Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 43,242 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 |
(*
Author: René Thiemann
Akihisa Yamada
License: BSD
*)
subsection \<open>Resultant\<close>
text \<open>This theory contains
facts about resultants which are required for addition and multiplication
of algebraic numbers.
The results are taken from the textbook \cite[pages 227ff and 235ff]{AlgNumbers}.
\<close>
theory Resultant
imports
"HOL-Computational_Algebra.Fundamental_Theorem_Algebra" (* for lmpoly_base_conv *)
Subresultants.Resultant_Prelim
Berlekamp_Zassenhaus.Unique_Factorization_Poly
Bivariate_Polynomials
begin
subsubsection \<open>Sylvester matrices and vector representation of polynomials\<close>
definition vec_of_poly_rev_shifted where
"vec_of_poly_rev_shifted p n j \<equiv>
vec n (\<lambda>i. if i \<le> j \<and> j \<le> degree p + i then coeff p (degree p + i - j) else 0)"
lemma vec_of_poly_rev_shifted_dim[simp]: "dim_vec (vec_of_poly_rev_shifted p n j) = n"
unfolding vec_of_poly_rev_shifted_def by auto
lemma col_sylvester:
fixes p q
defines "m \<equiv> degree p" and "n \<equiv> degree q"
assumes j: "j < m+n"
shows "col (sylvester_mat p q) j =
vec_of_poly_rev_shifted p n j @\<^sub>v vec_of_poly_rev_shifted q m j" (is "?l = ?r")
proof
note [simp] = m_def[symmetric] n_def[symmetric]
show "dim_vec ?l = dim_vec ?r" by simp
fix i assume "i < dim_vec ?r" hence i: "i < m+n" by auto
show "?l $ i = ?r $ i"
unfolding vec_of_poly_rev_shifted_def
apply (subst index_col) using i apply simp using j apply simp
apply (subst sylvester_index_mat) using i apply simp using j apply simp
apply (cases "i < n") apply force using i by simp
qed
lemma inj_on_diff_nat2: "inj_on (\<lambda>i. (n::nat) - i) {..n}" by (rule inj_onI, auto)
lemma image_diff_atMost: "(\<lambda>i. (n::nat) - i) ` {..n} = {..n}" (is "?l = ?r")
unfolding set_eq_iff
proof (intro allI iffI)
fix x assume x: "x \<in> ?r"
thus "x \<in> ?l" unfolding image_def mem_Collect_eq
by(intro bexI[of _ "n-x"],auto)
qed auto
lemma sylvester_sum_mat_upper:
fixes p q :: "'a :: comm_semiring_1 poly"
defines "m \<equiv> degree p" and "n \<equiv> degree q"
assumes i: "i < n"
shows "(\<Sum>j<m+n. monom (sylvester_mat p q $$ (i,j)) (m + n - Suc j)) =
monom 1 (n - Suc i) * p" (is "sum ?f _ = ?r")
proof -
have n1: "n \<ge> 1" using i by auto
define ni1 where "ni1 = n-Suc i"
hence ni1: "n-i = Suc ni1" using i by auto
define l where "l = m+n-1"
hence l: "Suc l = m+n" using n1 by auto
let ?g = "\<lambda>j. monom (coeff (monom 1 (n-Suc i) * p) j) j"
let ?p = "\<lambda>j. l-j"
have "sum ?f {..<m+n} = sum ?f {..l}"
unfolding l[symmetric] unfolding lessThan_Suc_atMost..
also {
fix j assume j: "j\<le>l"
have "?f j = ((\<lambda>j. monom (coeff (monom 1 (n-i) * p) (Suc j)) j) \<circ> ?p) j"
apply(subst sylvester_index_mat2)
using i j unfolding l_def m_def[symmetric] n_def[symmetric]
by (auto simp add: Suc_diff_Suc)
also have "... = (?g \<circ> ?p) j"
unfolding ni1
unfolding coeff_monom_Suc
unfolding ni1_def
using i by auto
finally have "?f j = (?g \<circ> ?p) j".
}
hence "(\<Sum>j\<le>l. ?f j) = (\<Sum>j\<le>l. (?g\<circ>?p) j)" using l by auto
also have "... = (\<Sum>j\<le>l. ?g j)"
unfolding l_def
using sum.reindex[OF inj_on_diff_nat2,symmetric,unfolded image_diff_atMost].
also have "degree ?r \<le> l"
using degree_mult_le[of "monom 1 (n-Suc i)" p]
unfolding l_def m_def
unfolding degree_monom_eq[OF one_neq_zero] using i by auto
from poly_as_sum_of_monoms'[OF this]
have "(\<Sum>j\<le>l. ?g j) = ?r".
finally show ?thesis.
qed
lemma sylvester_sum_mat_lower:
fixes p q :: "'a :: comm_semiring_1 poly"
defines "m \<equiv> degree p" and "n \<equiv> degree q"
assumes ni: "n \<le> i" and imn: "i < m+n"
shows "(\<Sum>j<m+n. monom (sylvester_mat p q $$ (i,j)) (m + n - Suc j)) =
monom 1 (m + n - Suc i) * q" (is "sum ?f _ = ?r")
proof -
define l where "l = m+n-1"
hence l: "Suc l = m+n" using imn by auto
define mni1 where "mni1 = m + n - Suc i"
hence mni1: "m+n-i = Suc mni1" using imn by auto
let ?g = "\<lambda>j. monom (coeff (monom 1 (m + n - Suc i) * q) j) j"
let ?p = "\<lambda>j. l-j"
have "sum ?f {..<m+n} = sum ?f {..l}"
unfolding l[symmetric] unfolding lessThan_Suc_atMost..
also {
fix j assume j: "j\<le>l"
have "?f j = ((\<lambda>j. monom (coeff (monom 1 (m+n-i) * q) (Suc j)) j) \<circ> ?p) j"
apply(subst sylvester_index_mat2)
using ni imn j unfolding l_def m_def[symmetric] n_def[symmetric]
by (auto simp add: Suc_diff_Suc)
also have "... = (?g \<circ> ?p) j"
unfolding mni1
unfolding coeff_monom_Suc
unfolding mni1_def..
finally have "?f j = ...".
}
hence "(\<Sum>j\<le>l. ?f j) = (\<Sum>j\<le>l. (?g\<circ>?p) j)" by auto
also have "... = (\<Sum>j\<le>l. ?g j)"
using sum.reindex[OF inj_on_diff_nat2,symmetric,unfolded image_diff_atMost].
also have "degree ?r \<le> l"
using degree_mult_le[of "monom 1 (m+n-1-i)" q]
unfolding l_def n_def[symmetric]
unfolding degree_monom_eq[OF one_neq_zero] using ni imn by auto
from poly_as_sum_of_monoms'[OF this]
have "(\<Sum>j\<le>l. ?g j) = ?r".
finally show ?thesis.
qed
definition "vec_of_poly p \<equiv> let m = degree p in vec (Suc m) (\<lambda>i. coeff p (m-i))"
definition "poly_of_vec v \<equiv> let d = dim_vec v in \<Sum>i<d. monom (v $ (d - Suc i)) i"
lemma poly_of_vec_of_poly[simp]:
fixes p :: "'a :: comm_monoid_add poly"
shows "poly_of_vec (vec_of_poly p) = p"
unfolding poly_of_vec_def vec_of_poly_def Let_def
unfolding dim_vec
unfolding lessThan_Suc_atMost
using poly_as_sum_of_monoms[of p] by auto
lemma poly_of_vec_0[simp]: "poly_of_vec (0\<^sub>v n) = 0" unfolding poly_of_vec_def Let_def by auto
lemma poly_of_vec_0_iff[simp]:
fixes v :: "'a :: comm_monoid_add vec"
shows "poly_of_vec v = 0 \<longleftrightarrow> v = 0\<^sub>v (dim_vec v)" (is "?v = _ \<longleftrightarrow> _ = ?z")
proof
assume "?v = 0"
hence "\<forall>i\<in>{..<dim_vec v}. v $ (dim_vec v - Suc i) = 0"
unfolding poly_of_vec_def Let_def
by (subst sum_monom_0_iff[symmetric],auto)
hence a: "\<And>i. i < dim_vec v \<Longrightarrow> v $ (dim_vec v - Suc i) = 0" by auto
{ fix i assume "i < dim_vec v"
hence "v $ i = 0" using a[of "dim_vec v - Suc i"] by auto
}
thus "v = ?z" by auto
next assume r: "v = ?z"
show "?v = 0" apply (subst r) by auto
qed
(* TODO: move, copied from no longer existing Cayley-Hamilton/Polynomial_extension *)
lemma degree_sum_smaller:
assumes "n > 0" "finite A"
shows "(\<And> x. x \<in>A \<Longrightarrow> degree (f x) < n) \<Longrightarrow> degree (\<Sum>x\<in>A. f x) < n"
using \<open>finite A\<close>
by(induct rule: finite_induct)
(simp_all add: degree_add_less assms)
lemma degree_poly_of_vec_less:
fixes v :: "'a :: comm_monoid_add vec"
assumes dim: "dim_vec v > 0"
shows "degree (poly_of_vec v) < dim_vec v"
unfolding poly_of_vec_def Let_def
apply(rule degree_sum_smaller)
using dim apply force
apply force
unfolding lessThan_iff
by (metis degree_0 degree_monom_eq dim monom_eq_0_iff)
lemma coeff_poly_of_vec:
"coeff (poly_of_vec v) i = (if i < dim_vec v then v $ (dim_vec v - Suc i) else 0)"
(is "?l = ?r")
proof -
have "?l = (\<Sum>x<dim_vec v. if x = i then v $ (dim_vec v - Suc x) else 0)" (is "_ = ?m")
unfolding poly_of_vec_def Let_def coeff_sum coeff_monom ..
also have "\<dots> = ?r"
proof (cases "i < dim_vec v")
case False
show ?thesis
by (subst sum.neutral, insert False, auto)
next
case True
show ?thesis
by (subst sum.remove[of _ i], force, force simp: True, subst sum.neutral, insert True, auto)
qed
finally show ?thesis .
qed
lemma vec_of_poly_rev_shifted_scalar_prod:
fixes p v
defines "q \<equiv> poly_of_vec v"
assumes m[simp]: "degree p = m" and n: "dim_vec v = n"
assumes j: "j < m+n"
shows "vec_of_poly_rev_shifted p n (n+m-Suc j) \<bullet> v = coeff (p * q) j" (is "?l = ?r")
proof -
have id1: "\<And> i. m + i - (n + m - Suc j) = i + Suc j - n"
using j by auto
let ?g = "\<lambda> i. if i \<le> n + m - Suc j \<and> n - Suc j \<le> i then coeff p (i + Suc j - n) * v $ i else 0"
have "?thesis = ((\<Sum>i = 0..<n. ?g i) =
(\<Sum>i\<le>j. coeff p i * (if j - i < n then v $ (n - Suc (j - i)) else 0)))" (is "_ = (?l = ?r)")
unfolding vec_of_poly_rev_shifted_def coeff_mult m scalar_prod_def n q_def
coeff_poly_of_vec
by (subst sum.cong, insert id1, auto)
also have "..."
proof -
have "?r = (\<Sum>i\<le>j. (if j - i < n then coeff p i * v $ (n - Suc (j - i)) else 0))" (is "_ = sum ?f _")
by (rule sum.cong, auto)
also have "sum ?f {..j} = sum ?f ({i. i \<le> j \<and> j - i < n} \<union> {i. i \<le> j \<and> \<not> j - i < n})"
(is "_ = sum _ (?R1 \<union> ?R2)")
by (rule sum.cong, auto)
also have "\<dots> = sum ?f ?R1 + sum ?f ?R2"
by (subst sum.union_disjoint, auto)
also have "sum ?f ?R2 = 0"
by (rule sum.neutral, auto)
also have "sum ?f ?R1 + 0 = sum (\<lambda> i. coeff p i * v $ (i + n - Suc j)) ?R1"
(is "_ = sum ?F _")
by (subst sum.cong, auto simp: ac_simps)
also have "\<dots> = sum ?F ((?R1 \<inter> {..m}) \<union> (?R1 - {..m}))"
(is "_ = sum _ (?R \<union> ?R')")
by (rule sum.cong, auto)
also have "\<dots> = sum ?F ?R + sum ?F ?R'"
by (subst sum.union_disjoint, auto)
also have "sum ?F ?R' = 0"
proof -
{
fix x
assume "x > m"
from coeff_eq_0[OF this[folded m]]
have "?F x = 0" by simp
}
thus ?thesis
by (subst sum.neutral, auto)
qed
finally have r: "?r = sum ?F ?R" by simp
have "?l = sum ?g ({i. i < n \<and> i \<le> n + m - Suc j \<and> n - Suc j \<le> i}
\<union> {i. i < n \<and> \<not> (i \<le> n + m - Suc j \<and> n - Suc j \<le> i)})"
(is "_ = sum _ (?L1 \<union> ?L2)")
by (rule sum.cong, auto)
also have "\<dots> = sum ?g ?L1 + sum ?g ?L2"
by (subst sum.union_disjoint, auto)
also have "sum ?g ?L2 = 0"
by (rule sum.neutral, auto)
also have "sum ?g ?L1 + 0 = sum (\<lambda> i. coeff p (i + Suc j - n) * v $ i) ?L1"
(is "_ = sum ?G _")
by (subst sum.cong, auto)
also have "\<dots> = sum ?G (?L1 \<inter> {i. i + Suc j - n \<le> m} \<union> (?L1 - {i. i + Suc j - n \<le> m}))"
(is "_ = sum _ (?L \<union> ?L')")
by (subst sum.cong, auto)
also have "\<dots> = sum ?G ?L + sum ?G ?L'"
by (subst sum.union_disjoint, auto)
also have "sum ?G ?L' = 0"
proof -
{
fix x
assume "x + Suc j - n > m"
from coeff_eq_0[OF this[folded m]]
have "?G x = 0" by simp
}
thus ?thesis
by (subst sum.neutral, auto)
qed
finally have l: "?l = sum ?G ?L" by simp
let ?bij = "\<lambda> i. i + n - Suc j"
{
fix x
assume x: "j < m + n" "Suc (x + j) - n \<le> m" "x < n" "n - Suc j \<le> x"
define y where "y = x + Suc j - n"
from x have "x + Suc j \<ge> n" by auto
with x have xy: "x = ?bij y" unfolding y_def by auto
from x have y: "y \<in> ?R" unfolding y_def by auto
have "x \<in> ?bij ` ?R" unfolding xy using y by blast
} note tedious = this
show ?thesis unfolding l r
by (rule sum.reindex_cong[of ?bij], insert j, auto simp: inj_on_def tedious)
qed
finally show ?thesis by simp
qed
lemma sylvester_vec_poly:
fixes p q :: "'a :: comm_semiring_0 poly"
defines "m \<equiv> degree p"
and "n \<equiv> degree q"
assumes v: "v \<in> carrier_vec (m+n)"
shows "poly_of_vec (transpose_mat (sylvester_mat p q) *\<^sub>v v) =
poly_of_vec (vec_first v n) * p + poly_of_vec (vec_last v m) * q" (is "?l = ?r")
proof (rule poly_eqI)
fix i
note mn[simp] = m_def[symmetric] n_def[symmetric]
let ?Tv = "transpose_mat (sylvester_mat p q) *\<^sub>v v"
have dim: "dim_vec (vec_first v n) = n" "dim_vec (vec_last v m) = m" "dim_vec ?Tv = n + m"
using v by auto
have if_distrib: "\<And> x y z. (if x then y else (0 :: 'a)) * z = (if x then y * z else 0)"
by auto
show "coeff ?l i = coeff ?r i"
proof (cases "i < m+n")
case False
hence i_mn: "i \<ge> m+n"
and i_n: "\<And>x. x \<le> i \<and> x < n \<longleftrightarrow> x < n"
and i_m: "\<And>x. x \<le> i \<and> x < m \<longleftrightarrow> x < m" by auto
have "coeff ?r i =
(\<Sum> x < n. vec_first v n $ (n - Suc x) * coeff p (i - x)) +
(\<Sum> x < m. vec_last v m $ (m - Suc x) * coeff q (i - x))"
(is "_ = sum ?f _ + sum ?g _")
unfolding coeff_add coeff_mult Let_def
unfolding coeff_poly_of_vec dim if_distrib
unfolding atMost_def
apply(subst sum.inter_filter[symmetric],simp)
apply(subst sum.inter_filter[symmetric],simp)
unfolding mem_Collect_eq
unfolding i_n i_m
unfolding lessThan_def by simp
also { fix x assume x: "x < n"
have "coeff p (i-x) = 0"
apply(rule coeff_eq_0) using i_mn x unfolding m_def by auto
hence "?f x = 0" by auto
} hence "sum ?f {..<n} = 0" by auto
also { fix x assume x: "x < m"
have "coeff q (i-x) = 0"
apply(rule coeff_eq_0) using i_mn x unfolding n_def by auto
hence "?g x = 0" by auto
} hence "sum ?g {..<m} = 0" by auto
finally have "coeff ?r i = 0" by auto
also from False have "0 = coeff ?l i"
unfolding coeff_poly_of_vec dim sum.distrib[symmetric] by auto
finally show ?thesis by auto
next case True
hence "coeff ?l i = (transpose_mat (sylvester_mat p q) *\<^sub>v v) $ (n + m - Suc i)"
unfolding coeff_poly_of_vec dim sum.distrib[symmetric] by auto
also have "... = coeff (p * poly_of_vec (vec_first v n) + q * poly_of_vec (vec_last v m)) i"
apply(subst index_mult_mat_vec) using True apply simp
apply(subst row_transpose) using True apply simp
apply(subst col_sylvester)
unfolding mn using True apply simp
apply(subst vec_first_last_append[of v n m,symmetric]) using v apply(simp add: add.commute)
apply(subst scalar_prod_append)
apply (rule carrier_vecI,simp)+
apply (subst vec_of_poly_rev_shifted_scalar_prod,simp,simp) using True apply simp
apply (subst add.commute[of n m])
apply (subst vec_of_poly_rev_shifted_scalar_prod,simp,simp) using True apply simp
by simp
also have "... =
(\<Sum>x\<le>i. (if x < n then vec_first v n $ (n - Suc x) else 0) * coeff p (i - x)) +
(\<Sum>x\<le>i. (if x < m then vec_last v m $ (m - Suc x) else 0) * coeff q (i - x))"
unfolding coeff_poly_of_vec[of "vec_first v n",unfolded dim_vec_first,symmetric]
unfolding coeff_poly_of_vec[of "vec_last v m",unfolded dim_vec_last,symmetric]
unfolding coeff_mult[symmetric] by (simp add: mult.commute)
also have "... = coeff ?r i"
unfolding coeff_add coeff_mult Let_def
unfolding coeff_poly_of_vec dim..
finally show ?thesis.
qed
qed
subsubsection \<open>Homomorphism and Resultant\<close>
text \<open>Here we prove Lemma~7.3.1 of the textbook.\<close>
lemma(in comm_ring_hom) resultant_sub_map_poly:
fixes p q :: "'a poly"
shows "hom (resultant_sub m n p q) = resultant_sub m n (map_poly hom p) (map_poly hom q)"
(is "?l = ?r'")
proof -
let ?mh = "map_poly hom"
have "?l = det (sylvester_mat_sub m n (?mh p) (?mh q))"
unfolding resultant_sub_def
apply(subst sylvester_mat_sub_map[symmetric]) by auto
thus ?thesis unfolding resultant_sub_def.
qed
(*
lemma (in comm_ring_hom) resultant_map_poly:
fixes p q :: "'a poly"
defines "p' \<equiv> map_poly hom p"
defines "q' \<equiv> map_poly hom q"
defines "m \<equiv> degree p"
defines "n \<equiv> degree q"
defines "m' \<equiv> degree p'"
defines "n' \<equiv> degree q'"
defines "r \<equiv> resultant p q"
defines "r' \<equiv> resultant p' q'"
shows "m' = m \<Longrightarrow> n' = n \<Longrightarrow> hom r = r'"
and "m' = m \<Longrightarrow> hom r = hom (coeff p m')^(n-n') * r'"
and "m' \<noteq> m \<Longrightarrow> n' = n \<Longrightarrow>
hom r = (if even n then 1 else (-1)^(m-m')) * hom (coeff q n)^(m-m') * r'"
(is "_ \<Longrightarrow> _ \<Longrightarrow> ?goal")
and "m' \<noteq> m \<Longrightarrow> n' \<noteq> n \<Longrightarrow> hom r = 0"
proof -
have m'm: "m' \<le> m" unfolding m_def m'_def p'_def using degree_map_poly_le by auto
have n'n: "n' \<le> n" unfolding n_def n'_def q'_def using degree_map_poly_le by auto
have coeffp'[simp]: "\<And>i. coeff p' i = hom (coeff p i)" unfolding p'_def by auto
have coeffq'[simp]: "\<And>i. coeff q' i = hom (coeff q i)" unfolding q'_def by auto
let ?f = "\<lambda>i. (if even n then 1 else (-1)^i) * hom (coeff q n)^i"
have "hom r = resultant_sub m n p' q'"
unfolding r_def resultant_sub
unfolding m_def n_def p'_def q'_def
by(rule resultant_sub_map_poly)
also have "... = ?f (m-m') * resultant_sub m' n p' q'"
using resultant_sub_trim_upper[of p' "m-m'" n q',folded m'_def] m'm
by (auto simp: power_minus[symmetric])
also have "... = ?f (m-m') * hom (coeff p m')^(n-n') * r'"
using resultant_sub_trim_lower[of m' q' "n-n'" p'] n'n
unfolding r'_def resultant_sub m'_def n'_def by auto
finally have main: "hom r = ?f (m-m') * hom (coeff p m')^(n-n') * r'" by auto
{ assume "m' = m"
thus "hom r = hom (coeff p m')^(n-n') * r'" using main by auto
thus "n' = n \<Longrightarrow> hom r = r'" by auto
}
assume "m' \<noteq> m"
hence m'm: "m' < m" using m'm by auto
thus "n' = n \<Longrightarrow> ?goal" using main by simp
assume "n' \<noteq> n"
hence "n' < n" using n'n by auto
hence "hom (coeff q n) = 0"
unfolding coeffq'[symmetric] unfolding n'_def by(rule coeff_eq_0)
hence "hom (coeff q n) ^ (m-m') = 0" using m'm by (simp add: power_0_left)
from main[unfolded this]
show "hom r = 0" using power_0_Suc by auto
qed
*)
subsubsection\<open>Resultant as Polynomial Expression\<close>
context begin
text \<open>This context provides notions for proving Lemma 7.2.1 of the textbook.\<close>
private fun mk_poly_sub where
"mk_poly_sub A l 0 = A"
| "mk_poly_sub A l (Suc j) = mat_addcol (monom 1 (Suc j)) l (l-Suc j) (mk_poly_sub A l j)"
definition "mk_poly A = mk_poly_sub (map_mat coeff_lift A) (dim_col A - 1) (dim_col A - 1)"
private lemma mk_poly_sub_dim[simp]:
"dim_row (mk_poly_sub A l j) = dim_row A"
"dim_col (mk_poly_sub A l j) = dim_col A"
by (induct j,auto)
private lemma mk_poly_sub_carrier:
assumes "A \<in> carrier_mat nr nc" shows "mk_poly_sub A l j \<in> carrier_mat nr nc"
apply (rule carrier_matI) using assms by auto
private lemma mk_poly_dim[simp]:
"dim_col (mk_poly A) = dim_col A"
"dim_row (mk_poly A) = dim_row A"
unfolding mk_poly_def by auto
private lemma mk_poly_sub_others[simp]:
assumes "l \<noteq> j'" and "i < dim_row A" and "j' < dim_col A"
shows "mk_poly_sub A l j $$ (i,j') = A $$ (i,j')"
using assms by (induct j; simp)
private lemma mk_poly_others[simp]:
assumes i: "i < dim_row A" and j: "j < dim_col A - 1"
shows "mk_poly A $$ (i,j) = [: A $$ (i,j) :]"
unfolding mk_poly_def
apply(subst mk_poly_sub_others)
using i j by auto
private lemma mk_poly_delete[simp]:
assumes i: "i < dim_row A"
shows "mat_delete (mk_poly A) i (dim_col A - 1) = map_mat coeff_lift (mat_delete A i (dim_col A - 1))"
apply(rule eq_matI) unfolding mat_delete_def by auto
private lemma col_mk_poly_sub[simp]:
assumes "l \<noteq> j'" and "j' < dim_col A"
shows "col (mk_poly_sub A l j) j' = col A j'"
by(rule eq_vecI; insert assms; simp)
private lemma det_mk_poly_sub:
assumes A: "(A :: 'a :: comm_ring_1 poly mat) \<in> carrier_mat n n" and i: "i < n"
shows "det (mk_poly_sub A (n-1) i) = det A"
using i
proof (induct i)
case (Suc i)
show ?case unfolding mk_poly_sub.simps
apply(subst det_addcol[of _ n])
using Suc apply simp
using Suc apply simp
apply (rule mk_poly_sub_carrier[OF A])
using Suc by auto
qed simp
private lemma det_mk_poly:
fixes A :: "'a :: comm_ring_1 mat"
shows "det (mk_poly A) = [: det A :]"
proof (cases "dim_row A = dim_col A")
case True
define n where "n = dim_col A"
have "map_mat coeff_lift A \<in> carrier_mat (dim_row A) (dim_col A)" by simp
hence sq: "map_mat coeff_lift A \<in> carrier_mat (dim_col A) (dim_col A)" unfolding True.
show ?thesis
proof(cases "dim_col A = 0")
case True thus ?thesis unfolding det_def by simp
next case False thus ?thesis
unfolding mk_poly_def
by (subst det_mk_poly_sub[OF sq]; simp)
qed
next case False
hence f2: "dim_row A = dim_col A \<longleftrightarrow> False" by simp
hence f3: "dim_row (mk_poly A) = dim_col (mk_poly A) \<longleftrightarrow> False"
unfolding mk_poly_dim by auto
show ?thesis unfolding det_def unfolding f2 f3 if_False by simp
qed
private fun mk_poly2_row where
"mk_poly2_row A d j pv 0 = pv"
| "mk_poly2_row A d j pv (Suc n) =
mk_poly2_row A d j pv n |\<^sub>v n \<mapsto> pv $ n + monom (A$$(n,j)) d"
private fun mk_poly2_col where
"mk_poly2_col A pv 0 = pv"
| "mk_poly2_col A pv (Suc m) =
mk_poly2_row A m (dim_col A - Suc m) (mk_poly2_col A pv m) (dim_row A)"
private definition "mk_poly2 A \<equiv> mk_poly2_col A (0\<^sub>v (dim_row A)) (dim_col A)"
private lemma mk_poly2_row_dim[simp]: "dim_vec (mk_poly2_row A d j pv i) = dim_vec pv"
by(induct i arbitrary: pv, auto)
private lemma mk_poly2_col_dim[simp]: "dim_vec (mk_poly2_col A pv j) = dim_vec pv"
by (induct j arbitrary: pv, auto)
private lemma mk_poly2_row:
assumes n: "n \<le> dim_vec pv"
shows "mk_poly2_row A d j pv n $ i =
(if i < n then pv $ i + monom (A $$ (i,j)) d else pv $ i)"
using n
proof (induct n arbitrary: pv)
case (Suc n) thus ?case
unfolding mk_poly2_row.simps by (cases rule: linorder_cases[of "i" "n"],auto)
qed simp
private lemma mk_poly2_row_col:
assumes dim[simp]: "dim_vec pv = n" "dim_row A = n" and j: "j < dim_col A"
shows "mk_poly2_row A d j pv n = pv + map_vec (\<lambda>a. monom a d) (col A j)"
apply rule using mk_poly2_row[of _ pv] j by auto
private lemma mk_poly2_col:
fixes pv :: "'a :: comm_semiring_1 poly vec" and A :: "'a mat"
assumes i: "i < dim_row A" and dim: "dim_row A = dim_vec pv"
shows "mk_poly2_col A pv j $ i = pv $ i + (\<Sum>j'<j. monom (A $$ (i, dim_col A - Suc j')) j')"
using dim
proof (induct j arbitrary: pv)
case (Suc j) show ?case
unfolding mk_poly2_col.simps
apply (subst mk_poly2_row)
using Suc apply simp
unfolding Suc(1)[OF Suc(2)]
using i by (simp add: add.assoc)
qed simp
private lemma mk_poly2_pre:
fixes A :: "'a :: comm_semiring_1 mat"
assumes i: "i < dim_row A"
shows "mk_poly2 A $ i = (\<Sum>j'<dim_col A. monom (A $$ (i, dim_col A - Suc j')) j')"
unfolding mk_poly2_def
apply(subst mk_poly2_col) using i by auto
private lemma mk_poly2:
fixes A :: "'a :: comm_semiring_1 mat"
assumes i: "i < dim_row A"
and c: "dim_col A > 0"
shows "mk_poly2 A $ i = (\<Sum>j'<dim_col A. monom (A $$ (i,j')) (dim_col A - Suc j'))"
(is "?l = sum ?f ?S")
proof -
define l where "l = dim_col A - 1"
have dim: "dim_col A = Suc l" unfolding l_def using i c by auto
let ?g = "\<lambda>j. l - j"
have "?l = sum (?f \<circ> ?g) ?S" unfolding l_def mk_poly2_pre[OF i] by auto
also have "... = sum ?f ?S"
unfolding dim
unfolding lessThan_Suc_atMost
using sum.reindex[OF inj_on_diff_nat2,symmetric,unfolded image_diff_atMost].
finally show ?thesis.
qed
private lemma mk_poly2_sylvester_upper:
fixes p q :: "'a :: comm_semiring_1 poly"
assumes i: "i < degree q"
shows "mk_poly2 (sylvester_mat p q) $ i = monom 1 (degree q - Suc i) * p"
apply (subst mk_poly2)
using i apply simp using i apply simp
apply (subst sylvester_sum_mat_upper[OF i,symmetric])
apply (rule sum.cong)
unfolding sylvester_mat_dim lessThan_Suc_atMost apply simp
by auto
private lemma mk_poly2_sylvester_lower:
fixes p q :: "'a :: comm_semiring_1 poly"
assumes mi: "i \<ge> degree q" and imn: "i < degree p + degree q"
shows "mk_poly2 (sylvester_mat p q) $ i = monom 1 (degree p + degree q - Suc i) * q"
apply (subst mk_poly2)
using imn apply simp using mi imn apply simp
unfolding sylvester_mat_dim
using sylvester_sum_mat_lower[OF mi imn]
apply (subst sylvester_sum_mat_lower) using mi imn by auto
private lemma foo:
fixes v :: "'a :: comm_semiring_1 vec"
shows "monom 1 d \<cdot>\<^sub>v map_vec coeff_lift v = map_vec (\<lambda>a. monom a d) v"
apply (rule eq_vecI)
unfolding index_map_vec index_col
by (auto simp add: Polynomial.smult_monom)
private lemma mk_poly_sub_corresp:
assumes dimA[simp]: "dim_col A = Suc l" and dimpv[simp]: "dim_vec pv = dim_row A"
and j: "j < dim_col A"
shows "pv + col (mk_poly_sub (map_mat coeff_lift A) l j) l =
mk_poly2_col A pv (Suc j)"
proof(insert j, induct j)
have le: "dim_row A \<le> dim_vec pv" using dimpv by simp
have l: "l < dim_col A" using dimA by simp
{ case 0 show ?case
apply (rule eq_vecI)
using mk_poly2_row[OF le]
by (auto simp add: monom_0)
}
{ case (Suc j)
hence j: "j < dim_col A" by simp
show ?case
unfolding mk_poly_sub.simps
apply(subst col_addcol)
apply simp
apply simp
apply(subst(2) comm_add_vec)
apply(rule carrier_vecI, simp)
apply(rule carrier_vecI, simp)
apply(subst assoc_add_vec[symmetric])
apply(rule carrier_vecI, rule refl)
apply(rule carrier_vecI, simp)
apply(rule carrier_vecI, simp)
unfolding Suc(1)[OF j]
apply(subst(2) mk_poly2_col.simps)
apply(subst mk_poly2_row_col)
apply simp
apply simp
using Suc apply simp
apply(subst col_mk_poly_sub)
using Suc apply simp
using Suc apply simp
apply(subst col_map_mat)
using dimA apply simp
unfolding foo dimA by simp
}
qed
private lemma col_mk_poly_mk_poly2:
fixes A :: "'a :: comm_semiring_1 mat"
assumes dim: "dim_col A > 0"
shows "col (mk_poly A) (dim_col A - 1) = mk_poly2 A"
proof -
define l where "l = dim_col A - 1"
have dim: "dim_col A = Suc l" unfolding l_def using dim by auto
show ?thesis
unfolding mk_poly_def mk_poly2_def dim
apply(subst mk_poly_sub_corresp[symmetric])
apply(rule dim)
apply simp
using dim apply simp
apply(subst left_zero_vec)
apply(rule carrier_vecI) using dim apply simp
apply simp
done
qed
private lemma mk_poly_mk_poly2:
fixes A :: "'a :: comm_semiring_1 mat"
assumes dim: "dim_col A > 0" and i: "i < dim_row A"
shows "mk_poly A $$ (i,dim_col A - 1) = mk_poly2 A $ i"
proof -
have "mk_poly A $$ (i,dim_col A - 1) = col (mk_poly A) (dim_col A - 1) $ i"
apply (subst index_col(1)) using dim i by auto
also note col_mk_poly_mk_poly2[OF dim]
finally show ?thesis.
qed
lemma mk_poly_sylvester_upper:
fixes p q :: "'a :: comm_ring_1 poly"
defines "m \<equiv> degree p" and "n \<equiv> degree q"
assumes i: "i < n"
shows "mk_poly (sylvester_mat p q) $$ (i, m + n - 1) = monom 1 (n - Suc i) * p" (is "?l = ?r")
proof -
let ?S = "sylvester_mat p q"
have c: "m+n = dim_col ?S" and r: "m+n = dim_row ?S" unfolding m_def n_def by auto
hence "dim_col ?S > 0" "i < dim_row ?S" using i by auto
from mk_poly_mk_poly2[OF this]
have "?l = mk_poly2 (sylvester_mat p q) $ i" unfolding m_def n_def by auto
also have "... = ?r"
apply(subst mk_poly2_sylvester_upper)
using i unfolding n_def m_def by auto
finally show ?thesis.
qed
lemma mk_poly_sylvester_lower:
fixes p q :: "'a :: comm_ring_1 poly"
defines "m \<equiv> degree p" and "n \<equiv> degree q"
assumes ni: "n \<le> i" and imn: "i < m+n"
shows "mk_poly (sylvester_mat p q) $$ (i, m + n - 1) = monom 1 (m + n - Suc i) * q" (is "?l = ?r")
proof -
let ?S = "sylvester_mat p q"
have c: "m+n = dim_col ?S" and r: "m+n = dim_row ?S" unfolding m_def n_def by auto
hence "dim_col ?S > 0" "i < dim_row ?S" using imn by auto
from mk_poly_mk_poly2[OF this]
have "?l = mk_poly2 (sylvester_mat p q) $ i" unfolding m_def n_def by auto
also have "... = ?r"
apply(subst mk_poly2_sylvester_lower)
using ni imn unfolding n_def m_def by auto
finally show ?thesis.
qed
text \<open>The next lemma corresponds to Lemma 7.2.1.\<close>
lemma resultant_as_poly:
fixes p q :: "'a :: comm_ring_1 poly"
assumes degp: "degree p > 0" and degq: "degree q > 0"
shows "\<exists>p' q'. degree p' < degree q \<and> degree q' < degree p \<and>
[: resultant p q :] = p' * p + q' * q"
proof (intro exI conjI)
define m where "m = degree p"
define n where "n = degree q"
define d where "d = dim_row (mk_poly (sylvester_mat p q))"
define c where "c = (\<lambda>i. coeff_lift (cofactor (sylvester_mat p q) i (m+n-1)))"
define p' where "p' = (\<Sum>i<n. monom 1 (n - Suc i) * c i)"
define q' where "q' = (\<Sum>i<m. monom 1 (m - Suc i) * c (n+i))"
have degc: "\<And>i. degree (c i) = 0" unfolding c_def by auto
have dmn: "d = m+n" and mnd: "m + n = d" unfolding d_def m_def n_def by auto
have "[: resultant p q :] =
(\<Sum>i<d. mk_poly (sylvester_mat p q) $$ (i,m+n-1) *
cofactor (mk_poly (sylvester_mat p q)) i (m+n-1))"
unfolding resultant_def
unfolding det_mk_poly[symmetric]
unfolding m_def n_def d_def
apply(rule laplace_expansion_column[of _ _ "degree p + degree q - 1"])
apply(rule carrier_matI) using degp by auto
also { fix i assume i: "i<d"
have d2: "d = dim_row (sylvester_mat p q)" unfolding d_def by auto
have "cofactor (mk_poly (sylvester_mat p q)) i (m+n-1) =
(- 1) ^ (i + (m+n-1)) * det (mat_delete (mk_poly (sylvester_mat p q)) i (m+n-1))"
using cofactor_def.
also have "... =
(- 1) ^ (i+m+n-1) * coeff_lift (det (mat_delete (sylvester_mat p q) i (m+n-1)))"
using mk_poly_delete[OF i[unfolded d2]] degp degq
unfolding m_def n_def by (auto simp add: add.assoc)
also have "i+m+n-1 = i+(m+n-1)" using i[folded mnd] by auto
finally have "cofactor (mk_poly (sylvester_mat p q)) i (m+n-1) = c i"
unfolding c_def cofactor_def hom_distribs by simp
}
hence "... = (\<Sum>i<d. mk_poly (sylvester_mat p q) $$ (i, m+n-1) * c i)"
(is "_ = sum ?f _") by auto
also have "... = sum ?f ({..<n} \<union> {n ..<d})" unfolding dmn apply(subst ivl_disj_un(8)) by auto
also have "... = sum ?f {..<n} + sum ?f {n..<d}" apply(subst sum.union_disjoint) by auto
also { fix i assume i: "i < n"
have "?f i = monom 1 (n - Suc i) * c i * p"
unfolding m_def n_def
apply(subst mk_poly_sylvester_upper)
using i unfolding n_def by auto
}
hence "sum ?f {..<n} = p' * p" unfolding p'_def sum_distrib_right by auto
also { fix i assume i: "i \<in> {n..<d}"
have "?f i = monom 1 (m + n - Suc i) * c i * q"
unfolding m_def n_def
apply(subst mk_poly_sylvester_lower)
using i unfolding dmn n_def m_def by auto
}
hence "sum ?f {n..<d} = (\<Sum>i=n..<d. monom 1 (m + n - Suc i) * c i) * q"
(is "_ = sum ?h _ * _") unfolding sum_distrib_right by auto
also have "{n..<d} = (\<lambda>i. i+n) ` {0..<m}"
by (simp add: dmn)
also have "sum ?h ... = sum (?h \<circ> (\<lambda>i. i+n)) {0..<m}"
apply(subst sum.reindex[symmetric])
apply (rule inj_onI) by auto
also have "... = q'" unfolding q'_def apply(rule sum.cong) by (auto simp add: add.commute)
finally show main: "[:resultant p q:] = p' * p + q' * q".
show "degree p' < n"
unfolding p'_def
apply(rule degree_sum_smaller)
using degq[folded n_def] apply force+
proof -
fix i assume i: "i \<in> {..<n}"
show "degree (monom 1 (n - Suc i) * c i) < n"
apply (rule order.strict_trans1)
apply (rule degree_mult_le)
unfolding add.right_neutral degc
apply (rule order.strict_trans1)
apply (rule degree_monom_le) using i by auto
qed
show "degree q' < m"
unfolding q'_def
apply (rule degree_sum_smaller)
using degp[folded m_def] apply force+
proof -
fix i assume i: "i \<in> {..<m}"
show "degree (monom 1 (m-Suc i) * c (n+i)) < m"
apply (rule order.strict_trans1)
apply (rule degree_mult_le)
unfolding add.right_neutral degc
apply (rule order.strict_trans1)
apply (rule degree_monom_le) using i by auto
qed
qed
end
subsubsection \<open>Resultant as Nonzero Polynomial Expression\<close>
lemma resultant_zero:
fixes p q :: "'a :: comm_ring_1 poly"
assumes deg: "degree p > 0 \<or> degree q > 0"
and xp: "poly p x = 0" and xq: "poly q x = 0"
shows "resultant p q = 0"
proof -
{ assume degp: "degree p > 0" and degq: "degree q > 0"
obtain p' q' where "[: resultant p q :] = p' * p + q' * q"
using resultant_as_poly[OF degp degq] by force
hence "resultant p q = poly (p' * p + q' * q) x"
using mpoly_base_conv(2)[of "resultant p q"] by auto
also have "... = poly p x * poly p' x + poly q x * poly q' x"
unfolding poly2_def by simp
finally have ?thesis using xp xq by simp
} moreover
{ assume degp: "degree p = 0"
have p: "p = [:0:]" using xp degree_0_id[OF degp,symmetric] by (metis mpoly_base_conv(2))
have ?thesis unfolding p using degp deg by simp
} moreover
{ assume degq: "degree q = 0"
have q: "q = [:0:]" using xq degree_0_id[OF degq,symmetric] by (metis mpoly_base_conv(2))
have ?thesis unfolding q using degq deg by simp
}
ultimately show ?thesis by auto
qed
lemma poly_resultant_zero:
fixes p q :: "'a :: comm_ring_1 poly poly"
assumes deg: "degree p > 0 \<or> degree q > 0"
assumes p0: "poly2 p x y = 0" and q0: "poly2 q x y = 0"
shows "poly (resultant p q) x = 0"
proof -
{ assume "degree p > 0" "degree q > 0"
from resultant_as_poly[OF this]
obtain p' q' where "[: resultant p q :] = p' * p + q' * q" by force
hence "resultant p q = poly (p' * p + q' * q) [:y:]"
using mpoly_base_conv(2)[of "resultant p q"] by auto
also have "poly ... x = poly2 p x y * poly2 p' x y + poly2 q x y * poly2 q' x y"
unfolding poly2_def by simp
finally have ?thesis unfolding p0 q0 by simp
} moreover {
assume degp: "degree p = 0"
hence p: "p = [: coeff p 0 :]" by(subst degree_0_id[OF degp,symmetric],simp)
hence "resultant p q = coeff p 0 ^ degree q" using resultant_const(1) by metis
also have "poly ... x = poly (coeff p 0) x ^ degree q" by auto
also have "... = poly2 p x y ^ degree q" unfolding poly2_def by(subst p, auto)
finally have ?thesis unfolding p0 using deg degp zero_power by auto
} moreover {
assume degq: "degree q = 0"
hence q: "q = [: coeff q 0 :]" by(subst degree_0_id[OF degq,symmetric],simp)
hence "resultant p q = coeff q 0 ^ degree p" using resultant_const(2) by metis
also have "poly ... x = poly (coeff q 0) x ^ degree p" by auto
also have "... = poly2 q x y ^ degree p" unfolding poly2_def by(subst q, auto)
finally have ?thesis unfolding q0 using deg degq zero_power by auto
}
ultimately show ?thesis by auto
qed
lemma resultant_as_nonzero_poly_weak:
fixes p q :: "'a :: idom poly"
assumes degp: "degree p > 0" and degq: "degree q > 0"
and r0: "resultant p q \<noteq> 0"
shows "\<exists>p' q'. degree p' < degree q \<and> degree q' < degree p \<and>
[: resultant p q :] = p' * p + q' * q \<and> p' \<noteq> 0 \<and> q' \<noteq> 0"
proof -
obtain p' q'
where deg: "degree p' < degree q" "degree q' < degree p"
and main: "[: resultant p q :] = p' * p + q' * q"
using resultant_as_poly[OF degp degq] by auto
have p0: "p \<noteq> 0" using degp by auto
have q0: "q \<noteq> 0" using degq by auto
show ?thesis
proof (intro exI conjI notI)
assume "p' = 0"
hence "[: resultant p q :] = q' * q" using main by auto
also hence d0: "0 = degree (q' * q)" by (metis degree_pCons_0)
{ assume "q' \<noteq> 0"
hence "degree (q' * q) = degree q' + degree q"
apply(rule degree_mult_eq) using q0 by auto
hence False using d0 degq by auto
} hence "q' = 0" by auto
finally show False using r0 by auto
next
assume "q' = 0"
hence "[: resultant p q :] = p' * p" using main by auto
also
hence d0: "0 = degree (p' * p)" by (metis degree_pCons_0)
{ assume "p' \<noteq> 0"
hence "degree (p' * p) = degree p' + degree p"
apply(rule degree_mult_eq) using p0 by auto
hence False using d0 degp by auto
} hence "p' = 0" by auto
finally show False using r0 by auto
qed fact+
qed
text \<open> Next lemma corresponds to Lemma 7.2.2 of the textbook \<close>
lemma resultant_as_nonzero_poly:
fixes p q :: "'a :: idom poly"
defines "m \<equiv> degree p" and "n \<equiv> degree q"
assumes degp: "m > 0" and degq: "n > 0"
shows "\<exists>p' q'. degree p' < n \<and> degree q' < m \<and>
[: resultant p q :] = p' * p + q' * q \<and> p' \<noteq> 0 \<and> q' \<noteq> 0"
proof (cases "resultant p q = 0")
case False
thus ?thesis
using resultant_as_nonzero_poly_weak degp degq
unfolding m_def n_def by auto
next case True
define S where "S = transpose_mat (sylvester_mat p q)"
have S: "S \<in> carrier_mat (m+n) (m+n)" unfolding S_def m_def n_def by auto
have "det S = 0" using True
unfolding resultant_def S_def apply (subst det_transpose) by auto
then obtain v
where v: "v \<in> carrier_vec (m+n)" and v0: "v \<noteq> 0\<^sub>v (m+n)" and "S *\<^sub>v v = 0\<^sub>v (m+n)"
using det_0_iff_vec_prod_zero[OF S] by auto
hence "poly_of_vec (S *\<^sub>v v) = 0" by auto
hence main: "poly_of_vec (vec_first v n) * p + poly_of_vec (vec_last v m) * q = 0"
(is "?p * _ + ?q * _ = _")
using sylvester_vec_poly[OF v[unfolded m_def n_def], folded m_def n_def S_def]
by auto
have split: "vec_first v n @\<^sub>v vec_last v m = v"
using vec_first_last_append[simplified add.commute] v by auto
show ?thesis
proof(intro exI conjI)
show "[: resultant p q :] = ?p * p + ?q * q" unfolding True using main by auto
show "?p \<noteq> 0"
proof
assume p'0: "?p = 0"
hence "?q * q = 0" using main by auto
hence "?q = 0" using degq n_def by auto
hence "vec_last v m = 0\<^sub>v m" unfolding poly_of_vec_0_iff by auto
also have "vec_first v n @\<^sub>v ... = 0\<^sub>v (m+n)" using p'0 unfolding poly_of_vec_0_iff by auto
finally have "v = 0\<^sub>v (m+n)" using split by auto
thus False using v0 by auto
qed
show "?q \<noteq> 0"
proof
assume q'0: "?q = 0"
hence "?p * p = 0" using main by auto
hence "?p = 0" using degp m_def by auto
hence "vec_first v n = 0\<^sub>v n" unfolding poly_of_vec_0_iff by auto
also have "... @\<^sub>v vec_last v m = 0\<^sub>v (m+n)" using q'0 unfolding poly_of_vec_0_iff by auto
finally have "v = 0\<^sub>v (m+n)" using split by auto
thus False using v0 by auto
qed
show "degree ?p < n" using degree_poly_of_vec_less[of "vec_first v n"] using degq by auto
show "degree ?q < m" using degree_poly_of_vec_less[of "vec_last v m"] using degp by auto
qed
qed
text\<open>Corresponds to Lemma 7.2.3 of the textbook\<close>
lemma resultant_zero_imp_common_factor:
fixes p q :: "'a :: ufd poly"
assumes deg: "degree p > 0 \<or> degree q > 0" and r0: "resultant p q = 0"
shows "\<not> coprime p q"
unfolding neq0_conv[symmetric]
proof -
{ assume degp: "degree p > 0" and degq: "degree q > 0"
assume cop: "coprime p q"
obtain p' q' where "p' * p + q' * q = 0"
and p': "degree p' < degree q" and q': "degree q' < degree p"
and p'0: "p' \<noteq> 0" and q'0: "q' \<noteq> 0"
using resultant_as_nonzero_poly[OF degp degq] r0 by auto
hence "p' * p = - q' * q" by (simp add: eq_neg_iff_add_eq_0)
from some_gcd.coprime_mult_cross_dvd[OF cop this]
have "p dvd q'" by auto
from dvd_imp_degree_le[OF this q'0]
have "degree p \<le> degree q'" by auto
hence False using q' by auto
}
moreover
{ assume degp: "degree p = 0"
then obtain x where "p = [:x:]" by (elim degree_eq_zeroE)
moreover hence "resultant p q = x ^ degree q" using resultant_const by auto
hence "x = 0" using r0 by auto
ultimately have "p = 0" by auto
hence ?thesis unfolding not_coprime_iff_common_factor
by (metis deg degp dvd_0_right dvd_refl less_numeral_extra(3) poly_dvd_1)
}
moreover
{ assume degq: "degree q = 0"
then obtain x where "q = [:x:]" by (elim degree_eq_zeroE)
moreover hence "resultant p q = x ^ degree p" using resultant_const by auto
hence "x = 0" using r0 by auto
ultimately have "q = 0" by auto
hence ?thesis unfolding not_coprime_iff_common_factor
by (metis deg degq dvd_0_right dvd_refl less_numeral_extra(3) poly_dvd_1)
}
ultimately show ?thesis by auto
qed
lemma resultant_non_zero_imp_coprime:
assumes nz: "resultant (f :: 'a :: field poly) g \<noteq> 0"
and nz': "f \<noteq> 0 \<or> g \<noteq> 0"
shows "coprime f g"
proof (cases "degree f = 0 \<or> degree g = 0")
case False
define r where "r = [:resultant f g:]"
from nz have r: "r \<noteq> 0" unfolding r_def by auto
from False have "degree f > 0" "degree g > 0" by auto
from resultant_as_nonzero_poly_weak[OF this nz]
obtain p q where "degree p < degree g" "degree q < degree f"
and id: "r = p * f + q * g"
and "p \<noteq> 0" "q \<noteq> 0" unfolding r_def by auto
define h where "h = some_gcd f g"
have "h dvd f" "h dvd g" unfolding h_def by auto
then obtain j k where f: "f = h * j" and g: "g = h * k" unfolding dvd_def by auto
from id[unfolded f g] have id: "h * (p * j + q * k) = r" by (auto simp: field_simps)
from arg_cong[OF id, of degree] have "degree (h * (p * j + q * k)) = 0"
unfolding r_def by auto
also have "degree (h * (p * j + q * k)) = degree h + degree (p * j + q * k)"
by (subst degree_mult_eq, insert id r, auto)
finally have h: "degree h = 0" "h \<noteq> 0" using r id by auto
thus ?thesis unfolding h_def using is_unit_iff_degree some_gcd.gcd_dvd_1 by blast
next
case True
thus ?thesis
proof
assume deg_g: "degree g = 0"
show ?thesis
proof (cases "g = 0")
case False
then show ?thesis using divides_degree[of _ g, unfolded deg_g]
by (simp add: is_unit_right_imp_coprime)
next
case g: True
then have "g = [:0:]" by auto
from nz[unfolded this resultant_const] have "degree f = 0" by auto
with nz' show ?thesis unfolding g by auto
qed
next
assume deg_f: "degree f = 0"
show ?thesis
proof (cases "f = 0")
case False
then show ?thesis using divides_degree[of _ f, unfolded deg_f]
by (simp add: is_unit_left_imp_coprime)
next
case f: True
then have "f = [:0:]" by auto
from nz[unfolded this resultant_const] have "degree g = 0" by auto
with nz' show ?thesis unfolding f by auto
qed
qed
qed
end
|