Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 45,609 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 |
(* Author: Joshua Schneider, ETH Zurich *)
subsection \<open>Idiomatic terms -- Properties and operations\<close>
theory Idiomatic_Terms
imports Combinators
begin
text \<open>This theory proves the correctness of the normalisation algorithm for
arbitrary applicative functors. We generalise the normal form using a framework
for bracket abstraction algorithms. Both approaches justify lifting certain
classes of equations. We model this as implications of term equivalences,
where unlifting of idiomatic terms is expressed syntactically.\<close>
subsubsection \<open>Basic definitions\<close>
datatype 'a itrm =
Opaque 'a | Pure dB
| IAp "'a itrm" "'a itrm" (infixl "\<diamondop>" 150)
primrec opaque :: "'a itrm \<Rightarrow> 'a list"
where
"opaque (Opaque x) = [x]"
| "opaque (Pure _) = []"
| "opaque (f \<diamondop> x) = opaque f @ opaque x"
abbreviation "iorder x \<equiv> length (opaque x)"
inductive itrm_cong :: "('a itrm \<Rightarrow> 'a itrm \<Rightarrow> bool) \<Rightarrow> 'a itrm \<Rightarrow> 'a itrm \<Rightarrow> bool"
for R
where
into_itrm_cong: "R x y \<Longrightarrow> itrm_cong R x y"
| pure_cong[intro]: "x \<leftrightarrow> y \<Longrightarrow> itrm_cong R (Pure x) (Pure y)"
| ap_cong: "itrm_cong R f f' \<Longrightarrow> itrm_cong R x x' \<Longrightarrow> itrm_cong R (f \<diamondop> x) (f' \<diamondop> x')"
| itrm_refl[iff]: "itrm_cong R x x"
| itrm_sym[sym]: "itrm_cong R x y \<Longrightarrow> itrm_cong R y x"
| itrm_trans[trans]: "itrm_cong R x y \<Longrightarrow> itrm_cong R y z \<Longrightarrow> itrm_cong R x z"
lemma ap_congL[intro]: "itrm_cong R f f' \<Longrightarrow> itrm_cong R (f \<diamondop> x) (f' \<diamondop> x)"
by (blast intro: ap_cong)
lemma ap_congR[intro]: "itrm_cong R x x' \<Longrightarrow> itrm_cong R (f \<diamondop> x) (f \<diamondop> x')"
by (blast intro: ap_cong)
text \<open>Idiomatic terms are \emph{similar} iff they have the same structure, and all contained
lambda terms are equivalent.\<close>
abbreviation similar :: "'a itrm \<Rightarrow> 'a itrm \<Rightarrow> bool" (infixl "\<cong>" 50)
where "x \<cong> y \<equiv> itrm_cong (\<lambda>_ _. False) x y"
lemma pure_similarE:
assumes "Pure x' \<cong> y"
obtains y' where "y = Pure y'" and "x' \<leftrightarrow> y'"
proof -
define x :: "'a itrm" where "x = Pure x'"
from assms have "x \<cong> y" unfolding x_def .
then have "(\<forall>x''. x = Pure x'' \<longrightarrow> (\<exists>y'. y = Pure y' \<and> x'' \<leftrightarrow> y')) \<and>
(\<forall>x''. y = Pure x'' \<longrightarrow> (\<exists>y'. x = Pure y' \<and> x'' \<leftrightarrow> y'))"
proof (induction)
case pure_cong thus ?case by (auto intro: term_sym)
next
case itrm_trans thus ?case by (fastforce intro: term_trans)
qed simp_all
with that show thesis unfolding x_def by blast
qed
lemma opaque_similarE:
assumes "Opaque x' \<cong> y"
obtains y' where "y = Opaque y'" and "x' = y'"
proof -
define x :: "'a itrm" where "x = Opaque x'"
from assms have "x \<cong> y" unfolding x_def .
then have "(\<forall>x''. x = Opaque x'' \<longrightarrow> (\<exists>y'. y = Opaque y' \<and> x'' = y')) \<and>
(\<forall>x''. y = Opaque x'' \<longrightarrow> (\<exists>y'. x = Opaque y' \<and> x'' = y'))"
by induction fast+
with that show thesis unfolding x_def by blast
qed
lemma ap_similarE:
assumes "x1 \<diamondop> x2 \<cong> y"
obtains y1 y2 where "y = y1 \<diamondop> y2" and "x1 \<cong> y1" and "x2 \<cong> y2"
proof -
from assms
have "(\<forall>x1' x2'. x1 \<diamondop> x2 = x1' \<diamondop> x2' \<longrightarrow> (\<exists>y1 y2. y = y1 \<diamondop> y2 \<and> x1' \<cong> y1 \<and> x2' \<cong> y2)) \<and>
(\<forall>x1' x2'. y = x1' \<diamondop> x2' \<longrightarrow> (\<exists>y1 y2. x1 \<diamondop> x2 = y1 \<diamondop> y2 \<and> x1' \<cong> y1 \<and> x2' \<cong> y2))"
proof (induction)
case ap_cong thus ?case by (blast intro: itrm_sym)
next
case trans: itrm_trans thus ?case by (fastforce intro: itrm_trans)
qed simp_all
with that show thesis by blast
qed
text \<open>The following relations define semantic equivalence of idiomatic terms.
We consider equivalences that hold universally in all idioms, as well as arbitrary
specialisations using additional laws.\<close>
inductive idiom_rule :: "'a itrm \<Rightarrow> 'a itrm \<Rightarrow> bool"
where
idiom_id: "idiom_rule (Pure \<I> \<diamondop> x) x"
| idiom_comp: "idiom_rule (Pure \<B> \<diamondop> g \<diamondop> f \<diamondop> x) (g \<diamondop> (f \<diamondop> x))"
| idiom_hom: "idiom_rule (Pure f \<diamondop> Pure x) (Pure (f \<degree> x))"
| idiom_xchng: "idiom_rule (f \<diamondop> Pure x) (Pure (\<T> \<degree> x) \<diamondop> f)"
abbreviation itrm_equiv :: "'a itrm \<Rightarrow> 'a itrm \<Rightarrow> bool" (infixl "\<simeq>" 50)
where "x \<simeq> y \<equiv> itrm_cong idiom_rule x y"
lemma idiom_rule_into_equiv: "idiom_rule x y \<Longrightarrow> x \<simeq> y" ..
lemmas itrm_id = idiom_id[THEN idiom_rule_into_equiv]
lemmas itrm_comp = idiom_comp[THEN idiom_rule_into_equiv]
lemmas itrm_hom = idiom_hom[THEN idiom_rule_into_equiv]
lemmas itrm_xchng = idiom_xchng[THEN idiom_rule_into_equiv]
lemma similar_into_equiv: "x \<cong> y \<Longrightarrow> x \<simeq> y"
by (induction pred: itrm_cong) (auto intro: ap_cong itrm_sym itrm_trans)
lemma opaque_equiv: "x \<simeq> y \<Longrightarrow> opaque x = opaque y"
proof (induction pred: itrm_cong)
case (into_itrm_cong x y)
thus ?case by induction auto
qed simp_all
lemma iorder_equiv: "x \<simeq> y \<Longrightarrow> iorder x = iorder y"
by (auto dest: opaque_equiv)
locale special_idiom =
fixes extra_rule :: "'a itrm \<Rightarrow> 'a itrm \<Rightarrow> bool"
begin
definition "idiom_ext_rule = sup idiom_rule extra_rule"
abbreviation itrm_ext_equiv :: "'a itrm \<Rightarrow> 'a itrm \<Rightarrow> bool" (infixl "\<simeq>\<^sup>+" 50)
where "x \<simeq>\<^sup>+ y \<equiv> itrm_cong idiom_ext_rule x y"
lemma equiv_into_ext_equiv: "x \<simeq> y \<Longrightarrow> x \<simeq>\<^sup>+ y"
unfolding idiom_ext_rule_def
by (induction pred: itrm_cong)
(auto intro: into_itrm_cong ap_cong itrm_sym itrm_trans)
lemmas itrm_ext_id = itrm_id[THEN equiv_into_ext_equiv]
lemmas itrm_ext_comp = itrm_comp[THEN equiv_into_ext_equiv]
lemmas itrm_ext_hom = itrm_hom[THEN equiv_into_ext_equiv]
lemmas itrm_ext_xchng = itrm_xchng[THEN equiv_into_ext_equiv]
end
subsubsection \<open>Syntactic unlifting\<close>
paragraph \<open>With generalisation of variables\<close>
primrec unlift' :: "nat \<Rightarrow> 'a itrm \<Rightarrow> nat \<Rightarrow> dB"
where
"unlift' n (Opaque _) i = Var i"
| "unlift' n (Pure x) i = liftn n x 0"
| "unlift' n (f \<diamondop> x) i = unlift' n f (i + iorder x) \<degree> unlift' n x i"
abbreviation "unlift x \<equiv> (Abs^^iorder x) (unlift' (iorder x) x 0)"
lemma funpow_Suc_inside: "(f ^^ Suc n) x = (f ^^ n) (f x)"
using funpow_Suc_right unfolding comp_def by metis
lemma absn_cong[intro]: "s \<leftrightarrow> t \<Longrightarrow> (Abs^^n) s \<leftrightarrow> (Abs^^n) t"
by (induction n) auto
lemma free_unlift: "free (unlift' n x i) j \<Longrightarrow> j \<ge> n \<or> (j \<ge> i \<and> j < i + iorder x)"
proof (induction x arbitrary: i)
case (Opaque x)
thus ?case by simp
next
case (Pure x)
thus ?case using free_liftn by simp
next
case (IAp x y)
thus ?case by fastforce
qed
lemma unlift_subst: "j \<le> i \<and> j \<le> n \<Longrightarrow> (unlift' (Suc n) t (Suc i))[s/j] = unlift' n t i"
proof (induction t arbitrary: i)
case (Opaque x)
thus ?case by simp
next
case (Pure x)
thus ?case using subst_liftn by simp
next
case (IAp x y)
hence "j \<le> i + iorder y" by simp
with IAp show ?case by auto
qed
lemma unlift'_equiv: "x \<simeq> y \<Longrightarrow> unlift' n x i \<leftrightarrow> unlift' n y i"
proof (induction arbitrary: n i pred: itrm_cong)
case (into_itrm_cong x y) thus ?case
proof induction
case (idiom_id x)
show ?case using I_equiv[symmetric] by simp
next
case (idiom_comp g f x)
let ?G = "unlift' n g (i + iorder f + iorder x)"
let ?F = "unlift' n f (i + iorder x)"
let ?X = "unlift' n x i"
have "unlift' n (g \<diamondop> (f \<diamondop> x)) i = ?G \<degree> (?F \<degree> ?X)"
by (simp add: add.assoc)
moreover have "unlift' n (Pure \<B> \<diamondop> g \<diamondop> f \<diamondop> x) i = \<B> \<degree> ?G \<degree> ?F \<degree> ?X"
by (simp add: add.commute add.left_commute)
moreover have "?G \<degree> (?F \<degree> ?X) \<leftrightarrow> \<B> \<degree> ?G \<degree> ?F \<degree> ?X" using B_equiv[symmetric] .
ultimately show ?case by simp
next
case (idiom_hom f x)
show ?case by auto
next
case (idiom_xchng f x)
let ?F = "unlift' n f i"
let ?X = "liftn n x 0"
have "unlift' n (f \<diamondop> Pure x) i = ?F \<degree> ?X" by simp
moreover have "unlift' n (Pure (\<T> \<degree> x) \<diamondop> f) i = \<T> \<degree> ?X \<degree> ?F" by simp
moreover have "?F \<degree> ?X \<leftrightarrow> \<T> \<degree> ?X \<degree> ?F" using T_equiv[symmetric] .
ultimately show ?case by simp
qed
next
case pure_cong
thus ?case by (auto intro: equiv_liftn)
next
case (ap_cong f f' x x')
from \<open>x \<simeq> x'\<close> have iorder_eq: "iorder x = iorder x'" by (rule iorder_equiv)
have "unlift' n (f \<diamondop> x) i = unlift' n f (i + iorder x) \<degree> unlift' n x i" by simp
moreover have "unlift' n (f' \<diamondop> x') i = unlift' n f' (i + iorder x) \<degree> unlift' n x' i"
using iorder_eq by simp
ultimately show ?case using ap_cong.IH by (auto intro: equiv_app)
next
case itrm_refl
thus ?case by simp
next
case itrm_sym
thus ?case using term_sym by simp
next
case itrm_trans
thus ?case using term_trans by blast
qed
lemma unlift_equiv: "x \<simeq> y \<Longrightarrow> unlift x \<leftrightarrow> unlift y"
proof -
assume "x \<simeq> y"
then have "unlift' (iorder y) x 0 \<leftrightarrow> unlift' (iorder y) y 0" by (rule unlift'_equiv)
moreover from \<open>x \<simeq> y\<close> have "iorder x = iorder y" by (rule iorder_equiv)
ultimately show ?thesis by auto
qed
paragraph \<open>Preserving variables\<close>
primrec unlift_vars :: "nat \<Rightarrow> nat itrm \<Rightarrow> dB"
where
"unlift_vars n (Opaque i) = Var i"
| "unlift_vars n (Pure x) = liftn n x 0"
| "unlift_vars n (x \<diamondop> y) = unlift_vars n x \<degree> unlift_vars n y"
lemma all_pure_unlift_vars: "opaque x = [] \<Longrightarrow> x \<simeq> Pure (unlift_vars 0 x)"
proof (induction x)
case (Opaque x) then show ?case by simp
next
case (Pure x) then show ?case by simp
next
case (IAp x y)
then have no_opaque: "opaque x = []" "opaque y = []" by simp+
then have unlift_ap: "unlift_vars 0 (x \<diamondop> y) = unlift_vars 0 x \<degree> unlift_vars 0 y"
by simp
from no_opaque IAp.IH have "x \<diamondop> y \<simeq> Pure (unlift_vars 0 x) \<diamondop> Pure (unlift_vars 0 y)"
by (blast intro: ap_cong)
also have "... \<simeq> Pure (unlift_vars 0 x \<degree> unlift_vars 0 y)" by (rule itrm_hom)
also have "... = Pure (unlift_vars 0 (x \<diamondop> y))" by (simp only: unlift_ap)
finally show ?case .
qed
subsubsection \<open>Canonical forms\<close>
inductive_set CF :: "'a itrm set"
where
pure_cf[iff]: "Pure x \<in> CF"
| ap_cf[intro]: "f \<in> CF \<Longrightarrow> f \<diamondop> Opaque x \<in> CF"
primrec CF_pure :: "'a itrm \<Rightarrow> dB"
where
"CF_pure (Opaque _) = undefined"
| "CF_pure (Pure x) = x"
| "CF_pure (x \<diamondop> _) = CF_pure x"
lemma ap_cfD1[dest]: "f \<diamondop> x \<in> CF \<Longrightarrow> f \<in> CF"
by (rule CF.cases) auto
lemma ap_cfD2[dest]: "f \<diamondop> x \<in> CF \<Longrightarrow> \<exists>x'. x = Opaque x'"
by (rule CF.cases) auto
lemma opaque_not_cf[simp]: "Opaque x \<in> CF \<Longrightarrow> False"
by (rule CF.cases) auto
lemma cf_unlift:
assumes "x \<in> CF"
shows "CF_pure x \<leftrightarrow> unlift x"
using assms proof (induction set: CF)
case (pure_cf x)
show ?case by simp
next
case (ap_cf f x)
let ?n = "iorder f + 1"
have "unlift (f \<diamondop> Opaque x) = (Abs^^?n) (unlift' ?n f 1 \<degree> Var 0)"
by simp
also have "... = (Abs^^iorder f) (Abs (unlift' ?n f 1 \<degree> Var 0))"
using funpow_Suc_inside by simp
also have "... \<leftrightarrow> unlift f" proof -
have "\<not> free (unlift' ?n f 1) 0" using free_unlift by fastforce
hence "Abs (unlift' ?n f 1 \<degree> Var 0) \<rightarrow>\<^sub>\<eta> (unlift' ?n f 1)[Var 0/0]" ..
also have "... = unlift' (iorder f) f 0"
using unlift_subst by (metis One_nat_def Suc_eq_plus1 le0)
finally show ?thesis
by (simp add: r_into_rtranclp absn_cong eta_into_equiv)
qed
finally show ?case
using ap_cf.IH by (auto intro: term_sym term_trans)
qed
lemma cf_similarI:
assumes "x \<in> CF" "y \<in> CF"
and "opaque x = opaque y"
and "CF_pure x \<leftrightarrow> CF_pure y"
shows "x \<cong> y"
using assms proof (induction arbitrary: y)
case (pure_cf x)
hence "opaque y = []" by auto
with \<open>y \<in> CF\<close> obtain y' where "y = Pure y'" by cases auto
with pure_cf.prems show ?case by auto
next
case (ap_cf f x)
from \<open>opaque (f \<diamondop> Opaque x) = opaque y\<close>
obtain y1 y2 where "opaque y = y1 @ y2"
and "opaque f = y1" and "[x] = y2" by fastforce
from \<open>[x] = y2\<close> obtain y' where "y2 = [y']" and "x = y'"
by auto
with \<open>y \<in> CF\<close> and \<open>opaque y = y1 @ y2\<close> obtain g
where "opaque g = y1" and y_split: "y = g \<diamondop> Opaque y'" "g \<in> CF" by cases auto
with ap_cf.prems \<open>opaque f = y1\<close>
have "opaque f = opaque g" "CF_pure f \<leftrightarrow> CF_pure g" by auto
with ap_cf.IH \<open>g \<in> CF\<close> have "f \<cong> g" by simp
with ap_cf.prems y_split \<open>x = y'\<close> show ?case by (auto intro: ap_cong)
qed
lemma cf_similarD:
assumes in_cf: "x \<in> CF" "y \<in> CF"
and similar: "x \<cong> y"
shows "CF_pure x \<leftrightarrow> CF_pure y \<and> opaque x = opaque y"
using assms
by (blast intro!: similar_into_equiv opaque_equiv cf_unlift unlift_equiv
intro: term_trans term_sym)
text \<open>Equivalent idiomatic terms in canonical form are similar. This justifies speaking of a
normal form.\<close>
lemma cf_unique:
assumes in_cf: "x \<in> CF" "y \<in> CF"
and equiv: "x \<simeq> y"
shows "x \<cong> y"
using in_cf proof (rule cf_similarI)
from equiv show "opaque x = opaque y" by (rule opaque_equiv)
next
from equiv have "unlift x \<leftrightarrow> unlift y" by (rule unlift_equiv)
thus "CF_pure x \<leftrightarrow> CF_pure y"
using cf_unlift[OF in_cf(1)] cf_unlift[OF in_cf(2)]
by (auto intro: term_sym term_trans)
qed
subsubsection \<open>Normalisation of idiomatic terms\<close>
primrec norm_pn :: "dB \<Rightarrow> 'a itrm \<Rightarrow> 'a itrm"
where
"norm_pn f (Opaque x) = undefined"
| "norm_pn f (Pure x) = Pure (f \<degree> x)"
| "norm_pn f (n \<diamondop> x) = norm_pn (\<B> \<degree> f) n \<diamondop> x"
primrec norm_nn :: "'a itrm \<Rightarrow> 'a itrm \<Rightarrow> 'a itrm"
where
"norm_nn n (Opaque x) = undefined"
| "norm_nn n (Pure x) = norm_pn (\<T> \<degree> x) n"
| "norm_nn n (n' \<diamondop> x) = norm_nn (norm_pn \<B> n) n' \<diamondop> x"
primrec norm :: "'a itrm \<Rightarrow> 'a itrm"
where
"norm (Opaque x) = Pure \<I> \<diamondop> Opaque x"
| "norm (Pure x) = Pure x"
| "norm (f \<diamondop> x) = norm_nn (norm f) (norm x)"
lemma norm_pn_in_cf:
assumes "x \<in> CF"
shows "norm_pn f x \<in> CF"
using assms
by (induction x arbitrary: f) auto
lemma norm_nn_in_cf:
assumes "n \<in> CF" "n' \<in> CF"
shows "norm_nn n n' \<in> CF"
using assms(2,1)
by (induction n' arbitrary: n) (auto intro: norm_pn_in_cf)
lemma norm_in_cf: "norm x \<in> CF"
by (induction x) (auto intro: norm_nn_in_cf)
lemma norm_pn_equiv:
assumes "x \<in> CF"
shows "norm_pn f x \<simeq> Pure f \<diamondop> x"
using assms proof (induction x arbitrary: f)
case (pure_cf x)
have "Pure (f \<degree> x) \<simeq> Pure f \<diamondop> Pure x" using itrm_hom[symmetric] .
then show ?case by simp
next
case (ap_cf n x)
from ap_cf.IH have "norm_pn (\<B> \<degree> f) n \<simeq> Pure (\<B> \<degree> f) \<diamondop> n" .
then have "norm_pn (\<B> \<degree> f) n \<diamondop> Opaque x \<simeq> Pure (\<B> \<degree> f) \<diamondop> n \<diamondop> Opaque x" ..
also have "... \<simeq> Pure \<B> \<diamondop> Pure f \<diamondop> n \<diamondop> Opaque x"
using itrm_hom[symmetric] by blast
also have "... \<simeq> Pure f \<diamondop> (n \<diamondop> Opaque x)" using itrm_comp .
finally show ?case by simp
qed
lemma norm_nn_equiv:
assumes "n \<in> CF" "n' \<in> CF"
shows "norm_nn n n' \<simeq> n \<diamondop> n'"
using assms(2,1) proof (induction n' arbitrary: n)
case (pure_cf x)
then have "norm_pn (\<T> \<degree> x) n \<simeq> Pure (\<T> \<degree> x) \<diamondop> n" by (rule norm_pn_equiv)
also have "... \<simeq> n \<diamondop> Pure x" using itrm_xchng[symmetric] .
finally show ?case by simp
next
case (ap_cf n' x)
have "norm_nn (norm_pn \<B> n) n' \<diamondop> Opaque x \<simeq> Pure \<B> \<diamondop> n \<diamondop> n' \<diamondop> Opaque x" proof
from \<open>n \<in> CF\<close> have "norm_pn \<B> n \<in> CF" by (rule norm_pn_in_cf)
with ap_cf.IH have "norm_nn (norm_pn \<B> n) n' \<simeq> norm_pn \<B> n \<diamondop> n'" .
also have "... \<simeq> Pure \<B> \<diamondop> n \<diamondop> n'" using norm_pn_equiv \<open>n \<in> CF\<close> by blast
finally show "norm_nn (norm_pn \<B> n) n' \<simeq> Pure \<B> \<diamondop> n \<diamondop> n'" .
qed
also have "... \<simeq> n \<diamondop> (n' \<diamondop> Opaque x)" using itrm_comp .
finally show ?case by simp
qed
lemma norm_equiv: "norm x \<simeq> x"
proof (induction)
case (Opaque x)
have "Pure \<I> \<diamondop> Opaque x \<simeq> Opaque x" using itrm_id .
then show ?case by simp
next
case (Pure x)
show ?case by simp
next
case (IAp f x)
have "norm f \<in> CF" and "norm x \<in> CF" by (rule norm_in_cf)+
then have "norm_nn (norm f) (norm x) \<simeq> norm f \<diamondop> norm x"
by (rule norm_nn_equiv)
also have "... \<simeq> f \<diamondop> x" using IAp.IH ..
finally show ?case by simp
qed
lemma normal_form: obtains n where "n \<simeq> x" and "n \<in> CF"
using norm_equiv norm_in_cf ..
subsubsection \<open>Lifting with normal forms\<close>
lemma nf_unlift:
assumes equiv: "n \<simeq> x" and cf: "n \<in> CF"
shows "CF_pure n \<leftrightarrow> unlift x"
proof -
from cf have "CF_pure n \<leftrightarrow> unlift n" by (rule cf_unlift)
also from equiv have "unlift n \<leftrightarrow> unlift x" by (rule unlift_equiv)
finally show ?thesis .
qed
theorem nf_lifting:
assumes opaque: "opaque x = opaque y"
and base_eq: "unlift x \<leftrightarrow> unlift y"
shows "x \<simeq> y"
proof -
obtain n where nf_x: "n \<simeq> x" "n \<in> CF" by (rule normal_form)
obtain n' where nf_y: "n' \<simeq> y" "n' \<in> CF" by (rule normal_form)
from nf_x have "CF_pure n \<leftrightarrow> unlift x" by (rule nf_unlift)
also note base_eq
also from nf_y have "unlift y \<leftrightarrow> CF_pure n'" by (rule nf_unlift[THEN term_sym])
finally have pure_eq: "CF_pure n \<leftrightarrow> CF_pure n'" .
from nf_x(1) have "opaque n = opaque x" by (rule opaque_equiv)
also note opaque
also from nf_y(1) have "opaque y = opaque n'" by (rule opaque_equiv[THEN sym])
finally have opaque_eq: "opaque n = opaque n'" .
from nf_x(1) have "x \<simeq> n" ..
also have "n \<simeq> n'"
using nf_x nf_y pure_eq opaque_eq
by (blast intro: similar_into_equiv cf_similarI)
also from nf_y(1) have "n' \<simeq> y" .
finally show "x \<simeq> y" .
qed
subsubsection \<open>Bracket abstraction, twice\<close>
paragraph \<open>Preliminaries: Sequential application of variables\<close>
definition frees :: "dB \<Rightarrow> nat set"
where [simp]: "frees t = {i. free t i}"
definition var_dist :: "nat list \<Rightarrow> dB \<Rightarrow> dB"
where "var_dist = fold (\<lambda>i t. t \<degree> Var i)"
lemma var_dist_Nil[simp]: "var_dist [] t = t"
unfolding var_dist_def by simp
lemma var_dist_Cons[simp]: "var_dist (v # vs) t = var_dist vs (t \<degree> Var v)"
unfolding var_dist_def by simp
lemma var_dist_append1: "var_dist (vs @ [v]) t = var_dist vs t \<degree> Var v"
unfolding var_dist_def by simp
lemma var_dist_frees: "frees (var_dist vs t) = frees t \<union> set vs"
by (induction vs arbitrary: t) auto
lemma var_dist_subst_lt:
"\<forall>v\<in>set vs. i < v \<Longrightarrow> (var_dist vs s)[t/i] = var_dist (map (\<lambda>v. v - 1) vs) (s[t/i])"
by (induction vs arbitrary: s) simp_all
lemma var_dist_subst_gt:
"\<forall>v\<in>set vs. v < i \<Longrightarrow> (var_dist vs s)[t/i] = var_dist vs (s[t/i])"
by (induction vs arbitrary: s) simp_all
definition vsubst :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where "vsubst u v w = (if u < w then u else if u = w then v else u - 1)"
lemma vsubst_subst[simp]: "(Var u)[Var v/w] = Var (vsubst u v w)"
unfolding vsubst_def by simp
lemma vsubst_subst_lt[simp]: "u < w \<Longrightarrow> vsubst u v w = u"
unfolding vsubst_def by simp
lemma var_dist_subst_Var:
"(var_dist vs s)[Var i/j] = var_dist (map (\<lambda>v. vsubst v i j) vs) (s[Var i/j])"
by (induction vs arbitrary: s) simp_all
lemma var_dist_cong: "s \<leftrightarrow> t \<Longrightarrow> var_dist vs s \<leftrightarrow> var_dist vs t"
by (induction vs arbitrary: s t) auto
paragraph \<open>Preliminaries: Eta reductions with permuted variables\<close>
lemma absn_subst: "((Abs^^n) s)[t/k] = (Abs^^n) (s[liftn n t 0/k+n])"
by (induction n arbitrary: t k) (simp_all add: liftn_lift_swap)
lemma absn_beta_equiv: "(Abs^^Suc n) s \<degree> t \<leftrightarrow> (Abs^^n) (s[liftn n t 0/n])"
proof -
have "(Abs^^Suc n) s \<degree> t = Abs ((Abs^^n) s) \<degree> t" by simp
also have "... \<leftrightarrow> ((Abs^^n) s)[t/0]" by (rule beta_into_equiv) (rule beta.beta)
also have "... = (Abs^^n) (s[liftn n t 0/n])" by (simp add: absn_subst)
finally show ?thesis .
qed
lemma absn_dist_eta: "(Abs^^n) (var_dist (rev [0..<n]) (liftn n t 0)) \<leftrightarrow> t"
proof (induction n)
case 0 show ?case by simp
next
case (Suc n)
let ?dist_range = "\<lambda>a k. var_dist (rev [a..<k]) (liftn k t 0)"
have append: "rev [0..<Suc n] = rev [1..<Suc n] @ [0]" by (simp add: upt_rec)
have dist_last: "?dist_range 0 (Suc n) = ?dist_range 1 (Suc n) \<degree> Var 0"
unfolding append var_dist_append1 ..
have "\<not> free (?dist_range 1 (Suc n)) 0" proof -
have "frees (?dist_range 1 (Suc n)) = frees (liftn (Suc n) t 0) \<union> {1..n}"
unfolding var_dist_frees by fastforce
then have "0 \<notin> frees (?dist_range 1 (Suc n))" by simp
then show ?thesis by simp
qed
then have "Abs (?dist_range 0 (Suc n)) \<rightarrow>\<^sub>\<eta> (?dist_range 1 (Suc n))[Var 0/0]"
unfolding dist_last by (rule eta)
also have "... = var_dist (rev [0..<n]) ((liftn (Suc n) t 0)[Var 0/0])" proof -
have "\<forall>v\<in>set (rev [1..<Suc n]). 0 < v" by auto
moreover have "rev [0..<n] = map (\<lambda>v. v - 1) (rev [1..<Suc n])" by (induction n) simp_all
ultimately show ?thesis by (simp only: var_dist_subst_lt)
qed
also have "... = ?dist_range 0 n" using subst_liftn[of 0 n 0 t "Var 0"] by simp
finally have "Abs (?dist_range 0 (Suc n)) \<leftrightarrow> ?dist_range 0 n" ..
then have "(Abs^^Suc n) (?dist_range 0 (Suc n)) \<leftrightarrow> (Abs^^n) (?dist_range 0 n)"
unfolding funpow_Suc_inside by (rule absn_cong)
also from Suc.IH have "... \<leftrightarrow> t" .
finally show ?case .
qed
primrec strip_context :: "nat \<Rightarrow> dB \<Rightarrow> nat \<Rightarrow> dB"
where
"strip_context n (Var i) k = (if i < k then Var i else Var (i - n))"
| "strip_context n (Abs t) k = Abs (strip_context n t (Suc k))"
| "strip_context n (s \<degree> t) k = strip_context n s k \<degree> strip_context n t k"
lemma strip_context_liftn: "strip_context n (liftn (m + n) t k) k = liftn m t k"
by (induction t arbitrary: k) simp_all
lemma liftn_strip_context:
assumes "\<forall>i\<in>frees t. i < k \<or> k + n \<le> i"
shows "liftn n (strip_context n t k) k = t"
using assms proof (induction t arbitrary: k)
case (Abs t)
have "\<forall>i\<in>frees t. i < Suc k \<or> Suc k + n \<le> i" proof
fix i assume free: "i \<in> frees t"
show "i < Suc k \<or> Suc k + n \<le> i" proof (cases "i > 0")
assume "i > 0"
with free Abs.prems have "i-1 < k \<or> k + n \<le> i-1" by simp
then show ?thesis by arith
qed simp
qed
with Abs.IH show ?case by simp
qed auto
lemma absn_dist_eta_free:
assumes "\<forall>i\<in>frees t. n \<le> i"
shows "(Abs^^n) (var_dist (rev [0..<n]) t) \<leftrightarrow> strip_context n t 0" (is "?lhs t \<leftrightarrow> ?rhs")
proof -
have "?lhs (liftn n ?rhs 0) \<leftrightarrow> ?rhs" by (rule absn_dist_eta)
moreover have "liftn n ?rhs 0 = t"
using assms by (auto intro: liftn_strip_context)
ultimately show ?thesis by simp
qed
definition perm_vars :: "nat \<Rightarrow> nat list \<Rightarrow> bool"
where "perm_vars n vs \<longleftrightarrow> distinct vs \<and> set vs = {0..<n}"
lemma perm_vars_distinct: "perm_vars n vs \<Longrightarrow> distinct vs"
unfolding perm_vars_def by simp
lemma perm_vars_length: "perm_vars n vs \<Longrightarrow> length vs = n"
unfolding perm_vars_def using distinct_card by force
lemma perm_vars_lt: "perm_vars n vs \<Longrightarrow> \<forall>i\<in>set vs. i < n"
unfolding perm_vars_def by simp
lemma perm_vars_nth_lt: "perm_vars n vs \<Longrightarrow> i < n \<Longrightarrow> vs ! i < n"
using perm_vars_length perm_vars_lt by simp
lemma perm_vars_inj_on_nth:
assumes "perm_vars n vs"
shows "inj_on (nth vs) {0..<n}"
proof (rule inj_onI)
fix i j
assume "i \<in> {0..<n}" and "j \<in> {0..<n}"
with assms have "i < length vs" and "j < length vs"
using perm_vars_length by simp+
moreover from assms have "distinct vs" by (rule perm_vars_distinct)
moreover assume "vs ! i = vs ! j"
ultimately show "i = j" using nth_eq_iff_index_eq by blast
qed
abbreviation perm_vars_inv :: "nat \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> nat"
where "perm_vars_inv n vs i \<equiv> the_inv_into {0..<n} ((!) vs) i"
lemma perm_vars_inv_nth:
assumes "perm_vars n vs"
and "i < n"
shows "perm_vars_inv n vs (vs ! i) = i"
using assms by (auto intro: the_inv_into_f_f perm_vars_inj_on_nth)
lemma dist_perm_eta:
assumes perm_vars: "perm_vars n vs"
obtains vs' where "\<And>t. \<forall>i\<in>frees t. n \<le> i \<Longrightarrow>
(Abs^^n) (var_dist vs' ((Abs^^n) (var_dist vs (liftn n t 0)))) \<leftrightarrow> strip_context n t 0"
proof -
define vsubsts where "vsubsts n vs' vs =
map (\<lambda>v.
if v < n - length vs' then v
else if v < n then vs' ! (n - v - 1) + (n - length vs')
else v - length vs') vs" for n vs' vs
let ?app_vars = "\<lambda>t n vs' vs. var_dist vs' ((Abs^^n) (var_dist vs (liftn n t 0)))"
{
fix t :: dB and vs' :: "nat list"
assume partial: "length vs' \<le> n"
let ?m = "n - length vs'"
have "?app_vars t n vs' vs \<leftrightarrow> (Abs^^?m) (var_dist (vsubsts n vs' vs) (liftn ?m t 0))"
using partial proof (induction vs' arbitrary: vs n)
case Nil
then have "vsubsts n [] vs = vs" unfolding vsubsts_def by (auto intro: map_idI)
then show ?case by simp
next
case (Cons v vs')
define n' where "n' = n - 1"
have Suc_n': "Suc n' = n" unfolding n'_def using Cons.prems by simp
have vs'_length: "length vs' \<le> n'" unfolding n'_def using Cons.prems by simp
let ?m' = "n' - length vs'"
have m'_conv: "?m' = n - length (v # vs')" unfolding n'_def by simp
have "?app_vars t n (v # vs') vs = ?app_vars t (Suc n') (v # vs') vs"
unfolding Suc_n' ..
also have "... \<leftrightarrow> var_dist vs' ((Abs^^Suc n') (var_dist vs (liftn (Suc n') t 0)) \<degree> Var v)"
unfolding var_dist_Cons ..
also have "... \<leftrightarrow> ?app_vars t n' vs' (vsubsts n [v] vs)" proof (rule var_dist_cong)
have "map (\<lambda>vv. vsubst vv (v + n') n') vs = vsubsts n [v] vs"
unfolding Suc_n'[symmetric] vsubsts_def vsubst_def
by (auto cong: if_cong)
then have "(var_dist vs (liftn (Suc n') t 0))[liftn n' (Var v) 0/n']
= var_dist (vsubsts n [v] vs) (liftn n' t 0)"
using var_dist_subst_Var subst_liftn by simp
then show "(Abs^^Suc n') (var_dist vs (liftn (Suc n') t 0)) \<degree> Var v
\<leftrightarrow> (Abs^^n') (var_dist (vsubsts n [v] vs) (liftn n' t 0))"
by (fastforce intro: absn_beta_equiv[THEN term_trans])
qed
also have "... \<leftrightarrow> (Abs^^?m') (var_dist (vsubsts n' vs' (vsubsts n [v] vs)) (liftn ?m' t 0))"
using vs'_length Cons.IH by blast
also have "... = (Abs^^?m') (var_dist (vsubsts n (v # vs') vs) (liftn ?m' t 0))"
proof -
have "vsubsts n' vs' (vsubsts (Suc n') [v] vs) = vsubsts (Suc n') (v # vs') vs"
unfolding vsubsts_def
using vs'_length [[linarith_split_limit=10]]
by auto
then show ?thesis unfolding Suc_n' by simp
qed
finally show ?case unfolding m'_conv .
qed
}
note partial_appd = this
define vs' where "vs' = map (\<lambda>i. n - perm_vars_inv n vs (n - i - 1) - 1) [0..<n]"
from perm_vars have vs_length: "length vs = n" by (rule perm_vars_length)
have vs'_length: "length vs' = n" unfolding vs'_def by simp
have "map (\<lambda>v. vs' ! (n - v - 1)) vs = rev [0..<n]" proof -
have "length vs = length (rev [0..<n])"
unfolding vs_length by simp
then have "list_all2 (\<lambda>v v'. vs' ! (n - v - 1) = v') vs (rev [0..<n])" proof
fix i assume "i < length vs"
then have "i < n" unfolding vs_length .
then have "vs ! i < n" using perm_vars perm_vars_nth_lt by simp
with \<open>i < n\<close> have "vs' ! (n - vs ! i - 1) = n - perm_vars_inv n vs (vs ! i) - 1"
unfolding vs'_def by simp
also from \<open>i < n\<close> have "... = n - i - 1" using perm_vars perm_vars_inv_nth by simp
also from \<open>i < n\<close> have "... = rev [0..<n] ! i" by (simp add: rev_nth)
finally show "vs' ! (n - vs ! i - 1) = rev [0..<n] ! i" .
qed
then show ?thesis
unfolding list.rel_eq[symmetric]
using list.rel_map
by auto
qed
then have vs'_vs: "vsubsts n vs' vs = rev [0..<n]"
unfolding vsubsts_def vs'_length
using perm_vars perm_vars_lt
by (auto intro: map_ext[THEN trans])
let ?appd_vars = "\<lambda>t n. var_dist (rev [0..<n]) t"
{
fix t
assume not_free: "\<forall>i\<in>frees t. n \<le> i"
have "?app_vars t n vs' vs \<leftrightarrow> ?appd_vars t n" for t
using partial_appd[of vs'] vs'_length vs'_vs by simp
then have "(Abs^^n) (?app_vars t n vs' vs) \<leftrightarrow> (Abs^^n) (?appd_vars t n)"
by (rule absn_cong)
also have "... \<leftrightarrow> strip_context n t 0"
using not_free by (rule absn_dist_eta_free)
finally have "(Abs^^n) (?app_vars t n vs' vs) \<leftrightarrow> strip_context n t 0" .
}
with that show ?thesis .
qed
lemma liftn_absn: "liftn n ((Abs^^m) t) k = (Abs^^m) (liftn n t (k + m))"
by (induction m arbitrary: k) auto
lemma liftn_var_dist_lt:
"\<forall>i\<in>set vs. i < k \<Longrightarrow> liftn n (var_dist vs t) k = var_dist vs (liftn n t k)"
by (induction vs arbitrary: t) auto
lemma liftn_context_conv: "k \<le> k' \<Longrightarrow> \<forall>i\<in>frees t. i < k \<or> k' \<le> i \<Longrightarrow> liftn n t k = liftn n t k'"
proof (induction t arbitrary: k k')
case (Abs t)
have "\<forall>i\<in>frees t. i < Suc k \<or> Suc k' \<le> i" proof
fix i assume "i \<in> frees t"
show "i < Suc k \<or> Suc k' \<le> i" proof (cases "i = 0")
assume "i = 0" then show ?thesis by simp
next
assume "i \<noteq> 0"
from Abs.prems(2) have "\<forall>i. free t (Suc i) \<longrightarrow> i < k \<or> k' \<le> i" by auto
then have "\<forall>i. 0 < i \<and> free t i \<longrightarrow> i - 1 < k \<or> k' \<le> i - 1" by simp
then have "\<forall>i. 0 < i \<and> free t i \<longrightarrow> i < Suc k \<or> Suc k' \<le> i" by auto
with \<open>i \<noteq> 0\<close> \<open>i \<in> frees t\<close> show ?thesis by simp
qed
qed
with Abs.IH Abs.prems(1) show ?case by auto
qed auto
lemma liftn_liftn0: "\<forall>i\<in>frees t. k \<le> i \<Longrightarrow> liftn n t k = liftn n t 0"
using liftn_context_conv by auto
lemma dist_perm_eta_equiv:
assumes perm_vars: "perm_vars n vs"
and not_free: "\<forall>i\<in>frees s. n \<le> i" "\<forall>i\<in>frees t. n \<le> i"
and perm_equiv: "(Abs^^n) (var_dist vs s) \<leftrightarrow> (Abs^^n) (var_dist vs t)"
shows "strip_context n s 0 \<leftrightarrow> strip_context n t 0"
proof -
from perm_vars have vs_lt_n: "\<forall>i\<in>set vs. i < n" using perm_vars_lt by simp
obtain vs' where
etas: "\<And>t. \<forall>i\<in>frees t. n \<le> i \<Longrightarrow>
(Abs^^n) (var_dist vs' ((Abs^^n) (var_dist vs (liftn n t 0)))) \<leftrightarrow> strip_context n t 0"
using perm_vars dist_perm_eta by blast
have "strip_context n s 0 \<leftrightarrow> (Abs^^n) (var_dist vs' ((Abs^^n) (var_dist vs (liftn n s 0))))"
using etas[THEN term_sym] not_free(1) .
also have "... \<leftrightarrow> (Abs^^n) (var_dist vs' ((Abs^^n) (var_dist vs (liftn n t 0))))"
proof (rule absn_cong, rule var_dist_cong)
have "(Abs^^n) (var_dist vs (liftn n s 0)) = (Abs^^n) (var_dist vs (liftn n s n))"
using not_free(1) liftn_liftn0[of s n] by simp
also have "... = (Abs^^n) (liftn n (var_dist vs s) n)"
using vs_lt_n liftn_var_dist_lt by simp
also have "... = liftn n ((Abs^^n) (var_dist vs s)) 0"
using liftn_absn by simp
also have "... \<leftrightarrow> liftn n ((Abs^^n) (var_dist vs t)) 0"
using perm_equiv by (rule equiv_liftn)
also have "... = (Abs^^n) (liftn n (var_dist vs t) n)"
using liftn_absn by simp
also have "... = (Abs^^n) (var_dist vs (liftn n t n))"
using vs_lt_n liftn_var_dist_lt by simp
also have "... = (Abs^^n) (var_dist vs (liftn n t 0))"
using not_free(2) liftn_liftn0[of t n] by simp
finally show "(Abs^^n) (var_dist vs (liftn n s 0)) \<leftrightarrow> ..." .
qed
also have "... \<leftrightarrow> strip_context n t 0"
using etas not_free(2) .
finally show ?thesis .
qed
paragraph \<open>General notion of bracket abstraction for lambda terms\<close>
definition foldr_option :: "('a \<Rightarrow> 'b \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b option"
where "foldr_option f xs e = foldr (\<lambda>a b. Option.bind b (f a)) xs (Some e)"
lemma bind_eq_SomeE:
assumes "Option.bind x f = Some y"
obtains x' where "x = Some x'" and "f x' = Some y"
using assms by (auto iff: bind_eq_Some_conv)
lemma foldr_option_Nil[simp]: "foldr_option f [] e = Some e"
unfolding foldr_option_def by simp
lemma foldr_option_Cons_SomeE:
assumes "foldr_option f (x#xs) e = Some y"
obtains y' where "foldr_option f xs e = Some y'" and "f x y' = Some y"
using assms unfolding foldr_option_def by (auto elim: bind_eq_SomeE)
locale bracket_abstraction =
fixes term_bracket :: "nat \<Rightarrow> dB \<Rightarrow> dB option"
assumes bracket_app: "term_bracket i s = Some s' \<Longrightarrow> s' \<degree> Var i \<leftrightarrow> s"
assumes bracket_frees: "term_bracket i s = Some s' \<Longrightarrow> frees s' = frees s - {i}"
begin
definition term_brackets :: "nat list \<Rightarrow> dB \<Rightarrow> dB option"
where "term_brackets = foldr_option term_bracket"
lemma term_brackets_Nil[simp]: "term_brackets [] t = Some t"
unfolding term_brackets_def by simp
lemma term_brackets_Cons_SomeE:
assumes "term_brackets (v#vs) t = Some t'"
obtains s' where "term_brackets vs t = Some s'" and "term_bracket v s' = Some t'"
using assms unfolding term_brackets_def by (elim foldr_option_Cons_SomeE)
lemma term_brackets_ConsI:
assumes "term_brackets vs t = Some t'"
and "term_bracket v t' = Some t''"
shows "term_brackets (v#vs) t = Some t''"
using assms unfolding term_brackets_def foldr_option_def by simp
lemma term_brackets_dist:
assumes "term_brackets vs t = Some t'"
shows "var_dist vs t' \<leftrightarrow> t"
proof -
from assms have "\<forall>t''. t' \<leftrightarrow> t'' \<longrightarrow> var_dist vs t'' \<leftrightarrow> t"
proof (induction vs arbitrary: t')
case Nil then show ?case by (simp add: term_sym)
next
case (Cons v vs)
from Cons.prems obtain u where
inner: "term_brackets vs t = Some u" and
step: "term_bracket v u = Some t'"
by (auto elim: term_brackets_Cons_SomeE)
from step have red1: "t' \<degree> Var v \<leftrightarrow> u" by (rule bracket_app)
show ?case proof rule+
fix t'' assume "t' \<leftrightarrow> t''"
with red1 have red: "t'' \<degree> Var v \<leftrightarrow> u"
using term_sym term_trans by blast
have "var_dist (v # vs) t'' = var_dist vs (t'' \<degree> Var v)" by simp
also have "... \<leftrightarrow> t" using Cons.IH[OF inner] red[symmetric] by blast
finally show "var_dist (v # vs) t'' \<leftrightarrow> t" .
qed
qed
then show ?thesis by blast
qed
end (* locale bracket_abstraction *)
paragraph \<open>Bracket abstraction for idiomatic terms\<close>
text \<open>We consider idiomatic terms with explicitly assigned variables.\<close>
lemma strip_unlift_vars:
assumes "opaque x = []"
shows "strip_context n (unlift_vars n x) 0 = unlift_vars 0 x"
using assms by (induction x) (simp_all add: strip_context_liftn[where m=0, simplified])
lemma unlift_vars_frees: "\<forall>i\<in>frees (unlift_vars n x). i \<in> set (opaque x) \<or> n \<le> i"
by (induction x) (auto simp add: free_liftn)
locale itrm_abstraction = special_idiom extra_rule for extra_rule :: "nat itrm \<Rightarrow> _" +
fixes itrm_bracket :: "nat \<Rightarrow> nat itrm \<Rightarrow> nat itrm option"
assumes itrm_bracket_ap: "itrm_bracket i x = Some x' \<Longrightarrow> x' \<diamondop> Opaque i \<simeq>\<^sup>+ x"
assumes itrm_bracket_opaque:
"itrm_bracket i x = Some x' \<Longrightarrow> set (opaque x') = set (opaque x) - {i}"
begin
definition "itrm_brackets = foldr_option itrm_bracket"
lemma itrm_brackets_Nil[simp]: "itrm_brackets [] x = Some x"
unfolding itrm_brackets_def by simp
lemma itrm_brackets_Cons_SomeE:
assumes "itrm_brackets (v#vs) x = Some x'"
obtains y' where "itrm_brackets vs x = Some y'" and "itrm_bracket v y' = Some x'"
using assms unfolding itrm_brackets_def by (elim foldr_option_Cons_SomeE)
definition "opaque_dist = fold (\<lambda>i y. y \<diamondop> Opaque i)"
lemma opaque_dist_cong: "x \<simeq>\<^sup>+ y \<Longrightarrow> opaque_dist vs x \<simeq>\<^sup>+ opaque_dist vs y"
unfolding opaque_dist_def
by (induction vs arbitrary: x y) (simp_all add: ap_congL)
lemma itrm_brackets_dist:
assumes defined: "itrm_brackets vs x = Some x'"
shows "opaque_dist vs x' \<simeq>\<^sup>+ x"
proof -
define x'' where "x'' = x'"
have "x' \<simeq>\<^sup>+ x''" unfolding x''_def ..
with defined show "opaque_dist vs x'' \<simeq>\<^sup>+ x"
unfolding opaque_dist_def
proof (induction vs arbitrary: x' x'')
case Nil then show ?case unfolding itrm_brackets_def by (simp add: itrm_sym)
next
case (Cons v vs)
from Cons.prems(1) obtain y'
where defined': "itrm_brackets vs x = Some y'"
and "itrm_bracket v y' = Some x'"
by (rule itrm_brackets_Cons_SomeE)
then have "x' \<diamondop> Opaque v \<simeq>\<^sup>+ y'" by (elim itrm_bracket_ap)
then have "x'' \<diamondop> Opaque v \<simeq>\<^sup>+ y'"
using Cons.prems(2) by (blast intro: itrm_sym itrm_trans)
note this[symmetric]
with defined' have "fold (\<lambda>i y. y \<diamondop> Opaque i) vs (x'' \<diamondop> Opaque v) \<simeq>\<^sup>+ x"
using Cons.IH by blast
then show ?case by simp
qed
qed
lemma itrm_brackets_opaque:
assumes "itrm_brackets vs x = Some x'"
shows "set (opaque x') = set (opaque x) - set vs"
using assms proof (induction vs arbitrary: x')
case Nil
then show ?case unfolding itrm_brackets_def by simp
next
case (Cons v vs)
then show ?case
by (auto elim: itrm_brackets_Cons_SomeE dest!: itrm_bracket_opaque)
qed
lemma itrm_brackets_all:
assumes all_opaque: "set (opaque x) \<subseteq> set vs"
and defined: "itrm_brackets vs x = Some x'"
shows "opaque x' = []"
proof -
from defined have "set (opaque x') = set (opaque x) - set vs"
by (rule itrm_brackets_opaque)
with all_opaque have "set (opaque x') = {}" by simp
then show ?thesis by simp
qed
lemma itrm_brackets_all_unlift_vars:
assumes all_opaque: "set (opaque x) \<subseteq> set vs"
and defined: "itrm_brackets vs x = Some x'"
shows "x' \<simeq>\<^sup>+ Pure (unlift_vars 0 x')"
proof (rule equiv_into_ext_equiv)
from assms have "opaque x' = []" by (rule itrm_brackets_all)
then show "x' \<simeq> Pure (unlift_vars 0 x')" by (rule all_pure_unlift_vars)
qed
end (* locale itrm_abstraction *)
subsubsection \<open>Lifting with bracket abstraction\<close>
locale lifted_bracket = bracket_abstraction + itrm_abstraction +
assumes bracket_compat:
"set (opaque x) \<subseteq> {0..<n} \<Longrightarrow> i < n \<Longrightarrow>
term_bracket i (unlift_vars n x) = map_option (unlift_vars n) (itrm_bracket i x)"
begin
lemma brackets_unlift_vars_swap:
assumes all_opaque: "set (opaque x) \<subseteq> {0..<n}"
and vs_bound: "set vs \<subseteq> {0..<n}"
and defined: "itrm_brackets vs x = Some x'"
shows "term_brackets vs (unlift_vars n x) = Some (unlift_vars n x')"
using vs_bound defined proof (induction vs arbitrary: x')
case Nil
then show ?case by simp
next
case (Cons v vs)
then obtain y'
where ivs: "itrm_brackets vs x = Some y'"
and iv: "itrm_bracket v y' = Some x'"
by (elim itrm_brackets_Cons_SomeE)
with Cons have "term_brackets vs (unlift_vars n x) = Some (unlift_vars n y')"
by auto
moreover {
have "Some (unlift_vars n x') = map_option (unlift_vars n) (itrm_bracket v y')"
unfolding iv by simp
moreover have "set (opaque y') \<subseteq> {0..<n}"
using all_opaque ivs by (auto dest: itrm_brackets_opaque)
moreover have "v < n" using Cons.prems by simp
ultimately have "term_bracket v (unlift_vars n y') = Some (unlift_vars n x')"
using bracket_compat by auto
}
ultimately show ?case by (rule term_brackets_ConsI)
qed
theorem bracket_lifting:
assumes all_vars: "set (opaque x) \<union> set (opaque y) \<subseteq> {0..<n}"
and perm_vars: "perm_vars n vs"
and defined: "itrm_brackets vs x = Some x'" "itrm_brackets vs y = Some y'"
and base_eq: "(Abs^^n) (unlift_vars n x) \<leftrightarrow> (Abs^^n) (unlift_vars n y)"
shows "x \<simeq>\<^sup>+ y"
proof -
from perm_vars have set_vs: "set vs = {0..<n}"
unfolding perm_vars_def by simp
have x_swap: "term_brackets vs (unlift_vars n x) = Some (unlift_vars n x')"
using all_vars set_vs defined(1) by (auto intro: brackets_unlift_vars_swap)
have y_swap: "term_brackets vs (unlift_vars n y) = Some (unlift_vars n y')"
using all_vars set_vs defined(2) by (auto intro: brackets_unlift_vars_swap)
from all_vars have "set (opaque x) \<subseteq> set vs" unfolding set_vs by simp
then have complete_x: "opaque x' = []"
using defined(1) itrm_brackets_all by blast
then have ux_frees: "\<forall>i\<in>frees (unlift_vars n x'). n \<le> i"
using unlift_vars_frees by fastforce
from all_vars have "set (opaque y) \<subseteq> set vs" unfolding set_vs by simp
then have complete_y: "opaque y' = []"
using defined(2) itrm_brackets_all by blast
then have uy_frees: "\<forall>i\<in>frees (unlift_vars n y'). n \<le> i"
using unlift_vars_frees by fastforce
have "x \<simeq>\<^sup>+ opaque_dist vs x'"
using defined(1) by (rule itrm_brackets_dist[symmetric])
also have "... \<simeq>\<^sup>+ opaque_dist vs (Pure (unlift_vars 0 x'))"
using all_vars set_vs defined(1)
by (auto intro: opaque_dist_cong itrm_brackets_all_unlift_vars)
also have "... \<simeq>\<^sup>+ opaque_dist vs (Pure (unlift_vars 0 y'))"
proof (rule opaque_dist_cong, rule pure_cong)
have "(Abs^^n) (var_dist vs (unlift_vars n x')) \<leftrightarrow> (Abs^^n) (unlift_vars n x)"
using x_swap term_brackets_dist by auto
also have "... \<leftrightarrow> (Abs^^n) (unlift_vars n y)" using base_eq .
also have "... \<leftrightarrow> (Abs^^n) (var_dist vs (unlift_vars n y'))"
using y_swap term_brackets_dist[THEN term_sym] by auto
finally have "strip_context n (unlift_vars n x') 0 \<leftrightarrow> strip_context n (unlift_vars n y') 0"
using perm_vars ux_frees uy_frees
by (intro dist_perm_eta_equiv)
then show "unlift_vars 0 x' \<leftrightarrow> unlift_vars 0 y'"
using strip_unlift_vars complete_x complete_y by simp
qed
also have "... \<simeq>\<^sup>+ opaque_dist vs y'" proof (rule opaque_dist_cong)
show "Pure (unlift_vars 0 y') \<simeq>\<^sup>+ y'"
using all_vars set_vs defined(2) itrm_brackets_all_unlift_vars[THEN itrm_sym]
by blast
qed
also have "... \<simeq>\<^sup>+ y" using defined(2) by (rule itrm_brackets_dist)
finally show ?thesis .
qed
end (* locale lifted_bracket *)
end
|