Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 115,248 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 |
(*
(C) Copyright Andreas Viktor Hess, DTU, 2020
(C) Copyright Sebastian A. Mödersheim, DTU, 2020
(C) Copyright Achim D. Brucker, University of Exeter, 2020
(C) Copyright Anders Schlichtkrull, DTU, 2020
All Rights Reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*)
(* Title: Term_Implication.thy
Author: Andreas Viktor Hess, DTU
Author: Sebastian A. Mödersheim, DTU
Author: Achim D. Brucker, University of Exeter
Author: Anders Schlichtkrull, DTU
*)
section\<open>Term Implication\<close>
theory Term_Implication
imports Stateful_Protocol_Model Term_Variants
begin
subsection \<open>Single Term Implications\<close>
definition timpl_apply_term ("\<langle>_ --\<guillemotright> _\<rangle>\<langle>_\<rangle>") where
"\<langle>a --\<guillemotright> b\<rangle>\<langle>t\<rangle> \<equiv> term_variants ((\<lambda>_. [])(Abs a := [Abs b])) t"
definition timpl_apply_terms ("\<langle>_ --\<guillemotright> _\<rangle>\<langle>_\<rangle>\<^sub>s\<^sub>e\<^sub>t") where
"\<langle>a --\<guillemotright> b\<rangle>\<langle>M\<rangle>\<^sub>s\<^sub>e\<^sub>t \<equiv> \<Union>((set o timpl_apply_term a b) ` M)"
lemma timpl_apply_Fun:
assumes "\<And>i. i < length T \<Longrightarrow> S ! i \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>T ! i\<rangle>"
and "length T = length S"
shows "Fun f S \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>Fun f T\<rangle>"
using assms term_variants_Fun term_variants_pred_iff_in_term_variants
by (metis timpl_apply_term_def)
lemma timpl_apply_Abs:
assumes "\<And>i. i < length T \<Longrightarrow> S ! i \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>T ! i\<rangle>"
and "length T = length S"
shows "Fun (Abs b) S \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>Fun (Abs a) T\<rangle>"
using assms(1) term_variants_P[OF assms(2), of "(\<lambda>_. [])(Abs a := [Abs b])" "Abs b" "Abs a"]
unfolding timpl_apply_term_def term_variants_pred_iff_in_term_variants[symmetric]
by fastforce
lemma timpl_apply_refl: "t \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>t\<rangle>"
unfolding timpl_apply_term_def
by (metis term_variants_pred_refl term_variants_pred_iff_in_term_variants)
lemma timpl_apply_const: "Fun (Abs b) [] \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>Fun (Abs a) []\<rangle>"
using term_variants_pred_iff_in_term_variants term_variants_pred_const
unfolding timpl_apply_term_def by auto
lemma timpl_apply_const':
"c = a \<Longrightarrow> set \<langle>a --\<guillemotright> b\<rangle>\<langle>Fun (Abs c) []\<rangle> = {Fun (Abs b) [], Fun (Abs c) []}"
"c \<noteq> a \<Longrightarrow> set \<langle>a --\<guillemotright> b\<rangle>\<langle>Fun (Abs c) []\<rangle> = {Fun (Abs c) []}"
using term_variants_pred_const_cases[of "(\<lambda>_. [])(Abs a := [Abs b])" "Abs c"]
term_variants_pred_iff_in_term_variants[of "(\<lambda>_. [])(Abs a := [Abs b])"]
unfolding timpl_apply_term_def by auto
lemma timpl_apply_term_subst:
"s \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>t\<rangle> \<Longrightarrow> s \<cdot> \<delta> \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>t \<cdot> \<delta>\<rangle>"
by (metis term_variants_pred_iff_in_term_variants term_variants_pred_subst timpl_apply_term_def)
lemma timpl_apply_inv:
assumes "Fun h S \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>Fun f T\<rangle>"
shows "length T = length S"
and "\<And>i. i < length T \<Longrightarrow> S ! i \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>T ! i\<rangle>"
and "f \<noteq> h \<Longrightarrow> f = Abs a \<and> h = Abs b"
using assms term_variants_pred_iff_in_term_variants[of "(\<lambda>_. [])(Abs a := [Abs b])"]
unfolding timpl_apply_term_def
by (metis (full_types) term_variants_pred_inv(1),
metis (full_types) term_variants_pred_inv(2),
fastforce dest: term_variants_pred_inv(3))
lemma timpl_apply_inv':
assumes "s \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>Fun f T\<rangle>"
shows "\<exists>g S. s = Fun g S"
proof -
have *: "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) (Fun f T) s"
using assms term_variants_pred_iff_in_term_variants[of "(\<lambda>_. [])(Abs a := [Abs b])"]
unfolding timpl_apply_term_def by force
show ?thesis using term_variants_pred.cases[OF *, of ?thesis] by fastforce
qed
lemma timpl_apply_term_Var_iff:
"Var x \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>t\<rangle> \<longleftrightarrow> t = Var x"
using term_variants_pred_inv_Var term_variants_pred_iff_in_term_variants
unfolding timpl_apply_term_def by metis
subsection \<open>Term Implication Closure\<close>
inductive_set timpl_closure for t TI where
FP: "t \<in> timpl_closure t TI"
| TI: "\<lbrakk>u \<in> timpl_closure t TI; (a,b) \<in> TI; term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) u s\<rbrakk>
\<Longrightarrow> s \<in> timpl_closure t TI"
definition "timpl_closure_set M TI \<equiv> (\<Union>t \<in> M. timpl_closure t TI)"
inductive_set timpl_closure'_step for TI where
"\<lbrakk>(a,b) \<in> TI; term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) t s\<rbrakk>
\<Longrightarrow> (t,s) \<in> timpl_closure'_step TI"
definition "timpl_closure' TI \<equiv> (timpl_closure'_step TI)\<^sup>*"
definition comp_timpl_closure where
"comp_timpl_closure FP TI \<equiv>
let f = \<lambda>X. FP \<union> (\<Union>x \<in> X. \<Union>(a,b) \<in> TI. set \<langle>a --\<guillemotright> b\<rangle>\<langle>x\<rangle>)
in while (\<lambda>X. f X \<noteq> X) f {}"
definition comp_timpl_closure_list where
"comp_timpl_closure_list FP TI \<equiv>
let f = \<lambda>X. remdups (concat (map (\<lambda>x. concat (map (\<lambda>(a,b). \<langle>a --\<guillemotright> b\<rangle>\<langle>x\<rangle>) TI)) X))
in while (\<lambda>X. set (f X) \<noteq> set X) f FP"
lemma timpl_closure_setI:
"t \<in> M \<Longrightarrow> t \<in> timpl_closure_set M TI"
unfolding timpl_closure_set_def by (auto intro: timpl_closure.FP)
lemma timpl_closure_set_empty_timpls:
"timpl_closure t {} = {t}" (is "?A = ?B")
proof (intro subset_antisym subsetI)
fix s show "s \<in> ?A \<Longrightarrow> s \<in> ?B"
by (induct s rule: timpl_closure.induct) auto
qed (simp add: timpl_closure.FP)
lemmas timpl_closure_set_is_timpl_closure_union = meta_eq_to_obj_eq[OF timpl_closure_set_def]
lemma term_variants_pred_eq_case_Abs:
fixes a b
defines "P \<equiv> (\<lambda>_. [])(Abs a := [Abs b])"
assumes "term_variants_pred P t s" "\<forall>f \<in> funs_term s. \<not>is_Abs f"
shows "t = s"
using assms(2,3) P_def
proof (induction P t s rule: term_variants_pred.induct)
case (term_variants_Fun T S f)
have "\<not>is_Abs h" when i: "i < length S" and h: "h \<in> funs_term (S ! i)" for i h
using i h term_variants_Fun.hyps(4) by auto
hence "T ! i = S ! i" when i: "i < length T" for i using i term_variants_Fun.hyps(1,3) by auto
hence "T = S" using term_variants_Fun.hyps(1) nth_equalityI[of T S] by fast
thus ?case using term_variants_Fun.hyps(1) by blast
qed (simp_all add: term_variants_pred_refl)
lemma timpl_closure'_step_inv:
assumes "(t,s) \<in> timpl_closure'_step TI"
obtains a b where "(a,b) \<in> TI" "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) t s"
using assms by (auto elim: timpl_closure'_step.cases)
lemma timpl_closure_mono:
assumes "TI \<subseteq> TI'"
shows "timpl_closure t TI \<subseteq> timpl_closure t TI'"
proof
fix s show "s \<in> timpl_closure t TI \<Longrightarrow> s \<in> timpl_closure t TI'"
apply (induct rule: timpl_closure.induct)
using assms by (auto intro: timpl_closure.intros)
qed
lemma timpl_closure_set_mono:
assumes "M \<subseteq> M'" "TI \<subseteq> TI'"
shows "timpl_closure_set M TI \<subseteq> timpl_closure_set M' TI'"
using assms(1) timpl_closure_mono[OF assms(2)] unfolding timpl_closure_set_def by fast
lemma timpl_closure_idem:
"timpl_closure_set (timpl_closure t TI) TI = timpl_closure t TI" (is "?A = ?B")
proof
have "s \<in> timpl_closure t TI"
when "s \<in> timpl_closure u TI" "u \<in> timpl_closure t TI"
for s u
using that
by (induction rule: timpl_closure.induct)
(auto intro: timpl_closure.intros)
thus "?A \<subseteq> ?B" unfolding timpl_closure_set_def by blast
show "?B \<subseteq> ?A"
unfolding timpl_closure_set_def
by (blast intro: timpl_closure.FP)
qed
lemma timpl_closure_set_idem:
"timpl_closure_set (timpl_closure_set M TI) TI = timpl_closure_set M TI"
using timpl_closure_idem[of _ TI]unfolding timpl_closure_set_def by auto
lemma timpl_closure_set_mono_timpl_closure_set:
assumes N: "N \<subseteq> timpl_closure_set M TI"
shows "timpl_closure_set N TI \<subseteq> timpl_closure_set M TI"
using timpl_closure_set_mono[OF N, of TI TI] timpl_closure_set_idem[of M TI]
by simp
lemma timpl_closure_is_timpl_closure':
"s \<in> timpl_closure t TI \<longleftrightarrow> (t,s) \<in> timpl_closure' TI"
proof
show "s \<in> timpl_closure t TI \<Longrightarrow> (t,s) \<in> timpl_closure' TI"
unfolding timpl_closure'_def
by (induct rule: timpl_closure.induct)
(auto intro: rtrancl_into_rtrancl timpl_closure'_step.intros)
show "(t,s) \<in> timpl_closure' TI \<Longrightarrow> s \<in> timpl_closure t TI"
unfolding timpl_closure'_def
by (induct rule: rtrancl_induct)
(auto dest: timpl_closure'_step_inv
intro: timpl_closure.FP timpl_closure.TI)
qed
lemma timpl_closure'_mono:
assumes "TI \<subseteq> TI'"
shows "timpl_closure' TI \<subseteq> timpl_closure' TI'"
using timpl_closure_mono[OF assms]
timpl_closure_is_timpl_closure'[of _ _ TI]
timpl_closure_is_timpl_closure'[of _ _ TI']
by fast
lemma timpl_closureton_is_timpl_closure:
"timpl_closure_set {t} TI = timpl_closure t TI"
by (simp add: timpl_closure_set_is_timpl_closure_union)
lemma timpl_closure'_timpls_trancl_subset:
"timpl_closure' (c\<^sup>+) \<subseteq> timpl_closure' c"
unfolding timpl_closure'_def
proof
fix s t::"(('a,'b,'c) prot_fun,'d) term"
show "(s,t) \<in> (timpl_closure'_step (c\<^sup>+))\<^sup>* \<Longrightarrow> (s,t) \<in> (timpl_closure'_step c)\<^sup>*"
proof (induction rule: rtrancl_induct)
case (step u t)
obtain a b where ab:
"(a,b) \<in> c\<^sup>+" "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) u t"
using step.hyps(2) timpl_closure'_step_inv by blast
hence "(u,t) \<in> (timpl_closure'_step c)\<^sup>*"
proof (induction arbitrary: t rule: trancl_induct)
case (step d e)
obtain s where s:
"term_variants_pred ((\<lambda>_. [])(Abs a := [Abs d])) u s"
"term_variants_pred ((\<lambda>_. [])(Abs d := [Abs e])) s t"
using term_variants_pred_dense'[OF step.prems, of "Abs d"] by blast
have "(u,s) \<in> (timpl_closure'_step c)\<^sup>*"
"(s,t) \<in> timpl_closure'_step c"
using step.hyps(2) s(2) step.IH[OF s(1)]
by (auto intro: timpl_closure'_step.intros)
thus ?case by simp
qed (auto intro: timpl_closure'_step.intros)
thus ?case using step.IH by simp
qed simp
qed
lemma timpl_closure'_timpls_trancl_subset':
"timpl_closure' {(a,b) \<in> c\<^sup>+. a \<noteq> b} \<subseteq> timpl_closure' c"
using timpl_closure'_timpls_trancl_subset
timpl_closure'_mono[of "{(a,b) \<in> c\<^sup>+. a \<noteq> b}" "c\<^sup>+"]
by fast
lemma timpl_closure_set_timpls_trancl_subset:
"timpl_closure_set M (c\<^sup>+) \<subseteq> timpl_closure_set M c"
using timpl_closure'_timpls_trancl_subset[of c]
timpl_closure_is_timpl_closure'[of _ _ c]
timpl_closure_is_timpl_closure'[of _ _ "c\<^sup>+"]
timpl_closure_set_is_timpl_closure_union[of M c]
timpl_closure_set_is_timpl_closure_union[of M "c\<^sup>+"]
by fastforce
lemma timpl_closure_set_timpls_trancl_subset':
"timpl_closure_set M {(a,b) \<in> c\<^sup>+. a \<noteq> b} \<subseteq> timpl_closure_set M c"
using timpl_closure'_timpls_trancl_subset'[of c]
timpl_closure_is_timpl_closure'[of _ _ c]
timpl_closure_is_timpl_closure'[of _ _ "{(a,b) \<in> c\<^sup>+. a \<noteq> b}"]
timpl_closure_set_is_timpl_closure_union[of M c]
timpl_closure_set_is_timpl_closure_union[of M "{(a,b) \<in> c\<^sup>+. a \<noteq> b}"]
by fastforce
lemma timpl_closure'_timpls_trancl_supset':
"timpl_closure' c \<subseteq> timpl_closure' {(a,b) \<in> c\<^sup>+. a \<noteq> b}"
unfolding timpl_closure'_def
proof
let ?cl = "{(a,b) \<in> c\<^sup>+. a \<noteq> b}"
fix s t::"(('e,'f,'c) prot_fun,'g) term"
show "(s,t) \<in> (timpl_closure'_step c)\<^sup>* \<Longrightarrow> (s,t) \<in> (timpl_closure'_step ?cl)\<^sup>*"
proof (induction rule: rtrancl_induct)
case (step u t)
obtain a b where ab:
"(a,b) \<in> c" "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) u t"
using step.hyps(2) timpl_closure'_step_inv by blast
hence "(a,b) \<in> c\<^sup>+" by simp
hence "(u,t) \<in> (timpl_closure'_step ?cl)\<^sup>*" using ab(2)
proof (induction arbitrary: t rule: trancl_induct)
case (base d) show ?case
proof (cases "a = d")
case True thus ?thesis
using base term_variants_pred_refl_inv[of _ u t]
by force
next
case False thus ?thesis
using base timpl_closure'_step.intros[of a d ?cl]
by fast
qed
next
case (step d e)
obtain s where s:
"term_variants_pred ((\<lambda>_. [])(Abs a := [Abs d])) u s"
"term_variants_pred ((\<lambda>_. [])(Abs d := [Abs e])) s t"
using term_variants_pred_dense'[OF step.prems, of "Abs d"] by blast
show ?case
proof (cases "d = e")
case True
thus ?thesis
using step.prems step.IH[of t]
by blast
next
case False
hence "(u,s) \<in> (timpl_closure'_step ?cl)\<^sup>*"
"(s,t) \<in> timpl_closure'_step ?cl"
using step.hyps(2) s(2) step.IH[OF s(1)]
by (auto intro: timpl_closure'_step.intros)
thus ?thesis by simp
qed
qed
thus ?case using step.IH by simp
qed simp
qed
lemma timpl_closure'_timpls_trancl_supset:
"timpl_closure' c \<subseteq> timpl_closure' (c\<^sup>+)"
using timpl_closure'_timpls_trancl_supset'[of c]
timpl_closure'_mono[of "{(a,b) \<in> c\<^sup>+. a \<noteq> b}" "c\<^sup>+"]
by fast
lemma timpl_closure'_timpls_trancl_eq:
"timpl_closure' (c\<^sup>+) = timpl_closure' c"
using timpl_closure'_timpls_trancl_subset timpl_closure'_timpls_trancl_supset
by blast
lemma timpl_closure'_timpls_trancl_eq':
"timpl_closure' {(a,b) \<in> c\<^sup>+. a \<noteq> b} = timpl_closure' c"
using timpl_closure'_timpls_trancl_subset' timpl_closure'_timpls_trancl_supset'
by blast
lemma timpl_closure'_timpls_rtrancl_subset:
"timpl_closure' (c\<^sup>*) \<subseteq> timpl_closure' c"
unfolding timpl_closure'_def
proof
fix s t::"(('a,'b,'c) prot_fun,'d) term"
show "(s,t) \<in> (timpl_closure'_step (c\<^sup>*))\<^sup>* \<Longrightarrow> (s,t) \<in> (timpl_closure'_step c)\<^sup>*"
proof (induction rule: rtrancl_induct)
case (step u t)
obtain a b where ab:
"(a,b) \<in> c\<^sup>*" "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) u t"
using step.hyps(2) timpl_closure'_step_inv by blast
hence "(u,t) \<in> (timpl_closure'_step c)\<^sup>*"
proof (induction arbitrary: t rule: rtrancl_induct)
case base
hence "u = t" using term_variants_pred_refl_inv by fastforce
thus ?case by simp
next
case (step d e)
obtain s where s:
"term_variants_pred ((\<lambda>_. [])(Abs a := [Abs d])) u s"
"term_variants_pred ((\<lambda>_. [])(Abs d := [Abs e])) s t"
using term_variants_pred_dense'[OF step.prems, of "Abs d"] by blast
have "(u,s) \<in> (timpl_closure'_step c)\<^sup>*"
"(s,t) \<in> timpl_closure'_step c"
using step.hyps(2) s(2) step.IH[OF s(1)]
by (auto intro: timpl_closure'_step.intros)
thus ?case by simp
qed
thus ?case using step.IH by simp
qed simp
qed
lemma timpl_closure'_timpls_rtrancl_supset:
"timpl_closure' c \<subseteq> timpl_closure' (c\<^sup>*)"
unfolding timpl_closure'_def
proof
fix s t::"(('e,'f,'c) prot_fun,'g) term"
show "(s,t) \<in> (timpl_closure'_step c)\<^sup>* \<Longrightarrow> (s,t) \<in> (timpl_closure'_step (c\<^sup>*))\<^sup>*"
proof (induction rule: rtrancl_induct)
case (step u t)
obtain a b where ab:
"(a,b) \<in> c" "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) u t"
using step.hyps(2) timpl_closure'_step_inv by blast
hence "(a,b) \<in> c\<^sup>*" by simp
hence "(u,t) \<in> (timpl_closure'_step (c\<^sup>*))\<^sup>*" using ab(2)
proof (induction arbitrary: t rule: rtrancl_induct)
case (base t) thus ?case using term_variants_pred_refl_inv[of _ u t] by fastforce
next
case (step d e)
obtain s where s:
"term_variants_pred ((\<lambda>_. [])(Abs a := [Abs d])) u s"
"term_variants_pred ((\<lambda>_. [])(Abs d := [Abs e])) s t"
using term_variants_pred_dense'[OF step.prems, of "Abs d"] by blast
show ?case
proof (cases "d = e")
case True
thus ?thesis
using step.prems step.IH[of t]
by blast
next
case False
hence "(u,s) \<in> (timpl_closure'_step (c\<^sup>*))\<^sup>*"
"(s,t) \<in> timpl_closure'_step (c\<^sup>*)"
using step.hyps(2) s(2) step.IH[OF s(1)]
by (auto intro: timpl_closure'_step.intros)
thus ?thesis by simp
qed
qed
thus ?case using step.IH by simp
qed simp
qed
lemma timpl_closure'_timpls_rtrancl_eq:
"timpl_closure' (c\<^sup>*) = timpl_closure' c"
using timpl_closure'_timpls_rtrancl_subset timpl_closure'_timpls_rtrancl_supset
by blast
lemma timpl_closure_timpls_trancl_eq:
"timpl_closure t (c\<^sup>+) = timpl_closure t c"
using timpl_closure'_timpls_trancl_eq[of c]
timpl_closure_is_timpl_closure'[of _ _ c]
timpl_closure_is_timpl_closure'[of _ _ "c\<^sup>+"]
by fastforce
lemma timpl_closure_set_timpls_trancl_eq:
"timpl_closure_set M (c\<^sup>+) = timpl_closure_set M c"
using timpl_closure_timpls_trancl_eq
timpl_closure_set_is_timpl_closure_union[of M c]
timpl_closure_set_is_timpl_closure_union[of M "c\<^sup>+"]
by fastforce
lemma timpl_closure_set_timpls_trancl_eq':
"timpl_closure_set M {(a,b) \<in> c\<^sup>+. a \<noteq> b} = timpl_closure_set M c"
using timpl_closure'_timpls_trancl_eq'[of c]
timpl_closure_is_timpl_closure'[of _ _ c]
timpl_closure_is_timpl_closure'[of _ _ "{(a,b) \<in> c\<^sup>+. a \<noteq> b}"]
timpl_closure_set_is_timpl_closure_union[of M c]
timpl_closure_set_is_timpl_closure_union[of M "{(a,b) \<in> c\<^sup>+. a \<noteq> b}"]
by fastforce
lemma timpl_closure_Var_in_iff:
"Var x \<in> timpl_closure t TI \<longleftrightarrow> t = Var x" (is "?A \<longleftrightarrow> ?B")
proof
have "s \<in> timpl_closure t TI \<Longrightarrow> s = Var x \<Longrightarrow> s = t" for s
apply (induction rule: timpl_closure.induct)
by (simp, metis term_variants_pred_inv_Var(2))
thus "?A \<Longrightarrow> ?B" by blast
qed (blast intro: timpl_closure.FP)
lemma timpl_closure_set_Var_in_iff:
"Var x \<in> timpl_closure_set M TI \<longleftrightarrow> Var x \<in> M"
unfolding timpl_closure_set_def by (simp add: timpl_closure_Var_in_iff[of x _ TI])
lemma timpl_closure_Var_inv:
assumes "t \<in> timpl_closure (Var x) TI"
shows "t = Var x"
using assms
proof (induction rule: timpl_closure.induct)
case (TI u a b s) thus ?case using term_variants_pred_inv_Var by fast
qed simp
lemma timpls_Un_mono: "mono (\<lambda>X. FP \<union> (\<Union>x \<in> X. \<Union>(a,b) \<in> TI. set \<langle>a --\<guillemotright> b\<rangle>\<langle>x\<rangle>))"
by (auto intro!: monoI)
lemma timpl_closure_set_lfp:
fixes M TI
defines "f \<equiv> \<lambda>X. M \<union> (\<Union>x \<in> X. \<Union>(a,b) \<in> TI. set \<langle>a --\<guillemotright> b\<rangle>\<langle>x\<rangle>)"
shows "lfp f = timpl_closure_set M TI"
proof
note 0 = timpls_Un_mono[of M TI, unfolded f_def[symmetric]]
let ?N = "timpl_closure_set M TI"
show "lfp f \<subseteq> ?N"
proof (induction rule: lfp_induct)
case 2 thus ?case
proof
fix t assume "t \<in> f (lfp f \<inter> ?N)"
hence "t \<in> M \<or> t \<in> (\<Union>x \<in> ?N. \<Union>(a,b) \<in> TI. set \<langle>a --\<guillemotright> b\<rangle>\<langle>x\<rangle>)" (is "?A \<or> ?B")
unfolding f_def by blast
thus "t \<in> ?N"
proof
assume ?B
then obtain s a b where s: "s \<in> ?N" "(a,b) \<in> TI" "t \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>s\<rangle>" by moura
thus ?thesis
using term_variants_pred_iff_in_term_variants[of "(\<lambda>_. [])(Abs a := [Abs b])" s]
unfolding timpl_closure_set_def timpl_apply_term_def
by (auto intro: timpl_closure.intros)
qed (auto simp add: timpl_closure_set_def intro: timpl_closure.intros)
qed
qed (rule 0)
have "t \<in> lfp f" when t: "t \<in> timpl_closure s TI" and s: "s \<in> M" for t s
using t
proof (induction t rule: timpl_closure.induct)
case (TI u a b v) thus ?case
using term_variants_pred_iff_in_term_variants[of "(\<lambda>_. [])(Abs a := [Abs b])"]
lfp_fixpoint[OF 0]
unfolding timpl_apply_term_def f_def by fastforce
qed (use s lfp_fixpoint[OF 0] f_def in blast)
thus "?N \<subseteq> lfp f" unfolding timpl_closure_set_def by blast
qed
lemma timpl_closure_set_supset:
assumes "\<forall>t \<in> FP. t \<in> closure"
and "\<forall>t \<in> closure. \<forall>(a,b) \<in> TI. \<forall>s \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>t\<rangle>. s \<in> closure"
shows "timpl_closure_set FP TI \<subseteq> closure"
proof -
have "t \<in> closure" when t: "t \<in> timpl_closure s TI" and s: "s \<in> FP" for t s
using t
proof (induction rule: timpl_closure.induct)
case FP thus ?case using s assms(1) by blast
next
case (TI u a b s') thus ?case
using assms(2) term_variants_pred_iff_in_term_variants[of "(\<lambda>_. [])(Abs a := [Abs b])"]
unfolding timpl_apply_term_def by fastforce
qed
thus ?thesis unfolding timpl_closure_set_def by blast
qed
lemma timpl_closure_set_supset':
assumes "\<forall>t \<in> FP. \<forall>(a,b) \<in> TI. \<forall>s \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>t\<rangle>. s \<in> FP"
shows "timpl_closure_set FP TI \<subseteq> FP"
using timpl_closure_set_supset[OF _ assms] by blast
lemma timpl_closure'_param:
assumes "(t,s) \<in> timpl_closure' c"
and fg: "f = g \<or> (\<exists>a b. (a,b) \<in> c \<and> f = Abs a \<and> g = Abs b)"
shows "(Fun f (S@t#T), Fun g (S@s#T)) \<in> timpl_closure' c"
using assms(1) unfolding timpl_closure'_def
proof (induction rule: rtrancl_induct)
case base thus ?case
proof (cases "f = g")
case False
then obtain a b where ab: "(a,b) \<in> c" "f = Abs a" "g = Abs b"
using fg by moura
show ?thesis
using term_variants_pred_param[OF term_variants_pred_refl[of "(\<lambda>_. [])(Abs a := [Abs b])" t]]
timpl_closure'_step.intros[OF ab(1)] ab(2,3)
by fastforce
qed simp
next
case (step u s)
obtain a b where ab: "(a,b) \<in> c" "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) u s"
using timpl_closure'_step_inv[OF step.hyps(2)] by blast
have "(Fun g (S@u#T), Fun g (S@s#T)) \<in> timpl_closure'_step c"
using ab(1) term_variants_pred_param[OF ab(2), of g g S T]
by (auto simp add: timpl_closure'_def intro: timpl_closure'_step.intros)
thus ?case using rtrancl_into_rtrancl[OF step.IH] fg by blast
qed
lemma timpl_closure'_param':
assumes "(t,s) \<in> timpl_closure' c"
shows "(Fun f (S@t#T), Fun f (S@s#T)) \<in> timpl_closure' c"
using timpl_closure'_param[OF assms] by simp
lemma timpl_closure_FunI:
assumes IH: "\<And>i. i < length T \<Longrightarrow> (T ! i, S ! i) \<in> timpl_closure' c"
and len: "length T = length S"
and fg: "f = g \<or> (\<exists>a b. (a,b) \<in> c\<^sup>+ \<and> f = Abs a \<and> g = Abs b)"
shows "(Fun f T, Fun g S) \<in> timpl_closure' c"
proof -
have aux: "(Fun f T, Fun g (take n S@drop n T)) \<in> timpl_closure' c"
when "n \<le> length T" for n
using that
proof (induction n)
case 0
have "(T ! n, T ! n) \<in> timpl_closure' c" when n: "n < length T" for n
using n unfolding timpl_closure'_def by simp
hence "(Fun f T, Fun g T) \<in> timpl_closure' c"
proof (cases "f = g")
case False
then obtain a b where ab: "(a, b) \<in> c\<^sup>+" "f = Abs a" "g = Abs b"
using fg by moura
show ?thesis
using timpl_closure'_step.intros[OF ab(1), of "Fun f T" "Fun g T"] ab(2,3)
term_variants_P[OF _ term_variants_pred_refl[of "(\<lambda>_. [])(Abs a := [Abs b])"],
of T g f]
timpl_closure'_timpls_trancl_eq
unfolding timpl_closure'_def
by (metis fun_upd_same list.set_intros(1) r_into_rtrancl)
qed (simp add: timpl_closure'_def)
thus ?case by simp
next
case (Suc n)
hence IH': "(Fun f T, Fun g (take n S@drop n T)) \<in> timpl_closure' c"
and n: "n < length T" "n < length S"
by (simp_all add: len)
obtain T1 T2 where T: "T = T1@T ! n#T2" "length T1 = n"
using length_prefix_ex'[OF n(1)] by auto
obtain S1 S2 where S: "S = S1@S ! n#S2" "length S1 = n"
using length_prefix_ex'[OF n(2)] by auto
have "take n S@drop n T = S1@T ! n#T2" "take (Suc n) S@drop (Suc n) T = S1@S ! n#T2"
using n T S append_eq_conv_conj
by (metis, metis (no_types, opaque_lifting) Cons_nth_drop_Suc append.assoc append_Cons
append_Nil take_Suc_conv_app_nth)
moreover have "(T ! n, S ! n) \<in> timpl_closure' c" using IH Suc.prems by simp
ultimately show ?case
using timpl_closure'_param IH'(1)
by (metis (no_types, lifting) timpl_closure'_def rtrancl_trans)
qed
show ?thesis using aux[of "length T"] len by simp
qed
lemma timpl_closure_FunI':
assumes IH: "\<And>i. i < length T \<Longrightarrow> (T ! i, S ! i) \<in> timpl_closure' c"
and len: "length T = length S"
shows "(Fun f T, Fun f S) \<in> timpl_closure' c"
using timpl_closure_FunI[OF IH len] by simp
lemma timpl_closure_FunI2:
fixes f g::"('a, 'b, 'c) prot_fun"
assumes IH: "\<And>i. i < length T \<Longrightarrow> \<exists>u. (T!i, u) \<in> timpl_closure' c \<and> (S!i, u) \<in> timpl_closure' c"
and len: "length T = length S"
and fg: "f = g \<or> (\<exists>a b d. (a, d) \<in> c\<^sup>+ \<and> (b, d) \<in> c\<^sup>+ \<and> f = Abs a \<and> g = Abs b)"
shows "\<exists>h U. (Fun f T, Fun h U) \<in> timpl_closure' c \<and> (Fun g S, Fun h U) \<in> timpl_closure' c"
proof -
let ?P = "\<lambda>i u. (T ! i, u) \<in> timpl_closure' c \<and> (S ! i, u) \<in> timpl_closure' c"
define U where "U \<equiv> map (\<lambda>i. SOME u. ?P i u) [0..<length T]"
have U1: "length U = length T"
unfolding U_def by auto
have U2: "(T ! i, U ! i) \<in> timpl_closure' c \<and> (S ! i, U ! i) \<in> timpl_closure' c"
when i: "i < length U" for i
using i someI_ex[of "?P i"] IH[of i] U1 len
unfolding U_def by simp
show ?thesis
proof (cases "f = g")
case False
then obtain a b d where abd: "(a, d) \<in> c\<^sup>+" "(b, d) \<in> c\<^sup>+" "f = Abs a" "g = Abs b"
using fg by moura
define h::"('a, 'b, 'c) prot_fun" where "h = Abs d"
have "f = h \<or> (\<exists>a b. (a, b) \<in> c\<^sup>+ \<and> f = Abs a \<and> h = Abs b)"
"g = h \<or> (\<exists>a b. (a, b) \<in> c\<^sup>+ \<and> g = Abs a \<and> h = Abs b)"
using abd unfolding h_def by blast+
thus ?thesis by (metis timpl_closure_FunI len U1 U2)
qed (metis timpl_closure_FunI' len U1 U2)
qed
lemma timpl_closure_FunI3:
fixes f g::"('a, 'b, 'c) prot_fun"
assumes IH: "\<And>i. i < length T \<Longrightarrow> \<exists>u. (T!i, u) \<in> timpl_closure' c \<and> (S!i, u) \<in> timpl_closure' c"
and len: "length T = length S"
and fg: "f = g \<or> (\<exists>a b d. (a, d) \<in> c \<and> (b, d) \<in> c \<and> f = Abs a \<and> g = Abs b)"
shows "\<exists>h U. (Fun f T, Fun h U) \<in> timpl_closure' c \<and> (Fun g S, Fun h U) \<in> timpl_closure' c"
using timpl_closure_FunI2[OF IH len] fg unfolding timpl_closure'_timpls_trancl_eq by blast
lemma timpl_closure_fv_eq:
assumes "s \<in> timpl_closure t T"
shows "fv s = fv t"
using assms
by (induct rule: timpl_closure.induct)
(metis, metis term_variants_pred_fv_eq)
lemma (in stateful_protocol_model) timpl_closure_subst:
assumes t: "wf\<^sub>t\<^sub>r\<^sub>m t" "\<forall>x \<in> fv t. \<exists>a. \<Gamma>\<^sub>v x = TAtom (Atom a)"
and \<delta>: "wt\<^sub>s\<^sub>u\<^sub>b\<^sub>s\<^sub>t \<delta>" "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s (subst_range \<delta>)"
shows "timpl_closure (t \<cdot> \<delta>) T = timpl_closure t T \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta>"
proof
have "s \<in> timpl_closure t T \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta>"
when "s \<in> timpl_closure (t \<cdot> \<delta>) T" for s
using that
proof (induction s rule: timpl_closure.induct)
case FP thus ?case using timpl_closure.FP[of t T] by simp
next
case (TI u a b s)
then obtain u' where u': "u' \<in> timpl_closure t T" "u = u' \<cdot> \<delta>" by moura
have u'_fv: "\<forall>x \<in> fv u'. \<exists>a. \<Gamma>\<^sub>v x = TAtom (Atom a)"
using timpl_closure_fv_eq[OF u'(1)] t(2) by simp
hence u_fv: "\<forall>x \<in> fv u. \<exists>a. \<Gamma>\<^sub>v x = TAtom (Atom a)"
using u'(2) wt_subst_trm''[OF \<delta>(1)] wt_subst_const_fv_type_eq[OF _ \<delta>(1,2), of u']
by fastforce
have "\<forall>x \<in> fv u' \<union> fv s. (\<exists>y. \<delta> x = Var y) \<or> (\<exists>f. \<delta> x = Fun f [] \<and> Abs a \<noteq> f)"
proof (intro ballI)
fix x assume x: "x \<in> fv u' \<union> fv s"
then obtain c where c: "\<Gamma>\<^sub>v x = TAtom (Atom c)"
using u'_fv u_fv term_variants_pred_fv_eq[OF TI.hyps(3)]
by blast
show "(\<exists>y. \<delta> x = Var y) \<or> (\<exists>f. \<delta> x = Fun f [] \<and> Abs a \<noteq> f)"
proof (cases "\<delta> x")
case (Fun f T)
hence **: "\<Gamma> (Fun f T) = TAtom (Atom c)" and "wf\<^sub>t\<^sub>r\<^sub>m (Fun f T)"
using c wt_subst_trm''[OF \<delta>(1), of "Var x"] \<delta>(2)
by fastforce+
hence "\<delta> x = Fun f []" using Fun const_type_inv_wf by metis
thus ?thesis using ** by force
qed metis
qed
hence *: "\<forall>x \<in> fv u' \<union> fv s.
(\<exists>y. \<delta> x = Var y) \<or> (\<exists>f. \<delta> x = Fun f [] \<and> ((\<lambda>_. [])(Abs a := [Abs b])) f = [])"
by fastforce
obtain s' where s': "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) u' s'" "s = s' \<cdot> \<delta>"
using term_variants_pred_subst'[OF _ *] u'(2) TI.hyps(3)
by blast
show ?case using timpl_closure.TI[OF u'(1) TI.hyps(2) s'(1)] s'(2) by blast
qed
thus "timpl_closure (t \<cdot> \<delta>) T \<subseteq> timpl_closure t T \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta>" by fast
have "s \<in> timpl_closure (t \<cdot> \<delta>) T"
when s: "s \<in> timpl_closure t T \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta>" for s
proof -
obtain s' where s': "s' \<in> timpl_closure t T" "s = s' \<cdot> \<delta>" using s by moura
have "s' \<cdot> \<delta> \<in> timpl_closure (t \<cdot> \<delta>) T" using s'(1)
proof (induction s' rule: timpl_closure.induct)
case FP thus ?case using timpl_closure.FP[of "t \<cdot> \<delta>" T] by simp
next
case (TI u' a b s') show ?case
using timpl_closure.TI[OF TI.IH TI.hyps(2)]
term_variants_pred_subst[OF TI.hyps(3)]
by blast
qed
thus ?thesis using s'(2) by metis
qed
thus "timpl_closure t T \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta> \<subseteq> timpl_closure (t \<cdot> \<delta>) T" by fast
qed
lemma (in stateful_protocol_model) timpl_closure_subst_subset:
assumes t: "t \<in> M"
and M: "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s M" "\<forall>x \<in> fv\<^sub>s\<^sub>e\<^sub>t M. \<exists>a. \<Gamma>\<^sub>v x = TAtom (Atom a)"
and \<delta>: "wt\<^sub>s\<^sub>u\<^sub>b\<^sub>s\<^sub>t \<delta>" "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s (subst_range \<delta>)" "ground (subst_range \<delta>)" "subst_domain \<delta> \<subseteq> fv\<^sub>s\<^sub>e\<^sub>t M"
and M_supset: "timpl_closure t T \<subseteq> M"
shows "timpl_closure (t \<cdot> \<delta>) T \<subseteq> M \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta>"
proof -
have t': "wf\<^sub>t\<^sub>r\<^sub>m t" "\<forall>x \<in> fv t. \<exists>a. \<Gamma>\<^sub>v x = TAtom (Atom a)" using t M by auto
show ?thesis using timpl_closure_subst[OF t' \<delta>(1,2), of T] M_supset by blast
qed
lemma (in stateful_protocol_model) timpl_closure_set_subst_subset:
assumes M: "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s M" "\<forall>x \<in> fv\<^sub>s\<^sub>e\<^sub>t M. \<exists>a. \<Gamma>\<^sub>v x = TAtom (Atom a)"
and \<delta>: "wt\<^sub>s\<^sub>u\<^sub>b\<^sub>s\<^sub>t \<delta>" "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s (subst_range \<delta>)" "ground (subst_range \<delta>)" "subst_domain \<delta> \<subseteq> fv\<^sub>s\<^sub>e\<^sub>t M"
and M_supset: "timpl_closure_set M T \<subseteq> M"
shows "timpl_closure_set (M \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta>) T \<subseteq> M \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta>"
using timpl_closure_subst_subset[OF _ M \<delta>, of _ T] M_supset
timpl_closure_set_is_timpl_closure_union[of "M \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta>" T]
timpl_closure_set_is_timpl_closure_union[of M T]
by auto
lemma timpl_closure_set_Union:
"timpl_closure_set (\<Union>Ms) T = (\<Union>M \<in> Ms. timpl_closure_set M T)"
using timpl_closure_set_is_timpl_closure_union[of "\<Union>Ms" T]
timpl_closure_set_is_timpl_closure_union[of _ T]
by force
lemma timpl_closure_set_Union_subst_set:
assumes "s \<in> timpl_closure_set (\<Union>{M \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta> | \<delta>. P \<delta>}) T"
shows "\<exists>\<delta>. P \<delta> \<and> s \<in> timpl_closure_set (M \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta>) T"
using assms timpl_closure_set_is_timpl_closure_union[of "(\<Union>{M \<cdot>\<^sub>s\<^sub>e\<^sub>t \<delta> | \<delta>. P \<delta>})" T]
timpl_closure_set_is_timpl_closure_union[of _ T]
by blast
lemma timpl_closure_set_Union_subst_singleton:
assumes "s \<in> timpl_closure_set {t \<cdot> \<delta> | \<delta>. P \<delta>} T"
shows "\<exists>\<delta>. P \<delta> \<and> s \<in> timpl_closure_set {t \<cdot> \<delta>} T"
using assms timpl_closure_set_is_timpl_closure_union[of "{t \<cdot> \<delta> |\<delta>. P \<delta>}" T]
timpl_closureton_is_timpl_closure[of _ T]
by fast
lemma timpl_closure'_inv:
assumes "(s, t) \<in> timpl_closure' TI"
shows "(\<exists>x. s = Var x \<and> t = Var x) \<or> (\<exists>f g S T. s = Fun f S \<and> t = Fun g T \<and> length S = length T)"
using assms unfolding timpl_closure'_def
proof (induction rule: rtrancl_induct)
case base thus ?case by (cases s) auto
next
case (step t u)
obtain a b where ab: "(a, b) \<in> TI" "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) t u"
using timpl_closure'_step_inv[OF step.hyps(2)] by blast
show ?case using step.IH
proof
assume "\<exists>x. s = Var x \<and> t = Var x"
thus ?case using step.hyps(2) term_variants_pred_inv_Var ab by fastforce
next
assume "\<exists>f g S T. s = Fun f S \<and> t = Fun g T \<and> length S = length T"
then obtain f g S T where st: "s = Fun f S" "t = Fun g T" "length S = length T" by moura
thus ?case
using ab step.hyps(2) term_variants_pred_inv'[of "(\<lambda>_. [])(Abs a := [Abs b])" g T u]
by auto
qed
qed
lemma timpl_closure'_inv':
assumes "(s, t) \<in> timpl_closure' TI"
shows "(\<exists>x. s = Var x \<and> t = Var x) \<or>
(\<exists>f g S T. s = Fun f S \<and> t = Fun g T \<and> length S = length T \<and>
(\<forall>i < length T. (S ! i, T ! i) \<in> timpl_closure' TI) \<and>
(f \<noteq> g \<longrightarrow> is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> TI\<^sup>+))"
(is "?A s t \<or> ?B s t (timpl_closure' TI)")
using assms unfolding timpl_closure'_def
proof (induction rule: rtrancl_induct)
case base thus ?case by (cases s) auto
next
case (step t u)
obtain a b where ab: "(a, b) \<in> TI" "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) t u"
using timpl_closure'_step_inv[OF step.hyps(2)] by blast
show ?case using step.IH
proof
assume "?A s t"
thus ?case using step.hyps(2) term_variants_pred_inv_Var ab by fastforce
next
assume "?B s t ((timpl_closure'_step TI)\<^sup>*)"
then obtain f g S T where st:
"s = Fun f S" "t = Fun g T" "length S = length T"
"\<And>i. i < length T \<Longrightarrow> (S ! i, T ! i) \<in> (timpl_closure'_step TI)\<^sup>*"
"f \<noteq> g \<Longrightarrow> is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> TI\<^sup>+"
by moura
obtain h U where u:
"u = Fun h U" "length T = length U"
"\<And>i. i < length T \<Longrightarrow> term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) (T ! i) (U ! i)"
"g \<noteq> h \<Longrightarrow> is_Abs g \<and> is_Abs h \<and> (the_Abs g, the_Abs h) \<in> TI\<^sup>+"
using ab(2) st(2) r_into_trancl[OF ab(1)]
term_variants_pred_inv'(1,2,3,4)[of "(\<lambda>_. [])(Abs a := [Abs b])" g T u]
term_variants_pred_inv'(5)[of "(\<lambda>_. [])(Abs a := [Abs b])" g T u "Abs a" "Abs b"]
unfolding is_Abs_def the_Abs_def by force
have "(S ! i, U ! i) \<in> (timpl_closure'_step TI)\<^sup>*" when i: "i < length U" for i
using u(2) i rtrancl.rtrancl_into_rtrancl[OF
st(4)[of i] timpl_closure'_step.intros[OF ab(1) u(3)[of i]]]
by argo
moreover have "length S = length U" using st u by argo
moreover have "is_Abs f \<and> is_Abs h \<and> (the_Abs f, the_Abs h) \<in> TI\<^sup>+" when fh: "f \<noteq> h"
using fh st u by fastforce
ultimately show ?case using st(1) u(1) by blast
qed
qed
lemma timpl_closure'_inv'':
assumes "(Fun f S, Fun g T) \<in> timpl_closure' TI"
shows "length S = length T"
and "\<And>i. i < length T \<Longrightarrow> (S ! i, T ! i) \<in> timpl_closure' TI"
and "f \<noteq> g \<Longrightarrow> is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> TI\<^sup>+"
using assms timpl_closure'_inv' by auto
lemma timpl_closure_Fun_inv:
assumes "s \<in> timpl_closure (Fun f T) TI"
shows "\<exists>g S. s = Fun g S"
using assms timpl_closure_is_timpl_closure' timpl_closure'_inv
by fastforce
lemma timpl_closure_Fun_inv':
assumes "Fun g S \<in> timpl_closure (Fun f T) TI"
shows "length S = length T"
and "\<And>i. i < length S \<Longrightarrow> S ! i \<in> timpl_closure (T ! i) TI"
and "f \<noteq> g \<Longrightarrow> is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> TI\<^sup>+"
using assms timpl_closure_is_timpl_closure'
by (metis timpl_closure'_inv''(1), metis timpl_closure'_inv''(2), metis timpl_closure'_inv''(3))
lemma timpl_closure_Fun_not_Var[simp]:
"Fun f T \<notin> timpl_closure (Var x) TI"
using timpl_closure_Var_inv by fast
lemma timpl_closure_Var_not_Fun[simp]:
"Var x \<notin> timpl_closure (Fun f T) TI"
using timpl_closure_Fun_inv by fast
lemma (in stateful_protocol_model) timpl_closure_wf_trms:
assumes m: "wf\<^sub>t\<^sub>r\<^sub>m m"
shows "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s (timpl_closure m TI)"
proof
fix t assume "t \<in> timpl_closure m TI"
thus "wf\<^sub>t\<^sub>r\<^sub>m t"
proof (induction t rule: timpl_closure.induct)
case TI thus ?case using term_variants_pred_wf_trms by force
qed (rule m)
qed
lemma (in stateful_protocol_model) timpl_closure_set_wf_trms:
assumes M: "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s M"
shows "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s (timpl_closure_set M TI)"
proof
fix t assume "t \<in> timpl_closure_set M TI"
then obtain m where "t \<in> timpl_closure m TI" "m \<in> M" "wf\<^sub>t\<^sub>r\<^sub>m m"
using M timpl_closure_set_is_timpl_closure_union by blast
thus "wf\<^sub>t\<^sub>r\<^sub>m t" using timpl_closure_wf_trms by blast
qed
lemma timpl_closure_Fu_inv:
assumes "t \<in> timpl_closure (Fun (Fu f) T) TI"
shows "\<exists>S. length S = length T \<and> t = Fun (Fu f) S"
using assms
proof (induction t rule: timpl_closure.induct)
case (TI u a b s)
then obtain U where U: "length U = length T" "u = Fun (Fu f) U"
by moura
hence *: "term_variants_pred ((\<lambda>_. [])(Abs a := [Abs b])) (Fun (Fu f) U) s"
using TI.hyps(3) by meson
show ?case
using term_variants_pred_inv'(1,2,4)[OF *] U
by force
qed simp
lemma timpl_closure_Fu_inv':
assumes "Fun (Fu f) T \<in> timpl_closure t TI"
shows "\<exists>S. length S = length T \<and> t = Fun (Fu f) S"
using assms
proof (induction "Fun (Fu f) T" arbitrary: T rule: timpl_closure.induct)
case (TI u a b)
obtain g U where U:
"u = Fun g U" "length U = length T"
"Fu f \<noteq> g \<Longrightarrow> Abs a = g \<and> Fu f = Abs b"
using term_variants_pred_inv''[OF TI.hyps(4)] by fastforce
have g: "g = Fu f" using U(3) by blast
show ?case using TI.hyps(2)[OF U(1)[unfolded g]] U(2) by auto
qed simp
lemma timpl_closure_no_Abs_eq:
assumes "t \<in> timpl_closure s TI"
and "\<forall>f \<in> funs_term t. \<not>is_Abs f"
shows "t = s"
using assms
proof (induction t rule: timpl_closure.induct)
case (TI t a b s) thus ?case
using term_variants_pred_eq_case_Abs[of a b t s]
unfolding timpl_apply_term_def term_variants_pred_iff_in_term_variants[symmetric]
by metis
qed simp
lemma timpl_closure_set_no_Abs_in_set:
assumes "t \<in> timpl_closure_set FP TI"
and "\<forall>f \<in> funs_term t. \<not>is_Abs f"
shows "t \<in> FP"
using assms timpl_closure_no_Abs_eq unfolding timpl_closure_set_def by blast
lemma timpl_closure_funs_term_subset:
"\<Union>(funs_term ` (timpl_closure t TI)) \<subseteq> funs_term t \<union> Abs ` snd ` TI"
(is "?A \<subseteq> ?B \<union> ?C")
proof
fix f assume "f \<in> ?A"
then obtain s where "s \<in> timpl_closure t TI" "f \<in> funs_term s" by moura
thus "f \<in> ?B \<union> ?C"
proof (induction s rule: timpl_closure.induct)
case (TI u a b s)
have "Abs b \<in> Abs ` snd ` TI" using TI.hyps(2) by force
thus ?case using term_variants_pred_funs_term[OF TI.hyps(3) TI.prems] TI.IH by force
qed blast
qed
lemma timpl_closure_set_funs_term_subset:
"\<Union>(funs_term ` (timpl_closure_set FP TI)) \<subseteq> \<Union>(funs_term ` FP) \<union> Abs ` snd ` TI"
using timpl_closure_funs_term_subset[of _ TI]
timpl_closure_set_is_timpl_closure_union[of FP TI]
by auto
lemma funs_term_OCC_TI_subset:
defines "absc \<equiv> \<lambda>a. Fun (Abs a) []"
assumes OCC1: "\<forall>t \<in> FP. \<forall>f \<in> funs_term t. is_Abs f \<longrightarrow> f \<in> Abs ` OCC"
and OCC2: "snd ` TI \<subseteq> OCC"
shows "\<forall>t \<in> timpl_closure_set FP TI. \<forall>f \<in> funs_term t. is_Abs f \<longrightarrow> f \<in> Abs ` OCC" (is ?A)
and "\<forall>t \<in> absc ` OCC. \<forall>(a,b) \<in> TI. \<forall>s \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>t\<rangle>. s \<in> absc ` OCC" (is ?B)
proof -
let ?F = "\<Union>(funs_term ` FP)"
let ?G = "Abs ` snd ` TI"
show ?A
proof (intro ballI impI)
fix t f assume t: "t \<in> timpl_closure_set FP TI" and f: "f \<in> funs_term t" "is_Abs f"
hence "f \<in> ?F \<or> f \<in> ?G" using timpl_closure_set_funs_term_subset[of FP TI] by auto
thus "f \<in> Abs ` OCC"
proof
assume "f \<in> ?F" thus ?thesis using OCC1 f(2) by fast
next
assume "f \<in> ?G" thus ?thesis using OCC2 by auto
qed
qed
{ fix s t a b
assume t: "t \<in> absc ` OCC"
and ab: "(a, b) \<in> TI"
and s: "s \<in> set \<langle>a --\<guillemotright> b\<rangle>\<langle>t\<rangle>"
obtain c where c: "t = absc c" "c \<in> OCC" using t by moura
hence "s = absc b \<or> s = absc c"
using ab s timpl_apply_const'[of c a b] unfolding absc_def by auto
moreover have "b \<in> OCC" using ab OCC2 by auto
ultimately have "s \<in> absc ` OCC" using c(2) by blast
} thus ?B by blast
qed
lemma (in stateful_protocol_model) intruder_synth_timpl_closure_set:
fixes M::"('fun,'atom,'sets) prot_terms" and t::"('fun,'atom,'sets) prot_term"
assumes "M \<turnstile>\<^sub>c t"
and "s \<in> timpl_closure t TI"
shows "timpl_closure_set M TI \<turnstile>\<^sub>c s"
using assms
proof (induction t arbitrary: s rule: intruder_synth_induct)
case (AxiomC t)
hence "s \<in> timpl_closure_set M TI"
using timpl_closure_set_is_timpl_closure_union[of M TI]
by blast
thus ?case by simp
next
case (ComposeC T f)
obtain g S where s: "s = Fun g S"
using timpl_closure_Fun_inv[OF ComposeC.prems] by moura
hence s':
"f = g" "length S = length T"
"\<And>i. i < length S \<Longrightarrow> S ! i \<in> timpl_closure (T ! i) TI"
using timpl_closure_Fun_inv'[of g S f T TI] ComposeC.prems ComposeC.hyps(2)
unfolding is_Abs_def by fastforce+
have "timpl_closure_set M TI \<turnstile>\<^sub>c u" when u: "u \<in> set S" for u
using ComposeC.IH u s'(2,3) in_set_conv_nth[of _ T] in_set_conv_nth[of u S] by auto
thus ?case
using s s'(1,2) ComposeC.hyps(1,2) intruder_synth.ComposeC[of S g "timpl_closure_set M TI"]
by argo
qed
lemma (in stateful_protocol_model) intruder_synth_timpl_closure':
fixes M::"('fun,'atom,'sets) prot_terms" and t::"('fun,'atom,'sets) prot_term"
assumes "timpl_closure_set M TI \<turnstile>\<^sub>c t"
and "s \<in> timpl_closure t TI"
shows "timpl_closure_set M TI \<turnstile>\<^sub>c s"
by (metis intruder_synth_timpl_closure_set[OF assms] timpl_closure_set_idem)
lemma timpl_closure_set_absc_subset_in:
defines "absc \<equiv> \<lambda>a. Fun (Abs a) []"
assumes A: "timpl_closure_set (absc ` A) TI \<subseteq> absc ` A"
and a: "a \<in> A" "(a,b) \<in> TI\<^sup>+"
shows "b \<in> A"
proof -
have "timpl_closure (absc a) (TI\<^sup>+) \<subseteq> absc ` A"
using a(1) A timpl_closure_timpls_trancl_eq
unfolding timpl_closure_set_def by fast
thus ?thesis
using timpl_closure.TI[OF timpl_closure.FP[of "absc a"] a(2), of "absc b"]
term_variants_P[of "[]" "[]" "(\<lambda>_. [])(Abs a := [Abs b])" "Abs b" "Abs a"]
unfolding absc_def by auto
qed
subsection \<open>Composition-only Intruder Deduction Modulo Term Implication Closure of the Intruder Knowledge\<close>
context stateful_protocol_model
begin
fun in_trancl where
"in_trancl TI a b = (
if (a,b) \<in> set TI then True
else list_ex (\<lambda>(c,d). c = a \<and> in_trancl (removeAll (c,d) TI) d b) TI)"
definition in_rtrancl where
"in_rtrancl TI a b \<equiv> a = b \<or> in_trancl TI a b"
declare in_trancl.simps[simp del]
fun timpls_transformable_to where
"timpls_transformable_to TI (Var x) (Var y) = (x = y)"
| "timpls_transformable_to TI (Fun f T) (Fun g S) = (
(f = g \<or> (is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> set TI)) \<and>
list_all2 (timpls_transformable_to TI) T S)"
| "timpls_transformable_to _ _ _ = False"
fun timpls_transformable_to' where
"timpls_transformable_to' TI (Var x) (Var y) = (x = y)"
| "timpls_transformable_to' TI (Fun f T) (Fun g S) = (
(f = g \<or> (is_Abs f \<and> is_Abs g \<and> in_trancl TI (the_Abs f) (the_Abs g))) \<and>
list_all2 (timpls_transformable_to' TI) T S)"
| "timpls_transformable_to' _ _ _ = False"
fun equal_mod_timpls where
"equal_mod_timpls TI (Var x) (Var y) = (x = y)"
| "equal_mod_timpls TI (Fun f T) (Fun g S) = (
(f = g \<or> (is_Abs f \<and> is_Abs g \<and>
((the_Abs f, the_Abs g) \<in> set TI \<or>
(the_Abs g, the_Abs f) \<in> set TI \<or>
(\<exists>ti \<in> set TI. (the_Abs f, snd ti) \<in> set TI \<and> (the_Abs g, snd ti) \<in> set TI)))) \<and>
list_all2 (equal_mod_timpls TI) T S)"
| "equal_mod_timpls _ _ _ = False"
fun intruder_synth_mod_timpls where
"intruder_synth_mod_timpls M TI (Var x) = List.member M (Var x)"
| "intruder_synth_mod_timpls M TI (Fun f T) = (
(list_ex (\<lambda>t. timpls_transformable_to TI t (Fun f T)) M) \<or>
(public f \<and> length T = arity f \<and> list_all (intruder_synth_mod_timpls M TI) T))"
fun intruder_synth_mod_timpls' where
"intruder_synth_mod_timpls' M TI (Var x) = List.member M (Var x)"
| "intruder_synth_mod_timpls' M TI (Fun f T) = (
(list_ex (\<lambda>t. timpls_transformable_to' TI t (Fun f T)) M) \<or>
(public f \<and> length T = arity f \<and> list_all (intruder_synth_mod_timpls' M TI) T))"
fun intruder_synth_mod_eq_timpls where
"intruder_synth_mod_eq_timpls M TI (Var x) = (Var x \<in> M)"
| "intruder_synth_mod_eq_timpls M TI (Fun f T) = (
(\<exists>t \<in> M. equal_mod_timpls TI t (Fun f T)) \<or>
(public f \<and> length T = arity f \<and> list_all (intruder_synth_mod_eq_timpls M TI) T))"
definition analyzed_closed_mod_timpls where
"analyzed_closed_mod_timpls M TI \<equiv>
let f = list_all (intruder_synth_mod_timpls M TI);
g = \<lambda>t. if f (fst (Ana t)) then f (snd (Ana t))
else \<forall>s \<in> comp_timpl_closure {t} (set TI). case Ana s of (K,R) \<Rightarrow> f K \<longrightarrow> f R
in list_all g M"
definition analyzed_closed_mod_timpls' where
"analyzed_closed_mod_timpls' M TI \<equiv>
let f = list_all (intruder_synth_mod_timpls' M TI);
g = \<lambda>t. if f (fst (Ana t)) then f (snd (Ana t))
else \<forall>s \<in> comp_timpl_closure {t} (set TI). case Ana s of (K,R) \<Rightarrow> f K \<longrightarrow> f R
in list_all g M"
(* Alternative definition (allows for computing the closures beforehand which may be useful) *)
definition analyzed_closed_mod_timpls_alt where
"analyzed_closed_mod_timpls_alt M TI timpl_cl_witness \<equiv>
let f = \<lambda>R. \<forall>r \<in> set R. intruder_synth_mod_timpls M TI r;
N = {t \<in> set M. f (fst (Ana t))};
N' = set M - N
in (\<forall>t \<in> N. f (snd (Ana t))) \<and>
(N' \<noteq> {} \<longrightarrow> (N' \<union> (\<Union>x\<in>timpl_cl_witness. \<Union>(a,b)\<in>set TI. set \<langle>a --\<guillemotright> b\<rangle>\<langle>x\<rangle>) \<subseteq> timpl_cl_witness)) \<and>
(\<forall>s \<in> timpl_cl_witness. case Ana s of (K,R) \<Rightarrow> f K \<longrightarrow> f R)"
lemma in_trancl_closure_iff_in_trancl_fun:
"(a,b) \<in> (set TI)\<^sup>+ \<longleftrightarrow> in_trancl TI a b" (is "?A TI a b \<longleftrightarrow> ?B TI a b")
proof
show "?A TI a b \<Longrightarrow> ?B TI a b"
proof (induction rule: trancl_induct)
case (step c d)
show ?case using step.IH step.hyps(2)
proof (induction TI a c rule: in_trancl.induct)
case (1 TI a b) thus ?case using in_trancl.simps
by (smt Bex_set case_prodE case_prodI member_remove prod.sel(2) remove_code(1))
qed
qed (metis in_trancl.simps)
show "?B TI a b \<Longrightarrow> ?A TI a b"
proof (induction TI a b rule: in_trancl.induct)
case (1 TI a b)
let ?P = "\<lambda>TI a b c d. in_trancl (List.removeAll (c,d) TI) d b"
have *: "\<exists>(c,d) \<in> set TI. c = a \<and> ?P TI a b c d" when "(a,b) \<notin> set TI"
using that "1.prems" list_ex_iff[of _ TI] in_trancl.simps[of TI a b]
by auto
show ?case
proof (cases "(a,b) \<in> set TI")
case False
hence "\<exists>(c,d) \<in> set TI. c = a \<and> ?P TI a b c d" using * by blast
then obtain d where d: "(a,d) \<in> set TI" "?P TI a b a d" by blast
have "(d,b) \<in> (set (removeAll (a,d) TI))\<^sup>+" using "1.IH"[OF False d(1)] d(2) by blast
moreover have "set (removeAll (a,d) TI) \<subseteq> set TI" by simp
ultimately have "(d,b) \<in> (set TI)\<^sup>+" using trancl_mono by blast
thus ?thesis using d(1) by fastforce
qed simp
qed
qed
lemma in_rtrancl_closure_iff_in_rtrancl_fun:
"(a,b) \<in> (set TI)\<^sup>* \<longleftrightarrow> in_rtrancl TI a b"
by (metis rtrancl_eq_or_trancl in_trancl_closure_iff_in_trancl_fun in_rtrancl_def)
lemma in_trancl_mono:
assumes "set TI \<subseteq> set TI'"
and "in_trancl TI a b"
shows "in_trancl TI' a b"
by (metis assms in_trancl_closure_iff_in_trancl_fun trancl_mono)
lemma equal_mod_timpls_refl:
"equal_mod_timpls TI t t"
proof (induction t)
case (Fun f T) thus ?case
using list_all2_conv_all_nth[of "equal_mod_timpls TI" T T] by force
qed simp
lemma equal_mod_timpls_inv_Var:
"equal_mod_timpls TI (Var x) t \<Longrightarrow> t = Var x" (is "?A \<Longrightarrow> ?C")
"equal_mod_timpls TI t (Var x) \<Longrightarrow> t = Var x" (is "?B \<Longrightarrow> ?C")
proof -
show "?A \<Longrightarrow> ?C" by (cases t) auto
show "?B \<Longrightarrow> ?C" by (cases t) auto
qed
lemma equal_mod_timpls_inv:
assumes "equal_mod_timpls TI (Fun f T) (Fun g S)"
shows "length T = length S"
and "\<And>i. i < length T \<Longrightarrow> equal_mod_timpls TI (T ! i) (S ! i)"
and "f \<noteq> g \<Longrightarrow> (is_Abs f \<and> is_Abs g \<and> (
(the_Abs f, the_Abs g) \<in> set TI \<or> (the_Abs g, the_Abs f) \<in> set TI \<or>
(\<exists>ti \<in> set TI. (the_Abs f, snd ti) \<in> set TI \<and>
(the_Abs g, snd ti) \<in> set TI)))"
using assms list_all2_conv_all_nth[of "equal_mod_timpls TI" T S]
by (auto elim: equal_mod_timpls.cases)
lemma equal_mod_timpls_inv':
assumes "equal_mod_timpls TI (Fun f T) t"
shows "is_Fun t"
and "length T = length (args t)"
and "\<And>i. i < length T \<Longrightarrow> equal_mod_timpls TI (T ! i) (args t ! i)"
and "f \<noteq> the_Fun t \<Longrightarrow> (is_Abs f \<and> is_Abs (the_Fun t) \<and> (
(the_Abs f, the_Abs (the_Fun t)) \<in> set TI \<or>
(the_Abs (the_Fun t), the_Abs f) \<in> set TI \<or>
(\<exists>ti \<in> set TI. (the_Abs f, snd ti) \<in> set TI \<and>
(the_Abs (the_Fun t), snd ti) \<in> set TI)))"
and "\<not>is_Abs f \<Longrightarrow> f = the_Fun t"
using assms list_all2_conv_all_nth[of "equal_mod_timpls TI" T]
by (cases t; auto)+
lemma equal_mod_timpls_if_term_variants:
fixes s t::"(('a, 'b, 'c) prot_fun, 'd) term" and a b::"'c set"
defines "P \<equiv> (\<lambda>_. [])(Abs a := [Abs b])"
assumes st: "term_variants_pred P s t"
and ab: "(a,b) \<in> set TI"
shows "equal_mod_timpls TI s t"
using st P_def
proof (induction rule: term_variants_pred.induct)
case (term_variants_P T S f) thus ?case
using ab list_all2_conv_all_nth[of "equal_mod_timpls TI" T S]
in_trancl_closure_iff_in_trancl_fun[of _ _ TI]
by auto
next
case (term_variants_Fun T S f) thus ?case
using ab list_all2_conv_all_nth[of "equal_mod_timpls TI" T S]
in_trancl_closure_iff_in_trancl_fun[of _ _ TI]
by auto
qed simp
lemma equal_mod_timpls_mono:
assumes "set TI \<subseteq> set TI'"
and "equal_mod_timpls TI s t"
shows "equal_mod_timpls TI' s t"
using assms
proof (induction TI s t rule: equal_mod_timpls.induct)
case (2 TI f T g S)
have *: "f = g \<or> (is_Abs f \<and> is_Abs g \<and> ((the_Abs f, the_Abs g) \<in> set TI \<or>
(the_Abs g, the_Abs f) \<in> set TI \<or>
(\<exists>ti \<in> set TI. (the_Abs f, snd ti) \<in> set TI \<and>
(the_Abs g, snd ti) \<in> set TI)))"
"list_all2 (equal_mod_timpls TI) T S"
using "2.prems" by simp_all
show ?case
using "2.IH" "2.prems"(1) list.rel_mono_strong[OF *(2)] *(1) in_trancl_mono[of TI TI']
by (metis (no_types, lifting) equal_mod_timpls.simps(2) set_rev_mp)
qed auto
lemma equal_mod_timpls_refl_minus_eq:
"equal_mod_timpls TI s t \<longleftrightarrow> equal_mod_timpls (filter (\<lambda>(a,b). a \<noteq> b) TI) s t"
(is "?A \<longleftrightarrow> ?B")
proof
show ?A when ?B using that equal_mod_timpls_mono[of "filter (\<lambda>(a,b). a \<noteq> b) TI" TI] by auto
show ?B when ?A using that
proof (induction TI s t rule: equal_mod_timpls.induct)
case (2 TI f T g S)
define TI' where "TI' \<equiv> filter (\<lambda>(a,b). a \<noteq> b) TI"
let ?P = "\<lambda>X Y. f = g \<or> (is_Abs f \<and> is_Abs g \<and> ((the_Abs f, the_Abs g) \<in> set X \<or>
(the_Abs g, the_Abs f) \<in> set X \<or> (\<exists>ti \<in> set Y.
(the_Abs f, snd ti) \<in> set X \<and> (the_Abs g, snd ti) \<in> set X)))"
have *: "?P TI TI" "list_all2 (equal_mod_timpls TI) T S"
using "2.prems" by simp_all
have "?P TI' TI"
using *(1) unfolding TI'_def is_Abs_def by auto
hence "?P TI' TI'"
by (metis (no_types, lifting) snd_conv)
moreover have "list_all2 (equal_mod_timpls TI') T S"
using *(2) "2.IH" list.rel_mono_strong unfolding TI'_def by blast
ultimately show ?case unfolding TI'_def by force
qed auto
qed
lemma timpls_transformable_to_refl:
"timpls_transformable_to TI t t" (is ?A)
"timpls_transformable_to' TI t t" (is ?B)
by (induct t) (auto simp add: list_all2_conv_all_nth)
lemma timpls_transformable_to_inv_Var:
"timpls_transformable_to TI (Var x) t \<Longrightarrow> t = Var x" (is "?A \<Longrightarrow> ?C")
"timpls_transformable_to TI t (Var x) \<Longrightarrow> t = Var x" (is "?B \<Longrightarrow> ?C")
"timpls_transformable_to' TI (Var x) t \<Longrightarrow> t = Var x" (is "?A' \<Longrightarrow> ?C")
"timpls_transformable_to' TI t (Var x) \<Longrightarrow> t = Var x" (is "?B' \<Longrightarrow> ?C")
by (cases t; auto)+
lemma timpls_transformable_to_inv:
assumes "timpls_transformable_to TI (Fun f T) (Fun g S)"
shows "length T = length S"
and "\<And>i. i < length T \<Longrightarrow> timpls_transformable_to TI (T ! i) (S ! i)"
and "f \<noteq> g \<Longrightarrow> (is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> set TI)"
using assms list_all2_conv_all_nth[of "timpls_transformable_to TI" T S] by auto
lemma timpls_transformable_to'_inv:
assumes "timpls_transformable_to' TI (Fun f T) (Fun g S)"
shows "length T = length S"
and "\<And>i. i < length T \<Longrightarrow> timpls_transformable_to' TI (T ! i) (S ! i)"
and "f \<noteq> g \<Longrightarrow> (is_Abs f \<and> is_Abs g \<and> in_trancl TI (the_Abs f) (the_Abs g))"
using assms list_all2_conv_all_nth[of "timpls_transformable_to' TI" T S] by auto
lemma timpls_transformable_to_inv':
assumes "timpls_transformable_to TI (Fun f T) t"
shows "is_Fun t"
and "length T = length (args t)"
and "\<And>i. i < length T \<Longrightarrow> timpls_transformable_to TI (T ! i) (args t ! i)"
and "f \<noteq> the_Fun t \<Longrightarrow> (
is_Abs f \<and> is_Abs (the_Fun t) \<and> (the_Abs f, the_Abs (the_Fun t)) \<in> set TI)"
and "\<not>is_Abs f \<Longrightarrow> f = the_Fun t"
using assms list_all2_conv_all_nth[of "timpls_transformable_to TI" T]
by (cases t; auto)+
lemma timpls_transformable_to'_inv':
assumes "timpls_transformable_to' TI (Fun f T) t"
shows "is_Fun t"
and "length T = length (args t)"
and "\<And>i. i < length T \<Longrightarrow> timpls_transformable_to' TI (T ! i) (args t ! i)"
and "f \<noteq> the_Fun t \<Longrightarrow> (
is_Abs f \<and> is_Abs (the_Fun t) \<and> in_trancl TI (the_Abs f) (the_Abs (the_Fun t)))"
and "\<not>is_Abs f \<Longrightarrow> f = the_Fun t"
using assms list_all2_conv_all_nth[of "timpls_transformable_to' TI" T]
by (cases t; auto)+
lemma timpls_transformable_to_size_eq:
fixes s t::"(('b, 'c, 'a) prot_fun, 'd) term"
shows "timpls_transformable_to TI s t \<Longrightarrow> size s = size t" (is "?A \<Longrightarrow> ?C")
and "timpls_transformable_to' TI s t \<Longrightarrow> size s = size t" (is "?B \<Longrightarrow> ?C")
proof -
have *: "size_list size T = size_list size S"
when "length T = length S" "\<And>i. i < length T \<Longrightarrow> size (T ! i) = size (S ! i)"
for S T::"(('b, 'c, 'a) prot_fun, 'd) term list"
using that
proof (induction T arbitrary: S)
case (Cons x T')
then obtain y S' where y: "S = y#S'" by (cases S) auto
hence "size_list size T' = size_list size S'" "size x = size y"
using Cons.prems Cons.IH[of S'] by force+
thus ?case using y by simp
qed simp
show ?C when ?A using that
proof (induction rule: timpls_transformable_to.induct)
case (2 TI f T g S)
hence "length T = length S" "\<And>i. i < length T \<Longrightarrow> size (T ! i) = size (S ! i)"
using timpls_transformable_to_inv(1,2)[of TI f T g S] by auto
thus ?case using *[of S T] by simp
qed simp_all
show ?C when ?B using that
proof (induction rule: timpls_transformable_to.induct)
case (2 TI f T g S)
hence "length T = length S" "\<And>i. i < length T \<Longrightarrow> size (T ! i) = size (S ! i)"
using timpls_transformable_to'_inv(1,2)[of TI f T g S] by auto
thus ?case using *[of S T] by simp
qed simp_all
qed
lemma timpls_transformable_to_if_term_variants:
fixes s t::"(('a, 'b, 'c) prot_fun, 'd) term" and a b::"'c set"
defines "P \<equiv> (\<lambda>_. [])(Abs a := [Abs b])"
assumes st: "term_variants_pred P s t"
and ab: "(a,b) \<in> set TI"
shows "timpls_transformable_to TI s t"
using st P_def
proof (induction rule: term_variants_pred.induct)
case (term_variants_P T S f) thus ?case
using ab list_all2_conv_all_nth[of "timpls_transformable_to TI" T S]
by auto
next
case (term_variants_Fun T S f) thus ?case
using ab list_all2_conv_all_nth[of "timpls_transformable_to TI" T S]
by auto
qed simp
lemma timpls_transformable_to'_if_term_variants:
fixes s t::"(('a, 'b, 'c) prot_fun, 'd) term" and a b::"'c set"
defines "P \<equiv> (\<lambda>_. [])(Abs a := [Abs b])"
assumes st: "term_variants_pred P s t"
and ab: "(a,b) \<in> (set TI)\<^sup>+"
shows "timpls_transformable_to' TI s t"
using st P_def
proof (induction rule: term_variants_pred.induct)
case (term_variants_P T S f) thus ?case
using ab list_all2_conv_all_nth[of "timpls_transformable_to' TI" T S]
in_trancl_closure_iff_in_trancl_fun[of _ _ TI]
by auto
next
case (term_variants_Fun T S f) thus ?case
using ab list_all2_conv_all_nth[of "timpls_transformable_to' TI" T S]
in_trancl_closure_iff_in_trancl_fun[of _ _ TI]
by auto
qed simp
lemma timpls_transformable_to_trans:
assumes TI_trancl: "\<forall>(a,b) \<in> (set TI)\<^sup>+. a \<noteq> b \<longrightarrow> (a,b) \<in> set TI"
and st: "timpls_transformable_to TI s t"
and tu: "timpls_transformable_to TI t u"
shows "timpls_transformable_to TI s u"
using st tu
proof (induction s arbitrary: t u)
case (Var x) thus ?case using tu timpls_transformable_to_inv_Var(1) by fast
next
case (Fun f T)
obtain g S where t:
"t = Fun g S" "length T = length S"
"\<And>i. i < length T \<Longrightarrow> timpls_transformable_to TI (T ! i) (S ! i)"
"f \<noteq> g \<Longrightarrow> is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> set TI"
using timpls_transformable_to_inv'[OF Fun.prems(1)] TI_trancl by moura
obtain h U where u:
"u = Fun h U" "length S = length U"
"\<And>i. i < length S \<Longrightarrow> timpls_transformable_to TI (S ! i) (U ! i)"
"g \<noteq> h \<Longrightarrow> is_Abs g \<and> is_Abs h \<and> (the_Abs g, the_Abs h) \<in> set TI"
using timpls_transformable_to_inv'[OF Fun.prems(2)[unfolded t(1)]] TI_trancl by moura
have "list_all2 (timpls_transformable_to TI) T U"
using t(1,2,3) u(1,2,3) Fun.IH
list_all2_conv_all_nth[of "timpls_transformable_to TI" T S]
list_all2_conv_all_nth[of "timpls_transformable_to TI" S U]
list_all2_conv_all_nth[of "timpls_transformable_to TI" T U]
by force
moreover have "(the_Abs f, the_Abs h) \<in> set TI"
when "(the_Abs f, the_Abs g) \<in> set TI" "(the_Abs g, the_Abs h) \<in> set TI"
"f \<noteq> h" "is_Abs f" "is_Abs h"
using that(3,4,5) TI_trancl trancl_into_trancl[OF r_into_trancl[OF that(1)] that(2)]
unfolding is_Abs_def the_Abs_def
by force
hence "is_Abs f \<and> is_Abs h \<and> (the_Abs f, the_Abs h) \<in> set TI"
when "f \<noteq> h"
using that TI_trancl t(4) u(4) by fast
ultimately show ?case using t(1) u(1) by force
qed
lemma timpls_transformable_to'_trans:
assumes st: "timpls_transformable_to' TI s t"
and tu: "timpls_transformable_to' TI t u"
shows "timpls_transformable_to' TI s u"
using st tu
proof (induction s arbitrary: t u)
case (Var x) thus ?case using tu timpls_transformable_to_inv_Var(3) by fast
next
case (Fun f T)
note 0 = in_trancl_closure_iff_in_trancl_fun[of _ _ TI]
obtain g S where t:
"t = Fun g S" "length T = length S"
"\<And>i. i < length T \<Longrightarrow> timpls_transformable_to' TI (T ! i) (S ! i)"
"f \<noteq> g \<Longrightarrow> is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> (set TI)\<^sup>+"
using timpls_transformable_to'_inv'[OF Fun.prems(1)] 0 by moura
obtain h U where u:
"u = Fun h U" "length S = length U"
"\<And>i. i < length S \<Longrightarrow> timpls_transformable_to' TI (S ! i) (U ! i)"
"g \<noteq> h \<Longrightarrow> is_Abs g \<and> is_Abs h \<and> (the_Abs g, the_Abs h) \<in> (set TI)\<^sup>+"
using timpls_transformable_to'_inv'[OF Fun.prems(2)[unfolded t(1)]] 0 by moura
have "list_all2 (timpls_transformable_to' TI) T U"
using t(1,2,3) u(1,2,3) Fun.IH
list_all2_conv_all_nth[of "timpls_transformable_to' TI" T S]
list_all2_conv_all_nth[of "timpls_transformable_to' TI" S U]
list_all2_conv_all_nth[of "timpls_transformable_to' TI" T U]
by force
moreover have "(the_Abs f, the_Abs h) \<in> (set TI)\<^sup>+"
when "(the_Abs f, the_Abs g) \<in> (set TI)\<^sup>+" "(the_Abs g, the_Abs h) \<in> (set TI)\<^sup>+"
using that by simp
hence "is_Abs f \<and> is_Abs h \<and> (the_Abs f, the_Abs h) \<in> (set TI)\<^sup>+"
when "f \<noteq> h"
by (metis that t(4) u(4))
ultimately show ?case using t(1) u(1) 0 by force
qed
lemma timpls_transformable_to_mono:
assumes "set TI \<subseteq> set TI'"
and "timpls_transformable_to TI s t"
shows "timpls_transformable_to TI' s t"
using assms
proof (induction TI s t rule: timpls_transformable_to.induct)
case (2 TI f T g S)
have *: "f = g \<or> (is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> set TI)"
"list_all2 (timpls_transformable_to TI) T S"
using "2.prems" by simp_all
show ?case
using "2.IH" "2.prems"(1) list.rel_mono_strong[OF *(2)] *(1) in_trancl_mono[of TI TI']
by (metis (no_types, lifting) timpls_transformable_to.simps(2) set_rev_mp)
qed auto
lemma timpls_transformable_to'_mono:
assumes "set TI \<subseteq> set TI'"
and "timpls_transformable_to' TI s t"
shows "timpls_transformable_to' TI' s t"
using assms
proof (induction TI s t rule: timpls_transformable_to'.induct)
case (2 TI f T g S)
have *: "f = g \<or> (is_Abs f \<and> is_Abs g \<and> in_trancl TI (the_Abs f) (the_Abs g))"
"list_all2 (timpls_transformable_to' TI) T S"
using "2.prems" by simp_all
show ?case
using "2.IH" "2.prems"(1) list.rel_mono_strong[OF *(2)] *(1) in_trancl_mono[of TI TI']
by (metis (no_types, lifting) timpls_transformable_to'.simps(2))
qed auto
lemma timpls_transformable_to_refl_minus_eq:
"timpls_transformable_to TI s t \<longleftrightarrow> timpls_transformable_to (filter (\<lambda>(a,b). a \<noteq> b) TI) s t"
(is "?A \<longleftrightarrow> ?B")
proof
let ?TI' = "\<lambda>TI. filter (\<lambda>(a,b). a \<noteq> b) TI"
show ?A when ?B using that timpls_transformable_to_mono[of "?TI' TI" TI] by auto
show ?B when ?A using that
proof (induction TI s t rule: timpls_transformable_to.induct)
case (2 TI f T g S)
have *: "f = g \<or> (is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> set TI)"
"list_all2 (timpls_transformable_to TI) T S"
using "2.prems" by simp_all
have "f = g \<or> (is_Abs f \<and> is_Abs g \<and> (the_Abs f, the_Abs g) \<in> set (?TI' TI))"
using *(1) unfolding is_Abs_def by auto
moreover have "list_all2 (timpls_transformable_to (?TI' TI)) T S"
using *(2) "2.IH" list.rel_mono_strong by blast
ultimately show ?case by force
qed auto
qed
lemma timpls_transformable_to_iff_in_timpl_closure:
assumes "set TI' = {(a,b) \<in> (set TI)\<^sup>+. a \<noteq> b}"
shows "timpls_transformable_to TI' s t \<longleftrightarrow> t \<in> timpl_closure s (set TI)" (is "?A s t \<longleftrightarrow> ?B s t")
proof
show "?A s t \<Longrightarrow> ?B s t" using assms
proof (induction s t rule: timpls_transformable_to.induct)
case (2 TI f T g S)
note prems = "2.prems"
note IH = "2.IH"
have 1: "length T = length S" "\<forall>i<length T. timpls_transformable_to TI' (T ! i) (S ! i)"
using prems(1) list_all2_conv_all_nth[of "timpls_transformable_to TI'" T S] by simp_all
note 2 = timpl_closure_is_timpl_closure'
note 3 = in_set_conv_nth[of _ T] in_set_conv_nth[of _ S]
have 4: "timpl_closure' (set TI') = timpl_closure' (set TI)"
using timpl_closure'_timpls_trancl_eq'[of "set TI"] prems(2) by simp
have IH': "(T ! i, S ! i) \<in> timpl_closure' (set TI')" when i: "i < length S" for i
proof -
have "timpls_transformable_to TI' (T ! i) (S ! i)" using i 1 by presburger
hence "S ! i \<in> timpl_closure (T ! i) (set TI)"
using IH[of "T ! i" "S ! i"] i 1(1) prems(2) by force
thus ?thesis using 2[of "S ! i" "T ! i" "set TI"] 4 by blast
qed
have 5: "f = g \<or> (\<exists>a b. (a, b) \<in> (set TI')\<^sup>+ \<and> f = Abs a \<and> g = Abs b)"
using prems(1) the_Abs_def[of f] the_Abs_def[of g] is_Abs_def[of f] is_Abs_def[of g]
by fastforce
show ?case using 2 4 timpl_closure_FunI[OF IH' 1(1) 5] 1(1) by auto
qed (simp_all add: timpl_closure.FP)
show "?B s t \<Longrightarrow> ?A s t"
proof (induction t rule: timpl_closure.induct)
case (TI u a b v) show ?case
proof (cases "a = b")
case True thus ?thesis using TI.hyps(3) TI.IH term_variants_pred_refl_inv by fastforce
next
case False
hence 1: "timpls_transformable_to TI' u v"
using TI.hyps(2) assms timpls_transformable_to_if_term_variants[OF TI.hyps(3), of TI']
by blast
have 2: "(c,d) \<in> set TI'" when cd: "(c,d) \<in> (set TI')\<^sup>+" "c \<noteq> d" for c d
proof -
let ?cl = "\<lambda>X. {(a,b) \<in> X\<^sup>+. a \<noteq> b}"
have "?cl (set TI') = ?cl (?cl (set TI))" using assms by presburger
hence "set TI' = ?cl (set TI')" using assms trancl_minus_refl_idem[of "set TI"] by argo
thus ?thesis using cd by blast
qed
show ?thesis using timpls_transformable_to_trans[OF _ TI.IH 1] 2 by blast
qed
qed (use timpls_transformable_to_refl in fast)
qed
lemma timpls_transformable_to'_iff_in_timpl_closure:
"timpls_transformable_to' TI s t \<longleftrightarrow> t \<in> timpl_closure s (set TI)" (is "?A s t \<longleftrightarrow> ?B s t")
proof
show "?A s t \<Longrightarrow> ?B s t"
proof (induction s t rule: timpls_transformable_to'.induct)
case (2 TI f T g S)
note prems = "2.prems"
note IH = "2.IH"
have 1: "length T = length S" "\<forall>i<length T. timpls_transformable_to' TI (T ! i) (S ! i)"
using prems list_all2_conv_all_nth[of "timpls_transformable_to' TI" T S] by simp_all
note 2 = timpl_closure_is_timpl_closure'
note 3 = in_set_conv_nth[of _ T] in_set_conv_nth[of _ S]
have IH': "(T ! i, S ! i) \<in> timpl_closure' (set TI)" when i: "i < length S" for i
proof -
have "timpls_transformable_to' TI (T ! i) (S ! i)" using i 1 by presburger
hence "S ! i \<in> timpl_closure (T ! i) (set TI)" using IH[of "T ! i" "S ! i"] i 1(1) by force
thus ?thesis using 2[of "S ! i" "T ! i" "set TI"] by blast
qed
have 4: "f = g \<or> (\<exists>a b. (a, b) \<in> (set TI)\<^sup>+ \<and> f = Abs a \<and> g = Abs b)"
using prems the_Abs_def[of f] the_Abs_def[of g] is_Abs_def[of f] is_Abs_def[of g]
in_trancl_closure_iff_in_trancl_fun[of _ _ TI]
by auto
show ?case using 2 timpl_closure_FunI[OF IH' 1(1) 4] 1(1) by auto
qed (simp_all add: timpl_closure.FP)
show "?B s t \<Longrightarrow> ?A s t"
proof (induction t rule: timpl_closure.induct)
case (TI u a b v) thus ?case
using timpls_transformable_to'_trans
timpls_transformable_to'_if_term_variants
by blast
qed (use timpls_transformable_to_refl(2) in fast)
qed
lemma equal_mod_timpls_iff_ex_in_timpl_closure:
assumes "set TI' = {(a,b) \<in> TI\<^sup>+. a \<noteq> b}"
shows "equal_mod_timpls TI' s t \<longleftrightarrow> (\<exists>u. u \<in> timpl_closure s TI \<and> u \<in> timpl_closure t TI)"
(is "?A s t \<longleftrightarrow> ?B s t")
proof
show "?A s t \<Longrightarrow> ?B s t" using assms
proof (induction s t rule: equal_mod_timpls.induct)
case (2 TI' f T g S)
note prems = "2.prems"
note IH = "2.IH"
have 1: "length T = length S" "\<forall>i<length T. equal_mod_timpls (TI') (T ! i) (S ! i)"
using prems list_all2_conv_all_nth[of "equal_mod_timpls TI'" T S] by simp_all
note 2 = timpl_closure_is_timpl_closure'
note 3 = in_set_conv_nth[of _ T] in_set_conv_nth[of _ S]
have 4: "timpl_closure' (set TI') = timpl_closure' TI"
using timpl_closure'_timpls_trancl_eq'[of TI] prems
by simp
have IH: "\<exists>u. (T ! i, u) \<in> timpl_closure' TI \<and> (S ! i, u) \<in> timpl_closure' TI"
when i: "i < length S" for i
proof -
have "equal_mod_timpls TI' (T ! i) (S ! i)" using i 1 by presburger
hence "\<exists>u. u \<in> timpl_closure (T ! i) TI \<and> u \<in> timpl_closure (S ! i) TI"
using IH[of "T ! i" "S ! i"] i 1(1) prems by force
thus ?thesis using 4 unfolding 2 by blast
qed
let ?P = "\<lambda>G. f = g \<or> (\<exists>a b. (a, b) \<in> G \<and> f = Abs a \<and> g = Abs b) \<or>
(\<exists>a b. (a, b) \<in> G \<and> f = Abs b \<and> g = Abs a) \<or>
(\<exists>a b c. (a, c) \<in> G \<and> (b, c) \<in> G \<and> f = Abs a \<and> g = Abs b)"
have "?P (set TI')"
using prems the_Abs_def[of f] the_Abs_def[of g] is_Abs_def[of f] is_Abs_def[of g]
by fastforce
hence "?P (TI\<^sup>+)" unfolding prems by blast
hence "?P (rtrancl TI)" by (metis (no_types, lifting) trancl_into_rtrancl)
hence 5: "f = g \<or> (\<exists>a b c. (a, c) \<in> TI\<^sup>* \<and> (b, c) \<in> TI\<^sup>* \<and> f = Abs a \<and> g = Abs b)" by blast
show ?case
using timpl_closure_FunI3[OF _ 1(1) 5] IH 1(1)
unfolding timpl_closure'_timpls_rtrancl_eq 2
by auto
qed (use timpl_closure.FP in auto)
show "?A s t" when B: "?B s t"
proof -
obtain u where u: "u \<in> timpl_closure s TI" "u \<in> timpl_closure t TI"
using B by moura
thus ?thesis using assms
proof (induction u arbitrary: s t rule: term.induct)
case (Var x s t) thus ?case
using timpl_closure_Var_in_iff[of x s TI]
timpl_closure_Var_in_iff[of x t TI]
equal_mod_timpls.simps(1)[of TI' x x]
by blast
next
case (Fun f U s t)
obtain g S where s:
"s = Fun g S" "length U = length S"
"\<And>i. i < length U \<Longrightarrow> U ! i \<in> timpl_closure (S ! i) TI"
"g \<noteq> f \<Longrightarrow> is_Abs g \<and> is_Abs f \<and> (the_Abs g, the_Abs f) \<in> TI\<^sup>+"
using Fun.prems(1) timpl_closure_Fun_inv'[of f U _ _ TI]
by (cases s) auto
obtain h T where t:
"t = Fun h T" "length U = length T"
"\<And>i. i < length U \<Longrightarrow> U ! i \<in> timpl_closure (T ! i) TI"
"h \<noteq> f \<Longrightarrow> is_Abs h \<and> is_Abs f \<and> (the_Abs h, the_Abs f) \<in> TI\<^sup>+"
using Fun.prems(2) timpl_closure_Fun_inv'[of f U _ _ TI]
by (cases t) auto
have g: "(the_Abs g, the_Abs f) \<in> set TI'" "is_Abs f" "is_Abs g" when neq_f: "g \<noteq> f"
proof -
obtain ga fa where a: "g = Abs ga" "f = Abs fa"
using s(4)[OF neq_f] unfolding is_Abs_def by presburger
hence "the_Abs g \<noteq> the_Abs f" using neq_f by simp
thus "(the_Abs g, the_Abs f) \<in> set TI'" "is_Abs f" "is_Abs g"
using s(4)[OF neq_f] Fun.prems by blast+
qed
have h: "(the_Abs h, the_Abs f) \<in> set TI'" "is_Abs f" "is_Abs h" when neq_f: "h \<noteq> f"
proof -
obtain ha fa where a: "h = Abs ha" "f = Abs fa"
using t(4)[OF neq_f] unfolding is_Abs_def by presburger
hence "the_Abs h \<noteq> the_Abs f" using neq_f by simp
thus "(the_Abs h, the_Abs f) \<in> set TI'" "is_Abs f" "is_Abs h"
using t(4)[OF neq_f] Fun.prems by blast+
qed
have "equal_mod_timpls TI' (S ! i) (T ! i)"
when i: "i < length U" for i
using i Fun.IH s(1,2,3) t(1,2,3) nth_mem[OF i] Fun.prems by meson
hence "list_all2 (equal_mod_timpls TI') S T"
using list_all2_conv_all_nth[of "equal_mod_timpls TI'" S T] s(2) t(2) by presburger
thus ?case using s(1) t(1) g h by fastforce
qed
qed
qed
(* lemma equal_mod_timpls_iff_ex_in_timpl_closure':
"equal_mod_timpls (TI\<^sup>+) s t \<longleftrightarrow> (\<exists>u. u \<in> timpl_closure s TI \<and> u \<in> timpl_closure t TI)"
using equal_mod_timpls_iff_ex_in_timpl_closure equal_mod_timpls_refl_minus_eq
by blast *)
context
begin
private inductive timpls_transformable_to_pred where
Var: "timpls_transformable_to_pred A (Var x) (Var x)"
| Fun: "\<lbrakk>\<not>is_Abs f; length T = length S;
\<And>i. i < length T \<Longrightarrow> timpls_transformable_to_pred A (T ! i) (S ! i)\<rbrakk>
\<Longrightarrow> timpls_transformable_to_pred A (Fun f T) (Fun f S)"
| Abs: "b \<in> A \<Longrightarrow> timpls_transformable_to_pred A (Fun (Abs a) []) (Fun (Abs b) [])"
private lemma timpls_transformable_to_pred_inv_Var:
assumes "timpls_transformable_to_pred A (Var x) t"
shows "t = Var x"
using assms by (auto elim: timpls_transformable_to_pred.cases)
private lemma timpls_transformable_to_pred_inv:
assumes "timpls_transformable_to_pred A (Fun f T) t"
shows "is_Fun t"
and "length T = length (args t)"
and "\<And>i. i < length T \<Longrightarrow> timpls_transformable_to_pred A (T ! i) (args t ! i)"
and "\<not>is_Abs f \<Longrightarrow> f = the_Fun t"
and "is_Abs f \<Longrightarrow> (is_Abs (the_Fun t) \<and> the_Abs (the_Fun t) \<in> A)"
using assms by (auto elim!: timpls_transformable_to_pred.cases[of A])
private lemma timpls_transformable_to_pred_finite_aux1:
assumes f: "\<not>is_Abs f"
shows "{s. timpls_transformable_to_pred A (Fun f T) s} \<subseteq>
(\<lambda>S. Fun f S) ` {S. length T = length S \<and>
(\<forall>s \<in> set S. \<exists>t \<in> set T. timpls_transformable_to_pred A t s)}"
(is "?B \<subseteq> ?C")
proof
fix s assume s: "s \<in> ?B"
hence *: "timpls_transformable_to_pred A (Fun f T) s" by blast
obtain S where S:
"s = Fun f S" "length T = length S" "\<And>i. i < length T \<Longrightarrow> timpls_transformable_to_pred A (T ! i) (S ! i)"
using f timpls_transformable_to_pred_inv[OF *] unfolding the_Abs_def is_Abs_def by auto
have "\<forall>s\<in>set S. \<exists>t\<in>set T. timpls_transformable_to_pred A t s" using S(2,3) in_set_conv_nth by metis
thus "s \<in> ?C" using S(1,2) by blast
qed
private lemma timpls_transformable_to_pred_finite_aux2:
"{s. timpls_transformable_to_pred A (Fun (Abs a) []) s} \<subseteq> (\<lambda>b. Fun (Abs b) []) ` A" (is "?B \<subseteq> ?C")
proof
fix s assume s: "s \<in> ?B"
hence *: "timpls_transformable_to_pred A (Fun (Abs a) []) s" by blast
obtain b where b: "s = Fun (Abs b) []" "b \<in> A"
using timpls_transformable_to_pred_inv[OF *] unfolding the_Abs_def is_Abs_def by auto
thus "s \<in> ?C" by blast
qed
private lemma timpls_transformable_to_pred_finite:
fixes t::"(('fun,'atom,'sets) prot_fun, 'a) term"
assumes A: "finite A"
and t: "wf\<^sub>t\<^sub>r\<^sub>m t"
shows "finite {s. timpls_transformable_to_pred A t s}"
using t
proof (induction t)
case (Var x)
have "{s::(('fun,'atom,'sets) prot_fun, 'a) term. timpls_transformable_to_pred A (Var x) s} = {Var x}"
by (auto intro: timpls_transformable_to_pred.Var elim: timpls_transformable_to_pred_inv_Var)
thus ?case by simp
next
case (Fun f T)
have IH: "finite {s. timpls_transformable_to_pred A t s}" when t: "t \<in> set T" for t
using Fun.IH[OF t] wf_trm_param[OF Fun.prems t] by blast
show ?case
proof (cases "is_Abs f")
case True
then obtain a where a: "f = Abs a" unfolding is_Abs_def by presburger
hence "T = []" using wf_trm_arity[OF Fun.prems] by simp_all
hence "{a. timpls_transformable_to_pred A (Fun f T) a} \<subseteq> (\<lambda>b. Fun (Abs b) []) ` A"
using timpls_transformable_to_pred_finite_aux2[of A a] a by auto
thus ?thesis using A finite_subset by fast
next
case False thus ?thesis
using IH finite_lists_length_eq' timpls_transformable_to_pred_finite_aux1[of f A T] finite_subset
by blast
qed
qed
private lemma timpls_transformable_to_pred_if_timpls_transformable_to:
assumes s: "timpls_transformable_to TI t s"
and t: "wf\<^sub>t\<^sub>r\<^sub>m t" "\<forall>f \<in> funs_term t. is_Abs f \<longrightarrow> the_Abs f \<in> A"
shows "timpls_transformable_to_pred (A \<union> fst ` (set TI)\<^sup>+ \<union> snd ` (set TI)\<^sup>+) t s"
using s t
proof (induction rule: timpls_transformable_to.induct)
case (2 TI f T g S)
let ?A = "A \<union> fst ` (set TI)\<^sup>+ \<union> snd ` (set TI)\<^sup>+"
note prems = "2.prems"
note IH = "2.IH"
note 0 = timpls_transformable_to_inv[OF prems(1)]
have 1: "T = []" "S = []" when f: "f = Abs a" for a
using f wf_trm_arity[OF prems(2)] 0(1) by simp_all
have "\<forall>f \<in> funs_term t. is_Abs f \<longrightarrow> the_Abs f \<in> A" when t: "t \<in> set T" for t
using t prems(3) funs_term_subterms_eq(1)[of "Fun f T"] by blast
hence 2: "timpls_transformable_to_pred ?A (T ! i) (S ! i)"
when i: "i < length T" for i
using i IH 0(1,2) wf_trm_param[OF prems(2)]
by (metis (no_types) in_set_conv_nth)
have 3: "the_Abs f \<in> ?A" when f: "is_Abs f" using prems(3) f by force
show ?case
proof (cases "f = g")
case True
note fg = True
show ?thesis
proof (cases "is_Abs f")
case True
then obtain a where a: "f = Abs a" unfolding is_Abs_def by moura
thus ?thesis using fg 1[OF a] timpls_transformable_to_pred.Abs[of a ?A a] 3 by simp
qed (use fg timpls_transformable_to_pred.Fun[OF _ 0(1) 2, of f] in blast)
next
case False
then obtain a b where ab: "f = Abs a" "g = Abs b" "(a, b) \<in> (set TI)\<^sup>+"
using 0(3) in_trancl_closure_iff_in_trancl_fun[of _ _ TI]
unfolding is_Abs_def the_Abs_def by fastforce
hence "a \<in> ?A" "b \<in> ?A" by force+
thus ?thesis using timpls_transformable_to_pred.Abs ab(1,2) 1[OF ab(1)] by metis
qed
qed (simp_all add: timpls_transformable_to_pred.Var)
private lemma timpls_transformable_to_pred_if_timpls_transformable_to':
assumes s: "timpls_transformable_to' TI t s"
and t: "wf\<^sub>t\<^sub>r\<^sub>m t" "\<forall>f \<in> funs_term t. is_Abs f \<longrightarrow> the_Abs f \<in> A"
shows "timpls_transformable_to_pred (A \<union> fst ` (set TI)\<^sup>+ \<union> snd ` (set TI)\<^sup>+) t s"
using s t
proof (induction rule: timpls_transformable_to.induct)
case (2 TI f T g S)
let ?A = "A \<union> fst ` (set TI)\<^sup>+ \<union> snd ` (set TI)\<^sup>+"
note prems = "2.prems"
note IH = "2.IH"
note 0 = timpls_transformable_to'_inv[OF prems(1)]
have 1: "T = []" "S = []" when f: "f = Abs a" for a
using f wf_trm_arity[OF prems(2)] 0(1) by simp_all
have "\<forall>f \<in> funs_term t. is_Abs f \<longrightarrow> the_Abs f \<in> A" when t: "t \<in> set T" for t
using t prems(3) funs_term_subterms_eq(1)[of "Fun f T"] by blast
hence 2: "timpls_transformable_to_pred ?A (T ! i) (S ! i)"
when i: "i < length T" for i
using i IH 0(1,2) wf_trm_param[OF prems(2)]
by (metis (no_types) in_set_conv_nth)
have 3: "the_Abs f \<in> ?A" when f: "is_Abs f" using prems(3) f by force
show ?case
proof (cases "f = g")
case True
note fg = True
show ?thesis
proof (cases "is_Abs f")
case True
then obtain a where a: "f = Abs a" unfolding is_Abs_def by moura
thus ?thesis using fg 1[OF a] timpls_transformable_to_pred.Abs[of a ?A a] 3 by simp
qed (use fg timpls_transformable_to_pred.Fun[OF _ 0(1) 2, of f] in blast)
next
case False
then obtain a b where ab: "f = Abs a" "g = Abs b" "(a, b) \<in> (set TI)\<^sup>+"
using 0(3) in_trancl_closure_iff_in_trancl_fun[of _ _ TI]
unfolding is_Abs_def the_Abs_def by fastforce
hence "a \<in> ?A" "b \<in> ?A" by force+
thus ?thesis using timpls_transformable_to_pred.Abs ab(1,2) 1[OF ab(1)] by metis
qed
qed (simp_all add: timpls_transformable_to_pred.Var)
private lemma timpls_transformable_to_pred_if_equal_mod_timpls:
assumes s: "equal_mod_timpls TI t s"
and t: "wf\<^sub>t\<^sub>r\<^sub>m t" "\<forall>f \<in> funs_term t. is_Abs f \<longrightarrow> the_Abs f \<in> A"
shows "timpls_transformable_to_pred (A \<union> fst ` (set TI)\<^sup>+ \<union> snd ` (set TI)\<^sup>+) t s"
using s t
proof (induction rule: equal_mod_timpls.induct)
case (2 TI f T g S)
let ?A = "A \<union> fst ` (set TI)\<^sup>+ \<union> snd ` (set TI)\<^sup>+"
note prems = "2.prems"
note IH = "2.IH"
note 0 = equal_mod_timpls_inv[OF prems(1)]
have 1: "T = []" "S = []" when f: "f = Abs a" for a
using f wf_trm_arity[OF prems(2)] 0(1) by simp_all
have "\<forall>f \<in> funs_term t. is_Abs f \<longrightarrow> the_Abs f \<in> A" when t: "t \<in> set T" for t
using t prems(3) funs_term_subterms_eq(1)[of "Fun f T"] by blast
hence 2: "timpls_transformable_to_pred ?A (T ! i) (S ! i)"
when i: "i < length T" for i
using i IH 0(1,2) wf_trm_param[OF prems(2)]
by (metis (no_types) in_set_conv_nth)
have 3: "the_Abs f \<in> ?A" when f: "is_Abs f" using prems(3) f by force
show ?case
proof (cases "f = g")
case True
note fg = True
show ?thesis
proof (cases "is_Abs f")
case True
then obtain a where a: "f = Abs a" unfolding is_Abs_def by moura
thus ?thesis using fg 1[OF a] timpls_transformable_to_pred.Abs[of a ?A a] 3 by simp
qed (use fg timpls_transformable_to_pred.Fun[OF _ 0(1) 2, of f] in blast)
next
case False
then obtain a b where ab: "f = Abs a" "g = Abs b"
"(a, b) \<in> (set TI)\<^sup>+ \<or> (b, a) \<in> (set TI)\<^sup>+ \<or>
(\<exists>ti \<in> set TI. (a, snd ti) \<in> (set TI)\<^sup>+ \<and> (b, snd ti) \<in> (set TI)\<^sup>+)"
using 0(3) in_trancl_closure_iff_in_trancl_fun[of _ _ TI]
unfolding is_Abs_def the_Abs_def by fastforce
hence "a \<in> ?A" "b \<in> ?A" by force+
thus ?thesis using timpls_transformable_to_pred.Abs ab(1,2) 1[OF ab(1)] by metis
qed
qed (simp_all add: timpls_transformable_to_pred.Var)
lemma timpls_transformable_to_finite:
assumes t: "wf\<^sub>t\<^sub>r\<^sub>m t"
shows "finite {s. timpls_transformable_to TI t s}" (is ?P)
and "finite {s. timpls_transformable_to' TI t s}" (is ?Q)
proof -
let ?A = "the_Abs ` {f \<in> funs_term t. is_Abs f} \<union> fst ` (set TI)\<^sup>+ \<union> snd ` (set TI)\<^sup>+"
have 0: "finite ?A" by auto
have 1: "{s. timpls_transformable_to TI t s} \<subseteq> {s. timpls_transformable_to_pred ?A t s}"
using timpls_transformable_to_pred_if_timpls_transformable_to[OF _ t] by auto
have 2: "{s. timpls_transformable_to' TI t s} \<subseteq> {s. timpls_transformable_to_pred ?A t s}"
using timpls_transformable_to_pred_if_timpls_transformable_to'[OF _ t] by auto
show ?P using timpls_transformable_to_pred_finite[OF 0 t] finite_subset[OF 1] by blast
show ?Q using timpls_transformable_to_pred_finite[OF 0 t] finite_subset[OF 2] by blast
qed
lemma equal_mod_timpls_finite:
assumes t: "wf\<^sub>t\<^sub>r\<^sub>m t"
shows "finite {s. equal_mod_timpls TI t s}"
proof -
let ?A = "the_Abs ` {f \<in> funs_term t. is_Abs f} \<union> fst ` (set TI)\<^sup>+ \<union> snd ` (set TI)\<^sup>+"
have 0: "finite ?A" by auto
have 1: "{s. equal_mod_timpls TI t s} \<subseteq> {s. timpls_transformable_to_pred ?A t s}"
using timpls_transformable_to_pred_if_equal_mod_timpls[OF _ t] by auto
show ?thesis using timpls_transformable_to_pred_finite[OF 0 t] finite_subset[OF 1] by blast
qed
end
lemma intruder_synth_mod_timpls_is_synth_timpl_closure_set:
fixes t::"(('fun, 'atom, 'sets) prot_fun, 'a) term" and TI TI'
assumes "set TI' = {(a,b) \<in> (set TI)\<^sup>+. a \<noteq> b}"
shows "intruder_synth_mod_timpls M TI' t \<longleftrightarrow> timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c t"
(is "?C t \<longleftrightarrow> ?D t")
proof -
have *: "(\<exists>m \<in> M. timpls_transformable_to TI' m t) \<longleftrightarrow> t \<in> timpl_closure_set M (set TI)"
when "set TI' = {(a,b) \<in> (set TI)\<^sup>+. a \<noteq> b}"
for M TI TI' and t::"(('fun, 'atom, 'sets) prot_fun, 'a) term"
using timpls_transformable_to_iff_in_timpl_closure[OF that]
timpl_closure_set_is_timpl_closure_union[of M "set TI"]
timpl_closure_set_timpls_trancl_eq[of M "set TI"]
timpl_closure_set_timpls_trancl_eq'[of M "set TI"]
by auto
show "?C t \<longleftrightarrow> ?D t"
proof
show "?C t \<Longrightarrow> ?D t" using assms
proof (induction t arbitrary: M TI TI' rule: intruder_synth_mod_timpls.induct)
case (1 M TI' x)
hence "Var x \<in> timpl_closure_set (set M) (set TI)"
using timpl_closure.FP member_def unfolding timpl_closure_set_def by force
thus ?case by simp
next
case (2 M TI f T)
show ?case
proof (cases "\<exists>m \<in> set M. timpls_transformable_to TI' m (Fun f T)")
case True thus ?thesis
using "2.prems" *[of TI' TI "set M" "Fun f T"]
intruder_synth.AxiomC[of "Fun f T" "timpl_closure_set (set M) (set TI)"]
by blast
next
case False
hence "\<not>(list_ex (\<lambda>t. timpls_transformable_to TI' t (Fun f T)) M)"
unfolding list_ex_iff by blast
hence "public f" "length T = arity f" "list_all (intruder_synth_mod_timpls M TI') T"
using "2.prems"(1) by force+
thus ?thesis using "2.IH"[OF _ _ "2.prems"(2)] unfolding list_all_iff by force
qed
qed
show "?D t \<Longrightarrow> ?C t"
proof (induction t rule: intruder_synth_induct)
case (AxiomC t) thus ?case
using timpl_closure_set_Var_in_iff[of _ "set M" "set TI"] *[OF assms, of "set M" t]
by (cases t rule: term.exhaust) (force simp add: member_def list_ex_iff)+
next
case (ComposeC T f) thus ?case
using list_all_iff[of "intruder_synth_mod_timpls M TI'" T]
intruder_synth_mod_timpls.simps(2)[of M TI' f T]
by blast
qed
qed
qed
lemma intruder_synth_mod_timpls'_is_synth_timpl_closure_set:
fixes t::"(('fun, 'atom, 'sets) prot_fun, 'a) term" and TI
shows "intruder_synth_mod_timpls' M TI t \<longleftrightarrow> timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c t"
(is "?A t \<longleftrightarrow> ?B t")
proof -
have *: "(\<exists>m \<in> M. timpls_transformable_to' TI m t) \<longleftrightarrow> t \<in> timpl_closure_set M (set TI)"
for M TI and t::"(('fun, 'atom, 'sets) prot_fun, 'a) term"
using timpls_transformable_to'_iff_in_timpl_closure[of TI _ t]
timpl_closure_set_is_timpl_closure_union[of M "set TI"]
by blast+
show "?A t \<longleftrightarrow> ?B t"
proof
show "?A t \<Longrightarrow> ?B t"
proof (induction t arbitrary: M TI rule: intruder_synth_mod_timpls'.induct)
case (1 M TI x)
hence "Var x \<in> timpl_closure_set (set M) (set TI)"
using timpl_closure.FP List.member_def[of M] unfolding timpl_closure_set_def by auto
thus ?case by simp
next
case (2 M TI f T)
show ?case
proof (cases "\<exists>m \<in> set M. timpls_transformable_to' TI m (Fun f T)")
case True thus ?thesis
using "2.prems" *[of "set M" TI "Fun f T"]
intruder_synth.AxiomC[of "Fun f T" "timpl_closure_set (set M) (set TI)"]
by blast
next
case False
hence "public f" "length T = arity f" "list_all (intruder_synth_mod_timpls' M TI) T"
using "2.prems" list_ex_iff[of _ M] by force+
thus ?thesis
using "2.IH"[of _ M TI] list_all_iff[of "intruder_synth_mod_timpls' M TI" T]
by force
qed
qed
show "?B t \<Longrightarrow> ?A t"
proof (induction t rule: intruder_synth_induct)
case (AxiomC t) thus ?case
using AxiomC timpl_closure_set_Var_in_iff[of _ "set M" "set TI"] *[of "set M" TI t]
list_ex_iff[of _ M] List.member_def[of M]
by (cases t rule: term.exhaust) force+
next
case (ComposeC T f) thus ?case
using list_all_iff[of "intruder_synth_mod_timpls' M TI" T]
intruder_synth_mod_timpls'.simps(2)[of M TI f T]
by blast
qed
qed
qed
lemma intruder_synth_mod_eq_timpls_is_synth_timpl_closure_set:
fixes t::"(('fun, 'atom, 'sets) prot_fun, 'a) term" and TI
defines "cl \<equiv> \<lambda>TI. {(a,b) \<in> TI\<^sup>+. a \<noteq> b}"
shows (* "set TI' = (set TI)\<^sup>+ \<Longrightarrow>
intruder_synth_mod_eq_timpls M TI' t \<longleftrightarrow>
(\<exists>s \<in> timpl_closure t (set TI). timpl_closure_set M (set TI) \<turnstile>\<^sub>c s)"
(is "?P TI TI' \<Longrightarrow> ?A t \<longleftrightarrow> ?B t")
and *) "set TI' = {(a,b) \<in> (set TI)\<^sup>+. a \<noteq> b} \<Longrightarrow>
intruder_synth_mod_eq_timpls M TI' t \<longleftrightarrow>
(\<exists>s \<in> timpl_closure t (set TI). timpl_closure_set M (set TI) \<turnstile>\<^sub>c s)"
(is "?Q TI TI' \<Longrightarrow> ?C t \<longleftrightarrow> ?D t")
proof -
(* have *: "(\<exists>m \<in> M. equal_mod_timpls TI' m t) \<longleftrightarrow>
(\<exists>s \<in> timpl_closure t (set TI). s \<in> timpl_closure_set M (set TI))"
when P: "?P TI TI'"
for M TI TI' and t::"(('fun, 'atom, 'sets) prot_fun, 'a) term"
using equal_mod_timpls_iff_ex_in_timpl_closure'[OF P]
timpl_closure_set_is_timpl_closure_union[of M "set TI"]
timpl_closure_set_timpls_trancl_eq[of M "set TI"]
by blast *)
have **: "(\<exists>m \<in> M. equal_mod_timpls TI' m t) \<longleftrightarrow>
(\<exists>s \<in> timpl_closure t (set TI). s \<in> timpl_closure_set M (set TI))"
when Q: "?Q TI TI'"
for M TI TI' and t::"(('fun, 'atom, 'sets) prot_fun, 'a) term"
using equal_mod_timpls_iff_ex_in_timpl_closure[OF Q]
timpl_closure_set_is_timpl_closure_union[of M "set TI"]
timpl_closure_set_timpls_trancl_eq'[of M "set TI"]
by fastforce
(* show "?A t \<longleftrightarrow> ?B t" when P: "?P TI TI'"
proof
show "?A t \<Longrightarrow> ?B t"
proof (induction t arbitrary: M TI rule: intruder_synth_mod_eq_timpls.induct)
case (1 M TI x)
hence "Var x \<in> timpl_closure_set M TI" "Var x \<in> timpl_closure (Var x) TI"
using timpl_closure.FP unfolding timpl_closure_set_def by auto
thus ?case by force
next
case (2 M TI f T)
show ?case
proof (cases "\<exists>m \<in> M. equal_mod_timpls (TI\<^sup>+) m (Fun f T)")
case True thus ?thesis
using "2.prems" *[of M TI "Fun f T"] intruder_synth.AxiomC[of _ "timpl_closure_set M TI"]
by blast
next
case False
hence f: "public f" "length T = arity f" "list_all (intruder_synth_mod_eq_timpls M (TI\<^sup>+)) T"
using "2.prems" by force+
let ?sy = "intruder_synth (timpl_closure_set M TI)"
have IH: "\<exists>u \<in> timpl_closure (T ! i) TI. ?sy u"
when i: "i < length T" for i
using "2.IH"[of _ M TI] f(3) nth_mem[OF i]
unfolding list_all_iff by blast
define S where "S \<equiv> map (\<lambda>u. SOME v. v \<in> timpl_closure u TI \<and> ?sy v) T"
have S1: "length T = length S"
unfolding S_def by simp
have S2: "S ! i \<in> timpl_closure (T ! i) TI"
"timpl_closure_set M TI \<turnstile>\<^sub>c S ! i"
when i: "i < length S" for i
using i IH someI_ex[of "\<lambda>v. v \<in> timpl_closure (T ! i) TI \<and> ?sy v"]
unfolding S_def by auto
have "Fun f S \<in> timpl_closure (Fun f T) TI"
using timpl_closure_FunI[of T S TI f f] S1 S2(1)
unfolding timpl_closure_is_timpl_closure' by presburger
thus ?thesis
by (metis intruder_synth.ComposeC[of S f] f(1,2) S1 S2(2) in_set_conv_nth[of _ S])
qed
qed
show "?A t" when B: "?B t"
proof -
obtain s where "timpl_closure_set M TI \<turnstile>\<^sub>c s" "s \<in> timpl_closure t TI"
using B by moura
thus ?thesis
proof (induction s arbitrary: t rule: intruder_synth_induct)
case (AxiomC s t)
note 1 = timpl_closure_set_Var_in_iff[of _ M TI] timpl_closure_Var_inv[of s _ TI]
note 2 = *[of M TI]
show ?case
proof (cases t)
case Var thus ?thesis using 1 AxiomC by auto
next
case Fun thus ?thesis using 2 AxiomC by auto
qed
next
case (ComposeC T f t)
obtain g S where gS:
"t = Fun g S" "length S = length T"
"\<forall>i < length T. T ! i \<in> timpl_closure (S ! i) TI"
"g \<noteq> f \<Longrightarrow> is_Abs g \<and> is_Abs f \<and> (the_Abs g, the_Abs f) \<in> TI\<^sup>+"
using ComposeC.prems(1) timpl_closure'_inv'[of t "Fun f T" TI]
timpl_closure_is_timpl_closure'[of _ _ TI]
by fastforce
have IH: "intruder_synth_mod_eq_timpls M (TI\<^sup>+) u" when u: "u \<in> set S" for u
by (metis u gS(2,3) ComposeC.IH in_set_conv_nth)
note 0 = list_all_iff[of "intruder_synth_mod_eq_timpls M (TI\<^sup>+)" S]
intruder_synth_mod_eq_timpls.simps(2)[of M "TI\<^sup>+" g S]
have "f = g" using ComposeC.hyps gS(4) unfolding is_Abs_def by fastforce
thus ?case by (metis ComposeC.hyps(1,2) gS(1,2) IH 0)
qed
qed
qed *)
show "?C t \<longleftrightarrow> ?D t" when Q: "?Q TI TI'"
proof
show "?C t \<Longrightarrow> ?D t" using Q
proof (induction t arbitrary: M TI rule: intruder_synth_mod_eq_timpls.induct)
case (1 M TI' x M TI)
hence "Var x \<in> timpl_closure_set M (set TI)" "Var x \<in> timpl_closure (Var x) (set TI)"
using timpl_closure.FP unfolding timpl_closure_set_def by auto
thus ?case by force
next
case (2 M TI' f T M TI)
show ?case
proof (cases "\<exists>m \<in> M. equal_mod_timpls TI' m (Fun f T)")
case True thus ?thesis
using **[OF "2.prems"(2), of M "Fun f T"]
intruder_synth.AxiomC[of _ "timpl_closure_set M (set TI)"]
by blast
next
case False
hence f: "public f" "length T = arity f" "list_all (intruder_synth_mod_eq_timpls M TI') T"
using "2.prems" by force+
let ?sy = "intruder_synth (timpl_closure_set M (set TI))"
have IH: "\<exists>u \<in> timpl_closure (T ! i) (set TI). ?sy u"
when i: "i < length T" for i
using "2.IH"[of _ M TI] f(3) nth_mem[OF i] "2.prems"(2)
unfolding list_all_iff by blast
define S where "S \<equiv> map (\<lambda>u. SOME v. v \<in> timpl_closure u (set TI) \<and> ?sy v) T"
have S1: "length T = length S"
unfolding S_def by simp
have S2: "S ! i \<in> timpl_closure (T ! i) (set TI)"
"timpl_closure_set M (set TI) \<turnstile>\<^sub>c S ! i"
when i: "i < length S" for i
using i IH someI_ex[of "\<lambda>v. v \<in> timpl_closure (T ! i) (set TI) \<and> ?sy v"]
unfolding S_def by auto
have "Fun f S \<in> timpl_closure (Fun f T) (set TI)"
using timpl_closure_FunI[of T S "set TI" f f] S1 S2(1)
unfolding timpl_closure_is_timpl_closure' by presburger
thus ?thesis
by (metis intruder_synth.ComposeC[of S f] f(1,2) S1 S2(2) in_set_conv_nth[of _ S])
qed
qed
show "?C t" when D: "?D t"
proof -
obtain s where "timpl_closure_set M (set TI) \<turnstile>\<^sub>c s" "s \<in> timpl_closure t (set TI)"
using D by moura
thus ?thesis
proof (induction s arbitrary: t rule: intruder_synth_induct)
case (AxiomC s t)
note 1 = timpl_closure_set_Var_in_iff[of _ M "set TI"] timpl_closure_Var_inv[of s _ "set TI"]
note 2 = **[OF Q, of M]
show ?case
proof (cases t)
case Var thus ?thesis using 1 AxiomC by auto
next
case Fun thus ?thesis using 2 AxiomC by auto
qed
next
case (ComposeC T f t)
obtain g S where gS:
"t = Fun g S" "length S = length T"
"\<forall>i < length T. T ! i \<in> timpl_closure (S ! i) (set TI)"
"g \<noteq> f \<Longrightarrow> is_Abs g \<and> is_Abs f \<and> (the_Abs g, the_Abs f) \<in> (set TI)\<^sup>+"
using ComposeC.prems(1) timpl_closure'_inv'[of t "Fun f T" "set TI"]
timpl_closure_is_timpl_closure'[of _ _ "set TI"]
by fastforce
have IH: "intruder_synth_mod_eq_timpls M TI' u" when u: "u \<in> set S" for u
by (metis u gS(2,3) ComposeC.IH in_set_conv_nth)
note 0 = list_all_iff[of "intruder_synth_mod_eq_timpls M TI'" S]
intruder_synth_mod_eq_timpls.simps(2)[of M TI' g S]
have "f = g" using ComposeC.hyps gS(4) unfolding is_Abs_def by fastforce
thus ?case by (metis ComposeC.hyps(1,2) gS(1,2) IH 0)
qed
qed
qed
qed
lemma timpl_closure_finite:
assumes t: "wf\<^sub>t\<^sub>r\<^sub>m t"
shows "finite (timpl_closure t (set TI))"
using timpls_transformable_to'_iff_in_timpl_closure[of TI t]
timpls_transformable_to_finite[OF t, of TI]
by auto
lemma timpl_closure_set_finite:
fixes TI::"('sets set \<times> 'sets set) list"
assumes M_finite: "finite M"
and M_wf: "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s M"
shows "finite (timpl_closure_set M (set TI))"
using timpl_closure_set_is_timpl_closure_union[of M "set TI"]
timpl_closure_finite[of _ TI] M_finite M_wf finite
by auto
lemma comp_timpl_closure_is_timpl_closure_set:
fixes M and TI::"('sets set \<times> 'sets set) list"
assumes M_finite: "finite M"
and M_wf: "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s M"
shows "comp_timpl_closure M (set TI) = timpl_closure_set M (set TI)"
using lfp_while''[OF timpls_Un_mono[of M "set TI"]]
timpl_closure_set_finite[OF M_finite M_wf]
timpl_closure_set_lfp[of M "set TI"]
unfolding comp_timpl_closure_def Let_def by presburger
context
begin
private lemma analyzed_closed_mod_timpls_is_analyzed_closed_timpl_closure_set_aux1:
fixes M::"('fun,'atom,'sets) prot_terms"
assumes f: "arity\<^sub>f f = length T" "arity\<^sub>f f > 0" "Ana\<^sub>f f = (K, R)"
and i: "i < length R"
and M: "timpl_closure_set M TI \<turnstile>\<^sub>c T ! (R ! i)"
and m: "Fun (Fu f) T \<in> M"
and t: "Fun (Fu f) S \<in> timpl_closure (Fun (Fu f) T) TI"
shows "timpl_closure_set M TI \<turnstile>\<^sub>c S ! (R ! i)"
proof -
have "R ! i < length T" using i Ana\<^sub>f_assm2_alt[OF f(3)] f(1) by simp
thus ?thesis
using timpl_closure_Fun_inv'(1,2)[OF t] intruder_synth_timpl_closure'[OF M]
by presburger
qed
private lemma analyzed_closed_mod_timpls_is_analyzed_closed_timpl_closure_set_aux2:
fixes M::"('fun,'atom,'sets) prot_terms"
assumes M: "\<forall>s \<in> set (snd (Ana m)). timpl_closure_set M TI \<turnstile>\<^sub>c s"
and m: "m \<in> M"
and t: "t \<in> timpl_closure m TI"
and s: "s \<in> set (snd (Ana t))"
shows "timpl_closure_set M TI \<turnstile>\<^sub>c s"
proof -
obtain f S K N where fS: "t = Fun (Fu f) S" "arity\<^sub>f f = length S" "0 < arity\<^sub>f f"
and Ana_f: "Ana\<^sub>f f = (K, N)"
and Ana_t: "Ana t = (K \<cdot>\<^sub>l\<^sub>i\<^sub>s\<^sub>t (!) S, map ((!) S) N)"
using Ana_nonempty_inv[of t] s by fastforce
then obtain T where T: "m = Fun (Fu f) T" "length T = length S"
using t timpl_closure_Fu_inv'[of f S m TI]
by moura
hence Ana_m: "Ana m = (K \<cdot>\<^sub>l\<^sub>i\<^sub>s\<^sub>t (!) T, map ((!) T) N)"
using fS(2,3) Ana_f by auto
obtain i where i: "i < length N" "s = S ! (N ! i)"
using s[unfolded fS(1)] Ana_t[unfolded fS(1)] T(2)
in_set_conv_nth[of s "map (\<lambda>i. S ! i) N"]
by auto
hence "timpl_closure_set M TI \<turnstile>\<^sub>c T ! (N ! i)"
using M[unfolded T(1)] Ana_m[unfolded T(1)] T(2)
by simp
thus ?thesis
using analyzed_closed_mod_timpls_is_analyzed_closed_timpl_closure_set_aux1[
OF fS(2)[unfolded T(2)[symmetric]] fS(3) Ana_f
i(1) _ m[unfolded T(1)] t[unfolded fS(1) T(1)]]
i(2)
by argo
qed
lemma analyzed_closed_mod_timpls_is_analyzed_timpl_closure_set:
fixes M::"('fun,'atom,'sets) prot_term list"
assumes TI': "set TI' = {(a,b) \<in> (set TI)\<^sup>+. a \<noteq> b}"
and M_wf: "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s (set M)"
shows "analyzed_closed_mod_timpls M TI' \<longleftrightarrow> analyzed (timpl_closure_set (set M) (set TI))"
(is "?A \<longleftrightarrow> ?B")
proof
let ?C = "\<forall>t \<in> timpl_closure_set (set M) (set TI).
analyzed_in t (timpl_closure_set (set M) (set TI))"
let ?P = "\<lambda>T. \<forall>t \<in> set T. timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c t"
let ?Q = "\<lambda>t. \<forall>s \<in> comp_timpl_closure {t} (set TI'). case Ana s of (K, R) \<Rightarrow> ?P K \<longrightarrow> ?P R"
note defs = analyzed_closed_mod_timpls_def analyzed_in_code
note 0 = intruder_synth_mod_timpls_is_synth_timpl_closure_set[OF TI', of M]
note 1 = timpl_closure_set_is_timpl_closure_union[of _ "set TI"]
have 2: "comp_timpl_closure {t} (set TI') = timpl_closure_set {t} (set TI)"
when t: "t \<in> set M" "wf\<^sub>t\<^sub>r\<^sub>m t" for t
using t timpl_closure_set_timpls_trancl_eq'[of "{t}" "set TI"]
comp_timpl_closure_is_timpl_closure_set[of "{t}" TI']
unfolding TI'[symmetric]
by blast
hence 3: "comp_timpl_closure {t} (set TI') \<subseteq> timpl_closure_set (set M) (set TI)"
when t: "t \<in> set M" "wf\<^sub>t\<^sub>r\<^sub>m t" for t
using t timpl_closure_set_mono[of "{t}" "set M"]
by fast
have ?A when C: ?C
unfolding analyzed_closed_mod_timpls_def
intruder_synth_mod_timpls_is_synth_timpl_closure_set[OF TI']
list_all_iff Let_def
proof (intro ballI)
fix t assume t: "t \<in> set M"
show "if ?P (fst (Ana t)) then ?P (snd (Ana t)) else ?Q t" (is ?R)
proof (cases "?P (fst (Ana t))")
case True
hence "?P (snd (Ana t))"
using C timpl_closure_setI[OF t, of "set TI"] prod.exhaust_sel
unfolding analyzed_in_def by blast
thus ?thesis using True by simp
next
case False
have "?Q t" using 3[OF t] C M_wf t unfolding analyzed_in_def by auto
thus ?thesis using False by argo
qed
qed
thus ?A when B: ?B using B analyzed_is_all_analyzed_in by metis
have ?C when A: ?A unfolding analyzed_in_def Let_def
proof (intro ballI allI impI; elim conjE)
fix t K T s
assume t: "t \<in> timpl_closure_set (set M) (set TI)"
and s: "s \<in> set T"
and Ana_t: "Ana t = (K, T)"
and K: "\<forall>k \<in> set K. timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c k"
obtain m where m: "m \<in> set M" "t \<in> timpl_closure m (set TI)"
using timpl_closure_set_is_timpl_closure_union t by moura
show "timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c s"
proof (cases "\<forall>k \<in> set (fst (Ana m)). timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c k")
case True
hence *: "\<forall>r \<in> set (snd (Ana m)). timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c r"
using m(1) A
unfolding analyzed_closed_mod_timpls_def
intruder_synth_mod_timpls_is_synth_timpl_closure_set[OF TI']
list_all_iff
by simp
show ?thesis
using K s Ana_t A
analyzed_closed_mod_timpls_is_analyzed_closed_timpl_closure_set_aux2[OF * m]
by simp
next
case False
hence "?Q m"
using m(1) A
unfolding analyzed_closed_mod_timpls_def
intruder_synth_mod_timpls_is_synth_timpl_closure_set[OF TI']
list_all_iff Let_def
by auto
moreover have "comp_timpl_closure {m} (set TI') = timpl_closure m (set TI)"
using 2[OF m(1)] timpl_closureton_is_timpl_closure M_wf m(1)
by blast
ultimately show ?thesis
using m(2) K s Ana_t
unfolding Let_def by auto
qed
qed
thus ?B when A: ?A using A analyzed_is_all_analyzed_in by metis
qed
lemma analyzed_closed_mod_timpls'_is_analyzed_timpl_closure_set:
fixes M::"('fun,'atom,'sets) prot_term list"
assumes M_wf: "wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s (set M)"
shows "analyzed_closed_mod_timpls' M TI \<longleftrightarrow> analyzed (timpl_closure_set (set M) (set TI))"
(is "?A \<longleftrightarrow> ?B")
proof
let ?C = "\<forall>t \<in> timpl_closure_set (set M) (set TI). analyzed_in t (timpl_closure_set (set M) (set TI))"
let ?P = "\<lambda>T. \<forall>t \<in> set T. timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c t"
let ?Q = "\<lambda>t. \<forall>s \<in> comp_timpl_closure {t} (set TI). case Ana s of (K, R) \<Rightarrow> ?P K \<longrightarrow> ?P R"
note defs = analyzed_closed_mod_timpls'_def analyzed_in_code
note 0 = intruder_synth_mod_timpls'_is_synth_timpl_closure_set[of M TI]
note 1 = timpl_closure_set_is_timpl_closure_union[of _ "set TI"]
have 2: "comp_timpl_closure {t} (set TI) = timpl_closure_set {t} (set TI)"
when t: "t \<in> set M" "wf\<^sub>t\<^sub>r\<^sub>m t" for t
using t timpl_closure_set_timpls_trancl_eq[of "{t}" "set TI"]
comp_timpl_closure_is_timpl_closure_set[of "{t}"]
by blast
hence 3: "comp_timpl_closure {t} (set TI) \<subseteq> timpl_closure_set (set M) (set TI)"
when t: "t \<in> set M" "wf\<^sub>t\<^sub>r\<^sub>m t" for t
using t timpl_closure_set_mono[of "{t}" "set M"]
by fast
have ?A when C: ?C
unfolding analyzed_closed_mod_timpls'_def
intruder_synth_mod_timpls'_is_synth_timpl_closure_set
list_all_iff Let_def
proof (intro ballI)
fix t assume t: "t \<in> set M"
show "if ?P (fst (Ana t)) then ?P (snd (Ana t)) else ?Q t" (is ?R)
proof (cases "?P (fst (Ana t))")
case True
hence "?P (snd (Ana t))"
using C timpl_closure_setI[OF t, of "set TI"] prod.exhaust_sel
unfolding analyzed_in_def by blast
thus ?thesis using True by simp
next
case False
have "?Q t" using 3[OF t] C M_wf t unfolding analyzed_in_def by auto
thus ?thesis using False by argo
qed
qed
thus ?A when B: ?B using B analyzed_is_all_analyzed_in by metis
have ?C when A: ?A unfolding analyzed_in_def Let_def
proof (intro ballI allI impI; elim conjE)
fix t K T s
assume t: "t \<in> timpl_closure_set (set M) (set TI)"
and s: "s \<in> set T"
and Ana_t: "Ana t = (K, T)"
and K: "\<forall>k \<in> set K. timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c k"
obtain m where m: "m \<in> set M" "t \<in> timpl_closure m (set TI)"
using timpl_closure_set_is_timpl_closure_union t by moura
show "timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c s"
proof (cases "\<forall>k \<in> set (fst (Ana m)). timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c k")
case True
hence *: "\<forall>r \<in> set (snd (Ana m)). timpl_closure_set (set M) (set TI) \<turnstile>\<^sub>c r"
using m(1) A
unfolding analyzed_closed_mod_timpls'_def
intruder_synth_mod_timpls'_is_synth_timpl_closure_set
list_all_iff
by simp
show ?thesis
using K s Ana_t A
analyzed_closed_mod_timpls_is_analyzed_closed_timpl_closure_set_aux2[OF * m]
by simp
next
case False
hence "?Q m"
using m(1) A
unfolding analyzed_closed_mod_timpls'_def
intruder_synth_mod_timpls'_is_synth_timpl_closure_set
list_all_iff Let_def
by auto
moreover have "comp_timpl_closure {m} (set TI) = timpl_closure m (set TI)"
using 2[OF m(1)] timpl_closureton_is_timpl_closure M_wf m(1)
by blast
ultimately show ?thesis
using m(2) K s Ana_t
unfolding Let_def by auto
qed
qed
thus ?B when A: ?A using A analyzed_is_all_analyzed_in by metis
qed
end
end
end
|