _ _ _ _ rsa subi ba rn lsi al ar _
thm ent_ex_postI
thm ent_ex_postI[where x="take (length tsi div 2) tsi"]
(* instantiate right hand side *)
apply(rule ent_ex_postI[where x="(rsa,rn)"])
apply(rule ent_ex_postI[where x="ti"])
apply(rule ent_ex_postI[where x="(drop (Suc (length tsi div 2)) tsi)"])
apply(rule ent_ex_postI[where x="lsi"])
apply(rule ent_ex_postI[where x="subi"])
apply(rule ent_ex_postI[where x="take (length tsi div 2) tsi"])
(* introduce equality between equality of split tsi/ts and original lists *)
apply(simp add: split_relation_alt)
apply(subgoal_tac "tsi =
take (length tsi div 2) tsi @ (subi, ba) # drop (Suc (length tsi div 2)) tsi")
apply(rule back_subst[where a="blist_assn k ts (take (length tsi div 2) tsi @ (subi, ba) # (drop (Suc (length tsi div 2)) tsi))" and b="blist_assn k ts tsi"])
apply(rule back_subst[where a="blist_assn k (take (length tsi div 2) ts @ (sub, sep) # rs)" and b="blist_assn k ts"])
apply(subst list_assn_aux_append_Cons)
apply sep_auto
apply sep_auto
apply simp
apply simp
apply(rule back_subst[where a="tsi ! (length tsi div 2)" and b="(subi, ba)"])
apply(rule id_take_nth_drop)
apply simp
apply simp
done
done
qed
declare abs_split.node\<^sub>i.simps [simp del]
lemma node\<^sub>i_no_split: "length ts \<le> 2*k \<Longrightarrow> abs_split.node\<^sub>i k ts t = abs_split.T\<^sub>i (Node ts t)"
by (simp add: abs_split.node\<^sub>i.simps)
lemma node\<^sub>i_rule_app: "\<lbrakk>2*k \<le> c; c \<le> 4*k+1\<rbrakk> \<Longrightarrow>
<is_pfa c (tsi' @ [(li, ai)]) (aa, al) *
blist_assn k ls tsi' *
btree_assn k l li *
id_assn a ai *
btree_assn k r ri> node\<^sub>i k (aa, al) ri
<btupi_assn k (abs_split.node\<^sub>i k (ls @ [(l, a)]) r)>\<^sub>t"
proof -
note node\<^sub>i_rule[of k c "(tsi' @ [(li, ai)])" aa al "(ls @ [(l, a)])" r ri]
moreover assume "2*k \<le> c" "c \<le> 4*k+1"
ultimately show ?thesis
by (simp add: mult.left_assoc)
qed
lemma node\<^sub>i_rule_ins2: "\<lbrakk>2*k \<le> c; c \<le> 4*k+1; length ls = length lsi\<rbrakk> \<Longrightarrow>
<is_pfa c (lsi @ (li, ai) # (ri,a'i) # rsi) (aa, al) *
blist_assn k ls lsi *
btree_assn k l li *
id_assn a ai *
btree_assn k r ri *
id_assn a' a'i *
blist_assn k rs rsi *
btree_assn k t ti> node\<^sub>i k (aa, al)
ti <btupi_assn k (abs_split.node\<^sub>i k (ls @ (l, a) # (r,a') # rs) t)>\<^sub>t"
proof -
assume [simp]: "2*k \<le> c" "c \<le> 4*k+1" "length ls = length lsi"
moreover note node\<^sub>i_rule[of k c "(lsi @ (li, ai) # (ri,a'i) # rsi)" aa al "(ls @ (l, a) # (r,a') # rs)" t ti]
ultimately show ?thesis
by (simp add: mult.left_assoc list_assn_aux_append_Cons)
qed
lemma ins_rule:
"sorted_less (inorder t) \<Longrightarrow> <btree_assn k t ti>
ins k x ti
<\<lambda>r. btupi_assn k (abs_split.ins k x t) r>\<^sub>t"
proof (induction k x t arbitrary: ti rule: abs_split.ins.induct)
case (1 k x)
then show ?case
apply(subst ins.simps)
apply (sep_auto simp add: pure_app_eq)
done
next
case (2 k x ts t)
obtain ls rrs where list_split: "split ts x = (ls,rrs)"
by (cases "split ts x")
have [simp]: "sorted_less (separators ts)"
using "2.prems" sorted_inorder_separators by simp
have [simp]: "sorted_less (inorder t)"
using "2.prems" sorted_inorder_induct_last by simp
show ?case
proof (cases rrs)
case Nil
then show ?thesis
proof (cases "abs_split.ins k x t")
case (T\<^sub>i a)
then show ?thesis
apply(subst ins.simps)
apply(sep_auto)
subgoal for p tsil tsin tti
using Nil list_split
by (simp add: list_assn_aux_ineq_len split_relation_alt)
subgoal for p tsil tsin tti tsi' i tsin' _ sub sep
apply(rule hoare_triple_preI)
using Nil list_split
by (simp add: list_assn_aux_ineq_len split_relation_alt)
subgoal for p tsil tsin tti tsi'
thm "2.IH"(1)[of ls rrs tti]
using Nil list_split T\<^sub>i apply(sep_auto split!: list.splits simp add: split_relation_alt
heap add: "2.IH"(1)[of ls rrs tti])
subgoal for ai
apply(cases ai)
apply sep_auto
apply sep_auto
done
done
done
next
case (Up\<^sub>i l a r)
then show ?thesis
apply(subst ins.simps)
apply(sep_auto)
subgoal for p tsil tsin tti
using Nil list_split
by (simp add: list_assn_aux_ineq_len split_relation_alt)
subgoal for p tsil tsin tti tsi' i tsin' _ sub sep
using Nil list_split
by (simp add: list_assn_aux_ineq_len split_relation_alt)
subgoal for p tsil tsin tti tsi' i tsin'
thm "2.IH"(1)[of ls rrs tti]
using Nil list_split Up\<^sub>i apply(sep_auto split!: list.splits
simp add: split_relation_alt
heap add: "2.IH"(1)[of ls rrs tti])
subgoal for ai
apply(cases ai)
apply sep_auto
apply(rule hoare_triple_preI)
apply(sep_auto)
apply(auto dest!: mod_starD simp add: is_pfa_def)[]
apply (sep_auto)
subgoal for li ai ri (* no split case *)
apply(subgoal_tac "length (ls @ [(l,a)]) \<le> 2*k")
apply(simp add: node\<^sub>i_no_split)
apply(rule ent_ex_postI[where x="(tsil,Suc tsin)"])
apply(rule ent_ex_postI[where x="ri"])
apply(rule ent_ex_postI[where x="tsi' @ [(li, ai)]"])
apply(sep_auto)
apply (sep_auto dest!: mod_starD list_assn_len simp add: is_pfa_def)
done
(* split case*)
apply(sep_auto heap add: node\<^sub>i_rule_app)
done
done
done
qed
next
case (Cons a rs)
obtain sub sep where a_split: "a = (sub,sep)"
by (cases a)
then have [simp]: "sorted_less (inorder sub)"
using "2.prems" abs_split.split_axioms list_split Cons sorted_inorder_induct_subtree split_def
by fastforce
then show ?thesis
proof(cases "x = sep")
case True
show ?thesis
apply(subst ins.simps)
apply(sep_auto)
subgoal for p tsil tsin tti tsi j subi
using Cons list_split a_split True
by sep_auto
subgoal for p tsil tsin tti tsi j _ _ subi sepi
apply(rule hoare_triple_preI)
using Cons list_split a_split True
apply(subgoal_tac "sepi = sep")
apply (sep_auto simp add: split_relation_alt)
apply(sep_auto simp add: list_assn_prod_map dest!: mod_starD id_assn_list)
by (metis length_map snd_conv snd_map_help(2) split_relation_access)
subgoal for p tsil tsin tti tsi j
apply(rule hoare_triple_preI)
using Cons list_split
by (sep_auto simp add: split_relation_alt dest!: mod_starD list_assn_len)
done
next
case False
then show ?thesis
proof (cases "abs_split.ins k x sub")
case (T\<^sub>i a')
then show ?thesis
apply(auto simp add: Cons list_split a_split False)
using False apply simp
apply(subst ins.simps)
apply vcg
apply auto
apply(rule norm_pre_ex_rule)+
(* at this point, we want to introduce the split, and after that tease the
hoare triple assumptions out of the bracket, s.t. we don't split twice *)
apply vcg
apply sep_auto
using list_split Cons
apply(simp add: split_relation_alt list_assn_append_Cons_left)
apply (rule impI)
apply(rule norm_pre_ex_rule)+
apply(rule hoare_triple_preI)
apply sep_auto
(* discard wrong branch *)
subgoal for p tsil tsin ti zs1 subi sepi zs2 _ _ suba
apply(subgoal_tac "sepi = x")
using list_split Cons a_split
apply(auto dest!: mod_starD )[]
apply(auto dest!: mod_starD list_assn_len)[]
done
(* actual induction branch *)
subgoal for p tsil tsin ti zs1 subi sepi zs2 _ _ n z suba sepa
apply (cases a, simp)
apply(subgoal_tac "subi = suba", simp)
using list_split a_split T\<^sub>i False
apply (vcg heap: 2)
apply(auto split!: btupi.splits)
(* careful progression for manual value insertion *)
apply vcg
apply simp
apply vcg
apply simp
subgoal for a'i q r
apply(rule impI)
apply(simp add: list_assn_append_Cons_left)
apply(rule ent_ex_postI[where x="(tsil,tsin)"])
apply(rule ent_ex_postI[where x="ti"])
apply(rule ent_ex_postI[where x="(zs1 @ (a'i, sepi) # zs2)"])
apply(rule ent_ex_postI[where x="zs1"])
apply(rule ent_ex_postI[where x="(a'i,sep)"])
apply(rule ent_ex_postI[where x="zs2"])
apply sep_auto
apply (simp add: pure_app_eq)
apply(sep_auto dest!: mod_starD list_assn_len)[]
done
apply (metis list_assn_aux_ineq_len Pair_inject list_assn_len nth_append_length star_false_left star_false_right)
done
subgoal for p tsil tsin ti zs1 subi sepi zs2 _ _ suba
apply(auto dest!: mod_starD list_assn_len)[]
done
done
next
case (Up\<^sub>i l w r)
then show ?thesis
apply(auto simp add: Cons list_split a_split False)
using False apply simp
apply(subst ins.simps)
apply vcg
apply auto
apply(rule norm_pre_ex_rule)+
(* at this point, we want to introduce the split, and after that tease the
hoare triple assumptions out of the bracket, s.t. we don't split twice *)
apply vcg
apply sep_auto
using list_split Cons
apply(simp add: split_relation_alt list_assn_append_Cons_left)
apply (rule impI)
apply(rule norm_pre_ex_rule)+
apply(rule hoare_triple_preI)
apply sep_auto
(* discard wrong branch *)
subgoal for p tsil tsin ti zs1 subi sepi zs2 _ _ suba
apply(subgoal_tac "sepi = x")
using list_split Cons a_split
apply(auto dest!: mod_starD )[]
apply(auto dest!: mod_starD list_assn_len)[]
done
(* actual induction branch *)
subgoal for p tsil tsin ti zs1 subi sepi zs2 _ _ n z suba sepa
apply(subgoal_tac "subi = suba", simp)
thm 2(2)[of ls rrs a rs sub sep]
using list_split a_split Cons Up\<^sub>i False
apply (sep_auto heap: 2(2))
apply(auto split!: btupi.splits)
(* careful progression for manual value insertion *)
apply vcg
apply simp
subgoal for li wi ri u (* no split case *)
apply (cases u,simp)
apply (sep_auto dest!: mod_starD list_assn_len heap: pfa_insert_grow_rule)
apply (simp add: is_pfa_def)[]
apply (metis le_less_linear length_append length_take less_not_refl min.absorb2 trans_less_add1)
apply(simp add: is_pfa_def)
apply (metis add_Suc_right length_Cons length_append length_take min.absorb2)
apply(sep_auto split: prod.splits dest!: mod_starD list_assn_len)[]
(* no split case *)
apply(subgoal_tac "length (ls @ [(l,w)]) \<le> 2*k")
apply(simp add: node\<^sub>i_no_split)
apply(rule ent_ex_postI[where x="(tsil,Suc tsin)"])
apply(rule ent_ex_postI[where x="ti"])
apply(rule ent_ex_postI[where x="(zs1 @ (li, wi) # (ri, sep) # zs2)"])
apply(sep_auto dest!: mod_starD list_assn_len)
apply (sep_auto dest!: mod_starD list_assn_len simp add: is_pfa_def)
done
apply vcg
apply simp
subgoal for x21 x22 x23 u (* split case *)
apply (cases u,simp)
thm pfa_insert_grow_rule[where ?l="((zs1 @ (suba, sepi) # zs2)[length ls := (x23, sepa)])"]
apply (sep_auto dest!: mod_starD list_assn_len heap: pfa_insert_grow_rule)
apply (simp add: is_pfa_def)[]
apply (metis le_less_linear length_append length_take less_not_refl min.absorb2 trans_less_add1)
apply(auto split: prod.splits dest!: mod_starD list_assn_len)[]
apply (vcg heap: node\<^sub>i_rule_ins2)
apply simp
apply simp
apply simp
apply sep_auto
done
apply(auto dest!: mod_starD list_assn_len)[]
done
subgoal for p tsil tsin ti zs1 subi sepi zs2 _ _ suba
apply(auto dest!: mod_starD list_assn_len)[]
done
done
qed
qed
qed
qed
text "The imperative insert refines the abstract insert."
lemma insert_rule:
assumes "k > 0" "sorted_less (inorder t)"
shows "<btree_assn k t ti>
insert k x ti
<\<lambda>r. btree_assn k (abs_split.insert k x t) r>\<^sub>t"
unfolding insert_def
apply(cases "abs_split.ins k x t")
apply(sep_auto split!: btupi.splits heap: ins_rule[OF assms(2)])
using assms
apply(vcg heap: ins_rule[OF assms(2)])
apply(simp split!: btupi.splits)
apply(vcg)
apply auto[]
apply vcg
apply auto[]
subgoal for l a r li ai ri tsa tsn ti
apply(rule ent_ex_postI[where x="(tsa,tsn)"])
apply(rule ent_ex_postI[where x="ri"])
apply(rule ent_ex_postI[where x="[(li, ai)]"])
apply sep_auto
done
done
text "The \"pure\" resulting rule follows automatically."
lemma insert_rule':
shows "<btree_assn (Suc k) t ti * \<up>(abs_split.invar_inorder (Suc k) t \<and> sorted_less (inorder t))>
insert (Suc k) x ti
<\<lambda>ri.\<exists>\<^sub>Ar. btree_assn (Suc k) r ri * \<up>(abs_split.invar_inorder (Suc k) r \<and> sorted_less (inorder r) \<and> inorder r = (ins_list x (inorder t)))>\<^sub>t"
using abs_split.insert_bal abs_split.insert_order abs_split.insert_inorder
by (sep_auto heap: insert_rule simp add: sorted_ins_list)
lemma list_update_length2 [simp]:
"(xs @ x # y # ys)[Suc (length xs) := z] = (xs @ x # z # ys)"
by (induct xs, auto)
lemma node\<^sub>i_rule_ins: "\<lbrakk>2*k \<le> c; c \<le> 4*k+1; length ls = length lsi\<rbrakk> \<Longrightarrow>
<is_pfa c (lsi @ (li, ai) # rsi) (aa, al) *
blist_assn k ls lsi *
btree_assn k l li *
id_assn a ai *
blist_assn k rs rsi *
btree_assn k t ti>
node\<^sub>i k (aa, al) ti
<btupi_assn k (abs_split.node\<^sub>i k (ls @ (l, a) # rs) t)>\<^sub>t"
proof -
assume [simp]: "2*k \<le> c" "c \<le> 4*k+1" "length ls = length lsi"
moreover note node\<^sub>i_rule[of k c "(lsi @ (li, ai) # rsi)" aa al "(ls @ (l, a) # rs)" t ti]
ultimately show ?thesis
by (simp add: mult.left_assoc list_assn_aux_append_Cons)
qed
lemma btupi_assn_T: "h \<Turnstile> btupi_assn k (abs_split.node\<^sub>i k ts t) (T\<^sub>i x) \<Longrightarrow> abs_split.node\<^sub>i k ts t = abs_split.T\<^sub>i (Node ts t)"
apply(auto simp add: abs_split.node\<^sub>i.simps dest!: mod_starD split!: list.splits)
done
lemma btupi_assn_Up: "h \<Turnstile> btupi_assn k (abs_split.node\<^sub>i k ts t) (Up\<^sub>i l a r) \<Longrightarrow>
abs_split.node\<^sub>i k ts t = (
case BTree_Set.split_half ts of (ls, (sub,sep)#rs) \<Rightarrow>
abs_split.Up\<^sub>i (Node ls sub) sep (Node rs t))"
apply(auto simp add: abs_split.node\<^sub>i.simps dest!: mod_starD split!: list.splits)
done
lemma second_last_access:"(xs@a#b#ys) ! Suc(length xs) = b"
by (simp add: nth_via_drop)
lemma pfa_assn_len:"h \<Turnstile> is_pfa k ls (a,n) \<Longrightarrow> n \<le> k \<and> length ls = n"
by (auto simp add: is_pfa_def)
(*declare "impCE"[rule del]*)
lemma rebalance_middle_tree_rule:
assumes "height t = height sub"
and "case rs of (rsub,rsep) # list \<Rightarrow> height rsub = height t | [] \<Rightarrow> True"
and "i = length ls"
shows "<is_pfa (2*k) tsi (a,n) * blist_assn k (ls@(sub,sep)#rs) tsi * btree_assn k t ti>
rebalance_middle_tree k (a,n) i ti
<\<lambda>r. btnode_assn k (abs_split.rebalance_middle_tree k ls sub sep rs t) r >\<^sub>t"
apply(simp add: list_assn_append_Cons_left)
apply(rule norm_pre_ex_rule)+
proof(goal_cases)
case (1 lsi z rsi)
then show ?case
proof(cases z)
case z_split: (Pair subi sepi)
then show ?thesis
proof(cases sub)
case sub_leaf[simp]: Leaf
then have t_leaf[simp]: "t = Leaf" using assms
by (cases t) auto
show ?thesis
apply (subst rebalance_middle_tree_def)
apply (rule hoare_triple_preI)
apply (vcg)
using assms apply (auto dest!: mod_starD list_assn_len split!: option.splits)
apply (vcg)
apply (auto dest!: mod_starD list_assn_len split!: option.splits)
apply (rule ent_ex_postI[where x=tsi])
apply sep_auto
done
next
case sub_node[simp]: (Node mts mt)
then obtain tts tt where t_node[simp]: "t = Node tts tt" using assms
by (cases t) auto
then show ?thesis
proof(cases "length mts \<ge> k \<and> length tts \<ge> k")
case True
then show ?thesis
apply(subst rebalance_middle_tree_def)
apply(rule hoare_triple_preI)
apply(sep_auto dest!: mod_starD)
using assms apply (auto dest!: list_assn_len)[]
using assms apply(sep_auto split!: prod.splits)
using assms apply (auto simp del: height_btree.simps dest!: mod_starD list_assn_len)[]
using z_split apply(auto)[]
subgoal for _ _ _ _ _ _ _ _ tp tsia' tsin' _ _ _ _ _ _ _ _ _ _ tsia tsin tti ttsi sepi subp
apply(auto dest!: mod_starD list_assn_len simp: prod_assn_def)[]
apply(vcg)
apply(auto)[]
apply(rule ent_ex_postI[where x="lsi@(Some subp, sepi)#rsi"])
apply(rule ent_ex_postI[where x="(tsia, tsin)"])
apply(rule ent_ex_postI[where x="tti"])
apply(rule ent_ex_postI[where x=ttsi])
apply(sep_auto)[]
apply(rule hoare_triple_preI)
using True apply(auto dest!: mod_starD list_assn_len)
done
done
next
case False
then show ?thesis
proof(cases rs)
case Nil
then show ?thesis
apply(subst rebalance_middle_tree_def)
apply(rule hoare_triple_preI)
apply(sep_auto dest!: mod_starD)
using assms apply (auto dest!: list_assn_len)[]
apply(sep_auto split!: prod.splits)
using assms apply (auto simp del: height_btree.simps dest!: mod_starD list_assn_len)[]
using z_split apply(auto)[]
subgoal for _ _ _ _ _ _ _ _ tp tsia' tsin' _ _ _ _ _ _ _ _ _ _ tsia tsin tti ttsi
apply(auto dest!: mod_starD list_assn_len simp: prod_assn_def)[]
apply(vcg)
using False apply(auto dest!: mod_starD list_assn_len)
done
apply(sep_auto dest!: mod_starD)
using assms apply (auto dest!: list_assn_len)[]
using assms apply (auto dest!: list_assn_len)[]
apply(sep_auto)
using assms apply (auto dest!: list_assn_len mod_starD)[]
using assms apply (auto dest!: list_assn_len mod_starD)[]
(* Issue: we do not know yet what 'subp is pointing at *)
subgoal for _ _ _ _ _ _ tp tsia tsin tti ttsi _ _ _ _ _ _ _ _ tsia' tsin' tti' tsi' subi sepi subp
apply(subgoal_tac "z = (subi, sepi)")
prefer 2
apply (metis assms(3) list_assn_len nth_append_length)
apply simp
apply(vcg)
subgoal
(* still the "IF" branch *)
apply(rule entailsI)
(* solves impossible case*)
using False apply (auto dest!: list_assn_len mod_starD)[]
done
apply (auto del: impCE)
apply(thin_tac "_ \<Turnstile> _")+
apply(rule hoare_triple_preI)
(* for each possible combination of \<le> and \<not>\<le>, a subgoal is created *)
apply(sep_auto heap add: node\<^sub>i_rule_ins dest!: mod_starD del: impCE)
apply (auto dest!: pfa_assn_len)[]
apply (auto dest!: pfa_assn_len list_assn_len)[]
subgoal
apply(thin_tac "_ \<Turnstile> _")+
apply(rule hoare_triple_preI)
apply(sep_auto split!: btupi.splits del: impCE)
apply(auto dest!: btupi_assn_T mod_starD del: impCE)[]
apply(rule ent_ex_postI[where x="lsi"])
apply sep_auto
apply (sep_auto del: impCE)
apply(auto dest!: btupi_assn_Up mod_starD split!: list.splits del: impCE)[]
subgoal for li ai ri
apply(rule ent_ex_postI[where x="lsi @ [(li, ai)]"])
apply sep_auto
done
done
apply (sep_auto del: impCE)
using assms apply(auto dest!: pfa_assn_len list_assn_len mod_starD)[]
using assms apply(auto dest!: pfa_assn_len list_assn_len mod_starD)[]
done
done
next
case (Cons rss rrs)
then show ?thesis
apply(subst rebalance_middle_tree_def)
apply(rule hoare_triple_preI)
apply(sep_auto dest!: mod_starD)
using assms apply (auto dest!: list_assn_len)[]
apply(sep_auto split!: prod.splits)
using assms apply (auto simp del: height_btree.simps dest!: mod_starD list_assn_len)[]
apply(auto)[]
subgoal for _ _ _ _ _ _ _ _ tp tsia' tsin' _ _ _ _ _ _ _ _ _ _ tsia tsin tti ttsi
apply(auto dest!: mod_starD list_assn_len simp: prod_assn_def)[]
apply(vcg)
using False apply(auto dest!: mod_starD list_assn_len)
done
apply(sep_auto dest!: mod_starD del: impCE)
using assms apply (auto dest!: list_assn_len)[]
apply(sep_auto del: impCE)
using assms apply (auto dest!: list_assn_len mod_starD)[]
(* Issue: we do not know yet what 'xa' is pointing at *)
subgoal for list_heap1 list_heap2 _ _ _ _ _ _ tp ttsia' ttsin' tti' ttsi' _ _ _ _ _ _ _ _ ttsia ttsin tti ttsi subi sepi subp
apply(subgoal_tac "z = (subi, sepi)")
prefer 2
apply (metis assms(3) list_assn_len nth_append_length)
apply simp
apply(vcg)
subgoal
(* still the "IF" branch *)
apply(rule entailsI)
(* solves impossible case*)
using False apply (auto dest!: list_assn_len mod_starD)[]
done
apply simp
subgoal for subtsi subti subts ti subi subtsl ttsl
(* TODO different nodei rule here *)
supply R = node\<^sub>i_rule_ins[where k=k and c="(max (2 * k) (Suc (_ + ttsin)))" and lsi=subts]
thm R
apply(cases subtsi)
apply(sep_auto heap add: R pfa_append_extend_grow_rule dest!: mod_starD del: impCE)
(* all of these cases are vacuous *)
using assms apply (auto dest!: list_assn_len pfa_assn_len)[]
using assms apply (auto dest!: list_assn_len pfa_assn_len)[]
using assms apply (auto dest!: list_assn_len pfa_assn_len)[]
apply(sep_auto split!: btupi.splits del: impCE)
using assms apply (auto dest!: list_assn_len pfa_assn_len)[]
apply(thin_tac "_ \<Turnstile> _")+
apply(rule hoare_triple_preI)
apply (cases rsi)
apply(auto dest!: list_assn_len mod_starD)[]
(* TODO avoid creating subgoals here but still split the heap? do we need to do that anyways *)
subgoal for subtsa subtsn mtsa mtsn mtt mtsi _ _ _ _ _ _ _ _ rsubsep _ rrsi rssi
(* ensuring that the tree to the right is not none *)
apply (cases rsubsep)
apply(subgoal_tac "rsubsep = rrsi")
prefer 2
using assms apply(auto dest!: list_assn_len mod_starD del: impCE simp add: second_last_access)[]
apply (simp add: prod_assn_def)
apply(cases rss)
apply simp
subgoal for rsubi rsepi rsub rsep
apply(subgoal_tac "height rsub \<noteq> 0")
prefer 2
using assms apply(auto)[]
apply(cases rsubi; cases rsub)
apply simp+
(* now we may proceed *)
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
subgoal for rsubi rsubts rsubt rsubtsi' rsubti rsubtsi subnode
apply(cases "kvs subnode")
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
subgoal for _ rsubtsn subtsmergedi
apply (cases subtsmergedi)
apply simp
apply (vcg (ss))
subgoal for subtsmergeda _
supply R = node\<^sub>i_rule_ins[where
k=k and
c="max (2*k) (Suc (subtsn + rsubtsn))" and
ls="mts" and
al="Suc (subtsn+rsubtsn)" and
aa=subtsmergeda and
ti=rsubti and
rsi=rsubtsi and
li=subti and a=sep and ai=sep
]
thm R
apply(rule P_imp_Q_implies_P)
apply(auto del: impCE dest!: mod_starD list_assn_len)[]
apply(rule hoare_triple_preI)
apply(subgoal_tac "subtsn \<le> 2*k \<and> rsubtsn \<le> 2*k")
prefer 2
apply (auto simp add: is_pfa_def)[]
apply (sep_auto heap add: R del: impCE)
apply(sep_auto split!: btupi.splits del: impCE)
using assms apply(auto dest!: mod_starD list_assn_len)[]
apply(sep_auto del: impCE)
using assms apply(auto dest!: mod_starD list_assn_len pfa_assn_len del: impCE)[]
apply(thin_tac "_ \<Turnstile> _")+
apply(rule hoare_triple_preI)
apply (drule btupi_assn_T mod_starD | erule conjE exE)+
apply vcg
apply simp
subgoal for rsubtsi ai tsian
apply(cases tsian)
apply simp
apply(rule P_imp_Q_implies_P)
apply(rule ent_ex_postI[where x="lsi @ (ai, rsep) # rssi"])
apply(rule ent_ex_postI[where x="(ttsia, ttsin)"])
apply(rule ent_ex_postI[where x="tti"])
apply(rule ent_ex_postI[where x="ttsi"])
using assms apply (sep_auto dest!: list_assn_len)
done
subgoal for _ _ rsubp rsubtsa _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ li ai ri
apply(sep_auto del: impCE)
using assms apply(auto dest!: list_assn_len)[]
apply(sep_auto del: impCE)
using assms apply(auto dest!: list_assn_len)[]
apply(thin_tac "_ \<Turnstile> _")+
apply(rule hoare_triple_preI)
apply (drule btupi_assn_Up mod_starD | erule conjE exE)+
apply vcg
(* generates two identical subgoals ? *)
apply(simp split!: list.split)
apply(rule ent_ex_postI[where x="(lsi @ (li, ai) # (ri, rsepi) # rssi)"])
apply(rule ent_ex_postI[where x="(ttsia, ttsin)"])
apply(rule ent_ex_postI[where x="tti"])
apply(rule ent_ex_postI[where x="ttsi"])
using assms apply (sep_auto dest!: list_assn_len)
apply(rule ent_ex_postI[where x="(lsi @ (li, ai) # (ri, rsepi) # rssi)"])
apply(rule ent_ex_postI[where x="(ttsia, ttsin)"])
apply(rule ent_ex_postI[where x="tti"])
apply(rule ent_ex_postI[where x="ttsi"])
using assms apply (sep_auto dest!: list_assn_len)
done
done
done
done
done
done
done
done
done
qed
qed
qed
qed
qed
lemma rebalance_last_tree_rule:
assumes "height t = height sub"
and "ts = list@[(sub,sep)]"
shows "<is_pfa (2*k) tsi tsia * blist_assn k ts tsi * btree_assn k t ti>
rebalance_last_tree k tsia ti
<\<lambda>r. btnode_assn k (abs_split.rebalance_last_tree k ts t) r >\<^sub>t"
apply(subst rebalance_last_tree_def)
apply(rule hoare_triple_preI)
using assms apply(auto dest!: mod_starD)
apply(subgoal_tac "length tsi - Suc 0 = length list")
prefer 2
apply(auto dest!: list_assn_len)[]
using assms apply(sep_auto)
supply R = rebalance_middle_tree_rule[where
ls="list" and
rs="[]" and
i="length tsi - 1", simplified]
apply(cases tsia)
using R by blast
partial_function (heap) split_max ::"nat \<Rightarrow> ('a::{default,heap,linorder}) btnode ref option \<Rightarrow> ('a btnode ref option \<times> 'a) Heap"
where
"split_max k r_t = (case r_t of Some p_t \<Rightarrow> do {
t \<leftarrow> !p_t;
(case (last t) of None \<Rightarrow> do {
(sub,sep) \<leftarrow> pfa_last (kvs t);
tsi' \<leftarrow> pfa_butlast (kvs t);
p_t := Btnode tsi' sub;
return (Some p_t, sep)
} |
Some x \<Rightarrow> do {
(sub,sep) \<leftarrow> split_max k (Some x);
p_t' \<leftarrow> rebalance_last_tree k (kvs t) sub;
p_t := p_t';
return (Some p_t, sep)
})
})
"
declare abs_split.split_max.simps [simp del] abs_split.rebalance_last_tree.simps [simp del] height_btree.simps [simp del]
lemma split_max_rule:
assumes "abs_split.nonempty_lasttreebal t"
and "t \<noteq> Leaf"
shows "<btree_assn k t ti>
split_max k ti
<((btree_assn k) \<times>\<^sub>a id_assn) (abs_split.split_max k t)>\<^sub>t"
using assms
proof(induction k t arbitrary: ti rule: abs_split.split_max.induct)
case (2 Leaf)
then show ?case by auto
next
case (1 k ts tt)
then show ?case
proof(cases tt)
case Leaf
then show ?thesis
apply(subst split_max.simps)
apply (vcg)
using assms apply auto[]
apply (vcg (ss))
apply simp
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply(rule hoare_triple_preI)
apply (vcg (ss))
using 1 apply(auto dest!: mod_starD)[]
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
subgoal for tp tsi tti tsi' tnode subsep sub sep
apply(cases tsi)
apply(rule hoare_triple_preI)
apply (vcg)
apply(auto simp add: prod_assn_def abs_split.split_max.simps split!: prod.splits)
subgoal for tsia tsin _ _ tsin' lastsep lastsub
apply(rule ent_ex_postI[where x="(tsia, tsin')"])
apply(rule ent_ex_postI[where x="sub"])
apply(rule ent_ex_postI[where x="(butlast tsi')"])
using 1 apply (auto dest!: mod_starD simp add: list_assn_append_Cons_left)
apply sep_auto
done
done
apply(sep_auto)
done
next
case (Node tts ttt)
have IH_help: "abs_split.nonempty_lasttreebal tt \<Longrightarrow>
tt \<noteq> Leaf \<Longrightarrow>
<btree_assn k (Node tts ttt) (Some ttp)> split_max k (Some ttp) <(btree_assn k \<times>\<^sub>a id_assn) (abs_split.split_max k tt)>\<^sub>t"
for ttp
using "1.IH" Node by blast
obtain butlasttts l_sub l_sep where ts_split:"tts = butlasttts@[(l_sub, l_sep)]"
using 1 Node by auto
from Node show ?thesis
apply(subst split_max.simps)
apply (vcg)
using 1 apply auto[]
apply (vcg (ss))
apply simp
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
apply (vcg (ss))
using 1 apply(auto dest!: mod_starD)[]
apply (vcg (ss))
subgoal for tp tsi tti tsi' tnode ttp
using "1.prems" apply (vcg heap add: IH_help)
apply simp
apply simp
apply(subst prod_assn_def)
apply(cases "abs_split.split_max k tt")
apply (auto simp del: abs_split.split_max.simps abs_split.rebalance_last_tree.simps height_btree.simps)[]
subgoal for ttsubi ttmaxi ttsub ttmax butlasttsi' lasttssubi butlastts lasttssub lasttssepi lasttssep
apply(rule hoare_triple_preI)
supply R = rebalance_last_tree_rule[where k=k and tsia=tsi and ti=ttsubi and t=ttsub and tsi=tsi' and ts=" (butlasttsi' @ [(lasttssubi, lasttssepi)])"
and list=butlasttsi' and sub=lasttssubi and sep=lasttssepi]
thm R
using ts_split
(*TODO weird post conditions... *)
apply (sep_auto heap add: R
simp del: abs_split.split_max.simps abs_split.rebalance_last_tree.simps height_btree.simps
dest!: mod_starD)
apply (metis abs_split.nonempty_lasttreebal.simps(2) abs_split.split_max_height btree.distinct(1))
apply simp
apply(rule hoare_triple_preI)
apply (simp add: prod_assn_def)
apply vcg
apply(subst abs_split.split_max.simps)
using "1.prems" apply(auto dest!: mod_starD split!: prod.splits btree.splits)
subgoal for _ _ _ _ _ _ _ _ _ _ tp'
apply(cases "abs_split.rebalance_last_tree k (butlasttsi' @ [(lasttssubi, lasttssepi)]) ttsub"; cases tp')
apply auto
apply(rule ent_ex_preI)
subgoal for _ _ tsia' tsin' tt' _ tsi'
apply(rule ent_ex_postI[where x="(tsia', tsin')"])
apply(rule ent_ex_postI[where x="tt'"])
apply(rule ent_ex_postI[where x="tsi'"])
apply sep_auto
done
done
done
done
done
qed
qed
partial_function (heap) del ::"nat \<Rightarrow> 'a \<Rightarrow> ('a::{default,heap,linorder}) btnode ref option \<Rightarrow> 'a btnode ref option Heap"
where
"del k x ti = (case ti of None \<Rightarrow> return None |
Some p \<Rightarrow> do {
node \<leftarrow> !p;
i \<leftarrow> imp_split (kvs node) x;
tsl \<leftarrow> pfa_length (kvs node);
if i < tsl then do {
(sub,sep) \<leftarrow> pfa_get (kvs node) i;
if sep \<noteq> x then do {
sub' \<leftarrow> del k x sub;
kvs' \<leftarrow> pfa_set (kvs node) i (sub',sep);
node' \<leftarrow> rebalance_middle_tree k kvs' i (last node);
p := node';
return (Some p)
}
else if sub = None then do{
kvs' \<leftarrow> pfa_delete (kvs node) i;
p := (Btnode kvs' (last node));
return (Some p)
}
else do {
sm \<leftarrow> split_max k sub;
kvs' \<leftarrow> pfa_set (kvs node) i sm;
node' \<leftarrow> rebalance_middle_tree k kvs' i (last node);
p := node';
return (Some p)
}
} else do {
t' \<leftarrow> del k x (last node);
node' \<leftarrow> rebalance_last_tree k (kvs node) t';
p := node';
return (Some p)
}
})"
lemma rebalance_middle_tree_update_rule:
assumes "height tt = height sub"
and "case rs of (rsub,rsep) # list \<Rightarrow> height rsub = height tt | [] \<Rightarrow> True"
and "i = length ls"
shows "<is_pfa (2 * k) (zs1 @ (x', sep) # zs2) a * btree_assn k sub x' *
blist_assn k ls zs1 *
id_assn sep sep *
blist_assn k rs zs2 *
btree_assn k tt ti>
rebalance_middle_tree k a i ti
<btnode_assn k (abs_split.rebalance_middle_tree k ls sub sep rs tt)>\<^sub>t"
proof (cases a)
case [simp]: (Pair a n)
note R=rebalance_middle_tree_rule[of tt sub rs i ls k "zs1@(x', sep)#zs2" a n sep ti]
show ?thesis
apply(rule hoare_triple_preI)
using R assms apply (sep_auto dest!: mod_starD list_assn_len simp add: prod_assn_def)
using assn_times_assoc star_aci(3) by auto
qed
lemma del_rule:
assumes "bal t" and "sorted (inorder t)" and "root_order k t" and "k > 0"
shows "<btree_assn k t ti>
del k x ti
<btree_assn k (abs_split.del k x t)>\<^sub>t"
using assms
proof (induction k x t arbitrary: ti rule: abs_split.del.induct)
case (1 k x)
then show ?case
apply(subst del.simps)
apply sep_auto
done
next
case (2 k x ts tt ti)
obtain ls rs where split_ts[simp]: "split ts x = (ls, rs)"
by (cases "split ts x")
obtain tss lastts_sub lastts_sep where last_ts: "ts = tss@[(lastts_sub, lastts_sep)]"
using "2.prems" apply auto
by (metis abs_split.isin.cases neq_Nil_rev_conv)
show ?case
proof(cases "rs")
case Nil
then show ?thesis
apply(subst del.simps)
apply sep_auto
using "2.prems"(2) sorted_inorder_separators apply blast
apply(rule hoare_triple_preI)
apply (sep_auto)
using Nil apply (auto simp add: split_relation_alt dest!: mod_starD list_assn_len)[]
using Nil apply (auto simp add: split_relation_alt dest!: mod_starD list_assn_len)[]
using Nil apply (auto simp add: split_relation_alt dest!: mod_starD list_assn_len)[]
apply (sep_auto heap add: "2.IH"(1))
using "2.prems" apply (auto dest!: mod_starD)[]
using "2.prems" apply (auto dest!: mod_starD simp add: sorted_wrt_append)[]
using "2.prems" order_impl_root_order apply (auto dest!: mod_starD)[]
using "2.prems" apply (auto)[]
subgoal for tp tsia tsin tti tsi i _ _ tti'
apply(rule hoare_triple_preI)
supply R = rebalance_last_tree_rule[where t="(abs_split.del k x tt)" and ti=tti' and ts=ts and sub=lastts_sub
and list=tss and sep=lastts_sep]
thm R
using last_ts apply(sep_auto heap add: R)
using "2.prems" abs_split.del_height[of k tt x] order_impl_root_order[of k tt] apply (auto dest!: mod_starD)[]
apply simp
apply(rule hoare_triple_preI)
apply (sep_auto)
apply(cases "abs_split.rebalance_last_tree k ts (abs_split.del k x tt)")
apply(auto simp add: split_relation_alt dest!: mod_starD list_assn_len)
subgoal for tnode
apply (cases tnode; sep_auto)
done
done
done
next
case [simp]: (Cons rrs rss)
then obtain sub sep where [simp]: "rrs = (sub, sep)"
by (cases rrs)
consider (sep_n_x) "sep \<noteq> x" |
(sep_x_Leaf) "sep = x \<and> sub = Leaf" |
(sep_x_Node) "sep = x \<and> (\<exists>ts t. sub = Node ts t)"
using btree.exhaust by blast
then show ?thesis
proof(cases)
case sep_n_x
then show ?thesis
apply(subst del.simps)
apply sep_auto
using "2.prems"(2) sorted_inorder_separators apply blast
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply simp
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
subgoal for tp tsi ti' tsi' tnode i tsi'l subsep subi sepi
(* TODO this causes 4 subgoals *)
apply(auto simp add: split_relation_alt list_assn_append_Cons_left;
rule norm_pre_ex_rule; rule norm_pre_ex_rule; rule norm_pre_ex_rule;
rule hoare_triple_preI;
auto dest!: mod_starD)[]
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
subgoal for lsi subi rsi
apply(subgoal_tac "subi = None")
prefer 2
apply(auto dest!: list_assn_len)[]
supply R = "2.IH"(2)[of ls rs rrs rss sub sep]
thm R
using split_ts apply(sep_auto heap add: R)
using "2.prems" apply auto[]
apply (metis "2.prems"(2) sorted_inorder_induct_subtree)
using "2.prems" apply auto[]
apply (meson "2.prems"(4) order_impl_root_order)
using "2.prems"(4) apply fastforce
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
apply(vcg (ss))
apply(vcg (ss); simp)
apply(cases tsi; simp)
subgoal for subi' _ tsia' tsin'
supply R = rebalance_middle_tree_update_rule
thm R
(* TODO create a new heap rule, in the node_i style *)
apply(auto dest!: list_assn_len)[]
apply(rule hoare_triple_preI)
apply (sep_auto heap add: R dest!: mod_starD)
using "2.prems" abs_split.del_height[of k sub x] order_impl_root_order[of k sub] apply (auto)[]
using "2.prems" apply (auto split!: list.splits)[]
apply auto[]
apply sep_auto
subgoal for _ _ _ _ _ _ _ _ _ _ _ _ _ _ tnode''
apply (cases "(abs_split.rebalance_middle_tree k ls (abs_split.del k x sub) sepi rss tt)"; cases tnode'')
apply sep_auto
apply sep_auto
done
done
done
apply (auto simp add: split_relation_alt dest!: mod_starD list_assn_len)[]
(* copy pasta of "none" branch *)
subgoal for subnode lsi subi rsi
apply(subgoal_tac "subi = Some subnode")
prefer 2
apply(auto dest!: list_assn_len)[]
supply R = "2.IH"(2)[of ls rs rrs rss sub sep]
thm R
using split_ts apply(sep_auto heap add: R)
using "2.prems" apply auto[]
apply (metis "2.prems"(2) sorted_inorder_induct_subtree)
using "2.prems" apply auto[]
apply (meson "2.prems"(4) order_impl_root_order)
using "2.prems"(4) apply fastforce
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
apply(vcg (ss))
apply(vcg (ss); simp)
apply(cases tsi; simp)
subgoal for x' xab a n
supply R = rebalance_middle_tree_update_rule
thm R
(* TODO create a new heap rule, in the node_i style *)
apply(auto dest!: list_assn_len)[]
apply(rule hoare_triple_preI)
apply (sep_auto heap add: R dest!: mod_starD)
using "2.prems" abs_split.del_height[of k sub x] order_impl_root_order[of k sub] apply (auto)[]
using "2.prems" apply (auto split!: list.splits)[]
apply auto[]
apply sep_auto
subgoal for _ _ _ _ _ _ _ _ _ _ _ _ _ _ tnode'
apply (cases "(abs_split.rebalance_middle_tree k ls (abs_split.del k x sub) sepi rss tt)"; cases tnode')
apply sep_auto
apply sep_auto
done
done
done
done
apply(rule hoare_triple_preI)
using Cons apply (auto simp add: split_relation_alt dest!: mod_starD list_assn_len)[]
done
next
case sep_x_Leaf
then show ?thesis
apply(subst del.simps)
apply sep_auto
using "2.prems"(2) sorted_inorder_separators apply blast
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply simp
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
subgoal for tp tsi ti' tsi' tnode i tsi'l subsep subi sepi
(* TODO this causes 4 subgoals *)
apply(auto simp add: split_relation_alt list_assn_append_Cons_left;
rule norm_pre_ex_rule; rule norm_pre_ex_rule; rule norm_pre_ex_rule;
rule hoare_triple_preI;
auto dest!: mod_starD)[]
(* the correct subbranch *)
subgoal for lsi subi rsi
apply(cases tsi)
apply (sep_auto)
apply(auto simp add: is_pfa_def dest!: list_assn_len)[]
apply (metis add_Suc_right le_imp_less_Suc length_append length_take less_add_Suc1 less_trans_Suc list.size(4) min.cobounded2 not_less_eq)
apply vcg
apply auto
subgoal for tsin tsia
apply(rule ent_ex_postI[where x="(tsia, tsin-1)"])
apply(rule ent_ex_postI[where x="ti'"])
apply(rule ent_ex_postI[where x="lsi@rsi"])
apply (sep_auto dest!: list_assn_len)
done
done
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
done
apply(rule hoare_triple_preI)
using Cons apply (auto simp add: split_relation_alt dest!: mod_starD list_assn_len)[]
done
next
case sep_x_Node
then show ?thesis
apply(subst del.simps)
apply sep_auto
using "2.prems"(2) sorted_inorder_separators apply blast
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
apply simp
apply(vcg (ss))
apply(vcg (ss))
apply(vcg (ss))
subgoal for subts subt tp tsi ti tsi' tnode i tsi'l subsep subi sepi
(* TODO this causes 4 subgoals *)
apply(auto simp add: split_relation_alt list_assn_append_Cons_left;
rule norm_pre_ex_rule; rule norm_pre_ex_rule; rule norm_pre_ex_rule;
rule hoare_triple_preI;
auto dest!: mod_starD)[]
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
(* the correct sub branch *)
subgoal for subnode lsi subi rsi
apply(subgoal_tac "subi = Some subnode")
apply (simp del: btree_assn.simps)
supply R = split_max_rule[of "Node subts subt" k "Some subnode"]
thm R
apply(sep_auto heap add: R simp del: btree_assn.simps)
using "2.prems" apply(auto dest!: list_assn_len mod_starD simp del: bal.simps order.simps)[]
subgoal
proof(goal_cases)
case 1
then have "order k (Node subts subt)"
by blast
moreover have "k > 0"
by (simp add: "2.prems"(4))
ultimately obtain sub_ls lsub lsep where sub_ts_split: "subts = sub_ls@[(lsub,lsep)]"
by (metis abs_split.isin.cases le_0_eq list.size(3) order.simps(2) rev_exhaust zero_less_iff_neq_zero)
from 1 have "bal (Node subts subt)"
by auto
then have "height lsub = height subt"
by (simp add: sub_ts_split)
then show ?thesis using sub_ts_split by blast
qed
using "2.prems" abs_split.order_bal_nonempty_lasttreebal[of k subt] order_impl_root_order[of k subt]
apply(auto)[]
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
apply vcg
apply auto[]
apply(cases "abs_split.split_max k (Node subts subt)"; simp)
subgoal for split_res _ split_sub split_sep
apply(cases split_res; simp)
subgoal for split_subi split_sepi
supply R = rebalance_middle_tree_update_rule[
of tt split_sub rss "length lsi" ls k lsi split_subi split_sep rsi tsi ti
]
thm R
(* id_assn split_sepi doesnt match yet... *)
apply(auto simp add: prod_assn_def dest!: list_assn_len)
apply (sep_auto)
apply(rule hoare_triple_preI)
apply(auto dest!: mod_starD)[]
apply (sep_auto heap add: R)
using "2.prems" abs_split.split_max_height[of k sub] order_impl_root_order[of k sub]
abs_split.order_bal_nonempty_lasttreebal[of k sub] apply (auto)[]
using "2.prems" abs_split.split_max_bal[of sub k] order_impl_root_order[of k sub]
apply (auto split!: list.splits)[]
apply auto[]
apply(rule hoare_triple_preI)
apply(auto dest!: mod_starD)[]
subgoal for subtsi''a subtsi''n ti subtsi'' tnode'
apply(cases "(abs_split.rebalance_middle_tree k ls split_sub split_sep rss tt)"; cases "tnode'")
apply auto
apply sep_auto
done
done
done
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
done
apply (auto simp add: split_relation_alt dest!: list_assn_len)[]
done
apply(rule hoare_triple_preI)
using Cons apply (auto simp add: split_relation_alt dest!: mod_starD list_assn_len)[]
done
qed
qed
qed
definition reduce_root ::"('a::{default,heap,linorder}) btnode ref option \<Rightarrow> 'a btnode ref option Heap"
where
"reduce_root ti = (case ti of
None \<Rightarrow> return None |
Some p_t \<Rightarrow> do {
node \<leftarrow> !p_t;
tsl \<leftarrow> pfa_length (kvs node);
case tsl of 0 \<Rightarrow> return (last node) |
_ \<Rightarrow> return ti
})"
lemma reduce_root_rule:
"<btree_assn k t ti> reduce_root ti <btree_assn k (abs_split.reduce_root t)>\<^sub>t"
apply(subst reduce_root_def)
apply(cases t; cases ti)
apply (sep_auto split!: nat.splits list.splits)+
done
definition delete ::"nat \<Rightarrow> 'a \<Rightarrow> ('a::{default,heap,linorder}) btnode ref option \<Rightarrow> 'a btnode ref option Heap"
where
"delete k x ti = do {
ti' \<leftarrow> del k x ti;
reduce_root ti'
}"
lemma delete_rule:
assumes "bal t" and "root_order k t" and "k > 0" and "sorted (inorder t)"
shows "<btree_assn k t ti> delete k x ti <btree_assn k (abs_split.delete k x t)>\<^sub>t"
apply(subst delete_def)
using assms apply (sep_auto heap add: del_rule reduce_root_rule)
done
lemma empty_rule:
shows "<emp>
empty
<\<lambda>r. btree_assn k (abs_split.empty_btree) r>"
apply(subst empty_def)
apply(sep_auto simp add: abs_split.empty_btree_def)
done
end
end
|