Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,099 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
(* Author: Andreas Lochbihler, ETH Zurich *)

section \<open>Distinct, non-empty list\<close>

theory Applicative_DNEList imports
  Applicative_List
  "HOL-Library.Dlist"
begin

lemma bind_eq_Nil_iff [simp]: "List.bind xs f = [] \<longleftrightarrow> (\<forall>x\<in>set xs. f x = [])"
by(simp add: List.bind_def)

lemma zip_eq_Nil_iff [simp]: "zip xs ys = [] \<longleftrightarrow> xs = [] \<or> ys = []"
by(cases xs ys rule: list.exhaust[case_product list.exhaust]) simp_all

lemma remdups_append1: "remdups (remdups xs @ ys) = remdups (xs @ ys)"
by(induction xs) simp_all

lemma remdups_append2: "remdups (xs @ remdups ys) = remdups (xs @ ys)"
by(induction xs) simp_all

lemma remdups_append1_drop: "set xs \<subseteq> set ys \<Longrightarrow> remdups (xs @ ys) = remdups ys"
by(induction xs) auto

lemma remdups_concat_map: "remdups (concat (map remdups xss)) = remdups (concat xss)"
by(induction xss)(simp_all add: remdups_append1, metis remdups_append2)

lemma remdups_concat_remdups: "remdups (concat (remdups xss)) = remdups (concat xss)"
apply(induction xss)
apply(auto simp add: remdups_append1_drop)
 apply(subst remdups_append1_drop; auto)
apply(metis remdups_append2)
done

lemma remdups_replicate: "remdups (replicate n x) = (if n = 0 then [] else [x])"
by(induction n) simp_all


typedef 'a dnelist = "{xs::'a list. distinct xs \<and> xs \<noteq> []}"
  morphisms list_of_dnelist Abs_dnelist
proof
  show "[x] \<in> ?dnelist" for x by simp
qed

setup_lifting type_definition_dnelist

lemma dnelist_subtype_dlist:
  "type_definition (\<lambda>x. Dlist (list_of_dnelist x)) (\<lambda>x. Abs_dnelist (list_of_dlist x)) {xs. xs \<noteq> Dlist.empty}"
apply unfold_locales
subgoal by(transfer; auto simp add: dlist_eq_iff)
subgoal by(simp add: distinct_remdups_id dnelist.list_of_dnelist[simplified] list_of_dnelist_inverse)
subgoal by(simp add: dlist_eq_iff Abs_dnelist_inverse)
done

lift_bnf (no_warn_transfer, no_warn_wits) 'a dnelist via dnelist_subtype_dlist for map: map
  by(auto simp: dlist_eq_iff)
hide_const (open) map

context begin
qualified lemma map_def: "Applicative_DNEList.map = map_fun id (map_fun list_of_dnelist Abs_dnelist) (\<lambda>f xs. remdups (list.map f xs))"
unfolding map_def by(simp add: fun_eq_iff distinct_remdups_id list_of_dnelist[simplified])

qualified lemma map_transfer [transfer_rule]:
  "rel_fun (=) (rel_fun (pcr_dnelist (=)) (pcr_dnelist (=))) (\<lambda>f xs. remdups (map f xs)) Applicative_DNEList.map"
by(simp add: map_def rel_fun_def dnelist.pcr_cr_eq cr_dnelist_def list_of_dnelist[simplified] Abs_dnelist_inverse)

qualified lift_definition single :: "'a \<Rightarrow> 'a dnelist" is "\<lambda>x. [x]" by simp
qualified lift_definition insert :: "'a \<Rightarrow> 'a dnelist \<Rightarrow> 'a dnelist" is "\<lambda>x xs. if x \<in> set xs then xs else x # xs" by auto
qualified lift_definition append :: "'a dnelist \<Rightarrow> 'a dnelist \<Rightarrow> 'a dnelist" is "\<lambda>xs ys. remdups (xs @ ys)" by auto
qualified lift_definition bind :: "'a dnelist \<Rightarrow> ('a \<Rightarrow> 'b dnelist) \<Rightarrow> 'b dnelist" is "\<lambda>xs f. remdups (List.bind xs f)" by auto

abbreviation (input) pure_dnelist :: "'a \<Rightarrow> 'a dnelist"
where "pure_dnelist \<equiv> single"

end

lift_definition ap_dnelist :: "('a \<Rightarrow> 'b) dnelist \<Rightarrow> 'a dnelist \<Rightarrow> 'b dnelist"
is "\<lambda>f x. remdups (ap_list f x)"
by(auto simp add: ap_list_def)

adhoc_overloading Applicative.ap ap_dnelist

lemma ap_pure_list [simp]: "ap_list [f] xs = map f xs"
by(simp add: ap_list_def List.bind_def)

context includes applicative_syntax
begin

lemma ap_pure_dlist: "pure_dnelist f \<diamondop> x = Applicative_DNEList.map f x"
by transfer simp

applicative dnelist (K)
for pure: pure_dnelist
    ap: ap_dnelist
proof -
  show "pure_dnelist (\<lambda>x. x) \<diamondop> x = x" for x :: "'a dnelist"
    by transfer simp

  have *: "remdups (remdups (remdups ([\<lambda>g f x. g (f x)] \<diamondop> g) \<diamondop> f) \<diamondop> x) = remdups (g \<diamondop> remdups (f \<diamondop> x))"
    (is "?lhs = ?rhs") for g :: "('b \<Rightarrow> 'c) list" and f :: "('a \<Rightarrow> 'b) list" and x
  proof -
    have "?lhs = remdups (concat (map (\<lambda>f. map f x) (remdups (concat (map (\<lambda>x. map (\<lambda>f y. x (f y)) f) g)))))"
      unfolding ap_list_def List.bind_def
      by(subst (2) remdups_concat_remdups[symmetric])(simp add: o_def remdups_map_remdups remdups_concat_remdups)
    also have "\<dots> =  remdups (concat (map (\<lambda>f. map f x) (concat (map (\<lambda>x. map (\<lambda>f y. x (f y)) f) g))))"
      by(subst (1) remdups_concat_remdups[symmetric])(simp add: remdups_map_remdups remdups_concat_remdups)
    also have "\<dots> = remdups (concat (map remdups (map (\<lambda>g. map g (concat (map (\<lambda>f. map f x) f))) g)))"
      using list.pure_B_conv[of g f x] unfolding remdups_concat_map
      by(simp add: ap_list_def List.bind_def o_def)
    also have "\<dots> = ?rhs" unfolding ap_list_def List.bind_def
      by(subst (2) remdups_concat_map[symmetric])(simp add: o_def remdups_map_remdups)
    finally show ?thesis .
  qed
  show "pure_dnelist (\<lambda>g f x. g (f x)) \<diamondop> g \<diamondop> f \<diamondop> x = g \<diamondop> (f \<diamondop> x)"
    for g :: "('b \<Rightarrow> 'c) dnelist" and f :: "('a \<Rightarrow> 'b) dnelist" and x
    by transfer(rule *)
  show "pure_dnelist f \<diamondop> pure_dnelist x = pure_dnelist (f x)" for f :: "'a \<Rightarrow> 'b" and x
    by transfer simp
  show "f \<diamondop> pure_dnelist x = pure_dnelist (\<lambda>f. f x) \<diamondop> f" for f :: "('a \<Rightarrow> 'b) dnelist" and x
    by transfer(simp add: list.interchange)

  have *: "remdups (remdups ([\<lambda>x y. x] \<diamondop> x) \<diamondop> y) = x" if x: "distinct x" and y: "distinct y" "y \<noteq> []"
    for x :: "'b list" and y :: "'a list"
  proof -
    have "remdups (map (\<lambda>(x :: 'b) (y :: 'a). x) x) = map (\<lambda>(x :: 'b) (y :: 'a). x) x"
      using that by(simp add: distinct_map inj_on_def fun_eq_iff)
    hence "remdups (remdups ([\<lambda>x y. x] \<diamondop> x) \<diamondop> y) = remdups (concat (map (\<lambda>f. map f y) (map (\<lambda>x y. x) x)))"
      by(simp add: ap_list_def List.bind_def del: remdups_id_iff_distinct)
    also have "\<dots> = x" using that
      by(simp add: o_def map_replicate_const)(subst remdups_concat_map[symmetric], simp add: o_def remdups_replicate)
    finally show ?thesis .
  qed
  show "pure_dnelist (\<lambda>x y. x) \<diamondop> x \<diamondop> y = x"
    for x :: "'b dnelist" and y :: "'a dnelist"
    by transfer(rule *; simp)
qed

text \<open>@{typ "_ dnelist"} does not have combinator C, so it cannot have W either.\<close>

context begin
private lift_definition x :: "int dnelist" is "[2,3]" by simp
private lift_definition y :: "int dnelist" is "[5,7]" by simp
private lemma "pure_dnelist (\<lambda>f x y. f y x) \<diamondop> pure_dnelist ((*)) \<diamondop> x \<diamondop> y \<noteq> pure_dnelist ((*)) \<diamondop> y \<diamondop> x"
  by transfer(simp add: ap_list_def fun_eq_iff)
end

end

end