Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,517 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
(* Author: Joshua Schneider, ETH Zurich *)

section \<open>Lifting with applicative functors\<close>

theory Applicative
imports Main
keywords "applicative" :: thy_goal and "print_applicative" :: diag
begin

subsection \<open>Equality restricted to a set\<close>

definition eq_on :: "'a set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
where [simp]: "eq_on A = (\<lambda>x y. x \<in> A \<and> x = y)"

lemma rel_fun_eq_onI: "(\<And>x. x \<in> A \<Longrightarrow> R (f x) (g x)) \<Longrightarrow> rel_fun (eq_on A) R f g"
by auto

lemma rel_fun_map_fun2: "rel_fun (eq_on (range h)) A f g \<Longrightarrow> rel_fun (BNF_Def.Grp UNIV h)\<inverse>\<inverse> A f (map_fun h id g)"
  by(auto simp add: rel_fun_def Grp_def eq_onp_def)

lemma rel_fun_refl_eq_onp:
  "(\<And>z. z \<in> f ` X \<Longrightarrow> A z z) \<Longrightarrow> rel_fun (eq_on X) A f f"
  by(auto simp add: rel_fun_def eq_onp_def)

lemma eq_onE: "\<lbrakk> eq_on X a b; \<lbrakk> b \<in> X; a = b \<rbrakk> \<Longrightarrow> thesis \<rbrakk> \<Longrightarrow> thesis" by auto

lemma Domainp_eq_on [simp]: "Domainp (eq_on X) = (\<lambda>x. x \<in> X)"
  by auto

subsection \<open>Proof automation\<close>

lemma arg1_cong: "x = y \<Longrightarrow> f x z = f y z"
by (rule arg_cong)

lemma UNIV_E: "x \<in> UNIV \<Longrightarrow> P \<Longrightarrow> P" .

context begin

private named_theorems combinator_unfold
private named_theorems combinator_repr

private definition "B g f x \<equiv> g (f x)"
private definition "C f x y \<equiv> f y x"
private definition "I x \<equiv> x"
private definition "K x y \<equiv> x"
private definition "S f g x \<equiv> (f x) (g x)"
private definition "T x f \<equiv> f x"
private definition "W f x \<equiv> f x x"

lemmas [abs_def, combinator_unfold] = B_def C_def I_def K_def S_def T_def W_def
lemmas [combinator_repr] = combinator_unfold

private definition "cpair \<equiv> Pair"
private definition "cuncurry \<equiv> case_prod"

private lemma uncurry_pair: "cuncurry f (cpair x y) = f x y"
unfolding cpair_def cuncurry_def by simp

ML_file "applicative.ML"

local_setup \<open>Applicative.setup_combinators
 [("B", @{thm B_def}),
  ("C", @{thm C_def}),
  ("I", @{thm I_def}),
  ("K", @{thm K_def}),
  ("S", @{thm S_def}),
  ("T", @{thm T_def}),
  ("W", @{thm W_def})]\<close>

private attribute_setup combinator_eq =
  \<open>Scan.lift (Scan.option (Args.$$$ "weak" |--
    Scan.optional (Args.colon |-- Scan.repeat1 Args.name) []) >>
    Applicative.combinator_rule_attrib)\<close>

lemma [combinator_eq]: "B \<equiv> S (K S) K" unfolding combinator_unfold .
lemma [combinator_eq]: "C \<equiv> S (S (K (S (K S) K)) S) (K K)" unfolding combinator_unfold .
lemma [combinator_eq]: "I \<equiv> W K" unfolding combinator_unfold .
lemma [combinator_eq]: "I \<equiv> C K ()" unfolding combinator_unfold .
lemma [combinator_eq]: "S \<equiv> B (B W) (B B C)" unfolding combinator_unfold .
lemma [combinator_eq]: "T \<equiv> C I" unfolding combinator_unfold .
lemma [combinator_eq]: "W \<equiv> S S (S K)" unfolding combinator_unfold .

lemma [combinator_eq weak: C]:
  "C \<equiv> C (B B (B B (B W (C (B C (B (B B) (C B (cuncurry (K I))))) (cuncurry K))))) cpair"
unfolding combinator_unfold uncurry_pair .

end (* context *)


method_setup applicative_unfold =
  \<open>Applicative.parse_opt_afun >> (fn opt_af => fn ctxt =>
    SIMPLE_METHOD' (Applicative.unfold_wrapper_tac ctxt opt_af))\<close>
  "unfold into an applicative expression"

method_setup applicative_fold =
  \<open>Applicative.parse_opt_afun >> (fn opt_af => fn ctxt =>
    SIMPLE_METHOD' (Applicative.fold_wrapper_tac ctxt opt_af))\<close>
  "fold an applicative expression"

method_setup applicative_nf =
  \<open>Applicative.parse_opt_afun >> (fn opt_af => fn ctxt =>
    SIMPLE_METHOD' (Applicative.normalize_wrapper_tac ctxt opt_af))\<close>
  "prove an equation that has been lifted to an applicative functor, using normal forms"

method_setup applicative_lifting =
  \<open>Applicative.parse_opt_afun >> (fn opt_af => fn ctxt =>
    SIMPLE_METHOD' (Applicative.lifting_wrapper_tac ctxt opt_af))\<close>
  "prove an equation that has been lifted to an applicative functor"

ML \<open>Outer_Syntax.local_theory_to_proof @{command_keyword "applicative"}
  "register applicative functors"
  (Parse.binding --
    Scan.optional (@{keyword "("} |-- Parse.list Parse.short_ident --| @{keyword ")"}) [] --
    (@{keyword "for"} |-- Parse.reserved "pure" |-- @{keyword ":"} |-- Parse.term) --
    (Parse.reserved "ap" |-- @{keyword ":"} |-- Parse.term) --
    Scan.option (Parse.reserved "rel" |-- @{keyword ":"} |-- Parse.term) --
    Scan.option (Parse.reserved "set" |-- @{keyword ":"} |-- Parse.term) >>
    Applicative.applicative_cmd)\<close>

ML \<open>Outer_Syntax.command @{command_keyword "print_applicative"}
  "print registered applicative functors"
  (Scan.succeed (Toplevel.keep (Applicative.print_afuns o Toplevel.context_of)))\<close>

attribute_setup applicative_unfold =
  \<open>Scan.lift (Scan.option Parse.name >> Applicative.add_unfold_attrib)\<close>
  "register rules for unfolding into applicative expressions"

attribute_setup applicative_lifted =
  \<open>Scan.lift (Parse.name >> Applicative.forward_lift_attrib)\<close>
  "lift an equation to an applicative functor"


subsection \<open>Overloaded applicative operators\<close>

consts
  pure :: "'a \<Rightarrow> 'b"
  ap :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"

bundle applicative_syntax
begin
  notation ap (infixl "\<diamondop>" 70)
end

hide_const (open) ap

end